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HOLOGRAPHIC ESTIMATION OF MULTIPLICITY AND THE

COLLISION OF MEMBRANES IN MODIFIED AdS5 SPACES

I. Ya. Aref’eva,∗ E. O. Pozdeeva,† and T. O. Pozdeeva‡

The quark–gluon plasma formed as a result of heavy-ion collisions is currently investigated actively both

theoretically and experimentally. According to the holographic approach, forming a quark–gluon plasma

in the four-dimensional world is associated with creating black holes in a five-dimensional anti-de Sitter

(AdS) space. The multiplicity of particles produced in heavy-ion collisions is then determined by the

entropy of the five-dimensional black hole, which is estimated by the area of the trapped surface. In

this approach, we can model the dependence of the entropy on the energy of the colliding ions and thus

the dependence of the multiplicity on the energy, and we can also compare the theoretical results with

experimental data. To obtain a variety of model dependences on the energy, we consider the formation of

black holes in modified AdS spaces, namely, in AdS spaces with different b factors. We find dynamics of

the change of the trapped surface area depending on the energy for each investigated space.

Keywords: anti-de Sitter space, black hole, trapped surface, heavy-ion collision, particle creation multi-
plicity

1. Introduction

The AdS/CFT duality is a powerful method for studying quantum systems in situations where the
ordinary perturbation theory is inapplicable [1]–[3]. The description of the quark–gluon plasma (QGP)
formation in heavy-ion collisions using the idea of AdS/CFT duality has recently been actively developed [4].
The QGP formation process (thermalization) is then interpreted as a black hole formation process in an
auxiliary five-dimensional anti-de Sitter (AdS5) space. The formation of black holes in the AdS5 space is
considered both using the analysis of shock waves [5]–[13] and using the Vaidya metric (see [14]–[16] and
the references therein). Such a method allows deriving the physical characteristics of the quantum four-
dimensional system based on results obtained in the AdS5 space for a classical system. In particular, the
holographic estimation of the multiplicity of particle production in heavy-ion collisions and its dependence
on energy are very interesting. The multiplicity is assumed to be determined by the entropy of the black
hole created in the AdS5 space. This hypothesis allows estimating the dependence of the multiplicity on
the energy and comparing it with the experimental data already obtained [17].

The elementary dual models considered in [5]–[13] require modification [12] to describe the experimental
data most precisely. The problem of black hole formation for modified models is rather complicated in the
case of pointlike sources (see, e.g., [18]), and it is therefore interesting to use domain walls as a model of
colliding ions. This approach was proposed in [9]. A set of problems associated with the infinite sizes of
the domain walls then arises, but the regularization in which a finite wall size is introduced, as we showed
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in [13], allows using this method. Here, we show that using domain walls significantly simplifies the problem
for modified models and then obtaining a nontrivial dependence of the multiplicity on the energy.

We consider heavy-ion collisions in a modified AdS space. The basis for the proposed modification is
the introduction of b factors1 of the power-law, exponential, and mixed types. Our main goal here is to
obtain the dependence of the trapped surface area on the energy for different types of b factors.

2. Einstein equation in a dilaton field for the shock-wave metric

We consider the action of five-dimensional gravity coupled to a field and a pointlike source in the
presence of a negative cosmological constant [5], [12]:

S5 = SR + SΦ + Sst. (1)

Here, SR is the Einstein–Hilbert action with the relative cosmological constant taken into account,

SR = − 1
16πG5

∫ √
−g

[
R +

d(d − 1)
L2

]
dx5,

SΦ is the dilaton action,

SΦ = − 1
16πG5

∫ √
−g

[
−4

3
(∂Φs)2 + V (Φs)

]
dx5,

and Sst is the action of a pointlike source moving along a trajectory xμ = xμ
∗ (η),

Sst =
∫ [

1
2e

gμν
dxμ

∗
dη

dxν
∗

dη
− e

2
m2

]
dη,

where d + 1 = D = 5, m is the particle mass, η is an arbitrary world-line parameter, ea
μ is the frame

associated with the metric, gμν = ea
μeν a, and e is the square root of its determinant e =

√−g. The Einstein
equations have the form

(
Rμν − gμν

2
R

)
− gμν

2

(
−4

3
(∂Φs)2 + V (Φs)

)
− 4

3
∂μΦs ∂νΦs − gμν

d(d − 1)
2L2

= 8πG5Jμν , (2)

where (∂Φs)2 = gμν∂μΦs∂νΦs and the current in lightlike coordinates (x+, x−, xi, x), i = 1, 2, is given by

J++ =
E

b3(z)
δ(x1)δ(x2)δ(z − z∗)δ(x+).

In what follows, we assume that the particle mass is zero, which allows treating only lightlike geodesics.

2.1. Einstein equations. We assume that the metric has the shock-wave form [18]–[22]

ds2 = b2(z)
(
dz2 + dxi dxi − dx+ dx− + φ(z, x1, x2)δ(x+)(dx+)2

)
, i = 1, 2, (3)

and write the nonzero components of the Einstein tensor Gμν = (Rμν − gμνR/2) explicitly:2

G++ = −δ(x+)
2

(
∂2

i + ∂2
z +

3b′

b
∂z − 6b′′

b

)
φ(z, x1, x2), G+− = −3b′′

2b
,

G11 =
3b′′

b
, G22 =

3b′′

b
, Gzz =

6(b′)2

b2
,

1The b factors are called “wrapped factors” in the English literature.
2We recall that the presence of the δ-function in the shock-wave ansatz does not lead to difficulties related to the nonlinear

nature of the Einstein equations, because it turns out that the δ-function enters the equation linearly [23].
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where b = b(z) and b′ = ∂zb.

We first consider the +z component of Eq. (2). For metric (3), it is written as

∂x+Φs(x+, z) ∂zΦs(x+, z) = 0.

We assume that ∂zΦs(x+, z) �= 0. In this case, we obtain the independence of the field Φs from x+.
Considering the iz and −z components of the Einstein tensor equation, we obtain the independence of the
field Φs from xi and x−. Consequently, the dilaton field depends only on z: Φs = Φs(z).

We examine the remaining components of Eq. (2). For the ++ component, we have

− 1
2

(
∂2

i + ∂2
z +

3b′

b
∂z

)
φ + 3

(
b′′

b
− 2b2

L2

)
φ +

(
2
3
(Φ′

s)
2 − b2

2
V (Φs)

)
φ =

8πG5E

b3
δ(x1)δ(x2)δ(z − z∗). (4)

For the +−, (11), and (22) components, the Einstein equations reduce to

3b′′

b
+

2
3
(Φ′

s)
2 − b2

2
V (Φs) −

6b2

L2
= 0, (5)

and for the zz component, they reduce to

6(b′)2

b2
− 2

3
(Φ′

s)
2 − b2

2
V (Φs) −

6b2

L2
= 0. (6)

Using (5), we write (4) in the form

(
∂2

x1 + ∂2
x2 + ∂2

z +
3b′

b
∂z

)
φ(z, x⊥) = −16πG5

E

b3
δ(x1)δ(x2)δ(z∗ − z). (7)

It is hence clear that the dilaton field does not explicitly affect the shock-wave profile resulting from the
source. But the dilaton field and its potential, as follows from (5) and (6), are related to the b factor:

V (Φs) =
3
b2

(
b′′

b
+

2(b′)2

b2
− 4b2

L2

)
, (8)

Φ′
s = ±3

2

√(
2(b′)2

b2
− b′′

b

)
. (9)

The system of Einstein equations for metric (3) thus reduces to Eqs. (8) and (9), defining the relation of
the field and the field potential to the b factor, and to differential equation (7) for the shock-wave profile.

2.2. Equation for the domain-wall profile. Here, we consider the Einstein equations for the shock
wave resulting from mass uniformly distributed over the domain wall. The shock-wave motion generated by
a point mass corresponds to Eq. (7). To obtain the Einstein equations for the shock waves generated by a
domain wall, we consider the mass of a pointlike source averaged over the domain wall. Such an averaging
method was proposed in [9], and we considered it in [13].

2.2.1. Mass distribution over the domain wall. To derive the equations of the domain wall, we
use the expression for the induced metric over the wall surface:

hαβ =
∂xμ

∂σα

∂xν

∂σβ
gμν = b2δαβ . (10)
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We integrate (7) over x⊥ = (x1, x2). According to (10), we have

∫ √
h dx⊥ =

∫
b2 dx⊥,

and hence ∫
b2

(
∂2

z + ∂2
x1 + ∂2

x2 +
3b′

b
∂z

)
φ(z, x⊥) dx⊥ = −16πG5b

2 E

b3
δ(z∗ − z).

Assuming that the derivatives of φ(z, x⊥) with respect to the transverse variables x⊥ decrease at ±∞, we
obtain the equation of motion for the membrane wall:

(
∂2

z +
3b′

b
∂z

)
φW(z) = −16πG5

E

b3
δ(z∗ − z),

where
φW(z) =

∫
φ(z, x⊥) dx⊥. (11)

2.2.2. Mass distribution over the finite region. We can assume that the size of the moving
domain is finite and average the mass over the finite surface in (7). We consider a wave profile resulting
from the mass uniformly distributed over the surface perpendicular to the direction of motion. Therefore,
wave profile (11) depends on the coordinate along which the motion occurs, and the equation of the wave
profile becomes (

∂2
z +

3b′

b
∂z

)
φω(z) = −16πG5

E

b3
δ(x⊥)δ(z∗ − z).

The assumption that the domain is a disk of radius L allows transforming the equation into the form

(
∂2

z +
3b′

b
∂z

)
φω(z) = −16πG5

E∗

b3
δ(z∗ − z), where E∗ =

E

L2
.

This shows that the cases of the mass distribution over finite and infinite surfaces are equivalent, i.e., the
profiles differ by a constant factor corresponding to the size of the finite object φω(z) = φW(z)/L2.

2.3. Condition for the trapped surface formation. In the case b = L/z, the conditions on the
boundary points zA and zB of the trapped surface were obtained in [9], [13]:

(∂zφ
ω)

∣∣
z=zA

= 2, (∂zφ
ω)

∣∣
z=zB

= −2, (12)

where zA < z∗ < zB is assumed. Obviously, expressions (12) lead to the condition3 (∂zφ
ω)2

∣∣
TS

= 4. Because
φW (z) = L2φω(z), the condition on the boundary of the trapped surface formed by the collision of two
infinite domain walls is written as

(∂zφ
W)2

∣∣
TS

= 4L4.

It is therefore obvious that the values of boundary points of a quasi-trapped surface are independent of
whether the mass is distributed over a finite or infinite surface.

3We note that the condition (∂zφω)2
˛

˛

TS
= 8 was used in [12]. The difference in the boundary conditions is associated with

the choice of the shock-wave metric in [12] in the form

ds2 = b2{dz2 + dxidxi − 2dx+dx− + φ(z, x1, x2)(dx+)2}.
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3. Domain walls with b factors

In this paper, we generalize the approach proposed in [9] to spaces with b factors other than b = L/z.
In this section, we consider three types of b factors [12]:

b =
(

L

z

)a

, a > 0,

b = e−z/R, R = Λ−1
QCD

= 1 fm,

b =
L

r
e−z2/R2

.

3.1. Power-law b factor. We note that a power-law factor of the form b = (L/(z − z0))a was used
in [12]. If a = 1 and b = L/(z − z0), then the Einstein equation becomes

(
∂2

z − 3
z − z0

∂z

)
φω(z) = −16πG5E

∗ (z − z0)3

L3
δ(z − z∗). (13)

Because z0 is a constant, replacing z with z − z0 reduces Eq. (13) to the equation considered in [9]. For
definiteness in what follows, we assume that z0 = 0 in the power-law b factors.

The equation of the domain-wall profile in the space with the power-law factor b = (L/z)a is written
as (

∂2
z − 3a

z
∂z

)
φω(z) = −16πG5

(
z

L

)3a

E∗δ(z − z∗). (14)

We consider this equation separately before and after the collision. The boundary points of the quasi-
trapped surface of the black hole are denoted by zA and zB, zA < z∗ < zB. The solution of (14) is written
as

φω(z) = φω
AΘ(z∗ − z) + φω

BΘ(z − z∗), (15)

where

φω
A(z) = C0zAzB

((
z∗
zB

)3a+1

− 1
)((

z

zA

)3a+1

− 1
)

,

φω
B(z) = C0zAzB

((
z∗
zA

)3a+1

− 1
)((

z

zB

)3a+1

− 1
)

,

C0 = − 16πG5Ez3a
A z3a

B

(1 + 3a)L3a+2(z3a+1
B − z3a+1

A )
.

For profile (15), the formation conditions for the quasi-trapped surface at the boundary points z = zA

and z = zB are
8πG5Ez3a

A (1 − z3a+1
B /z∗

3a+1)
L3a+2(z3a+1

B /z∗3a+1 − z3a+1
A /z∗3a+1)

= −1,

8πG5Ez3a
B (1 − z3a+1

A /z∗
3a+1)

L3a+2(z3a+1
B /z∗3a+1 − z3a+1

A /z∗3a+1)
= 1.

(16)

The collision point z∗ can be not fixed but found from the system regarded as a system of equations
for z∗ and zA with a given zB:

zA =
(

z3a
B

−1 + z3a
B C2

)1/3a

, z∗ =
(

z3a
A z3a

B (zB + zA)
z3a

A + z3a
B

)1/(3a+1)

, (17)
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Fig. 1. The solution of system of equations (16) for a given zB : the unit of length in Figs. 1–4 is the

femptometer.

where C2 = 8πG5E/L3a+2. The solution of this system is shown in Fig. 1.
For z3a

B C2 � 1, we consider zA � z∗ � zB. Based on (17), we have the approximation

zA ∼
(

1
C2

)1/3a

, z∗ ∼
(

zB

C2

)1/(3a+1)

.

The trapped surface area is calculated as

Strap =
1

2G5

∫
C

√
det |gAdS3

| dz d2x⊥,

where det |gAdS3
| is the metric determinant of the three-dimensional AdS3 space. In what follows, we

calculate the relative area s of the quasi-trapped surface defined by

s =
Strap∫
d2x⊥

=
1

2G5

∫ zB

zA

b3 dz.

In the considered case where b(z) = (L/z)a, the formula for the relative area of the quasi-trapped surface
becomes

s =
1

2G5(3a − 1)

(
zA

(
L

zA

)3a

− zB

(
L

zB

)3a)
,

and s determines the relative entropy. With the assumption 3a > 1 and the used approximation, it is clear
from this expression that the relative area of the trapped surface tends to its maximum value at infinite zB:

s|zB→∞ =
L3a

2G5(3a − 1)
z1−3a

A =
L

2G5

(
8πG5

L2

)(3a−1)/3a

E(3a−1)/3a. (18)

We thus find that for a > 1/3, the entropy S increases as E(3a−1)/3a.
We substitute parameters and variables with the dimension of length in formula (18) using the relation

1 GeV = 5 fm−1 and choose the parameters G5 and L based on phenomenological reasons [5]: G5 = L3/1.9
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and L = 4.4 fm. We here assume that we consider collisions of lead ions. The multiplicity of particles
produced in heavy-ion collisions (PbPb and AuAu collisions) depends on energy as s0.15

NN
according to the

experimental data [17] in the range from 10 to 103 GeV. Therefore, a ≈ 0.47. For a = 0.47, we have

L

2G5

(
8πG5

L2

)(3a−1)/3a

≈ 0.16 fm−1.85.

3.2. Factor of the form b = e−z/R. The equation of the domain-wall wave profile in a space with
an exponential b factor b = e−z/R is written as(

∂2
z − 3

R
∂z

)
φω(z) = −16πG5E

∗e3z/Rδ(z − z∗),

and we construct the solution in the form (in what follows, we write the subscripts a and b instead of A

and B in the notation for the boundary points and other variables)

φω(z) = φa(z)Θ(z∗ − z) + φb(z)Θ(z − z∗),

where

φa = Ca
R

3
e3z/R + C̃a, φb = Cb

R

3
e3z/R + C̃b,

Ca = −
16πG5E

∗(e3z∗/R − e3zb/R
)

e3zb/R − e3za/R
, Cb = −

16πG5E
∗(e3z∗/R − e3za/R

)
e3zb/R − e3za/R

,

C̃a = −Ca
R

3
e3za/R, C̃b = −Cb

R

3
e3zb/R.

The conditions at the boundaries of the trapped surface are

8πG5E

L2

(e3z∗/R − e3zb/R)e3za/R

e3zb/R − e3za/R
= −1,

8πG5E

L2

(e3z∗/R − e3za/R)e3zb/R

e3zb/R − e3za/R
= 1.

(19)

We analyze these conditions. We set Z0 = e3z∗/R, Za = e3za/R, and Zb = e3zb/R and substitute these values
in conditions (19). We obtain the equations

8πG5E

L2

(Z0 − Zb)Za

Zb − Za
= −1,

8πG5E

L2

(Z0 − Za)Zb

Zb − Za
= 1.

As in the previous case, we consider the equations for Za and Z0 with a fixed Zb. This system has the
trivial solution Za = Zb = Z0 and the solution

Za =
L2

16πG5E

Zb

Zb − L2/16πG5E
, Z0 =

L2

8πG5E
. (20)

This solution is shown in Fig. 2 at two values of the parameter Z0:

L2

16πG5E
= 1,

L2

16πG5E
=

1
2
.

The relative area of the quasi-trapped surface is given by

s =
3

2RG5

(
1

e3za/R
− 1

e3zb/R

)
=

3
2RG5

(
1
Za

− 1
Zb

)
. (21)

The maximum entropy is attained for Zb � 1. In this approximation,

Za ∼ L2

16πG5E
, s ∼ 24πE

RL2
, (22)

which gives a linear dependence of the entropy on the energy.
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a b

Fig. 2. Solution (20) at (a) Z0 = 2 and (b) Z0 = 1: the vertical dashed line separates the region

where Zb > Z0.

3.3. Mixed factor of the form b = (L/z)e−z2/R2

. The equation of the profile corresponding to
domain-wall motion in a space with a b factor of the form b = (L/z)e−z2/R2

is written as

(
∂2

z − 3
(

1
z

+
2z

R2

)
∂z

)
φω = −16πG5E

∗
(

z

L

)3

e3z2/R2
δ(z − z∗).

We consider the solution of the obtained equation:

φω = φω
a Θ(z∗ − z) + φω

b Θ(z − z∗), (23)

where

φω
a = −Ca(R2 − 3z2

a)e3z2
a/R2

+ Ca(R2 − 3z2)e3z2/R2
,

φω
b = −Cb(R2 − 3z2

b )e3z2
b /R2

+ Cb(R2 − 3z2)e3z2/R2
,

and the factors Ca and Cb are given by

Ca = C0

(
−(R2 − 3z2

b )e3z2
b /R2

+ (R2 − 3z2
∗)e

3z2
∗/R2)

,

Cb = C0

(
−(R2 − 3z2

a)e3z2
a/R2

+ (R2 − 3z2
∗)e

3z2
∗/R2)

,

(24)

where

C0 =
8πG5E

∗R2

9L3
(
(R2 − 3z2

b )e3z2
b /R2 − (R2 − 3z2

a)e3z2
a/R2) . (25)

We differentiate each of the two terms in the right-hand sides of solution (23):

dφω
a (z)
dz

= −Ca
18z3

R2
e3z2/R2

,
dφω

b (z)
dz

= −Cb
18z3

R2
e3z2/R2

.
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a b

Fig. 3. The dependence of za and z∗ on zb at energies (a) E = 220 GeV and (b) E = 2 GeV: the

region of the plot corresponding to zb < 1 is shown at E = 220 GeV in the inset.

Hence, the conditions for forming the quasi-trapped surface at the boundary points become

Ca
9z3

a

R2
e3z2

a/R2
= −1, Cb

9z3
b

R2
e3z2

b /R2
= 1. (26)

Considering this system with Ca and Cb defined by formulas (24) and (25), we obtain a system of two
equations for the three unknowns za, zb, and z∗. We assume that za and z∗ are unknown and zb is given.

From system of equations (26), we can obtain the relations

z3
ae3z2

a/R2
=

L3z3
be3z2

b /R2

8πG5E∗z3
be3z2

b /R2 − L3
,

(R2 − 3z2
∗)e

3z2
∗/R2

=
(z3

aR2 − 3z3
az2

b − 3z3
bz2

a + z3
b R2)e3z2

a/R2
e3z2

b/R2

z3
ae3z2

a/R2 + z3
b e3z2

b/R2 .

We consider only energies satisfying 8πG5E
∗z3

be3z2
b /R2

> L3. For the further analysis of the quasi-trapped
surface formation, we must obtain the solution of system (26) in an explicit form. A nontrivial solution of
the system (we recall that za, z∗, and zb are positive) has the form

za =
R√
2

√
WA,

z∗ =
R√
3

√
1 + W

(
−(z3

aR2 − 3z3
az2

b − 3z3
bz2

a + z3
bR2)e3(z2

a+z2
b
)/R2

R2(z3
ae3z2

a/R2 + z3
b e3z2

b/R2)e

)
,

(27)

where

WA = W

(
2
(

(L3z3
b /R3)e3z2

b /R2

8πG5E∗z3
b e3z2

b/R2 − L3

)2/3)
(28)

and W (z) is Lambert W -function.
The dependences of za and z∗ on zb defined by formulas (27) and (28) are shown in Figs. 3a and 3b at

the respective energy values E = 220GeV and E = 2 GeV. We see that za tends to its the lowest value at
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a b

Fig. 4. The dependence of s on zb at (a) E = 220 GeV and (b) E = 2 GeV.

infinitely large zb. In this limit, za and z∗ are given by

za|zb→∞ =
R√
2

√
WAM, z∗|zb→∞ =

R√
3

√
1 + W

(
(3z2

a − R2)e3z2
a/R2

eR2

)
, (29)

where

WAM = W

(
L2

2(πG5E∗)2/3R2

)
.

In general, the relative area of the trapped surface depends on the energy and on zb as

s =
L3

2G5

(
− 1

2z2
be

3z2
b /R2 +

1
2z2

ae3z2
a/R2 +

3 Ei(1, 3z2
b/R2)

2R2
− 3 Ei(1, 3z2

a/R2)
2R2

)
,

where za depends on zb according to formulas (27) and (28) and Ei(1, x) is the exponential integral. The
dependence of the relative area of the trapped surface is shown at the energies E = 220GeV and E = 2GeV
in Fig. 4. It can be seen that the maximum value of the trapped surface area s is attained at infinite zb:

s|zb→∞ =
3
4

L3

G5R2

(
−Ei

(
1,

3z2
a

R2

)
+

1
3

R2

z2
ae3z2

a/R2

)
,

where za is given by (29). We note that the expression in the parentheses is always positive.
Figure 5 shows the dependence of the relative area of the trapped surface on the energy (at low

energies in Fig. 5a and high energies in Fig. 5b). Figure 5b also shows the function E2/3(1+0.007 logE)−3
approximating the obtained dependence at 10 GeV � E < 1 TeV.

4. Conclusion

We have investigated the possibility of black hole formation in the domain-wall collisions in AdS5

spaces with b factors. We considered several types of b factors: power-law, exponential, and mixed. We
analyzed the dependence of entropy on the energy of colliding ions in the spaces with b factors based on the
analysis of the conditions for forming the trapped surfaces. With the AdS/CFT duality taken into account,
the obtained results allow modeling the dependence of the multiplicity of produced particles on the energy
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Fig. 5. The dependence of the relative area of the trapped surface on the energy at (a) low energies

and (b) high energies: the function approximating the calculated dependence E2/3(1+0.007 log E)−3

is shown with bold dashes.

of the colliding heavy ions. We note that the results for the power-law factors agree with the conclusions
in the previously examined cases of central collisions of pointlike sources. The exponential factors of the
collision domains do not lead to additional logarithms, which arise in the case of central collisions of pointlike
sources [12] in the presence of exponential b factors; nevertheless, additional logarithms appear when the
mixed factor is considered. The derived results can be used to compare with the experimental curves for
the multiplicity of particle formation in heavy-ion collisions.
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Prague Inspiration (O. Semerák, J. Podolský, and M. Z̆ofka, eds.), World Scientific, Singapore (2002), pp. 205–

246; arXiv:gr-qc/0201029v1 (2002).

21. K. Sfetsos, Nucl. Phys. B, 436, 721–745 (1995); arXiv:hep-th/9408169v3 (1994).

22. I. Ya. Aref’eva, A. A. Bagrov, and L. V. Joukovskaya, St. Petersburg Math. J., 22, 337–345 (2011).

23. T. Dray and G. ’t Hooft, Nucl. Phys. B, 253, 173–188 (1985); V. Ferrari, P. Pendenza, and G. Veneziano, Gen.

Relat. Grav., 20, 1185–1191 (1998).

872


	Holographic estimation of multiplicity and the collision of membranes in modified AdS$_5$ spaces
	Abstract
	1. Introduction
	2. Einstein equation in a dilaton field for the shock-wave metric
	2.1. Einstein equations
	2.2. Equation for the domain-wall profile
	2.2.1. Mass distribution over the domain wall
	2.2.2. Mass distribution over the finite region

	2.3. Condition for the trapped surface formation

	3. Domain walls with $b$ factors
	3.1. Power-law $b$ factor
	3.2. Factor of the form $b=\mathrm{e}^{-z/R}$
	3.3. Mixed factor of the form $b=(L/z)\mathrm{e}�-z^2/R^2}$

	4. Conclusion
	Acknowledgments
	References


