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DARBOUX TRANSFORMATIONS AND RECURSION OPERATORS

FOR DIFFERENTIAL–DIFFERENCE EQUATIONS

F. Khanizadeh,∗ A. V. Mikhailov,† and Jing Ping Wang∗

We review two concepts directly related to the Lax representations of integrable systems: Darboux trans-

formations and recursion operators. We present an extensive list of integrable differential–difference

equations with their Hamiltonian structures, recursion operators, nontrivial generalized symmetries, and

Darboux–Lax representations. The new results include multi-Hamiltonian structures and recursion opera-

tors for integrable Volterra-type equations and integrable discretizations of derivative nonlinear Schrödin-

ger equations such as the Kaup–Newell, Chen–Lee–Liu, and Ablowitz–Ramani–Segur (Gerdjikov–Ivanov)

lattices. We also compute the weakly nonlocal inverse recursion operators.

Keywords: symmetry, recursion operator, bi-Hamiltonian structure, Darboux transformation, Lax rep-
resentation, integrable equation

1. Introduction

Our aim in this paper is to give a comprehensive account of multi-Hamiltonian structures, recursion
operators, and Darboux–Lax representations for a wide class of integrable differential–difference equations.
Some of these results are well known but scattered in the literature. In many cases, we have completed
the picture by providing explicit expressions for the Hamiltonian, symplectic, and recursion operators and
Darboux–Lax representations. The Lax representations of nonlinear differential and difference equations
play a central role in the theory of integrable systems. They allow using the inverse scattering transform
to construct exact solutions and study the asymptotics of the initial value problem. Moreover, they allow
constructing a recursion operator, which generates infinite hierarchies of symmetries and conservation laws.
Currently, there is not any general method for finding the Lax representation for a given equation. The
most successful approach is the Wahlquist–Estabrook prolongation procedure [1]. Mikhailov and coauthors
recently tackled this problem from a different angle [2]–[5]. They studied possible reductions of a general
Lax representation using the reduction group approach [6]–[8] and further leading to a classification of Lax
representations and the corresponding integrable equations.

The concept of Darboux transformations originated from classical differential geometry [9]. Applying
Darboux transformations to the corresponding Lax representation leads to Bäcklund transformations and
to generation of new exact solutions for the integrable system. Bäcklund transformations can be regarded
as an integrable system of differential–difference equations in their own right. These differential–difference
equations play the role of infinitesimal symmetries for the integrable partial difference equations that can
be obtained from the condition of the Bianchi commutativity of the Darboux transformations.

Differential–difference systems are the main object of our study. Our notation is standard. We illustrate
the notation with the well-known example of the Volterra equation [10] (see Sec. 4.1 for more algebraic
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properties of this equation), which we can write in the form

ut = u(u1 − u−1). (1)

Here, we assume that the dependent variable u is a function u(n, t) of a lattice variable n ∈ Z and a
continuous variable t, and we set

ut = ∂tu(n, t), uj = u(n + j, t).

We omit the subscript index zero and use u instead of u0. Volterra equation (1) encodes an infinite sequence
of differential equations

∂tu(n, t) = u(n, t)(u(n + 1, t) − u(n − 1, t)), n ∈ Z.

Equation (1) has an infinite hierarchy of symmetries; in other words, it is compatible with an infinite
sequence of evolutionary equations of the form

utm = Km(um, um−1, . . . , u1−m, u−m), m ∈ N,

where t1 = t, K1 = u(u1 − u−1), K2 = u(u1u2 + u2
1 + uu1 − uu−1 − u2

−1 − u−1u−2), and Km are certain
polynomials in the variables um, um−1, . . . , u1−m, u−m. The compatibility means that ∂tm(∂tu) = ∂t(∂tmu)
or vanishing of the Lie bracket [K1, Km], defined as

[K1, Km] := Km�(K1) − K1�(Km),

where Km� denotes the Fréchet derivative

Km� =
m∑

p=−m

∂Km

∂up
Sp,

and S denotes the shift operator such that Sj(uk) = uk+j and we have Sj(f(uk1 , . . . , uk2)) = f(uk1+j , . . . ,

uk2+j) for any function f(uk1 , . . . , uk2).
Symmetries of the Volterra equation can be generated by the recursion operator

R = uS + u + u1 + uS−1 + u(u1 − u−1)(S − 1)−1 1
u

, (2)

namely,
Km+1 = Rm(K1).

The vector fields corresponding to the Volterra equation and its symmetries are difference polynomials,
i.e., elements of the difference polynomial ring R = [C, u,S], which is a ring without zero divisors over
the field of complex numbers C with an infinite number of indeterminates uk, k ∈ Z, and equipped with
the automorphism S. The corresponding field of fractions F = (C, u,S) is a difference field of rational
functions of indeterminates uk over C, which inherits the automorphism S. Difference operators are defined
as finite sums of the form

∑
akSk, where ak ∈ F (the above defined Fréchet derivative Km� is an example

of a difference operator). Difference operators act naturally on elements of F . As in the differential case,
the elements of the ring R, field F , and difference operators are respectively called local polynomials, local
functions, and local operators.
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The recursion operator R given by (2) is not a local operator. It contains a local part and the term
u(u1 − u−1)(S − 1)−1u−1. The action of R can be defined on those elements of F that belong to the
image of the difference operator u(S − 1). We can directly verify that K1, K2 ∈ Im(u(S − 1)). Similarly
to [11], it can be shown that all Km+1 = Rm(K1), m ∈ N, are difference polynomials. The action of R is
not uniquely defined on the elements of Im(u(S − 1)). Indeed, the base field C is the kernel space of the
difference operator u(S − 1); therefore, for a = u(S − 1)(b), b ∈ F , we have (S − 1)−1(u−1a) = b+ α, where
α ∈ C is an arbitrary constant. Obviously, acting on K1 with the recursion operator R defined by (2), we
obtain

R(u(u1 − u−1)) = u(u1u2 + u2
1 + uu1 − uu−1 − u2

−1 − u−1u−2) + αu(u1 − u−1).

The action of R is well defined on the sequence of the quotient linear spaces

K1 = SpanC(K1), Km = SpanC(K1, K2, . . . , Km)/ SpanC(K1, K2, . . . , Km−1),

and describing the result of the action of a recursion operator on a symmetry in what follows, we give one
representative from the corresponding coset.

The recursion operator R given by (2) is a pseudodifference operator. It can be represented in the
form R = BA−1, where A and B are difference operators. For example, we can take A = H1 and B = H2,
where H1 and H2 are two Hamiltonian operators for the Volterra equation (see Sec. 4.1). We note that
the pseudodifference operator R is a sum of a local (difference) operator and a nonlocal term of the form
P (S − 1)−1Q. We say that a pseudodifference operator is weakly nonlocal if it can be represented in the
form

A +
∑

i

Pi(S − 1)−1Qi,

where A, Pi, and Qi are difference operators and the sum is finite (a similar terminology was first introduced
in the study of pseudodifferential Hamiltonian operators [12]). Therefore, the recursion operator R given
by (2) is a weakly nonlocal pseudodifference operator. Moreover, it is easy to show that Rm, m ∈ N is
a weakly nonlocal operator. In the majority of cases studied in this paper, the recursion operators are
weakly nonlocal. Exceptions include the recursion operator for the Narita–Itoh–Bogoyavlensky lattice [13]
(see Sec. 4.5).

We note that in the case of multicomponent systems of integrable difference equations with weakly
nonlocal recursion operators, surprisingly, the inverse recursion operator is often also weakly nonlocal. This
allows generating infinitely many local symmetries corresponding to the inverse flows. For example, the
Heisenberg ferromagnet lattice [14] (see Sec. 4.17 for more algebraic properties of this equation)

ut = (u − v)(u − u1)(u1 − v)−1,

vt = (u − v)(v−1 − v)(u − v−1)−1

has the recursion operator

R =

⎛

⎜⎜⎝

(u − v)2

(u1 − v)2
S − 2(u − u1)(v − v−1)

(u − v−1)(u1 − v)
− (u − u1)2

(u1 − v)2
(v − v−1)2

(u − v−1)2
(u − v)2

(u − v−1)2
S−1

⎞

⎟⎟⎠ + 2K(1)(S − 1)−1Q(1),

where

K(1) =

⎛

⎜⎜⎝

(u − v)(u − u1)
u1 − v

(u − v)(v−1 − v)
u − v−1

⎞

⎟⎟⎠ , Q(1) =
(

v − v−1

(u − v)(u − v−1)
,

u − u1

(u − v)(u1 − v)

)
.
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The operator R is weakly nonlocal and has a weakly nonlocal inverse

R−1 =

⎛

⎜⎜⎝

(u − v)2

(u−1 − v)2
S−1 (u − u−1)2

(u−1 − v)2

− (v − v1)2

(u − v1)2
(u − v)2

(u − v1)2
S − 2(u − u−1)(v − v1)

(u − v1)(u−1 − v)

⎞

⎟⎟⎠ − 2K(−1)(S − 1)−1Q(−1),

where

K(−1) =

⎛

⎜⎜⎝

(u − v)(u−1 − u)
u−1 − v

(u − v)(v − v1)
u − v1

⎞

⎟⎟⎠ , Q(−1) =
(

v − v1

(u − v)(u − v1)
,

u − u−1

(u − v)(u−1 − v)

)
.

Hence, the Heisenberg ferromagnet lattice has infinitely many local symmetries Rl(K(1)) and R−l(K(−1))
for all l ∈ N. This phenomenon was explored for the Ablowitz–Ladik lattice and the Bruschi–Ragnisco
lattice in [15]. Here, we compute the weakly nonlocal inverse recursion operators for all multicomponent
integrable differential–difference equations if they exist. Such inverses do not exist for scalar nonlinear
integrable differential–difference equations. For a given weakly nonlocal difference operator, whether there
exists a weakly nonlocal inverse operator is still an open problem.

This paper is arranged as follows. We first review two closely related topics concerning Lax repre-
sentations: the Darboux transformations of the Lax representation, from which we derive the integrable
differential–difference equations, and the derivation of the recursion operator for the resulting equations
using the Darboux transformation. We illustrate the methods with two typical examples: the well-known
nonlinear Schrödinger (NLS) equation and a deformation of the derivative NLS equation corresponding to
the dihedral reduction group D2.

We complete the paper with a long list of integrable differential–difference equations, where we list the
equations themselves, their Hamiltonian structures, recursion operators, nontrivial generalized symmetries,
and Lax representations. We also include partial results on their master symmetries. For some equations,
we add further notes concerning the links with other known equations and the weakly nonlocal inverses of
recursion operators if they exist. The list is far from complete. A similar list for 1+1 integrable evolutionary
equations can be found in [16].

We mainly rely on sources with results about integrable systems useful for our work although we also
made some attempts to find the original contributions. In compiling the list, we verified the objects collected
from the vast literature and made them consistent. Our list also includes several new results (to the best
of our knowledge):

1. the Hamiltonian operators, symplectic operators, and recursion operators (Sec. 4.4) for Eqs. (68)–(70),
and the relations between them,

2. the Hamiltonian operators, symplectic operators, and recursion operators for the Kaup–Newell lattice
(Sec. 4.14), the Chen–Lee–Liu lattice (Sec. 4.15), and the Ablowitz–Ramani–Segur (Gerdjikov–Ivanov)
lattice (Sec. 4.16), and

3. all weakly nonlocal inverse recursion operators if they exist (except those, already known, for the
Ablowitz–Ladik and Bruschi–Ragnisco lattices).

2. Lax representations and Darboux matrices

With a system of evolutionary nonlinear partial differential equations

ut = F(u,ux, . . . ,ux,...,x), u ∈ C
m, (3)
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solvable by the spectral transform method [17]–[19], we associate a pair of linear operators

L = Dx − U(u; λ), A = Dt − V (u; λ),

which is conventionally called the Lax pair. Here, U and V are square matrices whose elements are functions
of the dependent variable u and its x-derivatives and certain rational (in some cases elliptic) functions of
the spectral parameter λ such that Eq. (3) is equivalent to the commutativity condition for these operators

[L, A] = Dt(U) − Dx(V ) + [U, V ] = 0. (4)

This equation is often called a zero-curvature representation or Lax representation of Eq. (3). Here, we
mainly consider U and V 2×2 matrices whose elements are rational in the spectral parameter λ.

Generally speaking, symmetries of an evolutionary equation are its compatible evolutionary equations.
Integrable equation (3) has an infinite sequence of commuting symmetries

utk
= Fk(u,ux, . . . ,ux,...,x), k ∈ N, (5)

which can be associated with a commutative algebra of linear operators

Ak = Dtk
− V k(u; λ), [Ai, Aj ] = 0. (6)

Similar to Eq. (3), system (5) is equivalent to [L, Ak] = 0. The operator A and Eq. (3) can be considered
members of the respective sequence of the operators {Ak} and symmetries (5) for particular values of k.
The commutativity of operators can be seen as a compatibility condition for the infinite sequence of linear
problems

Dx(Ψ) = U(u; λ)Ψ, Dtk
(Ψ) = V k(u; λ)Ψ, (7)

i.e., the condition for the existence of a common fundamental solution Ψ of all these problems, detΨ �= 0.
We regard a Darboux transformation as a linear map S acting on a fundamental solution

S : Ψ �→ Ψ = MΨ, detM �= 0, (8)

such that the matrix function Ψ is a fundamental solution of the linear problems

Dx(Ψ) = U(u; λ)Ψ, Dtk
(Ψ) = V k(u; λ)Ψ, (9)

with the new “potentials” u. The matrix M is often called the Darboux matrix. The elements of the
Darboux matrix M are rational (elliptic) functions of the spectral parameter λ. As a function of λ, the
determinant of M can vanish only at a finite set of points on the Riemann sphere (the parallelogram of
periods). The Darboux matrix M depends on u and u and can also depend on some auxiliary functions
g (or parameters, if g is a constant). (The matrices in (18) are examples of such g.) We therefore let
M = M(u,u,g; λ) denote the Darboux matrix. It follows from the compatibility of (8) and (9) that

Dx(M) = U(u; λ)M − MU(u; λ), (10)

Dtk
(M) = V k(u; λ)M − MV k(u; λ). (11)

Equations (10) and (11) are differential equations relating the two solutions u and u of (3) and (5). They
are also often called Bäcklund transformations of (3) in the literature.
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A Darboux transformation maps one compatible system (7) into another system (9). It defines a
Darboux map S : u �→ u. Map (8) is invertible (detM �= 0) and can be iterated:

. . .
S→ Ψ = M(u,u,g; λ)Ψ S→ Ψ = M(u,u,g; λ)Ψ S→

S→ Ψ = M(u,u,g; λ)Ψ S→ Ψ = M(u,u,g; λ)Ψ S→ . . . .

It suggests the notation

. . . , Ψ−1 = Ψ, Ψ0 = Ψ, Ψ1 = Ψ, Ψ2 = Ψ, . . . ,

. . . , u−1 = u, u0 = u, u1 = u, u2 = u, . . . ,

. . . , g−1 = g, g0 = g, g1 = g, g2 = g, . . . .

With a vertex k of the one-dimensional lattice Z, we associate the variables Ψk and uk; with the
edges joining the vertices k and k + 1, we associate the auxiliary functions (parameters) gk and the matrix
Mk = M(uk,uk+1,gk; λ). In this notation, the Darboux maps S and S−1 increase and decrease the
subscript index by one, and we therefore call it the S-shift or the shift operator S. In what follows, we
often omit zero in the subscript index and write u and g instead of u0 and g0.

In this notation, Eq. (10) and sequence (11) are a hierarchy of compatible systems of differential–
difference equations. When the resulting equations from (10) and (11) are in the evolutionary form, they
constitute an infinite-dimensional Lie algebra of commuting symmetries. The existence of an infinite algebra
of commuting symmetries is often taken as a definition of the integrability of an equation (and of the whole
hierarchy of symmetries) [20]–[23].

To illustrate this construction, we consider two examples: the well-known example of the NLS equation
and new results on differential–difference equations corresponding to the dihedral reduction group D2 �
Z2 × Z2 (the Klein group). We use these examples to illustrate the derivation of recursion operators.

2.1. The nonlinear Schrödinger equation. The NLS equation

2pt = pxx − 8p2q,

2qt = −qxx + 8q2p
(12)

has zero-curvature representation (4), where [24]

U(u; λ) =

(
0 2p

2q 0

)
+ λ

(
1 0

0 −1

)
, u =

(
p

q

)
, (13)

V (u; λ) =

(
−2pq px

−qx 2pq

)
+ λ

(
0 2p

2q 0

)
+ λ2

(
1 0

0 −1

)
. (14)

The NLS equation has an infinite hierarchy of commuting symmetries. The matrix part of the corresponding
linear operators Ak = Dtk

− V k has the form

V 0 = J, V k+1 = λV k + Bk(u), (15)
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where J = diag(1,−1) and Bk(u) are traceless matrices with elements depending on p, q, and their x-
derivatives. The matrices Bk(u) can be found recursively [25]. In particular, we have

V 1 = U(u; λ), V 2 = V (u; λ),

V 3 = λV (u; λ) +
1
2

(
2pqx − 2qpx pxx − 8p2q

qxx − 8q2p 2qpx − 2pqx

)
.

(16)

The symmetries corresponding to A0, A1, A2, and A3 are

pt0 = 2p, pt1 = px, pt2 =
1
2
pxx − 4p2q, pt3 =

1
4
pxxx − 6pqpx,

qt0 = −2q, qt1 = qx, qt2 = −1
2
qxx + 4q2p, qt3 =

1
4
qxxx − 6pqqx.

(17)

It is known (see [26], [27]) that any Darboux matrix for the NLS equation is a composition of the three
elementary Darboux matrices

M(u,u1, f ; λ) =

(
λ + f p

q1 1

)
, N(u,u1, h; λ) =

(
λ + h p

p−1 0

)
,

K(u,u1, α; λ) =

(
α 0

0 α−1

) (18)

and their inverses. For each of these elementary Darboux matrices, we derive the Darboux map and the
corresponding differential–difference equation.

(K): The map corresponding to the Darboux matrix K is independent of the spectral parameter λ

and the variables u and u1. Moreover, it follows from (10) that α is a constant (is independent of x),
p1 = α2p, and q1 = α−2q. In this case, the Darboux map is therefore a gauge transformation corresponding
to a point symmetry of Eq. (12) and its hierarchy of symmetries.

(N): Substituting N(u,u1, h; λ) in (10) yields

q1 =
1
p
, hx = 2p1q1 − 2pq, px = −2hp, q1,x = 2hq1, (19)

and we therefore obtain the Darboux map in the explicit form

p1 = p2q − p

4

(
px

p

)

x

, q1 =
1
p
.

After the change of the variables p = eφ (and hence q = e−φ−1), Eqs. (19) yields the system of evolutionary
equations

φx = −2h, hx = 2eφ1−φ − 2eφ−φ−1, (20)

which after the elimination of h becomes the Toda lattice

φxx = 4eφ−φ−1 − 4eφ1−φ.

It is an infinite chain of differential equations for the dependent variables φn, n ∈ Z.
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We note that φ = log p and h = −φx/2. Using (19) to eliminate x-derivatives from (17), we can obtain
symmetries of Toda chain (20):

φt0 = 2, φt1 = −2h, φt2 = 2h2 − 2(S + 1)eφ−φ−1 ,

ht0 = 0, ht1 = 2(S − 1)eφ−φ−1, ht2 = −2(S − 1)(eφ−φ−1(h−1 + h)),

φt3 = −2h3 + 2eφ−φ−1(2h + h−1) + 2eφ1−φ(2h + h1),

ht3 = 2(S − 1)((h2
−1 + h−1h + h2)eφ−φ−1 + e2φ−2φ−1 + (S + 1)eφ−φ−2).

(21)

Symmetries (21) have the Darboux–Lax representation

Ntk
− S(Uk)N + NUk = 0, N =

(
λ + h eφ

e−φ 0

)
, (22)

and the matrices U0, . . . , U3 are obtained from V 0, . . . , V 3 given by (15) and (16) by eliminating x-
derivatives using (19). In Sec. 3, we derive a recursion operator for generating symmetries of the Toda
lattice.

(M): Substituting M(u,u1, f ; λ) in (10) leads to the system of differential–difference equations

fx = 2p1q1 − 2pq, px = 2p1 − 2fp, qx = −2q−1 + 2f−1q. (23)

Symmetries of this system can be found from Lax Darboux representations (11), where V k are given by (15)
and (16) after elimination of x-derivatives using (23):

pt0 = 2p, pt1 = 2p1 − 2fp, pt2 = 2(f2p − fp1 − f1p1 − p2q − pp1q1 + p2),

qt0 = −2q, qt1 = −2q−1 + 2f−1q, q1,t2 = 2(f−1q + fq − f2q1 + pqq1 + p1q
2
1 − q−1),

ft0 = 0, ft1 = 2p1q1 − 2pq, ft2 = 2(S − 1)(pq−1 + p1q − (f−1 + f)pq).

(24)

System (23) and its symmetries (24) have the first integral Φ = f − pq1, and hence Φtk
= 0. Indeed,

detM(u,u1, f ; λ) = λ + f − pq1 should be a constant (is independent of x and tk) because the matrices U

and V k are traceless (Abel’s theorem). Therefore, we can set fk = pkqk+1 +αk, where αk ∈ C is a constant.
We can eliminate f from system (23), and this leads to

px = 2p1 − 2p2q1 − 2αp, qx = −2q−1 + 2p−1q
2 + 2α−1q, (25)

whose symmetries can be obtained from (24) by the same elimination of f . When αk = 0, Eq. (25) becomes
the Merola–Ragnisco–Tu lattice under an invertible transformation x = t/2, p = u, and q1 = v listed in
Sec. 4.10.

2.2. Equations corresponding to the dihedral reduction group D2 � Z2 × Z2. The integra-
bility of the system

2pt = pxx + 4qx − 8(p2q)x,

2qt = −qxx + 4px − 8(q2p)x

(26)

was established in [21]. This equation can be seen as a nontrivial inhomogeneous deformation of the
derivative NLS equation. The corresponding Lax pair

L(u; λ) = Dx − V 1(u; λ), A(u; λ) = Dt − V 2(u; λ)
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has the matrix part of the form

V 1(u; λ) = 2pa1(λ) + 2qa2(λ) + 2a3(λ), (27)

V 2(u; λ) = w(λ)V 1(u; λ) +
px − 4p2q

2
a1(λ) − qx + 4q2p

2
a2(λ) − 2pqa3(λ), (28)

where

a1(λ) =

(
0 λ

λ−1 0

)
, a2(λ) =

(
0 λ−1

λ 0

)
, a3(λ) =

λ2 − λ−2

2

(
1 0

0 −1

)
. (29)

The matrices V k(u; λ) are invariant under the group (reduction group [8]) generated by the transfor-
mations

V k(u; λ) �→
(

1 0

0 −1

)
V k(u;−λ)

(
1 0

0 −1

)
,

V k(u; λ) �→
(

0 1

1 0

)
V k(u; λ−1)

(
0 1

1 0

)
,

which is isomorphic to the dihedral group D2 � Z2 × Z2 (the Klein group). The function

w(λ) =
λ2 + λ−2

2
(30)

is a primitive automorphic function of the corresponding Möbius group (w(λ) = w(−λ) = w(λ−1)), and
any rational automorphic function of this group is a rational function of w(λ) [3]. A hierarchy of higher
symmetries of Eq. (26) can be generated by the Lax operators Ak = Dtk

−V k, where the matrices V k have
the form

V k+1 = w(λ)V k + rk
1a1(λ) + rk

2a2(λ) + rk
3a3(λ), (31)

and the coefficients rk
1 , rk

2 , and rk
3 are polynomials in p, q, and their x-derivatives and can be found

recursively.
It was shown in [28] that an elementary Darboux matrix for Lax operator (27) can be written in the

form
M(p, q1, f, g; λ) = f(w(λ)I + a3(λ) + pa1(λ) + q1a2(λ) + gI), (32)

where I is the unit matrix. The matrices V k are all traceless, and the determinant

detM(p, q1, f, g; λ) = f2(2w(λ)(g − pq1) + 1 + g2 − p2 − q2
1) = 2w(λ)Φ1 + Φ2

is therefore independent of x and tk. We hence have two invariants

Φ1 = f2(g − pq1), Φ2 = f2(1 + g2 − p2 − q2
1). (33)

Choosing an appropriate scaling M → γM , we can make Φ1 = 1 (if Φ1 �= 0) or Φ2 = 1 (if Φ2 �= 0).
There are three essentially different cases [28]:

1. Φ1 = 0 and Φ2 = 1. In this case, the determinant is a constant (is independent of λ).

2. Φ1 = 1 and Φ2 = ±2. In this case, the determinant has two double zeroes and is a square of a rational
function of λ.
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3. Φ1 = 1 and Φ2 = 2α. The determinant has four distinct zeros in the complex plane λ (assuming that
α �= ±1).

In case 1, we have
g = pq1, (34)

and f can be found as a solution of the equation f2(1 − p2)(1 − q2
1) = 1. We can therefore determine the

matrix M(p, q1, f, pq1; λ) in (32). Substituting it and V 1(u; λ) given by (27) instead of U(u; λ) in (10) leads
to the system

px = 2(1 − p2)(q1 − q), qx = 2(1 − q2)(p − p−1), (35)

which can be written as a scalar equation for one function v2n = pn, v2n−1 = qn:

vx = (1 − v2)(v1 − v−1). (36)

In case 2, we take 2Φ1+Φ2 = 0 (the other choice of the sign would eventually lead to a point-equivalent
system). We have

2Φ1 + Φ2 = f2(1 + g + p + q1)(1 + g − p − q1) = 0.

We choose 1+ g + p+ q1 = 0 (the second choice 1+ g− p− q1 = 0 would lead to a point-equivalent system).
Substituting M(p, q1, f,−p − q1 − 1; λ) and V 1(u; λ) given by (27) instead of U(u; λ) in (10) then leads to
the system

px = 2(1 + p)(S − 1)(q − p − pq), q1,x = 2(1 + q1)(S − 1)(p − q − pq). (37)

In general case 3 of the elementary Darboux transformation, we have

Φ2 − 2αΦ1 = (g2 − 2αg − p2 − q2
1 + 2αpq1 + 1)f2 = 0, f =

1√
g − pq1

. (38)

Substituting M(p, q1, f, g; λ) and V 1(u; λ) given by (27) instead of U(u; λ) in (10) leads to the system

px = 2g(p1 − p) + 2q1 − 2q − 2p(p1q1 − pq),

q1,x = 2g(q1 − q) + 2p1 − 2p− 2q1(p1q1 − pq),

gx = 2p(p1 − p) + 2q1(q1 − q) − 2g(p1q1 − pq),

fx = 2f(p1q1 − pq).

The invariants Φ1 and Φ2 are first integrals of this system. The functions f and g can therefore be eliminated
using first integrals (38). We note that the parameter α in (38) is constant in x and tk but can depend on
the shift variable, and hence S(α) = α1.

3. Recursion operators for differential–difference equations

In this section, we show how to derive a recursion operator using a Darboux–Lax representation for
a differential–difference equation. Our construction is a natural generalization of the method used in the
theory of integrable PDEs [25], [29]–[32]. The main idea of the method is based on the fact that the matrices
V k(u, λ) of the operators Ak = Dtk

− V k(u, λ) corresponding to a hierarchy can be related as

V k+1(u, λ) = μ(λ)V k(u, λ) + Bk(u, λ), (39)
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where μ(λ) is a rational multiplier (elliptic in the case of the Landau–Lifshitz equation) and Bk(u, λ) is a
rational matrix with a fixed (i.e., k-independent) divisor of poles. If the system and its Lax representation
is obtained as a result of a reduction with a reduction group G, then the multiplier μ(λ) is a primitive
automorphic function [3] of a finite reduction group or in the elliptic case is one of the generators of the G-
invariant subring of the coordinate ring [30]. The matrix Bk(u, λ) also depends on the dependent variables
u and their x-derivatives.

Substituting (39) in the Lax representation [L, Ak] = 0 (see (6)) results in

Dtk+1(L) = μ(λ)Dtk
(L) − BkL + LBk. (40)

We can use Eq. (40) to find Bk in terms of the variables utk
, utk+1 , and x-derivatives of u. We can then

regard Eq. (40) as a recurrence relation utk+1 = R(utk
), where R is a linear pseudodifferential recursion

operator mapping a symmetry to a new symmetry. A recursion operator can be related to a bi-Hamiltonian
structure. Indeed, if H1 and H2 are two compatible Hamiltonian operators, then R = H1H−1

2 is a Nijenhuis
recursion operator [33], [11]. The sufficient condition for R to be a recursion operator for Eq. (3) is [34]

Dt(R) = [F∗,R],

where F∗ is the Fréchet derivative of F.
A similar construction can be used in the differential–difference case [13]. Substituting (39) in Darboux–

Lax representation (11) results in

Dtk+1(M) = μ(λ)Dtk
(M) − S(Bk)M + MBk. (41)

Equation (41) allows expressing the elements of the matrix Bk in terms of u, utk
, utk+1 , and their S-shifts.

It allows finding a linear pseudodifference operator R such that utk+1 = R(utk
), i.e., a recursion operator

for a differential–difference hierarchy of commuting symmetries. As in the differential case, if we know
two compatible Hamiltonian operators H1 and H2 or a compatible pair of a Hamiltonian operator H and
a symplectic operator J , then R = H1H−1

2 and R̃ = HJ are recursion operators. It follows from this
construction that a Darboux matrix M and a multiplier μ(λ) define a recursion operator completely and
uniquely.

In this section, we illustrate this construction with a few examples. In Sec. 4, we present an extensive
list (but far from complete) of integrable differential–difference equations with recursion operators, multi-
Hamiltonian structures, and Darboux–Lax representations.

3.1. Differential–difference equations from the NLS equation. We illustrate the construction
using the Darboux matrices M and N (see (18)) related to the NLS equation. In this case, the multiplier
μ(λ) = λ (see (15)), and the matrix Bk is independent of the spectral parameter λ.

We construct a recursion operator for Toda lattice (20) using the Darboux matrix N (see (22)) and
the multiplier μ(λ) = λ. We substitute

B =

(
a b

c −a

)
(42)

in the equation
Dtk+1(N) = λDtk

(N) − S(B)N + NB. (43)

The part of (43) linear in λ leads to the system of equations

(S − 1)a = htk
, b = −φtk

eφ, c1 = −φtk
e−φ.
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Hence, we can find all the elements a = (S − 1)−1htk
, b = −eφφtk

, and c = −e−φ−1S−1φtk
of the matrix

B. Then the λ-independent part of (43) reduces to the equations

φtk+1 = bh − a − a1 = −(S + 1)(S − 1)−1htk
− hφtk

,

htk+1 = (a − a1)h + ceφ − b1e
−φ = −hhtk

− eφ−φ−1S−1φtk
+ eφ1−φSφtk

,

which leads to the recurrence relation (
φtk+1

htk+1

)
= R

(
φtk

htk

)

with the pseudodifference operator

R =

(
−h −(S + 1)(S − 1)−1

eφ1−φS − eφ−φ−1S−1 −h

)
. (44)

Starting from the seed symmetry φt0 = −2, ht0 = 0, we can recursively produce the hierarchy of symme-
tries (21).

Similarly to the case of scalar discrete equations [11], [35], the canonical series of the densities of local
conservation laws can be found by taking residues ρk = resRk. In the case of a matrix pseudodifference
operator A, the residue resA is defined as follows. Any pseudodifference operator A can be uniquely
represented by its Laurent series

A =
∞∑

k=0

Am−kSm−k.

The residue is then defined as resA = trace(A0). For example, we rewrite recursion operator (44) as

R =

(
0 0

eφ1−φ 0

)
S +

(
−h −1

0 −h

)
+

(
0 −2

−eφ−φ−1 0

)
S−1 + . . . .

It follows that

ρ1 = resR = −2h, ρ2 = resR2 = 2h2 − 2eφ1−φ − 2eφ−φ−1, . . .

are conserved densities for Toda lattice (20). Indeed, we have

Dxρ1 = −4(S − 1)eφ−φ−1 ,

Dxρ2 = 4(S − 1)(eφ−φ−1(h−1 + h)).

We now take the Darboux matrix M (see (18)) and the matrix B of form (42). From the terms in the
equation

Dtk+1(M) = λDtk
(M) − S(B)M + MB (45)

that are linear in λ, it follows that

a = (S − 1)−1ftk
, b = −ptk

, c = qtk
.

1617



The λ-independent part of(45) leads to the recurrence relation for system (23)

⎛

⎜⎜⎝

ftk+1

ptk+1

qtk+1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−fftk
+ S(qptk

) + pqtk

−2p(S − 1)−1ftk
− ftk

p − fptk
+ S(ptk

)

2q(S − 1)−1ftk
− qS−1(ftk

) + S−1qtk
− f−1qtk

⎞

⎟⎟⎠ = R

⎛

⎜⎜⎝

ftk

ptk

qtk

⎞

⎟⎟⎠ , (46)

where the pseudodifference recursion operator has the form

R =

⎛

⎜⎜⎝

−f q1S p

−p −f + S 0

−qS−1 0 −f−1 + S−1

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0

−2p

2q

⎞

⎟⎟⎠ (S − 1)−1
(
1 0 0

)
.

Using the first integral of system (23) and eliminating fk = pkqk+1 + αk, we obtain the corresponding
recurrence relation and operator for system (25):

(
ptk+1

qtk+1

)
= R′

(
ptk

qtk

)
, (47)

where

R′ =

(
S − 2pq1 − α −p2S − 2pp−1

−q2S−1 S−1 − α−1

)
+

(
−2p

2q

)
(S − 1)−1

(
q1, p−1

)
.

As already noted, Eq. (25) is related to the Merola–Ragnisco–Tu lattice; we can verify that we ob-
tain the same operator from the recursion operator for the Merola–Ragnisco–Tu lattice in Sec. 4.10 using
formula (58).

3.2. Difference equation corresponding to the dihedral reduction group. We show how
to compute a recursion operator for Eq. (37), whose Lax representation is invariant under the dihedral
reduction group.

After the simple change of variables p → p − 1, q → q − 1, Eq. (37) becomes

px = 2p(S − 1)(2q − pq), q1,x = 2q1(S − 1)(2p − pq). (48)

This equation is the relativistic Volterra lattice in Sec. 4.9 under the scaling transformation

p = −2v, q = −2u, x = − t

4
. (49)

The corresponding Darboux matrix and the multiplier are

M = f

(
λ2 + 1 − p − q1 λ(p − 1) + λ−1(q1 − 1)

λ(q1 − 1) + λ−1(p − 1) λ−2 + 1 − p − q1

)
, μ(λ) =

1
2
(λ2 + λ−2). (50)

This information suffices for finding a recursion operator, Eq. (48) itself, and its hierarchy of local symme-
tries. It follows from

detM = −(λ − λ−1)2f2pq1

that f2pq1 is independent of x (Abel’s theorem), and we can therefore set f = (pq1)−1/2.

1618



Expression (31) suggests that
B = aa1 + ba2 + ca3,

where the coefficients a, b, and c are independent of λ. In Eq. (41), the right- and left-hand sides are now
rational matrix functions in λ. The left-hand side has only simple poles. Requiring that the coefficients of
the third-order poles in λ−3 in the right-hand side be zero is equivalent to

a =
1
2
(c + c1)(p − 1) +

(p − 1)pSqtk
− (p + 1)q1ptk

4pq1
,

b1 =
1
2
(c + c1)(q1 − 1) +

(q1 + 1)pSqtk
+ (1 − q1)q1ptk

4pq1
.

(51)

The second-order poles vanish under the condition

c − c1 =
q1ptk

+ pq1,tk

2pq1
. (52)

Using (52), we can now simplify (51) by eliminating c1 and c−1 from a and b:

a = c(p − 1) − 1
2
ptk

,

b = c(q − 1) +
1
2
qtk

.

(53)

The residues in the left- and right-hand sides in Eq. (41) lead to the equations

ptk+1 = cp(S − 1)(pq − 2q) +
(

p − q1 − 1 − 1
2
p1q1

)
ptk

− 1
2
pq1Sptk

+

+
(

p − 1
2
p2

)
qtk

+
(

p − 1
2
pp1

)
Sqtk

,

qtk+1 = cq(S − 1)(p−1q−1 − 2p−1) +
(

q + p−1 − 1 − 1
2
p−1q−1

)
qtk

−

− 1
2
p−1qS−1qtk

+
(

q − 1
2
q2

)
ptk

+
(

q − 1
2
qq−1

)
S−1ptk

.

(54)

The λ-independent part of Eq. (41) is satisfied after (52)–(54) are substituted in (41).
Equation (54) together with (52) is a recurrence relation. The differential–difference equation (a seed

symmetry) px = 2K
(1)
p , qx = 2K

(1)
q (see (48)) can be recovered from this recursion by taking the derivative

of the right-hand side of Eqs. (54) with respect to c, i.e.,

(K(1)
p , K(1)

q ) =
(
p(S − 1)(pq − 2q), q(S − 1)(p−1q−1 − 2p−1)

)
.

This is not surprising. Indeed, to solve Eq. (52) for c, we must invert the difference operator S − 1, whose
kernel is the field of constants. As a result, the vector px, qx can contribute to ptk+1 , qtk+1 with an arbitrary
constant coefficient.

We now write the recursion operator corresponding to recurrence relation (54) explicitly as

R =

⎛

⎜⎜⎜⎝

p + q1 − 1 − 1
2
p1q1 −

1
2
pq1S p − 1

2
p2 +

(
p − 1

2
pp1

)
S

q − 1
2
q2 +

(
q − 1

2
qq−1

)
S−1 q + p−1 − 1 − 1

2
p−1q−1 −

1
2
p−1qS−1

⎞

⎟⎟⎟⎠ −

−

⎛

⎝
p(S − 1)(pq − 2q)

q(S − 1)(p−1q−1 − 2p−1)

⎞

⎠ (S − 1)−1

(
1
2p

1
2q1

S
)

. (55)
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Obviously, R + I, where I is the 2×2 identity matrix, is also a recursion operator, which can be recovered
from the recursion operator for the relativistic Volterra lattice listed in Sec. 4.9 using transformation (49).

4. A list of integrable differential–difference equations

In this section, we present a long list of integrable differential–difference equations with their Hamil-
tonian structures, recursion operators, nontrivial generalized symmetries, and Lax representations. To be
self-contained, we introduce the notation and recall some definitions of the objects in our list in terms of
the Lie derivatives. The theoretical background and detailed definitions of the Hamiltonian and symplectic
operators can be found in [36], [37]. Here, we mention that there are some recent developments in the
theory of nonlocal Hamiltonian structures for nonlinear partial differential equations in [38].

Let u = (u1, . . . , uN ) be a vector-valued function of n ∈ Z and the time t. An evolutionary differential–
difference equation for the dependent variable u has the form

ut = K[u], (56)

where K[u] means that the smooth vector-valued function K depends on u and its shifts ui = Siu. In all our
examples, after an appropriate point change of variables, we can consider K[u] ∈ FN , where F = (C,u,S)
is a difference field of rational functions of {ui

k | k ∈ Z, i = 1, . . . , N}. The Fréchet derivative a� of a ∈ F
is defined as the row vector of the difference operators

a� =
∑

k∈Z

(
∂a

∂u1
k

, . . . ,
∂a

∂uN
k

)
Sk.

Hence, the Fréchet derivative of K[u] is a difference operator with square matrix coefficients, and the
elements of the coefficient matrices are elements of F .

A variational derivative of a ∈ F is a column vector

δu(a) := a†
�(1) =

(
∂

∂u1
, . . . ,

∂

∂uN

)T ∑

k∈Z

Sk(a).

If Eq. (56) is Hamiltonian, then it can be written in the form

ut = H(δu(f)),

where H denotes a Hamiltonian (pseudo)difference operator and f is a Hamiltonian function (or the Hamil-
tonian of the system).

Definition 1. Given differential–difference evolutionary equation (56), we say that

1. G is its symmetry if LKG := [K,G] := G�(K) − K�(G) = 0,

2. H is its Hamiltonian operator if LKH := H�[K] − K�H −HK†
� = 0 is satisfied by the Hamiltonian

operator H,

3. J is its symplectic operator if the symplectic operator J satisfies LKJ := J�[K] +K†
�J +JK� = 0,

and

4. R is its recursion operator if LKR := R�[K] − K�R + RK� = 0.
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Here, LK denotes the Lie derivative, 	 denotes the Fréchet derivative, and † denotes the formal conjugation
of the difference operator.

If a symmetry of Eq. (56) is explicitly dependent on ui with i �= 0, then we call it a generalized
symmetry. An equation is integrable if it has infinitely many generalized symmetries depending on finite
sets of variables ui, whose sizes increase. Symmetries of an integrable systems can be generated by a
recursion operator, which is often nonlocal. Sufficient conditions on nonlocal pseudodifference recursion
operators that guarantee producing an infinite hierarchy of commuting local symmetries were discussed
in [11]. In the list, we also give partial results on master symmetries (see [39], [40] for more details on
master symmetries).

We now consider how the recursion, Hamiltonian, and symplectic operators change under transforma-
tions (difference substitutions). If evolutionary difference equation (56) is related by a difference substitution
u = F[v] to another equation of the form

vt = G[v], (57)

then the recursion, Hamiltonian, and symplectic operators R̂, Ĥ, and Ĵ for Eq. (57) can be expressed in
terms of the corresponding operators R, H, and J for Eq. (56):

R̂ = F−1
� ◦ R|u=F[v] ◦ F�, Ĥ = F−1

� ◦ H|u=F[v] ◦ F†
�

−1
, Ĵ = F†

� ◦ J |u=F[v] ◦ F�, (58)

where ◦ denotes the composition of operators.

Example 1. It is known that the Volterra equation ut = u(u1 − u−1) (Sec. 4.1) can be related to the
modified Volterra equation

vt = v2(v1 − v−1) (59)

by a difference substitution (a Miura-type transformation) u = F [v] = vv1. The operator H1 = u(S−S−1)u
is a Hamiltonian operator for the Volterra equation. We note that the Fréchet derivative for vv1 is F� =
v1 + vS, and we have F−1

� u = v(1 + S)−1 and uF †
�
−1

= S(1 + S)−1v. We can now find the Hamiltonian
operator Ĥ1 for modified Volterra equation (59):

Ĥ1 = (v1 + vS)−1vv1(S − S−1)vv1(v1 + vS)−1 =

= v(1 + S)−1(S2 − 1)(S + 1)−1v = v(S − 1)(S + 1)−1v.

In the same way, we can compute the second Hamiltonian operator Ĥ2 and the recursion operator R̂ for
the modified Volterra equation (cf. Sec. 4.2).

In Sec. 2, we discussed that the compatibility of Darboux map (8) with Lax operator (9)

S(Φ) = MΦ, Dt(Φ) = U(u; λ)Φ (60)

yields (10),
Dt(M) = S(U)M − MU, (61)

which is equivalent to an integrable system of differential–difference equations. Compatibility condition (61)
is often called a zero-curvature representation or Lax representation of Eq. (56) in the literature. Because
it involves a Darboux matrix and a Lax operator, it is more appropriate to call it a Darboux–Lax repre-
sentation. But we still call it a Lax representation for consistency with the literature. In the following list,
we simply give the expressions for both the matrices M and U for Lax representations.
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There are many publications where an integrable system emerges as a compatibility condition of two
linear problems with scalar linear difference operators L and A,

Lφ = λφ, φt = Aφ, (62)

where φ is an eigenfunction of L corresponding to the eigenvalue λ and λt = 0. Equation (56) is equivalent
to the compatibility condition

Dt(L) = [A, L] = AL − LA. (63)

This approach in fact resembles the original Lax formulation, where differential operators are just replaced
with difference operators. In the theory of ordinary differential equations, a scalar higher-order equation
can be represented as a system of first-order equations. We can do similarly in the case of higher-order
scalar difference equations and represent them as first-order difference systems. We can thus rewrite scalar
representation (62), (63) as first-order matrix Darboux–Lax representation (60), (61).

Example 2. We obtain the matrix Lax representation for the Volterra chain listed in Sec. 4.1 from
the scalar Lax representation with L = S + uS−1 and A = S2 + u1 + u.

Let Φ = (φ1, φ2)T = (φ,−S−1φ)T. We can rewrite Lφ = λφ in (62) as

S(Φ) = S
(

φ

−φ−1

)
=

(
Sφ

−φ

)
=

(
λ u

−1 0

) (
φ

−φ−1

)
,

i.e., S(φ1) = λφ1 + uφ2 and S(φ2) = −φ1. We can now rewrite φt = Aφ as

φ1
t = S2φ1 + (u1 + u)φ1 = S(λφ1 + uφ2) + (u1 + u)φ1 =

= λSφ1 + uφ1 = (λ2 + u)φ1 + λuφ2,

φ2
t = −S−1φ1

t = −(λφ1 + uφ2 + (u−1 + u)S−1φ1) = −λφ1 + u−1φ
2.

Hence,

Dt(Φ) =

(
φ1

t

φ2
t

)
=

(
λ2 + u λu

−λ u−1

) (
φ1

φ2

)
.

We present either the scalar or the matrix Lax representation in our list.
The following should be kept in mind:

1. Relations between nonlocal difference operators (e.g., (67)) should be understood as identities in the
noncommutative field of pseudodifference Laurent series.

2. In the computations with pseudodifference operators, we often use identities similar to “integration
by parts”:

(S − 1)−1(f1 − f)(S − 1)−1 = f(S − 1)−1 − (S − 1)−1f1.

3. Because we have (S−1)c = 0 for any constant c ∈ C, the action of operators involving (S−1)−1 is not
uniquely defined. The corresponding results given in the list are up to these “integration constants.”
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4.1. The Volterra chain.

• Equation [10]:

ut = u(u1 − u−1). (64)

• Hamiltonian structure [41], [42]: ut = Hiδufi,

H1 = u(S − S−1)u, f1 = u,

H2 = u(SuS + uS + Su − uS−1 − S−1u − S−1uS−1)u, f2 =
1
2

log u.

• Recursion operator:

R = H2H−1
1 = uS + u + u1 + uS−1 + u(u1 − u−1)(S − 1)−1 1

u
=

= u(S − S−1)u
(

1
u

(S − 1)−1 + S(S − 1)−1 1
u

)
.

• Nontrivial symmetry [42], [43]:

R(ut) = u(u1u2 + u2
1 + uu1 − uu−1 − u2

−1 − u−1u−2).

• Master symmetry [42], [39], [44]:

R(u) = nut + u(2u1 + u + u−1).

• Lax representation [45]:

L = S + uS−1, A = S2 + u1 + u,

which can also be written in the matrix form

M =

(
λ u

−1 0

)
, U =

(
λ2 + u λu

−λ u−1

)
. (65)

This equation is also known as the Lotka–Volterra model, the Kac–van Moerbeke lattice, or the Lang-
muir lattice [46]. The so-called Kac–van Moerbeke–Langmuir equation [41]

wτ = w(wε
1 − wε

−1), ε �= 0 constant,

is related to (64) by the point transformation u = wε and t = ετ . This equation is also written as

wt = ew+w1 − ew+w−1,

which can be transformed into (64) by the transformation u = ew+w1 .
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4.2. Modified Volterra equation.
• Equation [47], [43]:

ut = u2(u1 − u−1).

• Hamiltonian structure [48], [43]:

H1 = u(S − 1)(S + 1)−1u, f1 = uu1,

H2 = u2(S − S−1)u2, f2 = log u.

• Recursion operator:

R = H2H−1
1 = u2S + 2uu1 + u2S−1 + 2u2(u1 − u−1)(S − 1)−1 1

u
.

• Nontrivial symmetry [43]:

R(ut) = u2u2
1(u2 + u) − u2u2

−1(u + u−2).

• Master symmetry [43]:

R
(

u

2

)
= nut +

u2

2
(3u1 + u−1).

• Lax representation [26]:

M =

(
0 u

−u λ

)
, U =

(
uu−1 λu−1

−λu λ2 + uu−1

)
.

The modified Volterra equation is also known as the discrete modified Korteweg–de Vries equation.
Under the Miura transformation w = uu1, it can be transformed into the Volterra chain wt = w(w1 −w−1)
as in Sec. 4.1.

4.3. Yamilov’s discretization of the Krichever–Novikov equation.
• Equation [49] (V4, ν = 0 in Sec. 4.4):

ut =
R(u1, u, u−1)

u1 − u−1
:= K(1),

where R is a polynomial with the constant coefficients α, β, γ, δ, ε ∈ C defined by

R(u, v, w) = (αv2 + 2βv + γ)uw + (βv2 + λv + δ)(u + w) + γv2 + 2δv + ε. (66)

• Two nontrivial symmetries [50]–[53], [35], [11]:

K(2) =
R(u, u−1, u)R(u1, u, u1)

(u1 − u−1)2

(
1

u2 − u
+

1
u − u−2

)
,

K(3) =
R(u1, u, u1)R(u, u−1, u)

(u1 − u−1)2

(
S2K(1)

(u2 − u)2
+

S−2K(1)

(u − u−2)2

)
+

+ K(1)K(2)

(
1

u2 − u
+

1
u − u−2

)
.
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• Hamiltonian structure [11], [53]:

H = AS − S−1A + 2K(1)(S − 1)−1SK(2) + 2K(2)(S − 1)−1K(1),

Ĥ = ÂS2 − S−2Â + B̂S − S−1B̂ + K(2)(S − 1)−1(S + 1)K(2) +

+ 2K(1)(S − 1)−1SK(3) + 2K(3)(S − 1)−1K(1),

where

A =
R(u2, u1, u2)R(u1, u, u1)R(u, u−1, u)

(u1 − u−1)2(u2 − u)2
,

Â =
R(u3, u2, u3)R(u2, u1, u2)R(u1, u, u1)R(u, u−1, u)

(u1 − u−1)2(u2 − u)2(u3 − u1)2
,

B̂ = 2A

(
K(1)

u − u−2
− ∂uR(u1, u, u1)

2(u1 − u−1)
+

∂2R(u1, u, u1)
4∂u ∂u1

)
+

2R(u, u−1, u)
(u1 − u−1)2

S(K(1)K(2)).

• Symplectic operator:

J =
1

R(u1, u, u1)
S − S−1 1

R(u1, u, u1)
.

• Recursion operator [11], [53]:
R = HJ and R̂ = ĤJ .

The recursion operators R and R̂ satisfy the algebraic equation

(2R̂ − I3)2 = 4(R + I2)3 − g2(R + I2) − g3, (67)

where I2, I3, g2, and g3 are the relative and modular invariants related to h = R(u1, u, u1) and a quartic
polynomial f(u) = (∂u1h)2 − 2h∂2

u1
h defined by

g2 =
1
48

(2ff IV − 2f ′f ′′′ + (f ′′)2),

g3 =
1

3456
(12ff ′′f IV − 9(f ′)2f IV − 6f(f ′′′)2 + 6f ′f ′′f ′′′ − 2(f ′′)3),

I2 =
1
6
(h ∂2

u ∂2
u1

h − (∂uh)(∂u ∂2
u1

h) − (∂u1h)(∂2
u ∂u1h) + (∂2

uh)(∂2
u1

h)) +
1
12

(∂u ∂u1h)2,

I3 =
1
4

det

⎛

⎜⎜⎝

h ∂uh ∂2
uh

∂u1h ∂u1 ∂uh ∂u1 ∂2
uh

∂2
u1

h ∂2
u1

∂uh ∂2
u1

∂2
uh

⎞

⎟⎟⎠ .

4.4. Integrable Volterra-type equations. The classification of integrable Volterra type equations
of the form

ut = f(u−1, u, u1),

where f is a smooth function of all its variables was obtained by Yamilov using the symmetry approach.
In his remarkable review paper [43], he presented the following complete list of integrable Volterra-type
equations (with higher-order conservation laws) up to point transformations:

V1: ut = P (u)(u1 − u−1), (68)
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V2: ut = P (u2)
(

1
u1 + u

− 1
u + u−1

)
, (69)

V3: ut = Q(u)
(

1
u1 − u

+
1

u − u−1

)
, (70)

V4: ut =
R(u1, u, u−1) + νR(u1, u, u1)1/2R(u−1, u, u−1)1/2

u1 − u−1
, ν ∈ {0,±1}, (71)

V5: ut = y(u1 − u) + y(u − u−1), y′ = P (y), (72)

V6: ut = y(u1 − u)y(u − u−1) + μ, y′ =
P (y)

y
, μ ∈ C, (73)

V7: ut =
1

y(u1 − u) + y(u − u−1)
+ μ, y′ = P (y2), μ ∈ C, (74)

V8: ut =
1

y(u1 + u) − y(u + u−1)
, y′ = Q(y), (75)

V9: ut =
y(u1 + u) − y(u + u−1)
y(u1 + u) + y(u + u−1)

, y′ =
P (y2)

y
, (76)

V10: ut =
y(u1 + u) + y(u + u−1)
y(u1 + u) − y(u + u−1)

, y′ =
Q(y)

y
, (77)

V11: ut =
(1 − y(u1 − u))(1 − y(u − u−1))

y(u1 − u) + y(u − u−1)
+ μ, y′ =

P (y2)
1 − y2

, μ ∈ C, (78)

where P and Q are polynomials with the constant coefficients α, β, γ, δ, and ε defined by

P (u) = αu2 + βu + γ, (79)

Q(u) = αu4 + βu3 + γu2 + δu + ε (80)

and the polynomial R is defined by (66). As stated in [43], the problem of constructing the generalized
symmetries for all equations V1–V11 remains open although the master symmetries for some forms of
equations in the list are known [42], [39]. We know that the Miura transformation ũ = y(u1−u) transforms
equations V5 and V6 into V1 and equations V7 and V11 into V2, and the Miura transformation ũ = y(u1+u)
transforms equation V9 into V2 and equations V8 and V10 into V3 [43]. We present the recursion operators,
Hamiltonian operators, and master symmetries for the first four equations. The corresponding operators
for other equations can be obtained via the Miura transformations.

4.4.1. Equation V1 (see (68)).
• Hamiltonian structure:

H = P (u)(S − S−1)P (u).

• Symplectic operator:

α(S − S−1) + (αu1 + β + αu−1)S(S − 1)−1 P ′(u)
P (u)

+
P ′(u)
P (u)

(S − 1)−1(αu1 + β + αu−1).

• Recursion operator:

R = P (u)S + 2αuu1 + β(u + u1) + P (u)S−1 + ut(S − 1)−1 P ′(u)
P (u)

.
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• Nontrivial symmetry :

R(ut) = P (u)(P (u1)u2 + αuu2
1 + β(u + u1)u1 − P (u−1)u−2 − αuu2

−1 − β(u + u−1)u−1).

• Master symmetry:

nut + P (u)
(

cu1 +
β

α
+ (2 − c)u−1

)
, c ∈ C, if α �= 0,

nut + P (u)(cu1 + u + (3 − c)u−1), c ∈ C, if α = 0.

• Lax representation:
The case α = β = 0 yields a linear equation.
The case α = 0 and β �= 0 reduces to Volterra equation (64) via the linear substitution u �→ β−1(u−γ).

It hence has Lax representation (65).
In the case α �= 0, the linear substitution t �→ α−1t and u �→ u − β/2 transforms the polynomial P (u)

in V1 into the form P (u) = u2 + c, where c = γ/α − β2/4α2. The corresponding Lax representation has
the form [26]

M =

(
cλ−1 u

−u λ

)
, U =

(
c2λ−2 + uu−1 cλ−1u + λu−1

−cλ−1u−1 − λu λ2 + uu−1

)
.

This equation includes both the Volterra chain in Sec. 4.1 and the modified Volterra equation in Sec. 4.2.
The Hamiltonian f for a nonlinear equation, i.e., αβ �= 0, depends on the coefficients in the polynomial P

defined by (79). If α �= 0, then we take f = (1/2α) logP (u), and if α = 0, then we take f = u/β.

The Hamiltonian operator, symplectic operator, and recursion operator satisfy the unexpected relation

HJ = αR2 + β2R + 2γ(β2 − 2αγ).

4.4.2. Equation V2 (see (69)).
• Hamiltonian structure:

H =
P (u2)
u1 + u

S P (u2)
u + u−1

− P (u2)
u + u−1

S−1 P (u2)
u1 + u

− ut(S + 1)(S − 1)−1ut.

• Symplectic operator:

J =
1

(u + u1)2
S − S−1 1

(u + u1)2
+ δuρ(S + 1)(S − 1)−1δuρ −

− (β2 − 4αγ)
u

P (u2)
(S − 1)(S + 1)−1 u

P (u2)
,

where ρ = (1/2) log((u + u1)2/P (u2)) and hence

δuρ =
1

u1 + u
+

1
u + u−1

− P (u2)′

2P (u2)
, P (u2)′ = 2u(2αu2 + β).

• Recursion operator:

R =
P (u2)

(u1 + u)2
S + P (u2)

(
1

(u + u1)2
+

2
(u + u1)(u + u−1)

− 1
(u + u−1)2

)
+

+ P (u2)′
(

1
2u

− 1
u + u1

)
+

P (u2)
(u + u−1)2

S−1 + 2ut(S − 1)−1δuρ.
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• Nontrivial symmetry :

R(ut) =
P (u2)P (u2

1)
(u + u1)2

(
1

u1 + u2
− 1

u1 − u−1

)
−

−
P (u2)P (u2

−1)
(u + u−1)2

(
1

u−1 + u−2
− 1

u−1 − u1

)
+

+ 2P (u2)
αu2

1u
2
−1 + βu1u−1 + γ

(u + u1)(u1 − u−1)(u + u−1)
.

• Master symmetry:

nut +
P (u2)

u + u−1
− αu3 − βu if γ = 0,

nut +
P (u2)

u + u−1
− αu3 − β

2
u if β2 − 4αγ = 0,

nut +
P (u2)

u + u−1
if α = 0.

Here, we found the master symmetries only in some special cases. For the Hamiltonian operator given
above, we have Hδuρ = R(ut). Moreover, the Hamiltonian operator, symplectic operator, and recursion
operator satisfy the relation

HJ = R2 − 2βR + β2 − 4αγ.

The Calogero–Degasperis lattice [39]

ut =
1
4
(1 − u2)(b2 − a2u2)

(
1

u1 + u
− 1

u + u−1

)

is a special case of equation V2. The authors of [39] gave a different form of its master symmetry by
introducing a time dependence for the coefficients a and b.

4.4.3. Equation V3 (see (70)).
• Hamiltonian structure:

H =
Q(u)

u1 − u
S Q(u)

u − u−1
− Q(u)

u − u−1
S−1 Q(u)

u1 − u
+ ut(S + 1)(S − 1)−1ut.

• Symplectic operator:

J =
1

(u1 − u)2
S − S−1 1

(u1 − u)2
− δuρ(S + 1)(S − 1)−1δuρ −

−
(

2αγ − β2

4

)
u2

Q(u)
(S − 1)(S + 1)−1 u2

Q(u)
− βδ

u

Q(u)
(S − 1)(S + 1)−1 u

Q(u)
−

−
(

2γε− δ2

4

)
1

Q(u)
(S − 1)(S + 1)−1 1

Q(u)
+

+ (2αδ + βγ)
(

u2

Q(u)
(S + 1)−1 u

Q(u)
− u

Q(u)
S(S + 1)−1 u2

Q(u)

)
−

−
(

βδ

2
− γ2 − 4αε

)(
u2

Q(u)
(S + 1)−1 1

Q(u)
− 1

Q(u)
S(S + 1)−1 u2

Q(u)

)
+

+ (γδ + 2βε)
(

u

Q(u)
(S + 1)−1 1

Q(u)
− 1

Q(u)
S(S + 1)−1 u

Q(u)

)
,
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where

ρ =
1
2

log
Q(u)

(u1 − u)2
,

and hence

δuρ =
1

u1 − u
− 1

u − u−1
+

Q′(u)
2Q(u)

.

• Recursion operator:

R =
Q(u)

(u1 − u)2
S + Q(u)

(
1

(u − u−1)2
+

2
(u1 − u)(u − u−1)

− 1
(u1 − u)2

)
−

− Q′(u)
u1 − u

− 2αu2 − βu − γ +
Q(u)

(u − u−1)2
S−1 − 2ut(S − 1)−1δuρ.

• Nontrivial symmetry:

R(ut) =
Q(u)Q(u1)

(u1 − u)2(u2 − u1)
+

Q(u)Q(u−1)
(u − u−1)2(u−1 − u−2)

+ αQ(u)(u1 − u−1) +

+ Q(u)
(

Q(u)
(u1 − u)(u − u−1)

+ 2αu2 + βu

)(
1

u1 − u
+

1
u − u−1

)
.

• Master symmetry:

nut −
Q(u)

u + u−1
+ αu3 + βu2 + γu if δ = ε = 0,

nut −
Q(u)

u + u−1
if α = β = 0.

Similarly to equation V2 in Sec. 4.4.2, we have not found the master symmetry for the polynomial Q

in (80) with arbitrary coefficients. But if we seek a master symmetry of the form

nut −
Q(u)

u + u−1
+

3∑

i=0

ciu
i, ci ∈ C,

then we can determine the constants ci for certain polynomials Q. Two examples are listed above.
We note that Hδuρ = R(ut) and the product of the Hamiltonian operator and symplectic operator

yields the square of the recursion operator, i.e.,

HJ = R2.

4.5. The Narita–Itoh–Bogoyavlensky lattice.
• Equation [45], [54], [55]:

ut = u

( p∑

k=1

uk −
p∑

k=1

u−k

)
, p ∈ N.

• Hamiltonian structure [15]:

H = u

( p∑

i=1

Si −
p∑

i=1

S−i

)
u, f = u.
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• Recursion operator [13]:

R = u(S − S−p)(S − 1)−1

→p∏

i=1

(Sp+1−iu − uS−i)(Sp−iu − uS−i)−1,

where the notation
∏→p

i=1 indicates the order of the value i, from 1 to p, i.e.,
∏→p

i=1 ai = a1a2 · · · ap.
• Nontrivial symmetry:

R(ut) = u(1 − S−(p+1))S1−p
∑

0≤i≤j≤2p−1

ujui+p.

• Master symmetry [13]: R(u).
• Lax representation [45]:

L = S + uS−p, A = (L(p+1))≥0,

where ( · )≥0 means taking the terms with a nonnegative power of S in L(p+1).
For p = 1, 2, or 3, a few higher-order symmetries were given explicitly in [15], where the authors also

studied their Hamiltonian operator, recursion operator, and master symmetry for p = 1, 2.
The Narita–Itoh–Bogoyavlensky lattice is known as an integrable discretization of the Korteweg–

de Vries equation. It can also be represented as

vt = v

( p∏

k=1

vk −
p∏

k=1

v−k

)
,

which is related to the Narita–Itoh–Bogoyavlensky lattice via the transformation u =
∏p−1

k=0 vk for fixed p.
Taking p = 1, we obtain the well-known Volterra chain in Sec. 4.1. These chains can therefore also be

considered a generalization of the Volterra chain.
Let u =

∏p
k=0 wk. Then w satisfies the so-called modified Bogoyavlensky chain

wt = w2

( p∏

k=1

wk −
p∏

k=1

w−k

)
.

The recursion operator given above for the Narita–Itoh–Bogoyavlensky lattice is highly nonlocal (so is
the master symmetry). Recently, Svinin [56] derived explicit formulas for its generalized symmetries in
terms of a family of homogeneous difference polynomials. The properties of these homogeneous difference
polynomials [57] allow proving the locality of its infinitely many symmetries [13].

A family of integrable lattice hierarchies associated with fractional Lax operators was introduced by
Adler and Postnikov [58], [59]. One simple example is

ut = u2

( p∏

k=1

uk −
p∏

k=1

u−k

)
− u

(p−1∏

k=1

uk −
p−1∏

k=1

u−k

)
, 2 ≤ p ∈ N, (81)

which is an integrable discretization of the Sawada–Kotera equation. It can be considered an inhomogeneous
generalization of Bogoyavlensky-type lattices. The problem of constructing the Hamiltonian structure and
recursion operator for such a family of equations is still open.

Even in the scalar case, the classification of higher-order integrable evolutionary differential–difference
equations is still open.
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4.6. The Toda lattice.
• Equation [60]:

qtt = eq1−q − eq−q−1 .

In the Manakov–Flaschka coordinates [61], [46] defined by u = eq1−q and v = qt, it can be rewritten as the
two-component evolution system

ut = u(v1 − v),

vt = u − u−1.
(82)

• Hamiltonian structure [41], [39], [36]:

H1 =

(
0 u(S − 1)

(1 − S−1)u 0

)
, f1 = u +

v2

2
,

H2 =

(
u(S − S−1)u u(S − 1)v

v(1 − S−1)u uS − S−1u

)
, f2 = v.

• Recursion operator:

R = H2H−1
1 =

⎛

⎜⎝
v1 + u(v1 − v)(S − 1)−1 1

u
uS + u

1 + S−1 + (u − u−1)(S − 1)−1 1
u

v

⎞

⎟⎠ =

=

(
v1 uS + u

1 + S−1 v

)
+

(
u(v1 − v)

u − u−1

)
(S − 1)−1

(
1
u

0
)

.

• Nontrivial symmetry:

R
(

ut

vt

)
=

(
u(v2

1 − v2 + u1 − u−1)

u(v1 + v) − u−1(v−1 + v)

)
.

• Master symmetry [39]:

R

⎛

⎝
u
v

2

⎞

⎠ =

⎛

⎜⎜⎝
nut +

3
2
uv1 +

1
2
uv

nvt + u + u−1 +
v2

2

⎞

⎟⎟⎠ .

• Lax representation:

M =

(
λ + v1 u

−1 0

)
, U =

(
0 −u

1 λ + v

)
.

The Hirota nonlinear equation [62]

ut = v1 − v,

vt = v(u − u−1)

is related to Toda lattice (82) by a simple invertible transformation. Namely, let u = q and v = p−1. Then
the variables p and q satisfy the Toda equation. All its properties can be obtained from those of the Toda
lattice.
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4.7. A relativistic Toda system.
• Equation [63]:

qt,t = qtq−1,t
eq−1−q

1 + eq−1−q
− qtq1,t

eq−q1

1 + eq−q1
.

We introduce the dependent variables [64], [65]

u =
qte

q−q1

1 + eq−q1
, v =

qt

1 + eq−q1
.

The equation can then be written as

ut = u(u−1 − u1 + v − v1),

vt = v(u−1 − u).
(83)

• Hamiltonian structure [65]:

H1 =

(
0 u(1 − S)

(S−1 − 1)u uS − S−1u

)
, f1 =

1
2
(u2 + v2) + uv + u1u + uv1,

H2 =

(
u(S−1 − S)u u(1 − S)v

v(S−1 − 1)u 0

)
, f2 = u + v.

• Recursion operator [65]:

R = H2H−1
1 =

=

⎛

⎜⎝
uS + u + v1 + u1 + uS−1 − u(v − v1 + u−1 − u1)(S − 1)−1 1

u
uS + u

v + vS−1 − v(u−1 − u)(S − 1)−1 1
u

v

⎞

⎟⎠ =

=

(
uS + u + v1 + u1 + uS−1 uS + u

v + vS−1 v

)
−

(
ut

vt

)
(S − 1)−1

(
1
u

0
)

.

• Nontrivial symmetry:

⎛

⎜⎜⎝

uu−1(u + u−1 + u−2 + 2v + v−1) −
−uu1(u2 + u1 + u + 2v1 + v2) + u2(v − v1) + u(v2 − v2

1)

vu−1(u−2 + u−1 + v + v−1) − uv(u1 + u + v1 + v)

⎞

⎟⎟⎠ .

• Master symmetry [65]:

R
(

u

v

)
=

(
−nut + u(v + 2v1 + u + 2u1 + u−1)

−nvt + v(u + v + u−1)

)
, (S − 1)−11 = n.

• Lax representation:

M =

(
λv − λ−1 u−1

−1 0

)
, U =

(
−λ−2 − u−1 λ−1u−1

−λ−1 −u−2 − v−1

)
.
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As noted in [65], the inverse of this recursion operator R is also weakly nonlocal:

R−1 = H1H−1
2 =

⎛

⎜⎜⎝

1
v1

− u

v2
1

S +
u

v2
− 2u

vv1

−S−1 1
v
− 1

v1

u

v2
1

S + S−1 u

v2
+

2u

vv1
+

1
v

⎞

⎟⎟⎠ +

+

⎛

⎜⎝

u

v1
− u

v
u−1

v−1
− u

v1

⎞

⎟⎠ (S − 1)−1

(
1
u

−2
v

)
.

But the recursion operators R and R−1 have different starting symmetries (seeds). The right-hand side of
Eq. (83) is the seed for R, while the seed for R−1 is

σ =

⎛

⎜⎝

u

v1
− u

v
u−1

v−1
− u

v1

⎞

⎟⎠ .

Moreover, R acting on σ and R−1 acting on the right-hand side of the equation do not yield new symmetries.
There is a Miura transformation u = −u′

−1/v′v′−1, v = −1/v′−1 between the flow corresponding to σ

and Eq. (83), where u′ and v′ denote dependent variables for σ.
Other integrable equations related to the relativistic Toda lattice were studied in [64]. For example,

the equation
qt,t = q−1,te

q−1−q − e2q−1−2q − q1,te
q−q1 + e2q−2q1

can also be rewritten as system (83) by setting

u = eq−q1 , v = qt − eq−1−q − eq−q1 .

4.8. Two-component Volterra lattice.
• Equation [41]:

ut = u(v1 − v),

vt = v(u − u−1).
(84)

• Hamiltonian structure [41]:

H1 =

(
0 u(S − 1)v

v(1 − S−1)u 0

)
, f1 = u + v,

H2 =

(
u(Sv − vS−1)u u(uS − u + Sv − v)v

v(u − S−1u + v − vS−1)u v(uS − S−1u)v

)
, f2 = log u.

• Recursion operator:

R = H2H−1
1 =

=

⎛

⎜⎝
u + v1 + u(v1 − v)(S − 1)−1 1

u
uS +

uv1

v
+ u(v1 − v)(S − 1)−1 1

v

v + vS−1 + v(u − u−1)(S − 1)−1 1
u

u + v + v(u − u−1)(S − 1)−1 1
v

⎞

⎟⎠ =

=

⎛

⎝
u + v1 uS +

uv1

v

v + vS−1 u + v

⎞

⎠ +

(
u(v1 − v)

v(u − u−1)

)
(S − 1)−1

(
1
u

1
v

)
.
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• Nontrivial symmetry:

R
(

ut

vt

)
=

(
u2(v1 − v) + u(v2

1 − v2 + v1u1 − vu−1)

v2(u − u−1) + v(u2 − u2
−1 + uv1 − u−1v−1)

)
.

• Master symmetry [39]:

R
(

u

v

)
=

(
2nut + u2 + 3uv1

2nvt + vu−1 + 2uv + v2

)
.

• Lax representation [66]:

L = λS−1 + v + u−1 + λ−1uvS, A = λ−1uvS.

This system comes from the Volterra chain in Sec. 4.1 written in the variable w, i.e.,

wt = w(w1 − w−1), (85)

by renaming u(n, t) = w(2n, t) and v(n, t) = w(2n − 1, t). It is related to Toda equation (82), written in
the variables ū and v̄, by the Miura transformation [67]

ū = uv, v̄ = u−1 + v. (86)

In fact, the (master) symmetries, conservation laws, and local Hamiltonian structures of this system
can be easily obtained from the Volterra chain in the same way. For instance, we can derive the first
Hamiltonian operator H1 as follows. A symmetry flow of Volterra chain (85) is

wτ = w(S − S−1)wQ[n] = ww1Q[n + 1] − ww−1Q[n − 1],

where Q[n] is the variational derivative of a conserved density for (85). We now write both even and odd
chains and rename them for the variables u and v accordingly. We have

uτ = uv1Q[2n + 1] − uvQ[2n− 1], vτ = vuQ[2n] − vu−1Q[2n− 2],

i.e., (
uτ

vτ

)
=

(
0 u(S − 1)v

v(1 − S−1)u 0

)(
Q[2n]

Q[2n− 1]

)
.

Using the same method, we can derive H2 in the list. Such a construction holds for all scalar equations. It
is tricky if the operator is nonlocal.

4.9. The relativistic Volterra lattice.
• Equation [66], [67], [28]:

ut = u(v − v−1 + uv − u−1v−1),

vt = v(u1 − u + u1v1 − uv).
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• Hamiltonian structure [66]:

H1 =

(
0 u(1 − S−1)v

v(S − 1)u 0

)
, f1 = u + v + uv,

H2 =

⎛

⎜⎜⎝

uv(1 + u)Su − uS−1uv(1 + u) uv(u + v + uv) −
−u(S−1uvS−1 + uS−1 + S−1v)v

v(SuvS + vS + Su)u − uv(u + v + uv) vSuv(1 + v) − uv(1 + v)S−1v

⎞

⎟⎟⎠ ,

f2 = log u or f2 = log v.

• Recursion operator:

R = H2H−1
1 =

⎛

⎝
uv−1S−1 + u + v + uv u(1 + u−1)S−1 + u(1 + u)

v(1 + v1)S +
u1v(1 + v1)

u
u1vS + u1 + v + u1v1

⎞

⎠ +

+

(
u(v − v−1 + uv − u−1v−1)

v(u1 − u + u1v1 − uv)

)
(S − 1)−1

(
1
u

1
v

)
.

• Nontrivial symmetry:

R
(

ut

vt

)
=

⎛

⎜⎜⎜⎜⎝

uv(1 + u)(u + u1 + u1v1) + uv2(1 + u)2 −
−uv2

−1(1 + u−1)2 − u2v−1 − u−1uv−1(1 + u + v−2 + u−1 + u−2v−2)

u1vv1(1 + 2u1 + u2v2 + u2) + u2
1v + u1vv2

1(1 + u1) +

+v2u1(1 + v1) − uv(1 + v)(v + v−1 + u−1v−1) − u2v(1 + v)2

⎞

⎟⎟⎟⎟⎠
.

• Lax representation

M =

(
λ2 + 2u1 + 2v + 1 −λ(2v + 1) − λ−1(2u1 + 1)

−λ(2u1 + 1) − λ−1(2v + 1) λ−2 + 2u1 + 2v + 1

)
,

U =

⎛

⎜⎜⎝
−λ2 − λ−2

8
+ uv +

u

2
+

v

2
λ

(2v + 1)
4

+ λ−1 (2u + 1)
4

λ
(2u + 1)

4
+ λ−1 (2v + 1)

4
λ2 − λ−2

8
+ uv +

u

2
+

v

2

⎞

⎟⎟⎠ .

In [66], the Lax representation is given in the form

Ut = UC − AU, Wt = WB − CW, Vt = V B − AV,

where the difference operators U , V , W , A, B, and C are given by

U = u + λS−1, A = u + u−1v−1 + v−1 + λS−1,

W = 1 + λ−1vS, B = u + uv + v−1 + λS−1,

V = 1 − λ−1uvS, C = u + uv + v + λS−1.
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The recursion operator R has a weakly nonlocal inverse:

R′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uv

(u1 + v + 1)2
S +

+
uv(u + 1) + ((1 + v−1)2 + u)(u1 + 1)

(u + v−1 + 1)2(u1 + v + 1)

− u(u + 1)
(u + v−1 + 1)2

S−1 −

− u(u1 + 1)
(u1 + v + 1)2

− v(1 + v)
(u1 + v + 1)2

S −

−
v(u2 + u2v + 2u1v−1 + u1 + u1v

2
−1)

u(u + v−1 + 1)(u1 + v + 1)

uv

(u + v−1 + 1)2
S−1 +

+
(1 + u1)(1 + v)
(u1 + v + 1)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛

⎜⎝
− uv−1

u + v−1 + 1
+

uv

u1 + v + 1

− uv

u + v−1 + 1
+

u1v

u1 + v + 1

⎞

⎟⎠ (S − 1)−1

(
2

u + v−1 + 1
− 1

u

2
u1 + v + 1

− 1
v

)
.

In fact, it commutes with R and satisfies R′(R + id) = id. It is related to relativistic Toda equation (83)
written in the variables ū and v̄ by the Miura transformation ū = −uv and v̄ = −(u + v−1 + 1) [67]. This
transformation is similar to (86), which explains the name of this equation.

4.10. The Merola–Ragnisco–Tu lattice.
• Equation [15], [68]:

ut = u1 − u2v,

vt = −v−1 + v2u.

• Hamiltonian structure [15]:

H =

(
0 1

−1 0

)
, f = u1v − u2v2

2
.

• Recursion operator [15]:

R =

(
S − 2uv −u2

v2 S−1

)
+ 2

(
−u

v

)
(S − 1)−1

(
v u

)
.

• Nontrivial symmetry [15]:

R
(

ut

vt

)
=

(
u2 − u2

1v1 − u2v−1 − 2uvu1 + u3v2

−v−2 + v2
−1u−1 + v2u1 + 2uvv−1 − u2v3

)
.

• Master symmetry [15]:

R
(

(n + 1)u

−nv

)
=

(
nut + 2u1 − 2u2v − 2u(S − 1)−1uv

nvt + v−1 + uv2 + 2v(S − 1)−1uv

)
.

• Lax representation:

M =

(
−1 v

u −2λ − uv

)
, U =

(
−λ −v−1

−u λ

)
.
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The recursion operator R has a weakly nonlocal inverse:

R−1 =

⎛

⎜⎜⎝

1
(u−1v + 1)2

S−1
u2
−1

(u−1v + 1)2

− v2
1

(uv1 + 1)2
1

(uv1 + 1)2
S − 2u−1v1

(u−1v + 1)(uv1 + 1)

⎞

⎟⎟⎠ +

+ 2

⎛

⎜⎝

u−1

u−1v + 1

− v1

uv1 + 1

⎞

⎟⎠ (S − 1)−1

(
v1

uv1 + 1
u−1

u−1v + 1

)
.

The symmetry (u,−v)T is a seed for both R and R−1.
Under the invertible transformation t �→ −t, u �→ −u, and v �→ v1, this lattice transforms into

ut = −u1 − u2v1,

vt = v−1 + v2u−1,

which is related to the NLS system ut = uxx + 2u2v, −vt = vxx + 2v2u, presented in [69].

4.11. The Kaup lattice.
• Equation [69]:

ut = (u + v)(u1 − u),

vt = (u + v)(v − v−1).

• Hamiltonian structure [69]:

H =

(
0 u + v

−(u + v) 0

)
, f = u1v − uv.

• Recursion operator:

R =

(
(u + v)S + u1 − u 0

0 (u + v)S−1 + u1 − u

)
+

(
ut

vt

)
(S − 1)−1

(
1

u + v

1
u + v

)
+

+

(
1

−1

)
S(S − 1)−1

(
v−1 − v u1 − u

)
.

• Nontrivial symmetry:

R
(

ut

vt

)
=

(
(u + v)(uu1 + uv−1 + u1v1 − u1u2 − u2v1 − u1v−1)

(u + v)(u−1v−2 + v−2v−1 − u1v − u−1v−1 + u1v−1 − v−1v)

)
.

• Lax representation [69]:

M =

(
u − λ uv + λ(u + v) + λ2

1 v − λ

)
, U =

(
u (u + λ)(v−1 + λ)

1 v−1

)
.

1637



There exists another weakly nonlocal recursion operator

R′ =

⎛

⎜⎜⎝

u + v

(u−1 + v)2
S−1 − (u − u−1)

(u−1 + v)2

− (v1 − v)
(u + v1)2

u + v

(u + v1)2
S +

u − u−1 − v1 + v

(u−1 + v)(u + v1)

⎞

⎟⎟⎠ −

−
(

1

−1

)
(S − 1)−1

(
1

u + v1
− 1

u + v

1
u−1 + v

− 1
u + v

)
−

−

⎛

⎜⎝

u − u−1

u−1 + v
v1 − v

u + v1

⎞

⎟⎠ (S − 1)−1

(
2

u + v1
− 1

u + v

2
u−1 + v

− 1
u + v

)
.

The symmetry (1,−1)T is a seed for both R and R′.

4.12. The Ablowitz–Ladik lattice.

• Equation [70]:

ut = (1 − uv)(αu1 − βu−1)

vt = (1 − uv)(βv1 − αv−1)

}
:= αK1 + βK−1.

• Hamiltonian structure [15]:

H =

(
0 1 − uv

−(1 − uv) 0

)
, f = (αu1 − βu−1)v.

• Recursion operator [15], [71], [72]:

R =

(
(1 − uv)S − u1v − uv−1 −uu1

vv−1 (1 − uv)S−1

)
+

(
−u

v

)
(S − 1)−1

(
v−1 u1

)
−

−
(

(1 − uv)u1

−(1 − uv)v−1

)
(S − 1)−1

( v

1 − uv

u

1 − uv

)
.

• Nontrivial symmetry [15]:

R
(

(1 − uv)u1

−(1 − uv)v−1

)
=

(
(1 − uv)((1 − u1v1)u2 − vu2

1 − uu1v−1)

(1 − uv)(−(1 − u−1v−1)v−2 + uv2
−1 + u1v−1v)

)
.

• Master symmetry [15]:

R
(

nu

−nv

)
=

(
(n + 1)(1 − uv)u1 − u2v−1 − u(S − 1)−1uv−1

(1 − n)(1 − uv)v−1 + uvv−1 + v(S − 1)−1uv−1

)
.
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• Lax representation:

M =

⎛

⎝
λ u

v
1
λ

⎞

⎠ , U = α

(
λ2 − uv−1 λu

λv−1 0

)
+ β

(
0 λ−1u−1

λ−1v λ−2 − u−1v

)
.

The coefficients of α and β, namely, K1 and K−1, are commuting symmetries for the equation. The
inverse of the recursion operator R is weakly nonlocal:

R−1 =

(
(1 − uv)S−1 uu−1

−vv1 (1 − uv)S − uv1 − u−1v

)
+

(
u

−v

)
(S − 1)−1

(
v1 u−1

)
+

+

(
(1 − uv)u−1

−(1 − uv)v1

)
(S − 1)−1

( v

1 − uv

u

1 − uv

)
.

Both R and R−1 share the common seed σ =
(

u
−v

)
. Starting from it, we can generate the commuting

symmetries R−i(σ) and Ri(σ) for i ∈ N. More Lie algebra structure among the symmetries and master
symmetries can be found in [15].

4.13. The Bruschi–Ragnisco lattice.
• Equation [73], [66], [41]:

ut = u1v − uv−1,

vt = v(v − v−1).

• Hamiltonian structure [73], [15]:

H1 =

(
0 (1 − S−1)v

v(S − 1) 0

)
, f1 = u1v,

H2 =

(
vSu − uS−1v v(S − 1)v

v(1 − S−1)v 0

)
, f2 = u.

• Recursion operator [41], [15]:

R = H2H−1
1 =

⎛

⎜⎝
vS u1 + uS−1 + (u1v − uv−1)(S − 1)−1 1

v

0 vS−1 + v(v − v−1)(S − 1)−1 1
v

⎞

⎟⎠ =

=

(
vS u1 + uS−1

0 vS−1

)
+

(
ut

vt

)
(S − 1)−1

(
0

1
v

)
.

• Nontrivial symmetry [15]:

R
(

ut

vt

)
=

(
vv1u2 − v−2v−1u

v(vv−1 − v−1v−2)

)
.

• Master symmetry [15]:

R
(

u

v

)
=

(
nut + 2u1v + u−1u

nvt + vv−1

)
.
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The recursion operator R has a weakly nonlocal inverse:

R−1 = H1H−1
2 =

⎛

⎜⎜⎝
S−1 1

v
−S−1 u

v2
− u

v2
+

(
u−1

v−1
− u

v

)
(S − 1)−1 1

v

0 vS 1
v2

− 1
v

+
1
v1

+
(

v

v1
− 1

)
(S − 1)−1 1

v

⎞

⎟⎟⎠ =

=

⎛

⎜⎜⎝
S−1 1

v
−S−1 u

v2
− u

v2

0 vS 1
v2

− 1
v

+
1
v1

⎞

⎟⎟⎠ +

⎛

⎜⎝

u−1

v−1
− u

v
v

v1
− 1

⎞

⎟⎠ (S − 1)−1

(
0

1
v

)
.

But the recursion operators R and R−1 have different seeds similar to those in the relativistic Toda system
in Sec. 4.7. The seed for R is the equation itself, while the seed for R−1 is

σ =

⎛

⎜⎝

u−1

v−1
− u

v
v

v1
− 1

⎞

⎟⎠ .

The operator R−1 acting on the equation itself and R acting on σ do not generate new symmetries. More
Lie algebra structure among the symmetries and master symmetries can be found in [15].

In fact, the Bruschi–Ragnisco lattice is trivially solvable, and so are its symmetry flows. The equation
for the second component vt is independent of the first component u. Moreover, the scalar lattice vt =
v(v−v−1) and vτ = v/v1 − 1 can be respectively linearized into wt = w−1 and wt = w1 by the transformation
v = −w−1/w. Once it is solved, the equation for u is then linear.

4.14. The Kaup–Newell lattice.
• Equation [74]:

ut = a

(
u1

1 − u1v1
− u

1 − uv

)
+ b

(
u

1 + uv1
− u−1

1 + u−1v

)

vt = a

(
v

1 − uv
− v−1

1 − u−1v−1

)
+ b

(
v1

1 + uv1
− v

1 + u−1v

)

⎫
⎪⎪⎬

⎪⎪⎭
:= aK1 + bK−1.

• Hamiltonian structure [74]:

H =

(
0 S − 1

1 − S−1 0

)
, f = −a log(1 − uv) + b log(1 + uv1).

• Recursion operator:

R = HJ =

⎛

⎜⎜⎜⎜⎜⎜⎝

− 1
(1 − u1v1)2

S +
1

(1 − uv)2
−

− 2u1v

(1 − u1v1)(1 − uv)

− u2
1

(1 − u1v1)2
S +

u2

(1 − uv)2
−

− 2uu1

(1 − uv)(1 − u1v1)

−
v2
−1

(1 − u−1v−1)2
S−1 − v2

(1 − uv)2
− 1

(1 − u−1v−1)2
S−1 +

1 − 2uv

(1 − uv)2

⎞

⎟⎟⎟⎟⎟⎟⎠
−

− 2K1(S − 1)−1
( v

1 − uv

u

1 − uv

)
,
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where the symplectic operator J is defined by

J =

⎛

⎜⎜⎝
0

1
1 − uv

− 1
1 − uv

0

⎞

⎟⎟⎠ −

⎛

⎜⎝

v

1 − uv
u

1 − uv

⎞

⎟⎠ (S + 1)(S − 1)−1
( v

1 − uv

u

1 − uv

)
.

• Nontrivial symmetry:

R(K1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(1 − u1v1)2

(
u1 −

u2

1 − u2v2
− u2

1v

1 − uv

)
−

− 1
(1 − uv)2

(
u − u1

1 − u1v1
− u2v−1

1 − u−1v−1

)

1
(1 − uv)2

(
v − u1v

2

1 − u1v1
− v−1

1 − u−1v−1

)
−

− 1
(1 − u−1v−1)2

(
v−1 −

uv2
−1

1 − uv
− v−2

1 − u−2v−2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• Lax representation [74]:

M =

(
λ + (1 − λ)uv u

(1 − λ)v 1

)
,

U = a

⎛

⎜⎜⎝

λ − 1
2

u

1 − uv

(1 − λ)v−1

1 − u−1v−1
−λ − 1

2

⎞

⎟⎟⎠ +

+
b

2λ(1 + u−1v)

(
(λ − 1)(1 − u−1v) 2u−1

2(1 − λ)v (1 − λ)(1 − u−1v)

)
.

The recursion operator R has the seed σ =
(−u

v

)
and R(σ) = K1 with zero taken as the integration

constant. As with the Ablowitz–Ladik lattice in Sec. 4.12, the coefficients of a and b, namely, K1 and K−1,
are commuting symmetries of the equation. Indeed, there exists another weakly nonlocal recursion operator

R′ = HJ ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(1 + u−1v)2

S−1 − 1 + 2uv1

(1 + uv1)2

− u2

(1 + uv1)2
S +

u2
−1

(1 + u−1v)2
−

− 2uu−1

(1 + u−1v)(1 + uv1)

− v2

(1 + u−1v)2
S−1 − v2

1

(1 + uv1)2

1
(1 + uv1)2

S − 1
(1 + u−1v)2

−

− 2u−1v1

(1 + u−1v)(1 + uv1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

− 2K−1(S − 1)−1

(
v1

1 + uv1

u−1

1 + u−1v

)
,
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where the symplectic operator J ′ is

J ′ =

⎛

⎜⎝
0

1
1 + uv1

(S − u−1v1)
1

1 + u−1v
1

1 + u−1v
(u−1v1 − S−1)

1
1 + uv1

0

⎞

⎟⎠ −

−

⎛

⎜⎜⎝

v1

1 + uv1

u−1

1 + u−1v

⎞

⎟⎟⎠ (S + 1)(S − 1)−1

(
v1

1 + uv1

u−1

1 + u−1v

)
.

Again, σ is a seed for R′ and R′(σ) = K−1 taking

(S − 1)−1

(
− uv1

1 + uv1
+

u−1v

1 + u−1v

)
= − u−1v

1 + u−1v
.

By direct calculation, we have J ′R = JR′ = J ′ − J . Hence, these two recursion operators satisfy the
relations R′R = RR′ = R′ −R, i.e., (R′ − id)(R− id) = (R− id)(R′ − id) = id.

4.15. The Chen–Lee–Liu lattice.
• Equation [74]:

ut = a(1 + uv)(u1 − u) + b(1 + u−1v)−1(u − u−1)

vt = a(1 + uv)(v − v−1) + b(1 + uv1)−1(v1 − v)

⎫
⎬

⎭ := aK1 + bK−1.

• Hamiltonian structure:

H =

(
0 1 + uv

−(1 + uv) 0

)
, f = a(uv−1 − uv) + b log

1 + uv

1 + uv1
.

• Recursion operator:

R = H2H−1 =

(
(1 + uv)S − 2uv + u1v + uv−1 uu1 − u2

v2 − vv−1 (1 + uv)S−1

)
+

+ K1(S − 1)−1
( v

1 + uv

u

1 + uv

)
−

(
u

−v

)
(S − 1)−1

(
v − v−1 u − u1

)
,

where the Hamiltonian operator H2 is given by

H2 =

(
0 (1 + uv)(S(1 + uv) − uv + u1v)

(uv − u1v − (1 + uv)S−1)(1 + uv) 0

)
−

− K1(S − 1)−1
(
u −v

)
−

(
u

−v

)
S(S − 1)−1KT

1 .

• Nontrivial symmetry :

R(K1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + uv)(u1u2v1 + u2 + u2
1v + uu1v−1 +

+ u2v − u1 − u2v−1 − 2uu1v − u2
1v1)

(1 + uv)(u1v
2 + 2uv−1v + u−1v

2
−1 + v−1 − v−2 −

− uv2 − uv2
−1 − u1v−1v − u−1v−2v−1)

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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• Lax representation [74]:

M =

⎛

⎝
λ + uv u

(1 − λ)v 1

⎞

⎠ ,

U = a

⎛

⎝
λ − 1 + uv−1 u

(1 − λ)v−1 0

⎞

⎠ +
b

λ(1 + u−1v)

(
u−1v u−1

(1 − λ)v 1 − λ

)
.

The coefficients for a and b, namely, K1 and K−1, are commuting symmetries for the equation. The
above recursion operator R has a seed σ =

(−u
v

)
and R(σ) = K1.

There exists another weakly nonlocal recursion operator

R′ = H′
2H−1 =

⎛

⎜⎜⎜⎝

1 + uv

(1 + u−1v)2
S−1 −u−1(u − u−1)

(1 + u−1v)2

− v1(v1 − v)
(1 + uv1)2

1 + uv

(1 + uv1)2
S +

v1u − 2u−1v1 + u−1v

(1 + u−1v)(1 + uv1)

⎞

⎟⎟⎟⎠ −

− K−1(S − 1)−1

(
2v1

1 + uv1
− v

1 + uv

2u−1

1 + u−1v
− u

1 + uv

)
−

−
(
−u

v

)
(S − 1)−1

(
v1

1 + uv1
− v

1 + uv

u−1

1 + u−1v
− u

1 + uv

)
,

where the Hamiltonian operator H′
2 is

H′
2 =

⎛

⎜⎜⎝

0
1 + uv

1 + u−1v

(
S−1 1 + uv

1 + uv1
+

v1(u − u−1)
1 + uv1

)

−
(

1 + uv

1 + uv1
S +

v1(u − u−1)
1 + uv1

)
1 + uv

1 + u−1v
0

⎞

⎟⎟⎠ −

− K−1(S + 1)(S − 1)−1KT
−1 −

− K−1S(S − 1)−1
(
−u v

)
−

(
−u

v

)
(S − 1)−1KT

−1.

Again, σ is a seed for R′.

4.16. The Ablowitz–Ramani–Segur (Gerdjikov–Ivanov) lattice.
• Equation [74]:

ut = (au1 − bu−1)(1 + uv)(1 − uv1)

vt = (bv1 − av−1)(1 + uv)(1 − u−1v)

⎫
⎬

⎭ := aK1 + bK−1.

• Symplectic operator:

J =

⎛

⎜⎜⎝
0

1
1 − uv1

S − 1
1 + uv

1
1 + uv

− S−1 1
1 − uv1

0

⎞

⎟⎟⎠ ,
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and we have

J (aK1 + bK−1) = δ(u,v)(a(uv−1 − uv − uvu1v1) + b(u−1v1 − uv1 + u−1uvv1)).

• Hamiltonian structure:

H =

⎛

⎝
0 (1 + uv)(S(1 + uv) + uv−1)(1 − u−1v)

−(1 − u−1v)((1 + uv)S−1 + uv−1)(1 + uv) 0

⎞

⎠ −

− K1S(S − 1)−1
(
u −v

)
−

(
u

−v

)
(S − 1)−1KT

1 .

• Recursion operator:

R =

⎛

⎜⎜⎜⎜⎝

(1 + uv)(1 − uv1)S + u1v − u1v1 +

+uv−1 − uv(1 + u−1v−1 + 2u1v1)

−uu1(1 + uv)S − u2(1 + u−1v−1) +

+
1 − uv1

1 − u−1v
u1(u − u−1 − 2uu−1v)

−(1 − u−1v)v−1v − (1 + uv)v−1vS−1 (1 + uv)(1 − u−1v)S−1 + uvu−1v−1

⎞

⎟⎟⎟⎟⎠
+

+

⎛

⎝
u1(1 + uv)(1 − uv1)

−v−1(1 + uv)(1 − u−1v)

⎞

⎠ (S − 1)−1

(
v

1 + uv
− v1

1 − uv1

u

1 + uv
− u−1

1 − u−1v

)
−

−
(

u

−v

)
(S − 1)−1

(
v − v−1 + u−1v−1v + u1vv1 u − u1 + uu−1v−1 + uu1v1

)
=

= HJ +

(
1 0

0 1

)
.

• Nontrivial symmetry:

R(K1) =

⎛

⎜⎜⎜⎜⎝

(1 + uv)(1 − uv1)((1 + u1v1)(1 − u1v2)u2 − u2
1v1(1 + uv) +

+uu1v−1(1 − u−1v) − u1v(u − u1))

(1 + uv)(u−1v − 1)((1 + u−1v−1)(1 − u−2v−1)v−2 −
− u−1v

2
−1(1 + uv) + u1v−1v(1 − uv1) + uv−1(v−1 − v))

⎞

⎟⎟⎟⎟⎠
.

• Lax representation [74]:

M =

(
λ + uv u

(1 − λ)(1 − uv1)v 1 − uv1

)
,

U = a

(
λ + uv−1(1 − u−1v) u

(1 − λ)(1 − u−1v)v−1 −uv

)
+

+
b

λ

(
u−1v − λ u−1

(1 − λ)(1 − u−1v)v (1 − λ)(1 − u−1v) − λu−1v1(1 + uv)

)
.
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The equation given in [74] is (
ut

vt

)
= (a − b)

(
−u

v

)
+ aK1 + bK−1.

Because the vector σ =
(−u

v

)
commutes with both K1 and K−1, we remove this term in our consideration.

There exists another weakly nonlocal recursion operator

R′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(1 + uv)(1 − uv1)S−1 + uvu−1v1

uu−1(1 + uv)S + uu−2(1 + u−1v−1) −

− 1 − uv1

1 − u−1v
u−1(u − u−1 − 2uu−1v)

(1 − u−1v)v1v + (1 + uv)v1vS−1
(1 + uv)(1 − u−1v)S + uv1 − 2u−1uvv1−

− u−1v1 + u−1v − u−2v(1 + u−1v−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛

⎝
−u−1(1 + uv)(1 − uv1)

v1(1 + uv)(1 − u−1v)

⎞

⎠ (S − 1)−1 ×

×
(

v

1 + uv
− v1

1 − uv1

u

1 + uv
− u−1

1 − u−1v

)
+

(
u

−v

)
(S − 1)−1 ×

×
(
v2(1 + u1v1) + v1(u−1v − 1) u−2(1 + u−1v−1) + u−1(uv1 − 1)

)
=

= H′J +

(
1 0

0 1

)
,

where the Hamiltonian operator H′ is

H′ =

(
0 −(1 + uv)(1 − u−1v)

(1 + uv)(1 − u−1v) 0

)
−

− K−1S(S − 1)−1
(

u −v
)
−

(
u

−v

)
(S − 1)−1KT

−1.

The operator R′ is the inverse operator of R. The vector σ is the seed for both of them and, R′(K−1)
is

R′(K−1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 − uv1)(1 + uv)((1 + u−1v−1)(1 − u−1v)u−2 −

− uu−1v2(1 + u1v1) − u2
−1v1(1 + uv) + u−1(u−1v + uv1))

(1 − u−1v)(1 + uv)(−(1 + u1v1)(1 − uv1)v2 +

+ u−2vv1(1 + u−1v−1) + u−1v1(v1vu + v1 − v) − uv2
1)

⎞

⎟⎟⎟⎟⎟⎟⎠
.

4.17. The Heisenberg ferromagnet lattice.
• Equation [14]:

ut = (u − v)(u − u1)(u1 − v)−1,

vt = (u − v)(v−1 − v)(u − v−1)−1.
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• Hamiltonian structure:

H =

⎛

⎝
0 (u − v)2

−(u − v)2 0

⎞

⎠ , f = log(u − v) − log(u − v−1).

• Symplectic operator:

J =

⎛

⎜⎜⎜⎝

0 −(u − v−1)−2S−1 +
(u − u1)(v − v−1)

(u − v)2(u − v−1)(u1 − v)

(u1 − v)−2S − (u − u1)(v − v−1)
(u − v)2(u − v−1)(u1 − v)

0

⎞

⎟⎟⎟⎠ −

−

⎛

⎜⎜⎝

v − v−1

(u − v)(u − v−1)
u − u1

(u − v)(u1 − v)

⎞

⎟⎟⎠ (S + 1)(S − 1)−1

(
v − v−1

(u − v)(u − v−1)
u − u1

(u − v)(u1 − v)

)
.

• Recursion operator:

R = HJ =

⎛

⎜⎜⎜⎝

(u − v)2

(u1 − v)2
S − 2(u − u1)(v − v−1)

(u − v−1)(u1 − v)
− (u − u1)2

(u1 − v)2

(v − v−1)2

(u − v−1)2
(u − v)2

(u − v−1)2
S−1

⎞

⎟⎟⎟⎠ −

− 2

(
ut

vt

)
(S − 1)−1

(
v − v−1

(u − v)(u − v−1)
u − u1

(u − v)(u1 − v)

)
.

• Nontrivial symmetry:

R
(

ut

vt

)
=

⎛

⎜⎜⎜⎝

u − v

(u1 − v)2

(
(u − v)(u1 − v1)(u1 − u2)

u2 − v1
+

(u − u1)2(v−1 − v)
u − v−1

)

u − v

(u − v−1)2

(
(u − v)(u−1 − v−1)(v−2 − v−1)

u−1 − v−2
+

(v − v−1)2(u − u1)
u1 − v

)

⎞

⎟⎟⎟⎠ .

• Lax representation:

M =

⎛

⎝
λ − 2u(u − v)−1 −2(u − v)−1

2uv(u − v)−1 λ + 2v(u − v)−1

⎞

⎠ ,

U = λ−1(u − v−1)−1

⎛

⎝
u + v−1 2

−2uv−1 −(u + v−1)

⎞

⎠ .

The recursion operator R has a weakly nonlocal inverse:

R−1 = HJ ′ =

⎛

⎜⎜⎜⎝

(u − v)2

(u−1 − v)2
S−1 (u − u−1)2

(u−1 − v)2

− (v − v1)2

(u − v1)2
(u − v)2

(u − v1)2
S − 2(u − u−1)(v − v1)

(u − v1)(u−1 − v)

⎞

⎟⎟⎟⎠ −

− 2

⎛

⎜⎜⎝

(u − v)(u−1 − u)
u−1 − v

(u − v)(v − v1)
u − v1

⎞

⎟⎟⎠ (S − 1)−1

(
v − v1

(u − v)(u − v1)
u − u−1

(u − v)(u−1 − v)

)
,
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where the symplectic operator J ′ is given by

J ′ =

⎛

⎜⎜⎝
0 −(u − v1)−2S +

(u − u−1)(v − v1)
(u − v)2(u − v1)(u−1 − v)

(u−1 − v)−2S−1 − (u − u−1)(v − v1)
(u − v)2(u − v1)(u−1 − v)

0

⎞

⎟⎟⎠ +

+

⎛

⎜⎜⎝

v − v1

(u − v)(u − v1)
u − u−1

(u − v)(u−1 − v)

⎞

⎟⎟⎠ (S + 1)(S − 1)−1

(
v − v1

(u − v)(u − v1)
u − u−1

(u − v)(u−1 − v)

)
.

The Heisenberg ferromagnet lattice is a special case (if we set a = 1, b = 0, and h(u, v) = (u − v)2/2)
of the Landau–Lifshitz (Sklyanin) chain [14], [75], [76]:

ut = a

(
2h

u1 − v
+ hv

)
+ b

(
2h

u−1 − v
+ hv

)
,

vt = a

(
2h

u − v−1
− hu

)
+ b

(
2h

u − v1
− hu

)
,

(87)

where
h(u, v) =

i

4
(K1(1 − uv)2 − K2(1 + uv)2 + K3(u + v)2), K1K2K3 �= 0, Kn ∈ R.

We note that the coefficients of a and b in the Landau–Lifshitz (Sklyanin) chain (87) commute.
The Lax representation for Eq. (87) was obtained in [75] in the form

U = i

3∑

k=1

aN+
k (λ)Sk(u, v−1)σk + bN−

k (λ)Sk(v, u−1)σk,

M =
1√

〈SKS〉

(
I −

3∑

k=1

Mk(λ)Sk(u, v)σk

)
.

Here, σk are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
,

the vector function S(p, q) is defined as

(S1(p, q), S2(p, q), S3(p, q)) =
(

1 − pq

p − q
,
i + ipq

p − q
,
p + q

p − q

)
,

satisfying S2
1 + S2

2 + S2
3 = 1,

〈SKS〉 =
3∑

l=1

KlS
2
l (u, v),

and Ml(λ), N±
l (λ) can be expressed in terms of Jacobi elliptic functions of the spectral parameter λ:

M1(λ) =
√

1 − K1K
−1
2 sn(λ, κ), N±

1 (λ) =
√

K2K3

2
M1(λ ± μ),

M2(λ) =
√

1 − K2K
−1
1 cn(λ, κ), N±

2 (λ) =
√

K1K3

2κ
M2(λ ± μ),

M3(λ) =
√

1 − K3K
−1
1 dn(λ, κ), N±

3 (λ) =
√

K1K2

2
M3(λ ± μ),
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where κ and μ are defined by the equations

κ =

√
K3(K1 − K2)
K2(K1 − K3)

, cn(μ, κ) =
K1

K3
.

Instead of explicit uniformization of the elliptic curve, we can use the identities

M2
l − 1
Kl

=
M2

j − 1
Kj

, N±
l =

K1

2(M2
1 − 1)

(Ml ± MjMk),

l, j, k ∈ {1, 2, 3}, l �= j �= k �= l.

One local Hamiltonian operator for Eq. (87) has the form [75]

H = h(u, v)

(
0 1

−1 0

)
, f = a log

h(u, v)
(u1 − v)2

+ b log
h(u, v)

(u−1 − v)2
.

Knowing the Lax representation, we can, in principle, compute its recursion operators (as done in Sec. 3.2)
with the multipliers

μ±(λ) = (N±
1 (λ))2, ν±(λ) = N±

1 (λ)N±
2 (λ)N±

3 (λ).

But the calculations involved are rather large and we have not obtained a compact representation of the
operators.

4.18. The Belov–Chaltikian lattice.
• Equation [77]:

ut = u(v2 − v−1),

vt = u−1 − u + v(v1 − v−1).

• Hamiltonian structure [77]:

H1 =

⎛

⎝
u(S − S−1)(S + 1 + S−1)u u(S − 1)(S + 1 + S−1)v

v(1 − S−1)(S + 1 + S−1)u v(S − S−1)v + S−1u − uS

⎞

⎠ , f1 = v,

H2 =

⎛

⎝
0 u(1 + S + S2)(uS − S−2u)

(uS2 − S−1u)(1 + S−1 + S−2)u v(1 + S)(uS − S−2u) + (uS2 − S−1u)(1 + S−1)v

⎞

⎠ +

+

⎛

⎝
u(1 + S + S2)(S−1v − vS)(1 + S−1 + S−2)u u(1 + S + S2)(S−1v − vS)(1 + S−1)v

v(1 + S)(S−1v − vS)(1 + S−1 + S−2)u v(1 + S)(S−1v − vS)(1 + S−1)v

⎞

⎠ ,

f2 = − 1
3

log u.
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• Nontrivial symmetry:

H2δf1 =

⎛

⎝
uv−1(v + v−1 + v−2) − uv2(v1 + v2 + v3) + u(u1 + u2 − u−1 − u−2)

(u − vv1)(v + v1 + v2) + (vv−1 − u−1)(v + v−1 + v−2) − v(u−2 − u1)

⎞

⎠ .

• Master symmetry [78]: ⎛

⎝
nut + uv1 + 4uv−1 + uv

nvt + u − vv1 − 4u−1 + 4vv−1 + v2

⎞

⎠ .

• Lax representation [79]:

M =

⎛

⎜⎜⎜⎝

λ λv λu−1

1 0 0

0 1 0

⎞

⎟⎟⎟⎠ , U =

⎛

⎜⎜⎜⎝

v − λ −λv −λu−1

−1 v−1 0

0 −1 v−2

⎞

⎟⎟⎟⎠ .

The Belov–Chaltikian lattice is the Boussinesq lattice related to the lattice W3-algebra [79].
The Boussinesq lattice related to the lattice Wm-algebra for the dependent variables u1, u2, . . . , um and

independent variables n and t was recently written [80] as

u1
t = −u1(u2

m − u2
−1),

ui
t = ui+1 − ui+1

−1 − ui(u2
i−1 − u2

−1), i = 2, 3, . . . , m − 1,

um
t = u1 − u1

−1 − um(u2
m−1 − u2

−1).

The vector τ = (τ1, . . . , τn)T defined by

τ1 = nu1
t − u1

(
(m + 1)u2

m +
m∑

l=0

u2
l

)
,

τ i = nui
t − ui

(
iu2

i−1 +
i−1∑

l=0

u2
l

)
+ (i + 1)ui+1, i = 2, 3, . . . , m − 1,

τm = nun
t − um

(
mu2

m−1 +
m−1∑

l=0

u2
l

)
+ (m + 1)u1,

is a master symmetry. Its Hamiltonian structures were also studied in [80].

4.19. The Blaszak–Marciniak lattice.
• Equation [81]:

ut = w1 − w−1,

vt = u−1w−1 − uw,

wt = w(v − v1).
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• Hamiltonian structure [81]:

H1 =

⎛

⎜⎜⎝

S − S−1 0 0

0 0 (S−1 − 1)w

0 −w(S − 1) 0

⎞

⎟⎟⎠ , f1 = uw +
1
2
v2,

H2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sv − vS−1 −
− u(S + 1)−1(1 − S)u

SwS − S−1w u(S + 1)−1(1 − S)w

wS − S−1wS−1 S−1uw − uwS v(S−1 − 1)w

w(S + 1)−1(1 − S)u −w(S − 1)v
w(S−1 − S)w −

− w(S + 1)−1(1 − S)w

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f2 = v.

• Recursion operator:
R = H2H−1

1 ,

where

H−1
1 =

⎛

⎜⎜⎜⎜⎜⎝

1
2
(S − 1)−1 +

1
2
(S + 1)−1 0 0

0 0 −(S − 1)−1 1
w

0 − 1
w
S(S − 1)−1 0

⎞

⎟⎟⎟⎟⎟⎠
.

• Nontrivial symmetry:

H2δf1 = H2

⎛

⎜⎜⎝

w

v

u

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

w1(v1 + v2) − w−1(v + v−1)

u−1w−1(v + v−1) − uw(v + v1) − w−1w−2 + ww1

w(v2 − v2
1) + w(w−1u−1 − w1u1)

⎞

⎟⎟⎠ .

• Master symmetry:

R

⎛

⎜⎜⎜⎜⎝

u

2
v

3w

2

⎞

⎟⎟⎟⎟⎠
.

• Lax representation [81]:

L = S2 + u1S − v1 + wS−1, A = S2 + u1S − v1.

We do not explicitly write the recursion operator, which is no longer weakly nonlocal although both the
operators H2 and H−1

1 are weakly nonlocal. The statement that such a recursion operator generates local
symmetries can be proved in the same way as in [31] for weakly nonlocal differential recursion operators.
We can compute the next Hamiltonian equal to uvw + uv1w + v3/3− ww1. Its master symmetry is highly
nonlocal [78].

Another three-component lattice was given in [29] as

pt = q1 − q,

qt = q(p−1 − p) + r − r−1,

rt = r(p−1 − p1).
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It has the Lax representation

M =

⎛

⎜⎜⎝

0 1 0

q u + λ 1

r 0 0

⎞

⎟⎟⎠ , U =

⎛

⎜⎜⎝

−p−1 1 0

q λ 1

r−1 0 −p

⎞

⎟⎟⎠ .

This lattice is related to the Blaszak–Marciniak lattice by the Miura transformation

p = v1, q = −uw, r = −ww1.

5. Conclusion

We have reviewed two close concepts directly related to the Lax representations for integrable systems:
Darboux transformations and recursion operators. We used the well-known NLS equation, whose Lax
representation is polynomial in the spectral parameter, and a deformation of the derivative NLS equation,
whose Lax representation is invariant under the dihedral reduction group D2, as two typical examples.
We then presented a list of integrable differential–difference equations containing the equations themselves,
Hamiltonian structures, recursion operators, nontrivial generalized symmetries, and Lax representations.
For most equations, we also added notes on their relations to other known equations and the weakly nonlocal
inverse recursion operators if they exist.

The theory of integrable partial difference (or discrete) equations is a relatively recent but very active
area of research. Thanks to the work of Adler, Bobenko and Suris, affine-linear quadrilateral equations were
classified [82], [83], based on the condition of three-dimensional consistency. Levi and Yamilov then proposed
using the existence of a generalized symmetry as a criterion for integrability [84] to classify integrable partial
difference equations. They extended the Adler–Bobenko–Suris list. The symmetry flows for all integrable
partial difference equations can be regarded as integrable differential–difference equations. The concept of
a recursion operator was extended to difference equations, and it was shown that it generates an infinite
sequence of symmetries and canonical conservation laws for a partial difference equation [35], [11], [53].
It can be proved that the difference equation shares the same recursion operator for its symmetry flows.
Therefore, studying the symmetry structure is in fact the same for integrable difference equations as for
integrable differential–difference equations. This is one of our motivations for producing the list presented
here. Moreover, this list can serve as a benchmark for developing computer software packages for the
symbolic computation of recursion operators, Lax representations, symmetries, and conservation laws for
nonlinear differential–difference equations [72].

We did not present a rigorous proof here that the operators computed from Darboux transformations are
in fact Nijenhuis recursion operators for the equations obtained from the corresponding Lax representations.
For Lax representations that are polynomial in the spectral parameter, under certain technical conditions,
a sketch of the proof was given in [29]. We believe that the main statement in [29] can be significantly
generalized and simplified and also that there is a neat rigorous algebraic proof that the operators obtained
from Darboux transformations invariant under reduction groups are indeed Nijenhuis recursion operators.
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