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POTENTIALS IN MODIFIED AdS5 SPACES WITH A MODERATE

INCREASE IN ENTROPY

I. Ya. Aref’eva,∗ E. O. Pozdeeva,† and T. O. Pozdeeva‡

We investigate the relation between dilaton potentials and the b-factors of modified anti-de Sitter spaces

and obtain the explicit form of dilaton potentials corresponding to b-factors that lead to a satisfactory

description of the particle creation multiplicity in the framework of the holographic description.
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1. Introduction

In [1], we considered the formation of black holes during a collision of domains [2], [3] in modified spaces
with b-factors of the forms b = (L/z)a, b = e−z/R, and b = (L/z)e−z2/R2

[4]. According to the holographic
approach, formation of a quark–gluon plasma in the four-dimensional space corresponds to creation of a
black hole in the dual five-dimensional space. In this case, the multiplicity of particle creation in heavy-ion
collisions is proportional to the entropy or the trapped surface area of the black hole in the auxiliary space.
It is known from experimental data [5] that the particle creation multiplicity is well approximated by a
power-law function of the form s0.15

NN for energies from 102 GeV to 104 GeV. In the case of the AdS5 space,
the particle creation multiplicity is proportional to s

1/3
NN [6]. To reproduce the experimental dependence in

the holographic approach, Kiritsis and Taliotis [4] proposed modifying the AdS5 space by introducing the
b-factors previously considered in [7]–[9].

The experimentally known proportionality of the particle creation multiplicity to s0.15
NN is well modeled

in the formation of black holes by colliding domains in a modified AdS5 space with power-law b-factors
with a ≈ 0.47 [1]. But a similar proportionality can also be obtained with other b-factors. Here, we
carefully consider the formation of black holes during the collision of domains in a space with a modernized
mixed b-factor of the form b = (L/z)ae−z2/R2

yielding the same experimental dependence with logarithmic
corrections at a ≈ 0.5.

Until now, the question of the explicit dependence of potentials on fields in modified spaces with the
considered b-factors have been studied only in the asymptotic approximation. The dependence of potentials
on the b-factor and its derivatives was considered in [9]. Here, we consider the explicit analytic dependence
of potentials on fields for power-law and exponential b-factors. We establish that the field is a phantom
field for the modified space with a power-law b-factor with a < 1 and an ordinary field in the case of an
exponential b-factor. In modified spaces with mixed b-factors b = (L/z)ae−z2/R2

with a < 1, a switch of the
regime from phantom to ordinary occurs at the point z0 (Φ(z0) = 0). We present the explicit dependence
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of potentials on fields in the cases of the exponential and the power-law b-factors. This dependence in the
case of mixed b-factors can only be constructed numerically.

This work has the following structure. In Sec. 2, we discuss the relation between potentials and fields in
modified spaces. In Secs. 2.2 and 2.3, we discuss particular cases, namely, the relations between potentials
and fields in modified spaces with the power-law and the modernized mixed b-factors. In Sec. 3, we introduce
a shock wave. In Sec. 4, based on a modified holographic model with the modernized mixed b-factor, we
consider the possibility of modeling the particle creation multiplicity in the quark–gluon plasma obtained
in heavy-ion collisions.

2. Potentials for the background metric

2.1. General case. We consider the action of five-dimensional gravity coupled to a scalar dilaton
field:

S5 = SR + SΦ, (1)

where SR is the Einstein–Hilbert action with a negative cosmological constant,

SR = − 1
16πG5

∫ √
−g

[
R +

d(d − 1)
L2

]
dx5,

d + 1 = D = 5, and SΦ is the dilaton action,

SΦ = − 1
16πG5

∫ √
−g

[
−4

3
(∂Φ)2 + V (Φ)

]
dx5.

Here, L is the characteristic dimensional parameter, and G5 is the five-dimensional gravitational constant.
Assuming that background metric has the form

ds2 = b2(z)(dz2 + dxi dxi − dx+dx−), i = 1, 2, (2)

we consider gravitational equations for several types of b-factors [4]. In this case, the Einstein equation
reduces to two independent relations [7], [8]

3b′′

b
+

2
3
(Φ′)2 − b2

2
V (Φ) − 6b2

L2
= 0,

6(b′)2

b2
− 2

3
(Φ′)2 − b2

2
V (Φ) − 6b2

L2
= 0,

(3)

where b = b(z), b′ = ∂zb, and the dilaton field depends only on z, Φ = Φ(z).
The scalar field equation has the form

1
b5

∂

∂z

(
b3 ∂

∂z

)
Φ +

3
8

∂V (Φ)
∂Φ

= 0. (4)

It is obvious from Eqs. (3) that the dilaton field and its potential can be expressed in terms of the b-factor
and its derivatives [9]:

Φ′ = ±3
2

√(
2(b′)2

b2
− b′′

b

)
,

V (Φ(z)) =
3
b2

(
b′′

b
+

2(b′)2

b2
− 4b2

L2

)
.

(5)
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We note that these expressions ensure that Eq. (4) is satisfied. Expressions (5) do not give the explicit
dependence of the potential on the field V = V (Φ). The explicit form of V = V (Φ) can be obtained
by the superpotential method. To use this method, it is convenient to rewrite (3) and the metric in the
coordinates1

u =
∫

b(z) dz. (6)

As a result, metric (2) becomes

ds2 = du2 + e2A(u)(dxi dxi − dx+ dx−), (7)

where A(u) = log(b(u)). The potential is related to the superpotential W :

V (Φ) = −4
3

(
dW

dΦ

)2

+
64
27

W 2 − 12
L2

. (8)

The superpotential is related to the function A as

W (Φ) = −9
4

dA

du
, (9)

and the dilaton field is defined as

Φ = ±3
2

∫ √
−d2A

du2
du. (10)

In the simplest case of a modified space with an exponential b-factor of the form b = e−z/R (we assume
that R ∼ Λ−1

QCD ∼ 1 fm), using the superpotential method, we can obtain the dependence of the potential
on the field:

V (Φ) = − 12
L2

+
9

R2
e±4(Φ−Φ0)/3, (11)

where Φ0 is an integration constant.

2.2. Power-law b-factor. We now consider a space with a power-law b-factor b(z) = (L/z)a. If
a = 1, then we have the AdS5 space.

The potential and fields can be represented as functions of z. In the considered case, Φ = Φ(z) is a
single-valued function of z, and we can express the coordinate as a function of the field, z = z(Φ), and
substitute z in the expression for the potential V (z) = V (z(Φ)) to obtain

V (Φ) = − 12
L2

+
3a(3a + 1)

L2a
exp

(
±4

3

√
a − 1

a
(Φ − Φ0)

)
. (12)

The field Φ and potential V (Φ) are obviously real for a > 1.
For a < 1, we can consider the phantom field Φp, which corresponds to the action

SΦp = − 1
16πG5

∫ √
−g

[
4
3
(∂Φp)2 + Ṽ (Φp)

]
dx5.

The phantom field Φp is related to the dilaton field Φ as Φ−Φ0 = i(Φp−Φp0). For a < 1, the potential
becomes

Ṽ (Φp) = − 12
L2

+
3a(3a + 1)

L2a
exp

(
±4

3

√
1 − a

a
(Φp − Φp0)

)
.

For the phantom field, relations (5) are replaced with the analogous relations

∂zΦp = ±3
2

√(
b′′

b
− 2(b′)2

b2

)
, Ṽ (Φp(z)) =

3
b2

(
b′′

b
+

2(b′)2

b2
− 4b2

L2

)
. (13)

1Here, u is an analogue of the cosmic coordinate in the cosmological application of the superpotential method (see, e.g., [10]).
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a b

Fig. 1. The potentials corresponding to b = (L/z)ae−z2/R2
: (a) at a = 2, L = 4.4 fm, R = 1 fm

and (b) at a = 1, L = 4.4 fm, R = 1 fm, Φ0 = −0.5. The figures show the right and left branches

corresponding to the signs + and − in (15).

2.3. Modernized mixed b-factor. We consider a space with the modernized mixed b-factor

b(z) =
(

L

z

)a

e−z2/R2
. (14)

The superpotential method is inapplicable in this case because z cannot be represented explicitly in terms
of the u variable and b(u) cannot represented explicitly. For b-factor (14), we express ∂zΦ(z) and V (Φ(z))
using (5) as

∂zΦ(z) = ±3
2

ξ

R2z
, (15)

where
ξ =

√
ζ, ζ = 4z4 + 2R2(2a + 1)z2 + aR4(a − 1),

and

V (z) = − 12
L2

+
3(L/z)−2a(aR4(3a + 1) + 2z2R2(6a − 1) + 12z4)e2z2/R2

z2R4
. (16)

Integrating (15), we obtain

Φ± = ±
(

3
4

ξ

R2
+

3
8
(2a + 1) log

2ξ + (2a + 1)R2 + 4z2

2μ2
0

−

− 3
4

√
a(a − 1) log

2R2(a(a − 1)R2 + (2a + 1)z2 + ξ
√

a(a − 1))
μ2

0z
2

)
+ Φ0±, (17)

where μ0 is an arbitrary dimensional constant (for definiteness, μ0 = 1 fm) and the arbitrariness in choosing
the constant is included in Φ±0.

If a > 1, then expression (17) is well defined. As z → ∞, we obtain Φ ∼ 3z2/2R2 and V ∼ Φa+1e4Φ/3.
The potential V (Φ) is shown in Fig. 1 at a = 1 and a = 2.

If a < 1, then the function ζ(z) has a positive root, ζ(z0) = 0, ζ(z) > 0 for z > z0, and ζ(z) < 0 for
0 < z < z0.

The function ζ(z) is shown in Fig. 2. We obtain z0 ≈ 0.249 fm for a = 1/3 and z0 ≈ 0.243 fm for
a = 1/2. In the neighborhood of z = z0, the function Φ(z) has the form

Φ(z) ∼ (z2 − z2
0)

3/2(A + O(z2 − z2
0)), A = ±2(8a + 1)1/4

√
z0

. (18)
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Fig. 2. The function ζ = ζ(z) at a = 1/2.

The field Φ(z) is real for z > z0,

Φs± =
3

4R2

(√
ζ −

√
−(a2 − a)R4 arctan

(
(a2 − a)R4 + (2a + 1)R2z2√

−ζ(a2 − a)R4

)
+

+
1
2
(2a + 1)R2 log

a(4
√

ζ + 8z2 + 2(2a + 1)R2)
μ2

0

)
+ Φs0±,

and imaginary for z < z0, Φs± − Φs0± = i(Φp± − Φp0±),

Φp± = ± 3
4R2

(√
aR4(1 − a) ×

× log
(

2
√

aR4(1 − a)
√
−ζ + 2R2[(a − a2)R2 − 2z2(a + 1/2)]

μ2
0z

2

)
−

−
((

a +
1
2

)
R2 arctan

(
(2a + 1)R2 + 4z2

2μ2
0

√
−ζ

)
−

√
−ζ

μ2
0

))
+ Φp0±.

A convenient choice of constants is Φs±(z0) = Φp±(z0) = 0. The scalar field can be represented as Φ =
ΦsΘ(z−z0)+ iΦpΘ(z0−z). We hence have a theory with an alternating sign of the kinetic term for z < z0.

The potential can be represented parametrically as a function of the real component Φs for z > z0 and
as a function of the imaginary component Φp for z < z0. Such a potential is shown graphically in Fig. 3.

3. Shock wave

In this section, we make several comments on our previous consideration [1]. To take the shock wave
into account, in (1), we add the action of a pointlike source moving along the trajectory xμ = xμ

∗ (η),

Sst =
∫ [

1
2e

gμν
dxμ

∗
dη

dxν
∗

dη
− e

2
m2

]
dη,

where m is the particle mass and η is a worldline parameter. Further, we assume that the particle mass m

is zero, which allows treating only lightlike geodesics, ea
μ is the frame associated with a metric gμν = ea

μeνa,
e =

√−g, and g is the determinant of the metric. We assume that the metric has the shock wave form [11]–
[18]

ds2 = b2(z)
(
dz2 + dxi dxi − dx+ dx− + φ(z, x1, x2)δ(x+)(dx+)2

)
, i = 1, 2. (19)
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a b

c

Fig. 3. (a) The phantom field Φp (dashed line) and the dilaton field Φs (solid line) as functions of

z. (b) The dependence of the potential V on the dilaton and the phantom fields. (c) The potential V

as a function of the dilaton field for small Φ (enlarged lower part of the curve in Fig. 3b). The plots

correspond to a = 1/2, L = 4.4 fm, R = 1 fm, and the sign + in (15).

The shock-wave metric solves the Einstein equation
(

Rμν − gμν

2
R

)
− gμν

2

(
−4

3
(∂Φ)2 + V (Φ)

)
− 4

3
∂μΦ ∂νΦ − gμν

d(d − 1)
2L2

= 8πG5Jμν , (20)

where (∂Φ)2 = gμν ∂μΦ ∂νΦ and Jμν is the current given by the expression [6]

Jμν =
1√−g

∫
e pμpνδ(xμ − xμ

∗ ) dη, (21)

where pμ = e−1gμν(dxν/dη) is the conjugate momentum. The nonzero component of the current in lightlike
coordinates (x+, x−, xi, z), i = 1, 2, is written as

J++ =
E

b3(z)
δ(x1)δ(x2)δ(z − z∗)δ(x+),

where E corresponds to the ion collision energy. Compared with metric (2), metric (19) has the added
profile of the shock wave φ(z, x⊥), which with (20) taken into account solves the equation

(
∂2

x1 + ∂2
x2 + ∂2

z +
3b′

b
∂z

)
φ(z, x⊥) = −16πG5

E

b3
δ(x1)δ(x2)δ(z − z∗). (22)
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It is clear from (22) that the dilaton field influences the wave profile resulting from the source not
directly but only through the b-factor.

4. Holographic simulation of experimental multiplicity curves
using the modernized b-factor

The domain wave profile equation in the space with a modernized mixed b-factor b = (L/z)ae−z2/R2

can be written as [1], [19] (
∂2

z +
3b′

b
∂z

)
φω(z) = −16πG5E

L2

δ(z − z∗)
b3(z)

, (23)

where
φω(z) =

1
L2

∫
φ(z, x⊥) dx⊥

and L is the domain radius. Equation (23) is considered separately before and after the collision point. The
boundary points of the trapped surface are denoted by za and zb, za < z∗ < zb, where z∗ is the collision
point. We represent the solution of (23) in the form

φω(z) = φaΘ(z∗ − z) + φbΘ(z − z∗), (24)

where

φa = Ca

∫ z

za

b−3 dz, φb = Cb

∫ z

zb

b−3 dz.

The constants Ca and Cb are defined by

Ca =
16πG5E

L2

∫ z∗

zb

b−3 dz

(∫ za

zb

b−3 dz

)−1

, Cb =
16πG5E

L2

∫ z∗

za

b−3 dz

(∫ za

zb

b−3 dz

)−1

.

The condition for the trapped surface formation [1] leads to additional requirements on the domain wave,

∂zφ
ω(z)

∣∣
z=za

= 2, ∂zφ
ω(z)

∣∣
z=zb

= −2.

These conditions yield
8πG5E

L2
b−3(za)

∫ z∗

zb

b−3 dz

(∫ za

zb

b−3 dz

)−1

= 1,

8πG5E

L2
b−3(zb)

∫ z∗

za

b−3 dz

(∫ za

zb

b−3 dz

)−1

= −1.

(25)

Using the notation ∫ zj

zi

b−3 dz = F (zj) − F (zi)

in Eqs. (25), we obtain the respective relations between the points z∗, za, zb and za, zb

F (z∗) =
b−3(zb)F (za) + b−3(za)F (zb)

b−3(za) + b−3(zb)
, (26)

b−3(za) =
b−3(zb)

(8πG5E/L2)b−3(zb) − 1
. (27)

787



E = 2GeV

E = 220 GeV

Fig. 4. The dependence of za on zb corresponding to a = 1/2 at the energies E = 2GeV and

E = 220 GeV.

For considering the case of the b-factor b(z) = (L/z)ae−z2/R2
, we can write expression (27) as

(
za

L

)3a

e3z2
a/R2

=
(zb/L)3ae3z2

b/R2

(8πG5E/L2)(zb/L)3ae3z2
b /R2 − 1

. (28)

The solution of (28) is

za = R

√
a

2
W

(
2L2

aR2

(
(zb/L)3ae3z2

b /R2

(8πG5E/L2)(zb/L)3ae3z2
b/R2 − 1

)2/3a)
, (29)

where W(x) is the Lambert W -function.
The obtained expression has the simplest case for a = 1/3, namely,

za =
R√
6

√
W

(
6L2

R2

(
(zb/L)e3z2

b/R2

(8πG5E/L2)(zb/L)e3z2
b
/R2 − 1

)2 )
. (30)

The dependence of za on zb is shown in Fig. 4 at a = 1/2 and fixed energies. For sufficiently large zb,
expression (28) can be simplified and tends to the form

(
za

L

)3a

e3z2
a/R2 −→

zb→∞

L2

8πG5E
, (31)

whence we obtain

za −→
zb→∞

R

√
a

2

√
W

(
2L2

aR2

(
L2

8πG5E

)2/3a)
. (32)

Substituting (27) in (26), we obtain the equation

8πG5E

L2
b−3(zb) =

Γ((3a + 1)/2,−3z2
b/R2) − Γ((3a + 1)/2,−3z2

a/R2)
Γ((3a + 1)/2,−3z2

∗/R2) − Γ((3a + 1)/2,−3z2
a/R2)

, (33)

where Γ(A, X) is the incomplete gamma function. For a = 1/3, we write (33) as

8πG5E

L2
b−3(zb) =

e3zb2/R2 − e3za2/R2

e3z2
∗/R2 − e3za2/R2 . (34)
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Using the representation of the incomplete gamma function

Γ(A, X) = Γ(A) − XA
1F1(A, A + 1,−X)

A
, (35)

where 1F1 is the confluent hypergeometric function, we write (33) as

8πG5E

L2
b−3(zb) =

z
(3a+1)/2
a 1F1

(
3a+1

2 , 3(a+1)
2 ,

3z2
a

R2

)
− z

(3a+1)/2
b 1F1

(
3a+1

2 , 3(a+1)
2 ,

3z2
b

R2

)

z
(3a+1)/2
a 1F1

(
3a+1

2 , 3(a+1)
2 ,

3z2
a

R2

)
− z

(3a+1)/2
∗ 1F1

(
3a+1

2 , 3(a+1)
2 ,

3z2
∗

R2

) . (36)

Using the series expansion of the confluent hypergeometric function

1F1(α, γ, z) =
∞∑

k=0

(α)k

(γ)k

zk

k!
, (37)

where (α)k and (γ)k are Pochhammer symbols, we simplify formula (36):

8πG5E

L2

(
zb

L

)3a

e3z2
b/R2

=
∞∑

k=0

(3z2
a/R2)k+(3a+1)/2 − (3z2

b/R2)k+(3a+1)/2

(3z2
a/R2)k+(3a+1)/2 − (3z2

∗/R2)k+(3a+1)/2
. (38)

We note that condition (38) agrees with the inequality za < z∗ < zb.
For an arbitrary a, relation (26) becomes

z2a
∗ 1F1

(
3a + 1

2
,
3(a + 1)

2
,
3z2

∗
R2

)
=

=
z2a

a z2a
b

(
za

b e3z2
b/R2

1F1

(
3a+1

2 , 3(a+1)
2 ,

3z2
a

R2

)
+ za

ae3z2
a/R2

1F1

(
3a+1

2 , 3(a+1)
2 ,

3z2
b

R2

))

z3a
a e3z2

a/R2 + z3a
b e3z2

B/R2 .

This equation is rather difficult to solve analytically, but expression (26) can be simplified in the case
a = 1/3,

e3z2
∗/R2

=
za + zb

zae−3z2
b/R2 + zbe−3z2

a/R2 , (39)

and has the analytic solution

z∗ =

√
R2

3
log

(
za + zb

zae−3z2
b/R2 + zbe−3z2

a/R2

)
.

The functions φa and φb can be represented as

φa =
16πG5E

L2

∫ z∗

zb

b−3 dz ·
∫ z

za

b−3 dz

(∫ za

zb

b−3 dz

)−1

,

φb =
16πG5E

L2

∫ z∗

za

b−3 dz ·
∫ z

zb

b−3 dz

(∫ za

zb

b−3 dz

)−1

.

(40)

Using property (35), we obtain

∫
b−3 dz =

z(L/z)−3a
1F1((3a + 1)/2, 3(a + 1)/2, 3z2/R2)

3a + 1
+ C.
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Fig. 5. The profile φω corresponding to the mixed b-factor b(z) = (L/z)ae−z2/R2
at zb = 0.5 fm,

a = 1/3, R = 1 fm for E = 0.2 GeV (dotted line), E = 2GeV (solid line), and E = 2 TeV (dashed

line).

Introducing the new notation

Υ(z) = z

(
L

z

)−3a

1F1

(
3a + 1

2
,
3(a + 1)

2
,
3z2

R2

)
, (41)

we obtain representations of expressions (40):

φa =
16πG5E

(3a + 1)L2

(Υ(zb) − Υ(z∗))(Υ(z) − Υ(za))
Υ(zb) − Υ(za)

,

φb =
16πG5E

(3a + 1)L2

(Υ(z∗) − Υ(za))(Υ(zb) − Υ(z))
Υ(zb) − Υ(za)

.

(42)

Expression (41) at a = 1/3 becomes

Υ(z) =
R2

3L
(e3z2/R2 − 1). (43)

The functions φa and φb can now be represented as

φa =
8
3

πG5ER2

L3

(e3z2
b /R2 − e3z2

∗/R2
)(e3z2/R2 − e3z2

a/R2
)

e3z2
b/R2 − e3z2

a/R2 ,

φb =
8
3

πG5ER2

L3

(e3z2
∗/R2 − e3z2

a/R2
)(e3z2

b /R2 − e3z2/R2
)

e3z2
b/R2 − e3z2

a/R2 .

(44)

Function (24) constructed with φa and φb for a = 1/3, G5 = L3/1.9, L = 4.4 fm, and zb = 0.5 fm is shown
in Fig. 5.

The condition za < zb is satisfied if the estimate

E >
L3

4πG5zbe3z2
b/R2

holds. A trapped surface is not created at the energy

E =
L3

4πG5zbe3z2
b/R2 , (45)
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Fig. 6. The profile φω corresponding to the mixed b-factor b(z) = (L/z)ae−z2/R2
for zb = 0.5 fm,

a = 1/3, R = 1 fm, E = 28.74 MeV (dotted line), E = 28.66 MeV (dashed line), and E = 28.57 MeV

(solid line).

which is approximately 28.568MeV for the parameter values G5 = L3/1.9, L = 4.4 fm, a = 1/3, and
zb = 0.5 fm (Fig. 6).

The black hole entropy is proportional to the trapped surface area. We previously used this relation
to calculate the relative entropy in modified spaces with b-factors [1]. We now consider the relative entropy
in a space with a b-factor of the form b(z) = (L/z)ae−z2/R2

. In this case, the relative entropy is

s =
Ξ(za) − Ξ(zb)

2G5 · 3(3 a− 1)(a − 1)
, (46)

where

Ξ(z) =
(

L

z

)3a

ze−3z2/2R2 ×

×
(

2
(

3z2

R2

)(3a−1)/4

M
(
−3a + 1

4
,
3(−a + 1)

4
,
3z2

R2

)
+ 3(1 − a)e−3z2/2R2

)
,

and M(μ, ν, z) = e−z/2z1/2+ν
1F1(1/2 + ν − μ, 1 + 2ν, z) is the Whittaker function, a �= 1/3, a �= 1.

We show the dependence of s on zb at the energies 2GeV and 220Gev in Fig. 7.
The relative entropy has the maximum value at infinite zb:

s −→
zb→∞

(L/za)3azae−3z2
a/2R2

6G5 · (3a − 1)(1 − a)
×

×
(

2
(

3z2
a

R2

)(3a−1)/4

M
(
−3a + 1

4
,
3(−a + 1)

4
,
3z2

a

R2

)
+ 3(1 − a)e−3z2

a/2R2
)

, (47)

where a > 1/3, a �= 1, and za is defined in (32). The behavior of relative entropy (47) at a = 1/2 is shown
in Fig. 8, and the corresponding approximation is shown in Fig. 9.
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E = 220 GeV

E = 2GeV

Fig. 7. The dependence of the relative entropy on zb at a = 1/2 and the energies 2GeV and 220 GeV.

E, GeV

Fig. 8. The dependence of the maximum relative entropy on energy at a = 1/2.

In the case a = 1/3, the relative entropy can be represented as

s =
L

4G5

(
Ei

(
1,

3z2
a

R2

)
− Ei

(
1,

3z2
b

R2

))
, (48)

and

s −→
zb→∞

L

4G5
Ei

(
1,

3z2
a

R2

)
=

L

4G5
Ei

(
1,

1
2
W

(
6L2

R2

(
L2

8πG5E

)2))
. (49)

For a = 1/3, the entropy S therefore changes as

S ∼ Ei
(

1,
1
2
W

(
6L2

R2

(
L2

8πG5E

)2))
,

where Ei(1, x) is the integral exponent.

5. Conclusion

In the cases that well described experiment (a < 1), we found that the scalar field is a phantom in
a space with a power-law b-factor and is a phantom in the interval z < z0 and a dilaton in the interval
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E, GeV E, GeV

a b

E, GeV

c

Fig. 9. The dependence of the maximum relative entropy on energy (solid line) and its approximation

(crosses) at the parameter value a = 1/2: (a) approximation (E0.3(57−29.75(log(E +100)))−7)/2G5

in the energy interval 0 < E < 10 GeV, (b) approximation (E0.3(61−45.05(log(E+100)))−24)/2G5 in

the energy interval 10 < E < 100 GeV, and (c) approximation (E0.3(81−5.95 log(E +100))−67)/2G5

in the energy interval 102 < E < 103 GeV.

z > z0 in a space with a mixed b-factor of the form b = (L/z)ae−z2/R2
. We investigated the possibility of

forming a trapped surface during domain collisions in a modified AdS5 space with the modernized mixed
b-factor. We analyzed the dependence of entropy on the energy of colliding heavy ions in the space with
the modernized mixed b-factor using the condition for forming a trapped surface. Based on the AdS/CFT
duality, our results allow modeling the dependence of the multiplicity of particle creation on the energy of
the colliding heavy ions. The results can be used to compare with the experimental curves for the particle
creation multiplicity in heavy-ion collisions. In the future, using the model with the explicit form of the
potential taken into account, we plan to study other physical properties of quark–gluon plasma such as the
spectrum, the temperature dependence of string breaking between quarks, etc. [18], [20].
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“Exact impulsive gravitational waves in spacetimes of constant curvature,” in: Gravitation: Following the
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