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SPLITTING OF LOWER ENERGY LEVELS IN A QUANTUM

DOUBLE WELL IN A MAGNETIC FIELD AND TUNNELING OF

WAVE PACKETS IN NANOWIRES

J. Brüning,∗ S. Yu. Dobrokhotov,†‡ and R. V. Nekrasov†‡

We consider the problem of the splitting of lower eigenvalues of the two-dimensional Schrödinger operator

with a double-well-type potential in the presence of a homogeneous magnetic field. The main result is

the observation that the partial Fourier transformation takes the operator under study to a Schrödinger-

type operator with a (new) double-well-type potential but already without any magnetic field. We use

this observation to investigate the influence of the magnetic field on the tunneling effects. We discuss

two methods for calculating the splitting of lower eigenvalues: based on the instanton and based on the

so-called libration. We use the obtained result to study the tunneling of wave packets in parallel quantum

nanowires in a constant magnetic field.

Keywords: Schrödinger operator, double-well-type potential, homogeneous magnetic field, tunneling,
double quantum wire, wave packet

1. Introduction

We consider the problem of the splitting of lower eigenvalues of the Schrödinger operator on the plane
(y, z) with a double-well-type potential

V (y, z) = v1(y) +
ω2

2z
2

2
, (1)

where v1(y) is a function of the form of a “one-dimensional double well” with two nondegenerate points
y = ±a of global minimum (e.g., v1 = ω2

1(y2 − a2)2/8a2), and in the presence of a homogeneous magnetic
field directed perpendicularly to the plane (y, z). The corresponding Schrödinger operator in the Landau
gauge has the form

̂H = −h2

2
∂2

∂y2
+

1
2

(

−ih
∂

∂z
− by

)2

+ V (y, z). (2)

(The vector potential is A(x) = (0, 0, by).) We are interested in the asymptotic behavior of the lowest
eigenvalues of this operator for h � 1. In the absence of a magnetic field and in the case of a general
potential V (y, z) that does not allow applying the variable separation method, this problem (of a quantum
particle in a double potential well) has been studied sufficiently well and is widely represented in the
literature (see, e.g., [1], [2]). The asymptotic behavior of the lower energy levels has a regular character,
and their asymptotic expansion in a power series in the parameter h can easily be obtained using the
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oscillatory approximation in a neighborhood of each of the wells. But because the wells are symmetric,
the spectral levels in such a power-law asymptotic approximation with an arbitrary accuracy in h are (at
least) doubly degenerate. This degeneration can be removed by taking tunneling effects into account, and
an exponentially small splitting (in h) of energy levels determined by the formula ΔE = A(h)e−J /h is
obtained.

Sufficiently effective formulas for the phase J based on some trajectories of the Hamiltonian system
with the “tunnel” Hamiltonian p2/2 − V (x) (p = (py, pz) and x = (y, z) hereafter in this section) can
be found in the literature (see, e.g., [1]), and effective asymptotic formulas for the amplitude A(h) were
given in [2], [3] (also see [4]). In the presence of a magnetic field, the behavior of the lower part of the
spectrum of the operator ̂H still has a regular character, the lower-energy states can also be determined
using the oscillatory approximation, and the asymptotic formulas also give a power-law degeneration of
the corresponding eigenvalues. They also differ from each other by an exponentially small value, but the
methods for calculating their splitting, which were developed in the works listed above, do not work in
the situation with a magnetic field. The reason is that the tunneling effects were described by using the
asymptotic expansions of the WKB method with “purely imaginary phases” ϕ(x)e−S(x)/h, where S(x) is
real-valued and S(x) ≥ 0. Substituting such a function in the equation ̂Hψ = Eψ and then equating the
coefficients of h to the zeroth power, we obtain the Hamilton–Jacobi equation with the “tunnel” Hamiltonian
−p2/2+V (x) (or with a more convenient Hamiltonian p2/2−V (x)), which differs in the sign of p2 from the
“standard classical” Hamiltonian p2/2 − V (x) but still remains real-valued. In the presence of a magnetic
field, the corresponding Hamiltonian becomes complex-valued and is equal to (−ip − A(x))2/2 + V (x)
independently of the gauge, and the methods proposed in the above-cited papers hence in principle cannot
be directly used.

Our main result is the observation (Sec. 2) that the spectral problem for the operator ̂H is reducible
to the spectral problem for the Schrödinger operator with a double-well-type potential but already without
any magnetic field, at least in the example under study. This observation permits obtaining formulas for the
splitting of lower energy levels of the initial magnetic Schrödinger operator. In Sec. 3, we discuss algorithms
for calculating this splitting and estimate the influence of the magnetic field on the splitting. In Sec. 4,
we consider an example of wave-packet propagation along a double “quantum” wire in the presence of a
homogeneous magnetic field as an application. In the plane orthogonal to such a double wire, the potential
of confining forces has the form of a double potential well. This leads to tunneling of the propagating
wave packets between the two wires. We use the splitting formula to derive formulas for the time of the
wave-packet propagation from one wire into the other with the magnetic field taken into account.

2. Transition from the quantum double well in a magnetic field to
the double well without any magnetic field

We first show how the magnetic potential can be “eliminated” in the case under study. We apply the
(partial) Fourier transformation in z defined by

˜ψ(y, pz) =
1√
2πh

∫ ∞

−∞
ψ(y, z)e−iω2pzz/h dz.

We introduce the new “mixed” variables x1 = y and x2 = pz. The operator ̂H (see formula (2)) in this
representation then becomes

̂H ′ =
p̂2
1

2
+

p̂2
2

2
+ v1(x1) +

(ω2x2 − bx1)2

2
, (3)

where the operators p̂1 = −ih∂/∂x1 and p̂2 = −ih∂/∂x2 correspond to the previous operator −ih∂/∂y

and the operator of multiplication by −ω2z. The sum of the last two terms in (3) is a function of the new
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coordinates x′ and is here denoted by

˜V = v1(x1) +
(ω2x2 − bx1)2

2
.

The magnetic field now enters the operator ̂H ′ only as a parameter of the potential ˜V , “preserving” its
invariance under the sign reversal x1,2 → −x1,2. Its minimums are located at the points (x1, x2) = (a, ba/ω2)
and (x1, x2) = −(a, ba/ω2), where a > 0 denotes the minimum of v1. In the case under study, the spectral

problem for the operator ̂H with a magnetic field thus reduces to the well-known eigenvalue problem in the

double well without a magnetic field.

3. Formulas for lower states and the quasidegeneration splitting

The eigenfunctions of operator (3) corresponding to lower energy levels can be constructed with an
exponential accuracy, for example, using the Maslov tunnel canonical operator (see [1]). The spectrum
of operator (3) has a regular character near the “well bottom,” and the asymptotic expansions of the
corresponding states as h → 0 can be calculated sufficiently explicitly.

1. The lower states are “asymptotically degenerate” as h → 0, i.e., they can be decomposed into
pairs with exponentially thin splitting of energy levels. We let χ+

n and χ−
n denote such a pair; the states

here are labeled by quantum numbers (double index) as n = (n1, n2), ni = 0, 1, 2, . . . . The corresponding
eigenvalues are denoted by ε±n .

2. The values ε±n with small numbers n = (n1, n2) can be calculated with an exponential accuracy
in the oscillatory approximation near the minimum of the potential ˜V (more precisely, at one of its two
minimums, but the levels corresponding to different wells coincide because the wells are symmetric to each
other):

ε±n = hω′
1

(

n1 +
1
2

)

+ hω′
2

(

n2 +
1
2

)

+ o(h), (4)

where ω′
1 > 0, ω′

2 > 0,

ω′2
1,2 =

1
2
(

b2 + ω2
1 + ω2

2 ∓
√

(b2 + ω2
1 + ω2

2)2 − 4ω2
1ω

2
2

)

, (5)

and we introduce the notation ω1 = v′′1 (a). The perturbation theory permits calculating corrections to
formula (4), but we do not need them. In what follows, we restrict ourself to the lowest-energy states, i.e.,

to the case where n1 = n2 = 0 and omit the index n = 0.
3. The asymptotic behavior of the eigenfunctions is determined with a power-law accuracy by the

superposition of the functions χleft and χright corresponding to the oscillatory approximation in the first
and second wells of the potential ˜V :

χ+
0 = χleft + χright + O(h), χ−

0 = χleft − χright + O(h),

χleft = Ce−(ω′
1y2

−+ω′
2z2

−)/2h, χright = Ce−(ω′
1y2

++ω′
2z2

+)/2h,
(6)

where y± and z± are orthogonal coordinates in the respective neighborhoods of (a, ba/ω2) and (−a,−ba/ω2)
where the quadratic forms of the potential ˜V are diagonal,

V =
ω′

1
2

2
y2
± +

ω′
2
2

2
z2
± + O

(

(y2
± + z2

±)3/2
)

,

and C = 1/
√

πω1ω2h is the normalization coefficient. These coordinates can be calculated by the formulas

y± = (x1 ∓ a) cosφ + (x2 ∓ ab/ω2) sin φ, z± = −(x1 ∓ a) sin φ + (x2 ∓ ab/ω2) cos φ,
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Fig. 1. Instanton on the background of level lines of the potential eV (x1, x2).

where

tan φ = − 2bω2

b2 + ω1
2 − ω2

2 −
√

(b2 + ω2
1 + ω2

2)2 − 4ω1
2ω2

2
.

The eigenvalues ε± corresponding to functions (6) have equal power-law expansions in h in any per-
turbation order and differ by an exponentially small expression:

ε− − ε+ = A(h)e−J (h)/h(1 + O(h)). (7)

The asymptotic representation for (7) is not unique; there are at least two methods and two formulas
for calculating J (h) and A(h). We describe both methods for completeness. The first method (we call it
method A) is based on using the instanton (a singular trajectory) connecting two vertices of the inverted
potential. The second method (we call it method B) is based on using the libration, i.e., a periodic trajectory
of the Hamiltonian system with inverted potential with some energy ˜E.

The phase J (h) in the first formula was calculated in many works (including [1]). Sufficiently explicit
formulas for the amplitude A(h) based on the trajectories of the linear Hamiltonian system (system of
variational equations) were obtained in [2]. Formulas for J (h) and A(h) in the second case (method B)
were derived in [3] (also see [4]).

Method A. The process of calculating the splitting of the lowest two levels by the “instanton” formula
can be divided into the following steps.

Step 1. Calculating the instanton action: the exponent J (h) in this case is independent of h, and we let
S denote it. The quantity S is calculated along the trajectory X(t) = (x1(t), x2(t)) connecting (in infinite
time) the points of unstable equilibrium in the Newtonian system with the inverted potential −˜V (x1, x2).
Namely,

S =
∫ +∞

−∞

(

|Ẋ(t)|2
2

+ ˜V (X(t))
)

dt (8)

is the action along the trajectory X(t) = (x1(t), x2(t)) connecting the maximum points of the inverted
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Fig. 2. Both instantons in the initial coordinates on the background of level lines of the potential

V (y, z).

potential ˜V and is a solution of the Newton equation

ẍ1 =
∂ ˜V

∂x1
= v′1(x1) + ω2(ω2x2 − bx1),

ẍ2 =
∂ ˜V

∂x2
= −b(ω2x2 − bx1).

(9)

Such a trajectory is known as an instanton (see Fig. 1). In the phase space (x1, x2, p1 = ẋ1, p2 = ẋ2), such
a trajectory has two components as the preimage on the plane (x1, x2), and these components differ in the
direction of motion (from the first bottom to the second and conversely). The projection of this trajectory
on the plane (x1, p2) permits considering the instanton in the initial coordinates (y = x1, z = p2/ω2) (see
Fig. 2). System (9) in such coordinates has the form

ÿ = v′1(y) − bż, z̈ = ω2
2z − bẏ.

Action (8) can be calculated using the Hamilton least action principle for minimizing functional (8)
on the continuous curves connecting the points (a, ab/ω2) and −(a, ab/ω2) (vertices of the potential −˜V ).
Because the instanton symmetric parts contribute equally to (8) before and after the trajectory passes
through the saddle point (0, 0), we consider only one half and then replace the time t with the new time
τ = e−t (to eliminate the unboundedness of t). We write this as

S = 2
∫ +∞

0

(

|Ẋ(t)|2
2

+ ˜V (X(t))
)

dt = 2
∫ 1

0

(

|Ẋ(τ)|2
2

τ +
˜V (X(τ))

τ

)

dτ.

Numerical calculations of minimums of this functional for different values of the magnetic field showed
the dependence on the magnetic field: the action S increases as the magnetic field increases (Fig. 3). This
result can be explained as follows. As the magnetic field increases, the distance between the instanton
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Fig. 3. Dependence of the instanton action as a function of the magnetic field value when the other

parameters are fixed (a = ω1 = ω2 = 1).

endpoints x′ = (a, ba/ω2) and −x′ = (−a,−ba/ω2) also increases, while its maximum and minimum (and

hence the characteristic) pulses remain unchanged: pmin = 0, pmax =
√

2˜V (0, 0). On the other hand, the

action S (the Maupertuis action) can be represented as
∫ x′

−x′ p dx ≈ |x′|pmax.

Step 2. To calculate the pre-exponential factor (splitting amplitude)

A =
4√
π

√

ω′
1ω

′
2h|Ẋ(0)| 1

(Cn, n)
1
J

,

we must calculate the following factors.
Step 2a. The factor

√

ω′
1ω

′
2h: direct calculations show that ω′

1ω
′
2 = ω1ω2 (see formula (5)). Hence,

√

ω′
1ω

′
2h is independent of the magnetic field and is determined only by the characteristics of the initial

potential V and the smallness of h.
Step 2b. The factor |Ẋ(0)| is equal to the instanton velocity at the saddle point of the potential

−˜V (x1, x2), which coincides with the midpoint of the instanton. It follows from the energy conservation law
written for the midpoint and endpoints of the instanton that |Ẋ(0)|2/2− ˜V (0, 0) = 0. The factor |Ẋ(0)| =
√

2v1(0) is hence also independent of the magnetic field and is determined only by the characteristics of
the initial potential V (this is |Ẋ(0)| = ω1a/2 for a model potential of the form v1 = ω2

1(y
2 − a2)2/8a2).

Step 2c. The factor J−1 = limt→∞ e(ω′
1+ω′

2)t detZ(t) is determined by the solution of the system of
variational equations for the trajectory X(t). The 2×2 matrix Z(t) solves the problem

Z̈ij(t) =
2
∑

k=1

∂2
˜V

∂xi ∂xk

∣

∣

∣

∣

x=X(t)

Zkj(t), Z(0) = E, Z(∞) = 0, (10)

where E is the 2×2 unit matrix. To calculate this factor, we must first find a solution of Eq. (10), which
can be obtained by the least action principle. For this, we must use its generalization to the case of the
unknown matrix-valued function

Z(τ) = Arg min
Z(τ)∈C([0,1])4

Tr
∫ 1

0

τ
ŻŻT

2
+

Z ˜V (X (τ))ZT

τ
dτ, Z(0) = 0, Z(1) = E.

After the minimum of this functional is determined, we obtain the limit

J−1 = lim
t→∞

e(ω′
1+ω′

2)t detZ(t).
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Fig. 4. The splitting δE = ε− − ε+ as a function of the parameter b for different values of the

parameter ω2 and for ω1 = 6, a = 1, h = 0.1.

Step 2d. The factor (Cn, n) can be obtained from the unit vector n normal to |Ẋ(0)| and the matrix
C = Ż(0), where Z(t) are solutions of the system of variational equations (see Step 2c). But it is more
convenient to calculate this matrix by the relation

C =
∂p

∂x

∣

∣

∣

∣

p=Ẋ (0)

=
∂2S1

∂x2
,

where the function S1 satisfies the equation

S1(x1, x2) = min
X (τ)∈C([0,1])

∫ 1

0

τ
|Ẋ (τ)|2

2
+
˜V (X (τ))

τ
dτ,

X (0) =
(

a,
ab

ω2

)

, X (1) = (x1, x2).

The corresponding factor can therefore be calculated by a method similar to the method used in the
calculations in Step 1. Correspondingly, we have the 2×2 matrix C = ∂2S1/∂x2 = ∂p/∂x|p=Ẋ (0).

These formulas used to calculate S and A as functions of the parameters b and ω2 lead to the following
results. The magnetic field component b increases the instanton action S and simultaneously decreases the
value of the splitting of lower levels. Conversely, the parameter ω2 decreases the value of the action (as is
shown below, this parameter in the problem with wires also corresponds to the value of the magnetic field
in one of the transverse directions). The action attains a certain constant value for sufficiently large values
of this parameter and hence ceases to affect the splitting, while the pre-exponential factor A begins to play
its own role. In turn, the parameter A increases as ω2 increases. We can hence draw the following general
conclusion: the splitting decreases as the parameter b (magnetic field) increases, and the splitting increases
as the parameter ω2 increases. This conclusion is illustrated by the curves in Fig. 4. Figure 5 shows the
results of splitting obtained by V. Zalipaev from a numerical analysis of the corresponding Schrödinger
equation.

Method B. The derivation of formulas for the phase J and the amplitude A is based on the following
consideration (see [3] and also [4]). The geometric objects determining the asymptotic wave functions in
the oscillatory approximation are “small” tori of the following form in the coordinates y±, z± and in the
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Fig. 5. The splitting δE = ε− − ε+ as a function of the parameter b for ω2 = ω1 = 1, a = 1, h = 0.1.

The points were obtained numerically by the computer program Comsol, and the curve corresponds

to calculations by instanton formula (7).

corresponding momentum coordinates py±, pz±:

Λ± =
{

py± = −
√

hω′
1 sin φ1, pz± = −

√

hω′
2 sin φ2,

y± =
√

h/ω′
1 cosφ1, z± =

√

h/ω′
2 cosφ2

}

.

They are “almost invariant” under the action of the phase flow generated by the initial Hamiltonian H =
p2/2 + V (x) and are near the minimum of V at the energy level (h/2)(ω′

1 + ω′
2). If V is replaced with

harmonic oscillator potentials, then Λ± are the Liouville tori corresponding to quadratic Hamiltonians. The
(approximate) motion along them is almost periodic because of the Hamiltonian system with Hamiltonian
H . If the corresponding phase flow is denoted by gt

H , then we obtain

gt
HΛ± =

{

py± = −
√

hω′
1 sin(φ1 + ω′

1t), pz± = −
√

hω′
2 sin(φ2 + ω′

2t),

y± =
√

h/ω′
1 cos(φ1 + ω′

1t), z± =
√

h/ω′
2 cos(φ2 + ω′

2t)
}

.

The instanton is the trajectory connecting the inverted potential maximums on the limit classical
energy level, while the quantum (“inverted”) level is equal to −E0 = −(h/2)(ω′

1 + ω′
2) + O(h2). The object

that is more reasonable for determining the tunneling from the physical standpoint, is therefore the path Γ+

connecting Λ+ and Λ− in the complex phase space or the path Γ− determining the motion in the opposite
direction, and we have J = πJ( ˜E), where

J( ˜E) =
1
2π

∮

p dx (11)

is the action of the path (cycle) Γ = Γ+ + Γ−. Precisely the corresponding libration gives this cycle (one of
its possible realizations), but its definition is related not to the energy level E0 but to another energy level
˜E because “part of the energy” is “consumed” in the tunneling process by motions transverse to this path.
Replacing the instanton action in formula (7) with the libration action implies recalculating the amplitude,
which becomes simpler, A = ω′

1h/
√

πe, and the splitting formula can be rewritten in terms of the libration
as [1], [4]

ε−0 − ε+
0 =

ω′
1h√
πe

e−πJ( eE)/h(1 + O(h)). (12)
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We now note that J( ˜E)/h depends on h (in terms of ˜E). The following algorithm is used to calculate J( ˜E).
We consider the Hamiltonian system (with the inverted potential −˜V )

ṗ1 =
∂ ˜V

∂x1
= v′1(x1) + ω2(ω2x2 − bx1), ṗ2 =

∂ ˜V

∂x2
= −b(ω2x2 − bx1),

ẋ = p1, ẋ2 = p2.

(13)

The trajectory connecting the potential vertices (instanton) is at a nonzero and “nonquantum” energy level.
The classical trajectory corresponding to the quantum problem is at a lower energy level other than E = 0.
This periodic trajectory in the phase space is called a libration. It was shown in [5] that there is at least one
such a trajectory at each energy level. We assume that there is only one such a trajectory at each energy
level in our case. We let T = T (E) denote its period and vary E to obtain a family of librations (periodic
trajectories) smoothly depending on the parameter E and passing into the instanton solution in the limit
as E → 0. Instead of the parameter E, we can use the action variable

J = J(E) =
1
2π

∮

p dx (14)

calculated along this trajectory and then parameterize librations, their periods, energy levels, etc., by this
variable. We let J0 = J(0) denote the limit action (as E → 0) and assume that J ∈ [J0 −Δ, J0), where Δ
is a small positive number independent of h. We thus obtain a libration of the form

L(J) = {p = P(Ω(J)t, J), x = X (Ω(J)t, J)},

where Ω(J) = 2π/T (J) is the libration frequency, H |L = E(J), and J ∈ [J0 − Δ, J0). The functions
P(ϕ, J),X (ϕ, J) are smooth in a given half-interval and 2π-periodic in the parameter ϕ.

The motion governed by system (13) in a neighborhood of L(J) in the phase space is determined by the
corresponding system of variational equations. The basis of its solutions can be composed of the following
functions. Two solutions are (Ṗ, Ẋ ), (∂P/∂J +(∂Ω/∂J)(∂P/∂Ω), ∂X/∂J +(∂Ω/∂J)(∂X/∂Ω)). According
to the Floquet–Lyapunov theory, the other two solutions can be represented as the Floquet solutions

W (t) = W(Ω(J)t, J)e±β(J)t, Z(t) = Z(Ω(J)t, J)e±β(J)t, (15)

where the functions Z(ϕ, J) for J ∈ [J0 − Δ, J0)W(ϕ, J) are smooth vector functions 2π-periodic in the
angle argument ϕ and β(J) > 0 is the Floquet exponent.

We note that the libration is an unstable closed trajectory and the Floquet exponents take purely real
values in this case. The (approximate) equation for J( ˜E) becomes

E(J( ˜E)) − 1
2
β(J( ˜E))h = −h

2
(ω′

1 + ω′
2). (16)

In practical calculations, it is convenient first to determine the energy ˜E = E(J( ˜E)) by rewriting the
preceding equation in a form suitable for the iteration method:

˜E =
1
2
β̃( ˜E)h − h

2
(ω′

1 + ω′
2). (17)

The algorithm for calculating J( ˜E) hence consists of the following steps.
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Fig. 6. Libration in the coordinates (x1, x2) and the two energy levels E = E0 (outside) and

eE = E0 + β( eE)h/2 (inside) corresponding to the libration energy.

Step 1. We construct the zeroth-order approximation E0 of the solution of Eq. (17) omitting (1/2)β̃( ˜E)h
or (1/2)β̃( ˜E)h−(h/2)ω′

2 in its right-hand side. We construct the libration (closed trajectory) corresponding
to this energy. The possibility of using the least action principle in Hamiltonian form to seek this trajectory
is nonobvious here because its final position in space and time is unknown (its period is not known in
advance). Because of the symmetry, we know that it passes through the origin. We therefore choose the
initial conditions ẋ1(0) and ẋ2(0) at the point

x1(0) = 0, x2(0) = 0,
1
2
(ẋ1(0))2 +

1
2
(ẋ2(0))2 = −E0,

by using the “shooting” method and starting from the requirement that the trajectory must completely
return to the initial position. This step is sufficiently laborious because the trajectory is unstable and its
period is unknown.

Step 2. We further construct a sequence E1, E2, . . . (and the corresponding librations) converging
sufficiently fast to ˜E:

E0 = −1
2
ω′

1h − 1
2
ω′

2h, En+1 = En +
1
2
β̃(En)h.

This step is easy if the first step is already completed.

Step 3. We can then easily calculate J( ˜E) by formula (14).

The libration pattern typical of such problems and corresponding to the required energy level ˜E in the
configuration space of the mixed momentum–coordinate representation (x1, x2) is shown in Fig. 6.

Comparing the two calculation methods described above (A and B) shows that they are completely
consistent. Formulas (7) and (16) are compared using the logarithmic scale multiplied by h:

J0(h) − h log
√

h = S − Ch + O(h2),

where we take

C = log
(

4
√

ω′
1ω

′
2|Ẋ(0)| 1

(Cn, n)
J−1

)

− log
(

ω′
1√
e

)

.

The typical result of comparing at a point in the parameter space (a, b, ω1, ω2) is shown in Fig. 7.

4. Quantum double well in a magnetic field in special
three-dimensional cases

We discuss the conditions under which the situation based on the Fourier transformation and leading
from the Schrödinger operator in a magnetic field to the Schrödinger operator without a magnetic field can
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Fig. 7. Graph of the functions J0 − h log
√

h (points) and S − Ch (straight line).

be realized in the three-dimensional case. We consider the potential V (x1, x2, x3) of the form

V (x1, x2, x3) = v1(x1) +
ω2

2x
2
2

2
+

ω2
3x

2
3

2
,

where v1(x1) is a one-dimensional double-well-type potential.
We show that the corresponding spectral equation for Schrödinger operator (2) is reducible to the

spectral problem for the Schrödinger equation with the double-well potential but without any magnetic
field in the cases where

1. the magnetic field is perpendicular to the axis Ox1 or

2. the magnetic field coincides with the direction of the axis Ox1 or

3. the magnetic field is directed arbitrarily but ω2 = ω3.

In case 1, it is necessary to realize the gauge A(x) = (0, b3x1,−b2x1) of the vector potential and
perform the Fourier h-transformation in the variables x2 and x3. In case 2, it is necessary to choose
A(x) = (0,−b1x3, b1x2) and perform the Fourier h-transformation in the variables x2 and x3. In case 3,
the symmetry of the potential V with respect to the axis Ox1 allows assuming that b3 = 0. We choose the
potential in the form A(x) = (b2x3, 0, b1x2), perform a partial Fourier h-transformation in the variable x3,
and obtain the representation for the Schrödinger operator

̂H ′ = (p̂1 − b2p̂
′
3)

2 + p̂2
2 +

ω2
3 p̂

′
3

2
+ v1(x1) +

ω2
2x

2
2

2
+ (x′

3 − b1x2)2.

After an appropriate linear change of the coordinates x1, x2, and x′
3, this operator again takes the “non-

magnetic” form ̂H = p̂2/2 + ˜V (x).

5. Tunneling of wave packets in quantum nanowires

5.1. Wave packets in a solitary quantum wire in a homogeneous magnetic field. The
quantum waveguide (“solitary quantum wire”) in the three-dimensional space with coordinates (x, y, z),
directed along the axis Ox, with “soft walls” in the transverse cross section, and placed in a constant
magnetic field B with the components (bx, by, 0) is modeled by the Schrödinger operator

̂H =
1
2

(

−ih
∂

∂x
− byz

)2

− h2

2
∂2

∂y2
+

1
2

(

−ih
∂

∂z
− bxy

)2

+ U(y, z).
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Here, U = (ω2/2)(y2 + z2) is the potential of parabolic confinement (see [6]) with the frequency ω. We
choose the coordinates y and z to satisfy the condition bz = 0 and choose the gauge such that the potential
A of the magnetic field B is independent of x: A = (byz, 0, bxy).

We consider the problem of the propagation of a Gaussian beam in such a waveguide. The corresponding
wave function Ψ(x, y, z, t) satisfies the Schrödinger equation

i�
∂

∂t
Ψ = ̂HΨ. (18)

We first consider the well-known solution obtained without any magnetic field (for bx = by = bz = 0).
It can be easily obtained by the method of separation of variables and has the form of a Gaussian “small
cap” traveling along the axis x and spreading in this direction:

Ψ0(r, t) = f(t, x)χ0(y, z), χ0(y, z) = e−ω(y2+z2)/2h, (19)

f(t, x) =
Ae−iE0t/h

√
α + it

e−(x−Pt)2/2h(α+it)eixP/he−iP 2t/2h, E0 = ωh, (20)

where α is a positive parameter characterizing the “cap” width at the time t = 0 and the parameter A is
the amplitude.

The solution generalizing (19) and (20) to the case with a magnetic field (bx 
= 0, bz 
= 0) has the form

Ψ0(x, y, z, t) =
C
√

g(t)
eiS(t)/hei/h〈P (t),r−R(t)〉ei/(2h)〈r−R(t),Q(t)(r−R(t))〉, (21)

where C is a constant, r is a column vector with the components (x, y, z), and the vector-valued functions
P (t) = (Px(t), Py(t), Pz(t)) and R(t) = (X(t), Y (t), Z(t)), the functions S(t) and g(t), and the 3×3 matrix-
valued function Q(t) are defined by the relations

Px(t) = P = const, Py(t) = 0, Pz(t) = 0,

X(t) =
Pω2

ω2
y

t, Y (t) = 0, Z(t) = const =
Pby

ω2
y

,

S(t) =
P 2t

2
ω2

ω2
y

+
h

2
β, g(t) =

b2
yβ

ω3
y(ω + ωy)

+ μ(t), μ(t) = α + it
ω2

ω2
y

,

Q(t) =
β

(ω + ωy)g(t)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i
ω + ωy

β
i
bxby

ωyβ

by

ωy

i
bxby

ωyβ
i

(

b2
y(ω

2
x + ωωy)
ω3

yβ
+ ωμ(t)

)

−bxωy

β
μ(t)

by

ωy
−bxωy

β
μ(t) iωyμ(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(22)

with the notation ω2
y = b2

y + ω2, ω2
x = b2

x + ω2, and

β =

√

√

√

√
ω2

x + ω2
y +
√

(ω2
x + ω2

y)2 − 4ω2ω2
y

2
+

√

√

√

√
ω2

x + ω2
y −
√

(ω2
x + ω2

y)2 − 4ω2ω2
y

2
.
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This solution can be obtained by different methods, in particular, by using the Maslov complex germ
theory (see [7]), but it is convenient for us to obtain this solution by the partial Fourier transformation in
the variable x. Namely, for the function

˜Ψ0(px, y, z, t) =
1√
2πh

∫ ∞

−∞
Ψ0(x, y, z, t)e−ipxx/h dx,

we have the equation

ih
∂˜Ψ0

∂t
= ̂˜H˜Ψ0, (23)

̂

˜H = −h2

2
∂2

∂y2
+

1
2

(

−ih
∂

∂z
− bxy

)2

+
1
2
(px − byz)2 +

ω2

2
(y2 + z2) =

= −h2

2
∂2

∂y2
+

1
2

(

−ih
∂

∂z′
− bxy

)2

+
1
2
ω2y2 +

1
2
ω2

yz′
2 +

1
2

ω2p2
x

ω2
y

, (24)

where
z′ = z − bypx

ω2
y

. (25)

The solution of this equation corresponding to (21) can be obtained by the method of separation of variables
and subsequent application of the well-known Darwin–Fock (model) formulas for the harmonic oscillator in
a magnetic field (or using the Maslov complex germ theory [7]). The solution has the form

˜Ψ(px, y, z, t) = Ce−α(px−P )2/2he−iE0(px)t/hχ̃(px, y, z), (26)

where

E0(px) =
1
2

ω2p2
x

ω2
y

+
h

2
β, χ̃(px, y, z) = exp

[

i

h

(

1
2
〈r⊥ − R⊥, q(r⊥ − R⊥)〉

)]

(27)

are the least eigenvalue and the corresponding eigenfunctions of the operator ̂H. In the last formula, we
have

r⊥ =

(

y

z

)

, R⊥ =

⎛

⎜

⎝

0
pxby

ω2
y

⎞

⎟

⎠
, q =

1
ω + ωy

(

iωβ −bxωy

−bxωy iωyβ

)

.

We note that the variable px in formula (26) is contained only in the (complex) phase and this phase
depends on px quadratically. To obtain the function Ψ0 in (x, y, z), we must therefore calculate the integral

Ψ0 =
1√
2πh

∫ ∞

−∞
˜Ψ0(px, y, z, t)eipxx/h dpx (28)

exactly, and this leads to formula (21). We stress that the wave-packet representation in form (26) (and (28))
is useful from the standpoint of the problem of the wave-packet propagation in two parallel quantum wires.

If the coordinate y is shifted in the potential U by a distance ±a, i.e., if the problem with the potential
U = (ω2/2)((y ± a)2 + z2) is considered, then not only the argument of the corresponding wave functions
changes, but also a new phase factor appears in these functions. Namely, the function Ψ0(x, y, z, t) is
replaced with e±iabxz/hΨ0(x, y±a, z, t), and the function ˜Ψ(px, y, z, t) is replaced with e±iabxz/h

˜Ψ(px, y, z, t).
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5.2. Wave packets in parallel quantum wires in a homogeneous magnetic field. We now
consider the case where there are two close parallel quantum wires (waveguides) and a wave packet propa-
gates in one of them. In this case, it is natural to assume that the confinement potential in the variables y

and z has the form
V =

1
8a2

ω2(y2 − a2)2 +
1
2
ω2z2.

The term ω2
1(y2 − a2)2/8 in the potential V has the form of a double potential well in the direction y and

determines a potential barrier between the two wires.
It is clear that if the wires are rather far from each other, then they can be considered separately, the

oscillatory approximation can be used, and the packets behave independently in each of the wires. The
potential V in a neighborhood of the points (y = −a, z = 0) and (y = a, z = 0) can be represented as

V =
1
2
ω2(y ± a)2 +

1
2
ω2z2 + O(y ± a)3.

We consider only the case where the packet propagates in the left wire.
We first consider the case without any magnetic field. The corresponding approximate wave function

Ψappr of the Schrödinger equation

ih
∂Ψ
∂t

= −h2

2

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ψ + V (y, z)Ψ

then has form (19), (20) with the shifted argument y → y + a and Ψappr = f(x, t)χ0(x, y + a, z), where
f(x, t) is defined in (20). But for large times (in dimensionless variables of the order 1/h and higher), this
approximation begins to deviate from the exact answer and becomes significant when the wave packet is
tunneling from one wire to the other. Because the confinement potential is symmetric, the function χ0 can
be represented as

χ0(x, y + a, z) ≈ 1
2
(χ+ + χ−),

where χ+ and χ− are the even and odd eigenfunctions corresponding to the two minimum eigenvalues E±

of the operator (h2/2)(∂2/∂y2 + ∂2/∂z2)Ψ + V (y, z):

E± = hω + O(h2), ΔE = E− − E+ =
ωh√
πe

e−πJ(ωh/2)/h(1 + O(h)).

The exact solution of the Cauchy problem for the Schrödinger equation then has the form

Ψ =
f(t, x)

2
(χ+e−itE+/h + χ−e−itE−/h) =

f(t, x)
2

e−itE+/h(χ+ + χ−e−itΔE/h).

At the instant t = T ≡ πh/ΔE, the wave function Ψ becomes

Ψ = f(T )e−iTE+/h χ+ − χ−

2
≈ f(T )e−iTE+/hχ0(x, y − a, z),

and the wave packet therefore moves from the “left” wire into the “right” wire.
We now consider a similar problem in the case where two parallel wires are placed in a magnetic field

with the components (bx, by, bz). We choose a gauge such that the vector potential has the coordinates
(byz − bzy, 0, bxy). It is convenient to consider such a situation directly for the Schrödinger equation in the
mixed (px, y, z) representation for the function ˜Ψ(px, y, z, t),

ih
∂ ˜Ψ
∂t

= ̂˜Hw,
̂

˜Hw =
(

−h2

2
∂2

∂y2
+

1
2

(

−ih
∂

∂z
− bxy

)2

+ W

)

˜Ψ,

W =
1
2
(px − byz + bzy)2 +

1
8a2

ω2(y2 − a2)2 +
1
2
ω2z2.

(29)
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We first show that the presence of the longitudinal component bz of the magnetic field destroys the “double-
well” symmetry. More precisely, the potential has the form of a double or single well as bz 
= 0. We obtain
the local minimums of the potential W :

∂W

∂y
= bz(px − byz + bzy) +

1
8a2

ω2(y2 − a2)y = 0,

∂W

∂z
= −by(px − byz + bzy) + ω2z = 0.

We express z from the second relation and obtain the straight line z = by(px + bzy)/(ω2 + b2
y) passing

through the points of minimums of the potential W (y, z). We use this relation to replace z in the potential
W (y, z) and obtain the value of the potential on this line

1
2

ω2

ω2 + b2
y

(px + bzy)2 +
1

8a2
ω2(y2 − a2)2.

This implies that the symmetry of the potential is violated for bz 
= 0. (An exception is the point px = 0,
which does not play any role in studying the wave-packet propagation.) Because the symmetry is violated,

the supports of the eigenfunctions of ̂˜Hw are localized in a neighborhood of either the left or the right well,
and the wave packet hence has the same property.

We assume that bz = 0 and perform change (25) in Eq. (29). The operator ̂˜Hw then becomes

̂

˜Hw =
(

−h2

2
∂2

∂y2
+

1
2

(

−ih
∂

∂z′
− bxy

)2

+
1

8a2
ω2(y2 − a2) +

1
2
ω2

yz′
2
)

+
1
2

ω2p2
x

ω2
y

, (30)

and we can use the results in Sec. 2 to construct asymptotic expansions of its eigenfunctions χ±(px, y, z′)
describing the two lower-energy states ε+ < ε−.

We show that in the mixed (px, y, z) representation, the solution ˜Ψ describing the propagation of the
wave packet that is in the left wire at t = 0 can be represented as the superposition

˜Ψ(px, y, z, t) =
C

2
e−α(px−P )2/2he−iω2p2

xt/2hω2
y(χ+(y, z′)e−iε+t/h + χ−(y, z′)e−iε−t/h) =

=
C

2
e−iω2p2

xt/2hω2
ye−iε+t/h(χ+(y, z′) + χ−(y, z′)e−iΔεt/h), Δε = ε− − ε+. (31)

We assume that the functions χ+(y, z′) ± χ−(y, z′) near the points (y, z) = (±a, 0) are approximated by
functions (27) (with the argument shift and the phase shift taken into account). In the usual (x, y, z)
representation, this solution has the form

Ψ(x, y, z, t) =
1√
2πh

∫ ∞

−∞
˜Ψ(px, y, z, t)eipxx/h dpx. (32)

We note that formulas (31) and (32) are exact and the ε± are independent of px.
As in the absence of a magnetic field, the phase π is accumulated in the second term in (31) at time

T = πh/Δε, which results in the wave packet “overflowing” from the left wire to the right wire. Such a
transition can be described by the asymptotic formulas obtained in Sec. 2. We have the following formulas
for ΔE and T :

Δε =
ω′

1h√
πe

e−πJ( eE(h))/h(1 + O(h)), T =
π
√

πe

ω′
1

eπJ( eE(h))/h(1 + O(h)), (33)
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where ω′
1 =
√

ω2
x + ω2

y −
√

(ω2
x + ω2

y)2 − 4ω2ω2
y/2 and the expression for J( ˜E(h)) is obtained by the algo-

rithm discussed in Sec. 2. This allows obtaining the solution Ψ for t = 0 and for t = T :

Ψ(x, y, z, 0) =
1√
2πh

∫ ∞

−∞
e−α(px−P )2/2h χ+(y, z′) + χ−(y, z′)

2
eipxx/h dpx ≈

≈ 1√
2πh

∫ ∞

−∞
e−α(px−P )2/2hχ̃

(

y, z − bypx

ω′2

)

eipxx/h dpx ≈

≈ eibxaz/hΨ0(x, y + a, z, 0),

Ψ(x, y, z, T ) =
e−iε+T/h

√
2πh

∫ ∞

−∞
e−α(px−P )2/2he−iω2

2p2
xT/2h(ω2

2+b2y) ×

× χ+(y, z′) − χ−(y, z′)
2

eipxx/h dpx ≈

≈ e−iε+T/h

√
2πh

∫ ∞

−∞
e−α(px−P )2/2he−iω2

2p2
xT/2h(ω2

2+b2y) ×

× χ̃

(

y, z − bypx

ω′2

)

eipxx/h dpx ≈ e−ibxaz/hΨ0(x, y − a, z, T ).

(34)

We say a few words about the relations between the problem parameters. The wave packet is char-
acterized by the parameter α determining its “width” and the momentum P characterizing the frequency
of spatial oscillations along the axis x and the velocity with which the packet moves along this axis. We
assume that the length of quantum wires is L (in dimensionless units). Then the time of the wave packet
travel through this distance is T1 = Lω2

y/Pω2. The wave packet amplitude becomes
√

(

b2
yβ

ω3
y(ω + ωy)

+ α

)/∣

∣

∣

∣

b2
yβ

ω3
y(ω + ωy)

+
(

α + iT1
ω2

ω2
y

)∣

∣

∣

∣

=

=

√

(

b2
yβ

ω3
y(ω + ωy)

+ α

)/∣

∣

∣

∣

b2
yβ

ω3
y(ω + ωy)

+
(

α + i
L

P

)∣

∣

∣

∣

times less in this time period. For the tunneling effect to have an affect, the time T1 must be no less than
the (large) tunneling time, i.e., T1 ≥ T or

Lω2
y

Pω2
≥ π

√
πe

ω′
1

eπJ( eE(h))/h ⇐⇒ J( ˜E(h)) ≤ h

π
log
(

Lω2
yω′

1

π
√

πePω2

)

.

Of course, the packet “spreading” in the variable x should not be too strong. A more detailed analysis
of the relations between the parameters P , α, L, ω, bx, by, and a clarifying the situation of simultaneous
“not strong spreading” and tunneling will be discussed in subsequent publications. We now only note that
the actual small parameter in the considerations related to tunneling is the parameter hω, and it is natural
to assume that ω is a large quantity for nanowires. Moreover, the packet parameters α and P can take
different values that are not related to h, ω, a, bx, and by, and precisely this permits choosing appropriate
parameters of the problem.

The general conclusion about the influence of the magnetic field on the tunneling effects for the wave
packets is that the magnetic field either completely destroys the tunneling (if bz 
= 0) or, in accordance
with the conclusions in Sec. 3, decelerates the tunneling as the component bx increases (this component
corresponds to the variable b in this section) and accelerates this effect as the component by increases (this
component increases together with the variable ω2

y = b2
y +ω2 corresponding to ω2

2 in the notation in Sec. 3).
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6. Conclusion

We have shown that the problem of the splitting of lower levels for the Schrödinger operator with a
constant magnetic field with a special double-well-type potential in the two-dimensional case is reducible to
the well-studied spectral problem for the Schrödinger operator with the magnetic field appearing only as a
parameter of the scalar potential. We used the methods and formulas developed for the usual Schrödinger
operator in the double-well potential to calculate the exponential splitting of energy levels for the initial
problem and their dependence on the magnetic field. We used the obtained formulas to analyze the effects
of wave-packet tunneling in a double quantum wire (doubled quantum waveguide).
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