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INTEGRABLE DEFORMATIONS IN THE ALGEBRA OF

PSEUDODIFFERENTIAL OPERATORS FROM A LIE ALGEBRAIC

PERSPECTIVE

G. F. Helminck,∗ A. G. Helminck,† and E. A. Panasenko‡

We split the algebra of pseudodifferential operators in two different ways into the direct sum of two Lie

subalgebras and deform the set of commuting elements in one subalgebra in the direction of the other

component. The evolution of these deformed elements leads to two compatible systems of Lax equations

that both have a minimal realization. We show that this Lax form is equivalent to a set of zero-curvature

relations. We conclude by presenting linearizations of these systems, which form the key framework for

constructing the solutions.

Keywords: integrable deformation, pseudodifferential operator, Lax equation, Kadomtsev–Petviashvili
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1. Introduction

In this paper, we study the algebraic aspects of two compatible systems of Lax equations for pseudod-
ifferential operators. They are both linked to splitting this Lie algebra as a vector space into the direct sum
of two Lie subalgebras and deforming a basic set of commuting elements in one component of this decom-
position in the direction of the other component. One decomposition leads to the Kadomtsev–Petviashvili
(KP) hierarchy and the other leads to a strict KP hierarchy. Both systems appear naturally in the two-
dimensional Toda hierarchy as formulated in [1]. We present a minimal realization of both systems of Lax
equations and show in Theorem 2 below that this Lax form in both cases is equivalent to a system of
zero-curvature equations. This last fact indicates the existence of a system of compatible linear equations.
We conclude by describing these linearizations, which form the algebraic setting for constructing actual
solutions from infinite-dimensional varieties (see [2], [3]).

The order of exposition is as follows. In Sec. 2, we present the Lie algebraic aspects of compatible
systems of Lax equations in spaces of finite-dimensional matrices. Next, we present the algebra of pseudod-
ifferential operators and its relevant properties and decompositions. Section 4 is devoted to describing the
systems of Lax equations in this algebra. In Sec. 5, we show that there exists a realization of both systems
with a minimum number of relations between the coefficients of the deformed operators. In Sec. 6, we prove
that the Lax form of the equations is equivalent to the zero-curvature form. We describe the linearizations
in the concluding section.
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2. Compatible Lax equations for matrices

We consider a differentiable map t �→ g(t), t ∈ R, to the invertible n×n matrices. For each n×n matrix
V , we can deform V by conjugating with this map, which results in the flow

t �→ L(t) := g(t)−1V g(t). (1)

We set M(t) := (dg(t)/dt)g(t)−1 = ġ(t)g(t)−1. A direct calculation then shows that the evolution of the
deformation L of V is given by

L̇ :=
dL

dt
= LM − ML = [L, M ]. (2)

Equation (2) is an example of a so-called Lax equation. Many systems in mechanics have such a Lax form
(see, e.g., [4]), a prototype being the finite open Toda lattice (cf. [5]). Their link to representation theory
was studied in detail in [6].

The next step is to consider systems of compatible Lax equations such as (2). Ordinary derivatives
are then replaced with partial derivatives. We briefly recall what, from a Lie algebraic standpoint, the
ingredients are for obtaining compatible systems of Lax equations (first for n×n matrices). This serves as
a starting point for considerations in the infinite-dimensional case.

We start with a real or complex Lie algebra g of n×n matrices and a matrix Lie group G associated
with it. Our first assumption is that the Lie algebra g as a vector space is the direct sum

g = g1 ⊕ g2 (3)

of Lie subalgebras g1 and g2 of g. We write πi : g → gi for the corresponding projections. The next necessary
condition is that each gi, i = 1, 2, is the Lie algebra of a Lie subgroup Gi of the group G. This does not
present a difficulty in the finite-dimensional case, but satisfying the condition in the infinite-dimensional
case can turn out to be problematic.

Further, we must assume that the direct sum decomposition has its counterpart on the group level,
i.e., the map (g1, g2) �→ g1g2 is a diffeomorphism from G1 × G2 to G. We may not have this property in
both the finite- and the infinite-dimensional cases.

The systems of Lax equations we discuss are linked to commuting flows in G2. We consider a family
{Fi | Fi ∈ g2, 1 ≤ i ≤ m} of matrices that, first, are linearly independent and, second, mutually commute:

[Fi1 , Fi2 ] = 0 (4)

for all i1 and i2 ∈ {1, . . . , m}. The corresponding commuting flows are

γ(t) = γ(t1, . . . , tm) = e
�m

i=1 tiFi . (5)

The idea is now to deform the generators of the commuting flows in g2 in the direction of G1 and to
consider the evolution of these deformations. For this, we take any g ∈ G and the commuting flows γ as
in (5). Because of the unique decomposition G = G1G2, we know that there are elements g1 ∈ G1 and
g2 ∈ G2 such that

γ(t)gγ(t)−1 = g1(t)−1g2(t). (6)

We now use the G1-component to deform the directions in g2, i.e., we define multidimensional flows Fi in
g by

Fi := g1Fig
−1
1 , 1 ≤ i ≤ m. (7)
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This deformation preserves commutativity:

[Fi1 ,Fi2 ] = 0. (8)

The evolution of the {Fi} with respect to the parameters of the commuting flows is given by Lax equations.
More precisely, we have the following theorem.

Theorem 1. In the notation used, the deformations {Fi} of the original commuting directions satisfy

the equalities
∂

∂ti1
(Fi2) = [Fi2 , π1(Fi1)] = [π2(Fi1),Fi2 ]. (9)

Proof. We note that the second equality in (9) follows because the deformations {Fi} commute and
the identity

π1(Fi1) = Fi1 − π2(Fi1)

holds. Because all the {Fi} are obtained by conjugating a constant matrix with a matrix depending on the
parameters {ti}, we directly verify that

∂

∂ti1
(Fi2) =

[
∂

∂ti1
(g1)g−1

1 ,Fi2

]
. (10)

We therefore merely need to show that the commutators in the right-hand side of (10) are equal to those
stated in the theorem. For this, we differentiate the expressions g1γg and g2γ with respect to ti1 . We obtain

∂

∂ti1
(g1)γg + g1Fi1γg =

(
∂

∂ti1
(g1)g−1

1 + Fi1

)
g1γg,

∂

∂ti1
(g2) + g2Fi1γ =

(
∂

∂ti1
(g2)g−1

2 + g2Fi1g
−1
2

)
g2γ,

and by the equality g1γg = g2γ, we have

∂

∂ti1
(g1)g−1

1 + Fi1 =
∂

∂ti1
(g2)g−1

2 + g2Fi1g
−1
2 . (11)

Because Fi1 ∈ g2, we have g2Fi1g
−1
2 ∈ g2. The factor (∂g2/∂ti1)g

−1
2 , as the tangent vector of a flow in

G2 shifted back to the origin, belongs to g2, and all the right-hand side of (11) therefore belongs to g2. A
similar argument shows that the factor (∂g1/∂ti1)g

−1
1 belongs to g1, and the component Fi1 of identity (11),

as the G-conjugate of a matrix in g, belongs to g. We have just seen that the g1 component of the left-hand
side is equal to zero. This yields

∂

∂ti1
(g1)g−1

1 = −π1(Fi1),

which results in Lax equations (9). The theorem is proved.

We now assume that instead of the real or complex n×n matrices, we have an infinite-dimensional Lie
algebra consisting of integral and differential operators. The compatible systems of Lax equations that we
describe for this algebra are generalizations of the Lax form of the Korteweg–de Vries (KdV) equation. We
recall that this equation describes the time evolution of the height u(x, t) of waves propagating on the water
surface in a narrow channel:

ut :=
∂u

∂t
=

1
4

∂3u

∂x3
+

3
2
u

∂u

∂x
=

1
4
uxxx +

3
2
uux. (12)
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The KdV equation can be written as a Lax equation for differential operators in ∂ = ∂/∂x with coefficients
in a ring R of differentiable functions in x and t.

For any a ∈ R and m ∈ N, let a∂m represents the endomorphism of R of differentiating m times with
respect to x and then multiplying with a ∈ R. Finite sums of such operators are called differential operators
in ∂ with coefficients in R. They form an algebra, denoted here by R[∂].

The KdV equation can now be written as an equality between operators from R[∂]. To see this, with
any function v ∈ R, we associate the differential operators

L2 = ∂2 + v, P3 = ∂3 +
3
2
v∂ +

3
4
∂(v). (13)

Because P3 and L2 are endomorphisms of the ring R, we can speak of the commutator [P3,L2] of P3 and
L2. A direct calculation shows that

[P3,L2] =
1
4
vxxx +

3
2
v∂(v).

In other words, the operator [P3,L2] is a zeroth-order operator in ∂. Further, we view t �→ ∂2 + v(x, t) as a
flow of Schrödinger operators and ∂t := ∂/∂t as an operator acting coefficientwise on elements of R[∂], one
of which is L2. We note that the statement “v is a solution of the KdV equation” is equivalent to the Lax
equation

∂

∂t
(L2) = 0 · ∂2

∂x2
+ 2

∂v

∂t
= [P3,L2]. (14)

Lax first wrote the KdV equation in this form [7], which explains the name Lax form of the KdV equation
for (14). To understand how Eq. (14) arose, we must pass to a proper extension of R[∂], the algebra of
pseudodifferential operators with respect to ∂. It can be shown that in this algebra, there exists a square
root L = (L2)1/2 of L2 of the form

L = ∂ +
∞∑

j=1

�j+1∂
−j .

Then P3 is the component in R[∂] of the third power of L, and the equation

[P3,L2] = [L2, L
3 − P3]

explains why [P3,L2] is a zeroth-order operator in ∂. Such an algebra of pseudodifferential operators is also
an appropriate context for studying compatible systems of Lax equations of form (14) and is the topic of
the next section.

3. The ring R[ξ, ξ−1) of pseudodifferential operators

Our aim in this section is to describe the extension of the differential operators that explains the Lax
form of equations like the KdV equation and its generalizations. To stress the algebraic character of our
considerations and to handle real and complex solutions on an equal footing, we start abstractly with an
algebra R over a field k of characteristic zero that serves as the source of solutions of the nonlinear equations
under consideration. Further, as a substitute for the operators ∂/∂x in the KdV setting, we assume that
the algebra R has a privileged k-linear derivation ∂ : R �→ R. Because ∂ is k-linear, the field k is in the ring
of constants

Rconst = {r ∈ R | ∂(r) = 0}

inside R. We present examples that are prototypes of this starting point.
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Example 1. Let R be the ring k[ti] of polynomials in the variables {ti | i ∈ I} with coefficients in k or
the ring of formal power series k[[ti]] in these variables, and let ∂ be the partial derivative with respect to
one of them, for example, ti0 . The ring of constants Rconst in these cases is respectively equal to k[ti, i �= i0]
or k[[ti, i �= i0]].

If R and ∂ are given, then we can form differential operators in ∂ with coefficients in R. They comprise
the family R[∂] of k-linear endomorphisms of R of the form

∑n
i=0 ai∂

i, ai ∈ R, i.e., the maps

r →
n∑

i=0

ai∂
i(r),

acting from R to R.
The rule

∂m ◦ r1 =
m∑

i=0

(
m

i

)
∂i(r1)∂m−i

determines the composition of two such endomorphisms
∑

i ai∂
i and

∑
j bj∂

j. The result is

∑
i,j

i∑
k=0

(
i

k

)
ai∂

k(bj)∂j+i−k, (15)

i.e., again an element of R[∂]. It might turn out that the powers of ∂ are not R-linear independent. To
avoid this, we introduce an algebra R[ξ] whose multiplication is basically the same as in R[∂], but the
corresponding relations in it are decoupled. The elements of R[ξ] are formal expressions

n∑
i=0

aiξ
i, ai ∈ R, i ≥ 0.

Their addition, product structure, and scalar multiplication are given by the rules

∑
i

aiξ
i +

∑
i

biξ
i =

∑
i

(ai + bi)ξi, (16)

( n∑
i=0

aiξ
i

)( m∑
j=0

bjξ
i

)
=

∑
0≤i≤n
0≤j≤m

∑
0≤k≤i

(
i

k

)
ai∂

k(bj)ξi+j−k , (17)

λ.a = λ.

(∑
j

ajξ
j

)
:=

∑
j

λajξ
j . (18)

It can be shown that this multiplicative structure is associative, and R[ξ] therefore becomes a k-algebra
and also a free R-module with the basis {ξi | i ≥ 0}. The map

a =
n∑

i=0

aiξ
i �→ φ(a) :=

n∑
i=0

ai∂
i

is a surjective k-algebra homomorphism φ from R[ξ] onto R[∂]. In the degenerate case, i.e., when ∂ = 0,
the ring R[ξ] becomes the commutative algebra

R[λ] =
{ n∑

i=0

aiλ
i

∣∣∣∣ ai ∈ R

}
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of polynomials in λ with coefficients in R. We can view R[ξ] as a deformation of the commutative algebra
R[λ]. In several works (see, e.g., [8]), it was proposed to work directly with R[ξ] instead of R[∂]. Elements
of R[ξ] are called formal differential operators with respect to ∂.

In R[ξ], it makes sense to introduce the notion of degree.

Definition 1. The degree deg(a) of a nonzero element a =
∑N

i=0 aiξ
i in R[ξ] is the number N if

aN �= 0. We set the degree of the zero element to be −∞.

The elements ξm, m ≥ 1, are not invertible in R[ξ], and we therefore construct an extension of the
algebra R[ξ] that contains all formal inverses {ξ−m | m ≥ 1}. Viewing the elements of R[ξ] as “differen-
tial operators,” we can realize this process by adding “integral operators” to R[ξ] but doing this purely
algebraically, as is shown below. In this extended algebra, first of all, we should have

ξnξm = ξn+m

for all m and n ∈ Z. To clarify how ξ−1 should act on an element of the form bξm, b ∈ R, we successively
apply the rule ξ−1c = cξ−1 − ξ−1∂(c)ξ−1, which leads to the supposition that ξ−1(bξm) has the form of an
infinite series in negative powers of ξ:

ξ−1(bξm) =
∞∑

s=0

(−1)s∂s(b)ξm−1−s. (19)

Formula (19) also determines the action of the other negative powers ξn, n < 0, and setting

(
n

k

)
:=

n(n − 1) · · · (n − k + 1)
k!

(20)

n ∈ Z, we can show by induction on |n| that the action of ξn is given by

ξnbξm =
∞∑

s=0

(
n

s

)
∂s(b)ξm+n−s. (21)

This formula allows introducing a multiplicative structure on the set R[ξ, ξ−1) of all formal series

p =
N∑

j=−∞
pjξ

j , pj ∈ R.

The product of two such series a =
∑

j ajξ
j and b =

∑
i biξ

i is defined as

a.b :=
∑

j

∑
i

∞∑
s=0

(
j

s

)
aj ∂s(bi)ξi+j−s, (22)

which is an obvious extension of (17). Further, if we respectively define addition and multiplication by
scalars from k on R[ξ, ξ−1) by (16) and (18), then R[ξ, ξ−1) becomes a k-algebra. This algebra, being a
mixture of differential operators and integral operators, has a special name.

Definition 2. The elements of R[ξ, ξ−1) are called pseudodifferential operators with respect to ∂ or,
briefly, pseudodifferential operators if the differentiation operation on which they are based does not require
a special mention. We also use the brief notation Psd for the k-algebra R[ξ, ξ−1).
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Further, the notion of degree can also be extended to pseudodifferential operators.

Definition 3. The degree deg(a) of a nonzero element a of R[ξ, ξ−1) is the integer n such that

a = anξn +
∑
j<n

ajξ
j , an �= 0.

Adding the inverses of the {ξm | m ≥ 1} increases the number of invertible elements in R[ξ, ξ−1)
because we have the following lemma.

Lemma 1. Every pseudodifferential operator P =
∑

j≤m pjξ
j , where pm ∈ R∗, has an inverse P−1 of

the form
∑

i≤−m qiξ
i, where q−m = p−1

m .

Proof. The product of the elements
∑

j≤m pjξ
j and

∑
i≤−m qiξ

i is by definition equal to

∑
j≤m

pj

∑
i≤−m

∞∑
s=0

(
j

s

)
pj ∂s(qi)ξj+i−s.

This is an operator of nonpositive degree, and if it is equal to 1, then the leading coefficient q−m must be
the inverse of pm, and for all k ≥ 1, we must have the equality

∑
i,j,s,

i+j−s=−k

(
j

s

)
pj ∂s(qi) = pmq−m−k +

∑
i,j,s,

i+j−s=−k,
i>−m−k

(
j

s

)
pj ∂s(qi) = 0.

Because pm is invertible, we can therefore find q−m−k assuming that all the qi, i > −m − k, are known.
This proves the existence of an operator inverse to P . The lemma is proved.

Because the algebra R[ξ, ξ−1) has a wide collection of invertible elements, it has a large potential for
the dressing procedure.

Definition 4. An element P ∈ R[ξ, ξ−1) is said to be obtained by dressing an element Q ∈ R[ξ, ξ−1)
if there is an invertible element K ∈ R[ξ, ξ−1) such that P = KQK−1. The operator K in this case is
called the dressing operator.

In what follows, we encounter two subgroups of invertible elements of R[ξ, ξ−1) that deserve special
attention: the group

D(0) =
{

p0 +
∑
j<0

pjξ
j

∣∣∣∣ p0 ∈ R∗
}

and its normal subgroup D(0)1 of all elements of the form 1 +
∑

j<0 pjξ
j .

Like any associative k-algebra, R[ξ, ξ−1) is a Lie algebra over the field k with respect to the commutator.
Inside the Lie algebra R[ξ, ξ−1), we can use different decompositions. Any P =

∑
j pjξ

j ∈ R[ξ, ξ−1) can be
split into the sum of two of its components: the differential operator P≥0 and the strictly integral operator
P<0 where

P≥0 =
∑
j≥0

pjξ
j , P<0 =

∑
j<0

pjξ
j . (23)

Similarly, P can also be represented as the sum of its purely differential part P>0 and integral part P≤0

P>0 =
∑
j>0

pjξ
j , P≤0 =

∑
j≤0

pjξ
j . (24)
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It follows from the multiplication rules given in R[ξ, ξ−1) that these two decompositions yield two ways to
split the Lie algebra R[ξ, ξ−1) into the direct sum of two Lie subalgebras. The first way is

Psd = {P ∈ Psd, P = P<0} ⊕ {P ∈ Psd, P = P≥0} := Psd<0 ⊕ Psd≥0. (25)

The second is

Psd = {P ∈ Psd, P = P≤0} ⊕ {P ∈ Psd, P = P>0} := Psd≤0 ⊕ Psd>0. (26)

Neither the supposition g2 = Psd≥0 nor the supposition g2 = Psd>0 allow successfully choosing the group
G2. Nevertheless, if g1 = Psd<0, then an appropriate variant for the group G1 appears. Namely, for each
element P =

∑
j<0 pjξ

j ∈ R[ξ, ξ−1)<0 and any m ≥ 1, the element P m has a degree less than or equal to
−m. Hence, the formula

eP =
∞∑

m=0

Pm

m!

determines a well-defined element of D(0)1. Conversely, the same argument shows that for each element
P =

∑
j<0 pjξ

j ∈ R[ξ, ξ−1)<0, the formula

log(1 + P ) :=
∞∑

m=1

(−1)m+1 Pm

m

determines a well-defined element in R[ξ, ξ−1)<0. Obviously, it satisfies the equality 1 + P = elog(1+P ).
Therefore, D(0)1 can be viewed as the group G1 corresponding to the Lie algebra g1 = Psd<0.

For g1 = Psd≤0, we could, as above, consider the exponential map for the elements P =
∑

j≤0 pjξ
j ∈

R[ξ, ξ−1)≤0, but that requires taking convergence into account, as can be seen from the zeroth-order term.
It is necessary that ep0 ∈ R for every p0 ∈ R. Hence, if this exponential map yields a well-defined element of
Psd≤0, then it determines an element of D(0). Therefore, D(0) can be viewed as the group corresponding
to Psd≤0.

4. Lax equations for pseudodifferential operators

In this section, we describe compatible systems of Lax equations in R[ξ, ξ−1) that are analogues of
the finite-dimensional systems considered in Theorem 1 and are based on the decompositions presented in
Sec. 3. Other k-linear derivations of R commuting with ∂, like the operator ∂/∂t in Eq. (14), appear here.
They also act naturally on elements of Psd. We introduce this action and use it hereafter without further
mention.

Let Δ be another k-linear derivation of R that commutes with ∂. We can then extend Δ to R[ξ, ξ−1)
by setting

Δ(P ) =
∑

j

Δ(pj)ξj

for each P =
∑

j pjξ
j ∈ R[ξ, ξ−1). Because Δ and ∂ commute, a direct verification shows that the following

lemma holds.

Lemma 2. The extension of Δ to R[ξ, ξ−1) is a k-linear derivation of this algebra.

An obvious choice for the respective commuting elements in Psd>0 and Psd≥0 is {ξm | m ≥ 1} and
{ξm | m ≥ 0}. Because the deformations that we have in mind for these directions consist of conjugating
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with suitable elements from the group G1, we can neglect the element ξ0 and restrict ourself to deforming
{ξm | m ≥ 1} in both cases.

We first consider the deformations with the group D(0)1. Conjugating with an element of D(0)1 gives
the set {Lm, m ≥ 1}, where L = KξK−1, K ∈ D(0)1, has the form

L = ξ +
∞∑

j=1

�j+1ξ
−j . (27)

Under a mild condition, any L of form (27) can be obtained by dressing ξ with elements of D(0)1.

Lemma 3. If ∂ is surjective, then any P = ξ +
∑∞

i=1 pi+1ξ
−i can be obtained by dressing the operator

ξ by an element of D(0)1.

Proof. The proof consists in solving the equation PK = Kξ with K ∈ D(0)1 step by step. If
K = 1 +

∑
j>0 kjξ

−j , then the right-hand side is ξ +
∑

j>0 kjξ
1−j , and the left-hand side is equal to

PK =
(

ξ +
∞∑

i=1

pi+1ξ
−i

)(
1 +

∑
j>0

kjξ
−j

)
= ξ +

∑
i>0

kiξ
1−i +

+
∑
i>0

∂(ki)ξ−i +
∞∑

i=1

pi+1ξ
−i +

∑
i≥1

∑
j≥1

∑
l≥0

pi+1

(
−i

l

)
∂l(kj)ξ−i−j−l. (28)

It hence follows that we must choose K such that

∑
j≥1

∂(kj)ξ−j +
∞∑

i=1

pi+1ξ
−i +

∑
i≥1

∑
j≥1

∑
l≥0

pi+1

(
−i

l

)
∂l(kj)ξ−i−j−l = 0.

The coefficient of ξ−1 in the expression in the left-hand side is equal to ∂(k1) + p2, and thanks to the
condition imposed on ∂, we can find a k1 such that this coefficient is zero. Assuming that we have found
{k1, . . . , km}, m ≥ 1, such that the coefficients of all the ξ−l, l ≤ m, are zero, we then find that the next
coefficient has the form

∂(km+1) + pm+2 + (polynomial expression in ∂l(ki) and pj+1), i ≤ m, j ≤ m,

and we can choose km+1 such that this equals zero. The coefficients of K can thus be found inductively.
The lemma is proved.

The deformations with D(0) are slightly more general. Conjugating the basic directions with an element
of D(0) yields the set {Mm, m ≥ 1}, where M = DξD−1, D ∈ D(0), has the form

M = ξ +
∞∑

j=0

mj+1ξ
−j . (29)

For any M of form (29) to be obtainable by dressing ξ with elements of D(0), we need another property in
addition to the surjectivity of ∂ (cf. Lemma 3).
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Lemma 4. Let R and ∂ be such that ∂ is surjective and such that the element

er =
∞∑

i=0

ri

i!

for each r ∈ R is a well-defined element of R∗ satisfying ∂(er) = ∂(r)er. Then every element

P = ξ +
∞∑

i=0

pi+1ξ
−i, p0 �= 0,

can be obtained by dressing the operator ξ by an element of D(0).

Proof. The goal is to find a zeroth-order operator D with an invertible leading coefficient such that
PD = Dξ. We consider D = k0K, where k0 is invertible and K is an operator of the form K = 1 + K− =
1 +

∑
i≥1 kiξ

−i. If we similarly represent the operator P = ξ + p1 + P−, where P− =
∑∞

i=1 pi+1ξ
−i, then

by Lemma 3, to solve the equation Pk0K = k0Kξ, it suffices to find k0 ∈ R∗ such that k−1
0 Pk0 has no

constant term. A direct calculation shows that the coefficient of ξ0 in k−1
0 Pk0 is equal to k−1

0 ∂(k0) + p1.
Therefore, we must solve the equation ∂(k0) + p1k0 = 0. If l1 is an antiderivative of p1 with respect to ∂,
i.e., ∂(l1) = p1, then we can choose k0 = e−l1 in R as the solution of this equation. The lemma is proved..

Example 2. A concrete example of a k-algebra R and a k-linear derivation ∂ of R that satisfies the
conditions of Lemma 3 is the choice k = R or C, R = k[[ti, i ≥ 1]], and ∂ := ∂/∂t1.

We now turn to the analogue of the Lax equations in Theorem 1 for both decompositions. We first
consider g1 = Psd<0. We then have π1(P ) = P<0. To each basic direction ξi, i ≥ 1, in g2, there should
correspond an infinitesimal generator of a flow, i.e., a k-linear derivation ∂i of R that commutes with ∂.
We need deformations {Lm, m ≥ 1} with L of form (27) that satisfy the equations

∂i(Lm) = [Lm, π1(Li)] = [Li
≥0, L

m] = [Bi, L
m], i ≥ 1, m ≥ 1, (30)

where Bi is a brief notation for Li
≥0. Because ∂i and the operation of taking the commutator with Bi are

both derivations of Psd, it suffices to find L satisfying

∂i(L) = [Bi, L] = [L, π1(Li)] (31)

for all i, i ≥ 1. We note that the last equality shows that [Bi, L] is an operator of an order ≤ −1 like ∂i(L).
As is seen in what follows, it follows from these equations that the differential operators {Bi} in R[ξ, ξ−1)
satisfy

∂i1(Bi2) − ∂i2(Bi1 ) − [Bi1 , Bi2 ] = 0.

Let the derivations ∂, ∂2, and ∂3 be

∂ =
∂

∂x
, ∂2 =

∂

∂t2
, ∂3 =

∂

∂t3
.

Then this equation for i1 = 3 and i2 = 2 reduces to the equation

3(�2)t2t2 =
(

2(�2)t3 −
1
2
(�2)xxx − 6�2(�2)x

)
x

(32)

for �2, which up to a scaling factor is the KP equation, and this explains the following terminology.
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Definition 5. Let a k-algebra R equipped with a privileged k-linear derivation ∂ and a set {∂i | i ≥ 1}
of k-linear derivations commuting with ∂ be given. Equations (31) for an operator L in R[ξ, ξ−1) of form (27)
are called the Lax equations of the KP hierarchy. We call L a solution of the hierarchy and the set (R, ∂,
{∂i | i ≥ 1}) a realization of this nonlinear system.

Remark 1. We note that any realization of the KP hierarchy admits the trivial solution L = ξ.

Further, we take g1 = Psd≤0. Then π1(P ) = P≤0. Again, for each r ≥ 1, we need an infinitesimal
generator of a flow corresponding to each basic direction ξr. To distinguish this case from the foregoing
case, we let ∂r denote this k-linear derivation that commutes with ∂. In this case, we seek deformations
{Mm, m ≥ 1} with M of form (29) that satisfy the equations

∂r(M
m) = [Mm, π1(M r)] = [M r

>0, L
m] = [Cr , M

m], r ≥ 1, m ≥ 1, (33)

where Cr is a brief notation for M r
>0. Because ∂r and the operation of taking the commutator with Cr are

both derivations of Psd, it suffices to find M satisfying

∂r(M) = [Cr, M ] = [M, π1(M r)] (34)

for all r ≥ 1. We note that the last equality shows that [Cr, M ] is an operator of an order ≤ 0 like ∂r(M).
Because the KP hierarchy is based on the decomposition where π2(P ) is the full differential operator part of
a pseudodifferential operator P and the present decomposition is a strict version of it, we use the following
terminology.

Definition 6. Let a k-algebra R equipped with a privileged k-linear derivation ∂ and a set {∂r | r ≥ 1}
of k-linear derivations commuting with ∂ be given. Equations (34) for an operator M in R[ξ, ξ−1) of
form (29) are called the Lax equations of the strict KP hierarchy. We call M a solution of the hierarchy
and the set (R, ∂, {∂r | r ≥ 1}) a realization of this nonlinear system.

Remark 2. We note that any realization of the strict KP hierarchy also admits the trivial solution
M = ξ.

As previously noted, each [Cr, M ] is an operator of an order ≤ 0. Similarly, each [Bi, L] is an operator
of an order ≤ −1. We assume that Q ∈ R[ξ] has a degree k ≥ 1 without a constant term and the degree
of [Q, M ] does not exceed zero. Also, let P be an element in R[ξ] whose commutator with L is of an order
≤ −1. It then makes sense to consider a k-linear derivation ∂Q of R such that

∂Q(M) = [Q, M ]

and a k-linear derivation ∂P of R such that

∂P (L) = [P, L].

The following proposition shows that this does not add anything new to the equations considered both in
the case of the KP hierarchy and in the case of the strict KP hierarchy.

Proposition 1. The following statements hold:
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1. Let Q ∈ R[ξ] be an element of a degree k ≥ 1 without a constant term such that the degree of

the commutator [Q, M ] does not exceed zero. Then there exists a unique set of elements cr ∈ R,

∂(cr) = 0, 1 ≤ r ≤ k, such that Q =
∑k

r=1 crCr.

2. Let P ∈ R[ξ] be an element of a degree k such that the commutator [P, L] has a negative degree.

Then there exists a unique set of elements pi ∈ R, 0 ≤ i ≤ k, ∂(pi) = 0, such that P =
∑k

i=0 piBi.

Proof. We use induction on the degree of Q for the proof. If the degree of Q is one, then Q = c1ξ,
where the degree of [c1ξ, M ] does not exceed zero. In particular, this means that the only term of degree
one produced by the commutator [Q, M ], namely, [c1ξ, ξ] = −∂(c1)ξ, must be zero. Then Q = c1C1 with
∂(c1) = 0. Now let Q = ck+1ξ

k+1 + Rk, where Rk has a degree ≤ k. We then obtain [ck+1ξ
k+1, ξ] =

−∂(ck+1)ξk+1, and this is the only term in [Q, L] of degree k + 1. Hence, ∂(ck+1) must be zero. The
operator Q− ck+1Ck+1 has a degree ≤ k, no constant term, and the same property as Q. Therefore, it has
the form

Q − ck+1Ck+1 =
k∑

i=1

ciCi, ∂(ci) = 0.

The first statement is thus proved. The second is proved similarly.

The next section is devoted to a minimal realization of the Lax equations for both hierarchies.

5. Minimal realization of the Lax equations

In this section, we want to realize Eqs. (31) and (34) with a minimum number of relations between
the coefficients of the respective potential solutions M and L and their derivatives with respect to ∂. We
formalize this as follows: as the algebra R, we consider the algebra

R̃ := k[m̃(s)
j+1 | j ≥ 0, s ≥ 0]

of all polynomials in the unknowns {m̃(s)
j+1 | j ≥ 0, s ≥ 0} with coefficients in k in the case of the strict KP

hierarchy and the algebra
R̃ := k[�̃(s)

j+1 | j ≥ 1, s ≥ 0]

of all polynomials in the unknowns {�̃(s)
j+1 | j ≥ 1, s ≥ 0} with coefficients in k in the KP case. We recall

that a k-linear derivation Δ of a polynomial ring k[xs] in any number of variables is uniquely determined
by prescribing the images Δ(xs) of all the {xs} by virtue of the derivation property

Δ(fg) = Δ(f)g + fΔ(g)

for any f and g ∈ k[xs]. Moreover, Δ(xs) can be chosen arbitrarily. Taking this into account, we define the
privileged derivation ∂̃ in the first case as

∂̃(m̃(s)
j+1) = m̃

(s+1)
j+1 , j ≥ 0, s ≥ 0.

Similarly, we define the basic derivation ∂̃ on R̃ as

∂̃(�̃(s)
i+1) = �̃

(s+1)
i+1 , i ≥ 1, s ≥ 0.

Starting from the respective pseudodifferential operators M̃ and L̃ defined as

M̃ := ξ +
∞∑

j=0

m̃
(0)
j+1ξ

−j , L̃ := ξ +
∞∑

j=1

�̃
(0)
j+1ξ

−j ,
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we hence see that the superscript measures how many times ∂̃ and ∂̃ have been applied to the coefficients
of M̃ and L̃. Obviously, there are no relations between the coefficients of M̃ and L̃ and their respective
derivatives with respect to ∂̃ and ∂̃.

Further, we want to define k-derivations {∂̃r | r ≥ 1} of R̃ that commute with ∂̃. This last property
leads to

∂̃r(m̃
(s)
j+1) = ∂̃

s
∂̃r(m̃

(0)
j+1),

and it therefore suffices to define the action of ∂̃r on the coefficients m̃
(0)
j+1 of M̃ . This can be done optimally

in terms of a relation that M̃ must satisfy. In accordance with the preceding section, we let C̃r denote the
operator M̃ r

>0 for each r ≥ 1. Further, we define the derivation ∂̃r of R̃ by the identity

∂̃r(M̃) =
∞∑

j=0

∂̃r(m̃
(0)
j+1)ξ

−j := [C̃r, M̃ ] = [M̃, M̃ r
≤0] (35)

in R̃[ξ, ξ−1). Similarly, we can define a set of k-derivations {∂̃i | i ≥ 1} of R̃ that commute with ∂̃ by
prescribing their action on the coefficients of L̃ in terms of a set of relations for L̃. As before, we simply
write B̃i for the pseudodifferential operator L̃i

≥0 for each i ≥ 1. The equations that L̃ must satisfy are then

∂̃i(L̃) =
∞∑

j=1

∂̃i(�̃
(0)
j+1)ξ

−j := [B̃i, L̃] = [L̃, L̃i
<0]. (36)

The Lax equations in both cases hold by definition. Nevertheless, we can derive several consequences from
them. The first concerns a series of nonlinear equations for the corresponding sets of differential operators
{C̃r} and {B̃i}.

Proposition 2. 1. The differential operators {C̃r} in R̃[ξ, ξ−1) satisfy the equations

∂̃r1
(C̃r2) − ∂̃r2

(C̃r1) − [C̃r1 , C̃r2 ] = 0, (37)

called the zero-curvature relations of the solution M̃ of the strict KP hierarchy.

2. The differential operators {B̃i} in R̃[ξ, ξ−1) satisfy the equations

∂̃i1(B̃i2) − ∂̃i2(B̃i1 ) − [B̃i1 , B̃i2 ] = 0, (38)

called the zero-curvature relations of the solution L̃ of the KP hierarchy.

Proof. The first statement holds if we can prove that the left-hand side of (37) belongs to both
R̃[ξ, ξ−1)>0 and R̃[ξ, ξ−1)≤0. The first is obvious because all the C̃r belong to R̃[ξ, ξ−1)>0 and the ∂̃r act
coefficientwise. As previously mentioned, the Lax equations for M̃ imply those for its powers

∂̃r1
(M̃ r2) = [C̃r1 , M̃

r2 ] = −[M̃ r1
<0, M̃

r2 ]. (39)

Further, we substitute the identity
C̃rk

= M̃ rk − M̃ rk

≤0

for k = 1, 2 in the left-hand side of (37) and use relations (39). We obtain

∂̃r1
(C̃r2) − ∂̃r2

(C̃r1) − [C̃r1 , C̃r2 ] = [C̃r1 , M̃
r2 ] − ∂̃r1

(M̃ r2
≤0) − [C̃r2 , M̃

r1 ] +

+ ∂̃r2
(M̃ r1

≤0) + [M̃ r1
≤0, M̃

r2 ] − [M̃ r1 , M̃ r2
≤0] − [M̃ r1

<0, M̃
r2
≤0] =

= ∂̃r2
(M̃ r1

≤0) − ∂̃r1
(M̃ r2

≤0) − [M̃ r1
≤0, M̃

r2
≤0].

Here, the last expression obviously belongs to R̃[ξ, ξ−1)≤0. Arguing similarly, we can prove the second
statement.
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A consequence of Proposition 2 is a property that unites the flows belonging to one hierarchy.

Corollary 1. 1. The derivations {∂̃r} of R̃ commute not only with ∂̃ but also among themselves.

2. The derivations {∂̃i} of R̃ commute not only with ∂̃ but also among themselves.

Proof. We must show that for all indices,

∂̃r1
◦ ∂̃r2

= ∂̃r2
◦ ∂̃r1

, ∂̃i1 ◦ ∂̃i2 = ∂̃i2 ◦ ∂̃i1 .

Because {∂̃r} and {∂̃i} respectively commute with ∂̃ and ∂̃, the same holds for their products. Hence, if
their differences are zero on the respective coefficients of M̃ and L̃, then they are identically zero on the
whole of R̃ and R̃. It hence suffices to show that

∂̃r1
◦ ∂̃r2

(M̃) = ∂̃r2
◦ ∂̃r1

(M̃), ∂̃i1 ◦ ∂̃i2(L̃) = ∂̃i2 ◦ ∂̃i1(L̃).

For the first relation, we use the Lax equations for M̃ and the fact that each ∂̃rk
is a derivation of R̃[ξ, ξ−1)

to obtain

∂̃r1
◦ ∂̃r2

− ∂̃r2
◦ ∂̃r1

(M̃) = [∂̃r1
(C̃r2), M̃ ] + [C̃r2 , [C̃r1 , M̃ ]] − [∂̃r2

(C̃r1), M̃ ] − [C̃r1 , [C̃r2 , M̃ ]].

Because the commutator satisfies

[C̃r2 , [C̃r1 , M̃ ]] − [C̃r1 , [C̃r2 , M̃ ]] = [[C̃r2 , C̃r1 ], M̃ ],

and by virtue of statement 1 in Proposition 2, we have

[∂̃r1
(C̃r2) − ∂̃r2

(C̃r1) − [C̃r1 , C̃r2 ], M̃ ] = [0, M̃ ] = 0.

This concludes the proof for M̃ ; the proof for L̃ is similar.

6. Zero-curvature relations

The goal in this section is to describe other realizations of solutions of both hierarchies algebraically.
The starting point in both cases is the operators M̃ and L̃ introduced in Sec. 5. Let R and R be other
k-algebras equipped with the respective privileged k-linear derivations ∂ and ∂. Further, we consider the
potential solutions

M = ξ +
∞∑

j=0

mj+1ξ
−j , L = ξ +

∞∑
j=1

�j+1ξ
−j

in R[ξ, ξ−1) and R[ξ, ξ−1) and the corresponding cutoffs

Cr := M r
>0, r ≥ 1, Bi := Li

≥0, i ≥ 1.

Then M uniquely determines a k-algebra morphism iM : R̃ → R by the prescription

iM (m̃(s)
j+1) = ∂s(mj+1), (40)

and this k-algebra morphism by definition satisfies

iM ◦ ∂̃ = ∂ ◦ iM . (41)
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Similarly, the operator L determines a k-algebra morphism iL : R̃ → R by

iL(�̃(s)
j+1) = ∂s(�j+1), (42)

and this k-algebra morphism by definition satisfies

iL ◦ ∂̃ = ∂ ◦ iL. (43)

The maps iM and iL can be extended to k-algebra morphisms from the respective pseudodifferential oper-
ators R̃[ξ, ξ−1) and R̃[ξ, ξ−1), introduced in Sec. 5, to R[ξ, ξ−1) and R[ξ, ξ−1) such that

iM (M̃) = M, iL(L̃) = L.

In order to speak about solutions of the hierarchies, there should exist counterparts inside R and R of the
respective collections of derivations {∂̃r} and {∂̃i}. This means that we need sets of k-linear derivations
{∂r} and {∂i} of R and R that commute with ∂ and ∂. Assuming that these maps exist, we have introduced
all the key ingredients, and it now makes sense to see if M and L satisfy the corresponding Lax equations
with respect to these sets of derivations. Therefore, if M is a solution of the Lax equations of the strict KP
hierarchy, then for all r ≥ 1, we have

∂r(M) = ∂r ◦ iM (M̃) = [Cr, M ] = [iM (C̃r), iM (M̃)] = iM ([C̃r, M̃ ]) = iM ◦ ∂̃r(M̃).

Hence, the k-linear maps ∂r ◦ iM and iM ◦ ∂̃r are equal on the coefficients of M̃ , but because of relation (41)
and because the derivations {∂r} commute with ∂, we obtain the compatibilities

∂r ◦ iM = iM ◦ ∂̃r, r ≥ 1, (44)

on R̃[ξ, ξ−1). On the other hand, if compatibilities (44) hold, then we apply these identities to M̃ , and
because iM is a k-algebra morphism, we obtain the Lax equations for M . Hence, relations (44) are equivalent
to M being a solution of the strict KP hierarchy with respect to the {∂r}.

There is also a similar reformulation of the statement that L is a solution of the KP hierarchy. Indeed,
if L is a solution of the Lax equations of the KP hierarchy, then for all i ≥ 1, we have

∂i(L) = ∂i ◦ iL(L̃) = [Bi, L] = [iL(B̃i), iL(L̃)] = iL([B̃i, L̃]) = iL ◦ ∂̃i(L̃).

Hence, the k-linear maps ∂i ◦ iL and iL ◦ ∂̃i are equal on the coefficients of L̃, but by similar arguments as
for M , we obtain the relations

∂i ◦ iL = iL ◦ ∂̃i, i ≥ 1, (45)

on R̃[ξ, ξ−1). Conversely, if compatibilities (45) hold, then we apply these identities to L̃, and because iL

is a k-algebra morphism, we obtain the Lax equations for L. Therefore, relations (45) are equivalent to L

being a solution of the KP hierarchy with respect to the {∂i}.
Further, we consider an analogue of zero-curvature relations (37) and (38) for the respective cutoffs

{Cr} and {Bi} of M and L. If we couple identities (44) and (45) with the result in Proposition 2, then we
see, first, that the strict differential operators {Cr} in R[ξ, ξ−1) corresponding to a solution M of the strict
KP hierarchy satisfy

∂r1
(Cr2) − ∂r2

(Cr1) − [Cr1 , Cr2 ] = 0. (46)
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We use the same terminology as for the minimal realization and call Eqs. (46) the zero-curvature relations

for the strict cutoffs {Cr} of the solution M of the strict KP hierarchy. Second, for a solution L of the KP
hierarchy, it follows that the differential operators {Bi} in R[ξ, ξ−1) satisfy

∂i1(Bi2) − ∂i2(Bi1 ) − [Bi1 , Bi2 ] = 0. (47)

Here, we use the same terminology as in the minimal case and call Eqs. (47) the zero-curvature relations

for the differential operators {Bi} corresponding to the solution L of the KP hierarchy.
The zero-curvature relations in both cases also suffice for obtaining the Lax equations for M and for

L, namely, we have the following theorem.

Theorem 2. Let R and R be k-algebras equipped with the respective privileged k-linear derivations

∂ and ∂, and let M and L respectively be elements in R[ξ, ξ−1) and R[ξ, ξ−1) of forms (29) and (27).

1. If R has a set of k-linear derivations {∂r, r ≥ 1} that all commute with ∂, then M satisfies the Lax

equations of the strict KP hierarchy if and only if zero-curvature relations (46) hold for {Cr, r ≥ 1}.

2. If R has a set of k-linear derivations {∂i, i ≥ 1} that commute with ∂, then L satisfies the Lax

equations of the KP hierarchy with respect to {∂i} if and only if zero-curvature relations (47) hold

for {Bi, i ≥ 1}.

Proof. In both cases, we need only show the sufficiency. We present only the proof of the first
statement because the proof of the second is absolutely analogous. We consider an operator M for which

∂r1
(Cr2) − ∂r2

(Cr1) − [Cr1 , Cr2 ] = 0

for all r1 and r2. If, for simplicity, we write that M r2 = Cr2 + Dr2 for all r2 ≥ 1, then this relation has an
interesting consequence

∂r1
(M r2) − [Cr1 , M

r2 ] = ∂r1
(Cr2 + Dr2) − [Cr1 , Cr2 ] − [Cr1 , Dr2 ] =

= ∂r2
(Cr1) + ∂r1

(Dr2) − [Cr1 , Dr2 ].

Because Dr2 has negative degrees in ξ, the last expression has a degree in ξ not exceeding r1 − 2 for all
r2 ≥ 1. We suppose that for some r1, the Lax equation with respect to this derivation does not hold for
M , i.e.,

∂r1
(M) − [Cr1 , M ] = βξm + (lower order in ξ), β �= 0.

Because ∂r1
and the operation of taking the commutator with Cr1 are both k-linear derivations, we have

∂r1
(M r2) − [Cr1 , M

r2 ] =
r2−1∑
r=0

M r(∂r1
(M) − [Cr1 , L])M r2−1−r =

= r2βξm+r2−1 + (lower order in ξ)

for all r2 ≥ 1. In particular, the degree in ξ of the operator ∂r1
(M r2) − [Cr1 , M

r2 ] is not bounded for r2

tending to infinity. This contradicts the prior result that this degree is bounded by r1 − 2. Hence, the
supposition is false, and all the Lax equations for M must hold. This completes the proof of the theorem.

Remark 3. Zero-curvature relations (46) and (47) indicate the existence of linear systems from which
the compatibility conditions are formed. We present such systems in the next section, and they give the
key to constructing solutions of the hierarchies.
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7. The linearization

Our starting point is a realization (R, ∂, {∂r}) of the strict KP hierarchy and a realization (R, ∂, {∂i})
of the KP hierarchy. Let M be a potential solution M of the first hierarchy in R[ξ, ξ−1) and L be a potential
solution of the second hierarchy in R[ξ, ξ−1). The goal in this section is, on one hand, to describe a linear
system in an appropriate R[ξ, ξ−1)-module that leads to the Lax equations of the strict KP hierarchy and,
on the other hand, to describe a linear system in an appropriate R[ξ, ξ−1)-module that leads to the Lax
equations of the KP hierarchy. For the potential solution M of the strict KP hierarchy, the equalities

Mφ = zφ, ∂r(φ) = Cr(φ), r ≥ 1, (48)

must be satisfied. This system is called the linearization of the strict KP hierarchy. In the case of the KP
hierarchy, the potential solution L must satisfy the so-called linearization of the KP hierarchy, given by the
equations

Lψ = zψ, ∂i(ψ) = Bi(ψ), i ≥ 1. (49)

Before specifying ψ and φ, we first show which manipulations are needed to obtain the Lax equations for
M and L, and we then describe the context in which they hold.

We apply the derivation ∂r to the first equation in (48). Assuming the Leibnitz rule for the action of
∂r on Mφ and that z is a scalar with respect to both the R[ξ]-action and the ∂r-action, we substitute the
second equation and obtain

∂r(Mφ − zφ) = ∂r(M)φ + M∂r(φ) − z∂r(φ) =

= ∂r(M)φ + MCrφ − Cr(zφ) = (∂r(M) − [Cr, M ])φ = 0. (50)

If we can omit the function φ, then M satisfies the Lax equations of the strict KP hierarchy.
Similarly, applying the derivation ∂i to the first equation in (49), we obtain

∂i(Lψ − zψ) = ∂i(L)ψ + L∂i(ψ) − z∂i(ψ) =

= ∂i(L)ψ + LBiψ − Bi(zψ) = (∂i(L) − [Bi, L])ψ = 0. (51)

Hence, if we can omit ψ from the last equation, we obtain the Lax equations for L.
To make sense of Eqs. (48), we need a left action of operators like M and all the {Cr}. Therefore,

we build an appropriate R[ξ, ξ−1)-module, and the form of the elements in this module is guided by the
solution of (48) for the trivial solution M = ξ. In this case, we have Cr = ξr = M r for all r ≥ 1, and
Eqs. (48) become

Mφ = zφ and ∂r(φ) = M r(φ) = zrφ for all r ≥ 1.

In particular, we can see that the first-order approximation of the flow corresponding to ∂r is multiplication
by zr. Let sr be the parameter for the flow corresponding to ∂r. Then ∂r acts by taking the partial
derivative ∂/∂sr. The equations of the linearization can then be integrated formally. We therefore consider
the formal series

φ0 = e
�∞

r=1 srzr

. (52)

With the introduced operation ∂r, it satisfies the linearization equations for the trivial solution of the strict
KP hierarchy. The space O of so-called oscillating functions is a space for which we can make sense of
Eqs. (48), and it can be seen as a collection of perturbations of the trivial solution φ0. It is defined as

O =
{( N∑

j=−∞
ajz

j

)
e
�∞

r=1 srzr

=
( N∑

j=−∞
ajz

j

)
φ0

∣∣∣∣ aj ∈ R for all j

}
.
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We note that the product (
∑N

j=−∞ ajz
j)ψ0 of the elements of O is formal. If we express ψ0 in terms of the

elementary Schur functions, i.e.,

e
�∞

i=1 srzr

=
∞∑

n=0

pn(s)zn,

then this product as a series in z and z−1 is formally equal to

( N∑
j=−∞

ajz
j

)
e
�∞

r=1 srzr

=
∑
�∈Z

( ∞∑
k=0

a�−kpk

)
z�.

Therefore, we need suitable convergence conditions to speak of the coefficients
∑∞

k=0 a�−kpk for all � ∈ Z.
This can be done by considering the product in a suitable class of boundary values (see [3]). A natural
embedding of k[sr] as a k-subalgebra of R and also the fact that the ∂r are suitable extensions of the
derivation ∂/∂sr on k[sr] help to place these coefficients in R. The space O becomes an R[ξ, ξ−1)-module
in accordance with the natural extension of the actions

b.

( N∑
j=−∞

ajz
j

)
φ0 =

( N∑
j=−∞

bajz
j

)
φ0, b ∈ R,

ξ.

( N∑
j=−∞

ajz
j

)
φ0 =

( N∑
j=−∞

∂(aj)zj +
N∑

j=−∞
ajz

j+1

)
φ0.

We also assume that each ∂r acts on O according to the Leibnitz rule

∂r

(( N∑
j=−∞

ajz
j

)
φ0

)
=

( N∑
j=−∞

∂r(aj)zj +
N∑

j=−∞
ajz

j+r

)
φ0.

This defines all the operators in (48). We note that O is a free R[ξ, ξ−1)-module with the generator φ0

because the equality (∑
j

pjξ
j

)
φ0 =

(∑
j

pjz
j

)
φ0

is satisfied. Hence, if we have relations Qφ = 0, where Q ∈ R[ξ, ξ−1), and φ = Pφ0, where P ∈ R[ξ, ξ−1),
in O, then we can conclude that QP = 0 and, moreover, Q = 0 if P is invertible. This is just the case for
the class of oscillating functions in which an element φ ∈ O is called an oscillating function of type α�z

�,
where α� is invertible in R, if it has the form

φ = φ(t, z) =
{

α�z
� +

∑
k<�

αkzk

}
φ0 = K.φ0, K =

∑
k≤�

αkξk. (53)

An oscillating function φ of type α�z
� is called a wave function of the strict KP hierarchy if there is an

operator M such that Eqs. (48) hold for M and φ. We note that in this case, M is a solution of the strict
KP hierachy because all manipulations described in this section are allowed. The operator M is then totally
defined by φ. If φ = K.φ0 as in (53), then the first equation in (48) can be written as

Mφ = MK.φ0 = zφ = zK.φ0 = Kξ.φ0,

and M is hence obtained by dressing ξ with K, i.e., M = KξK−1. We note that to obtain Eqs. (48), it
suffices to prove a weaker result.
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Proposition 3. Let φ be an oscillating function of type α�z
� and M be a first-order operator in

R[ξ, ξ−1) of form (29). We assume that for all r ≥ 1, there exists a differential operator Qr ∈ R[ξ] without

a constant term such that

Mφ = zφ, ∂r(φ) = Qrφ.

Then Qr = Cr for all r ≥ 1. In particular, M is a solution of the strict KP hierarchy.

Proof. Let K be such that φ = Kφ0. As was shown, the first equation ensures that M = KξK−1.
By the definition of the action of ∂r on O, on one hand, we have

∂r(φ) = {∂r(K) + Kξr}.φ0,

and, on the other hand, this must equal QrK.φ0. This leads to the identity

∂r(K)K−1 + KξrK−1 = ∂r(K)K−1 + M r = Qr.

Because ∂r(K)K−1 has only terms of a degree in ξ not exceeding zero, taking the strict differential operator
part of both sides results in M r

>0 = (Qr)>0 = Qr. The proposition is proved.

We assume that we have two wave functions φ1 = K1.φ0 and φ2 = K2.φ0 of the strict KP hierarchy
corresponding to the same solution M of the strict KP hierarchy, i.e.,

Mφk = zφk and ∂r(φk) = Crψk, k = 1, 2.

Then, first, we know that K := K−1
1 K2 commutes with ξ. Hence, the coefficients of K are constants for

the derivation ∂, i.e., ∂(K) = 0. Moreover, it follows from the proof of Proposition 3 that for all r ≥ 1,

∂r(K1) = (Cr − M r)K1, ∂r(K2) = (Cr − M r)K2.

This means that the coefficients of K are constants for all derivations ∂r because

∂r(K) = −K−1
1 ∂r(K1)K−1

1 K2 + K−1
1 ∂r(K2) =

= −K−1
1 (Cr − M r)K1K

−1
1 K2 + K−1

1 ∂r(K2) =

= K−1
1 (−(Cr − M r)K2 + ∂r(K2)) = 0.

The following statement has thus been proved.

Corollary 2. If φ1 = K1.φ0 and φ2 = K2.φ0 are two wave functions of the strict KP hierarchy

corresponding to the same solution M , then the element K := K−1
1 K2 in D(0) is constant for all relevant

flows, i.e., ∂r(K) = ∂(K) = 0 for all r ≥ 1.

In the KP case, we build a similar R[ξ, ξ−1)-module. Again, we should start with the linearization for
the trivial solution L0 = ξ of the hierarchy:

L0ψ = zψ, ∂i(ψ) = Li
0(ψ) = ziψ, i ≥ 1.

Let ti be the parameter for the flow corresponding to ∂i, i.e., ∂i acts as taking the partial derivative ∂/∂ti

with respect to ti. Then the linearization has the solution

ψ0 = e
�∞

i=1 tiz
i

. (54)
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The appropriate R[ξ, ξ−1)-module is again a collection M of perturbations of the trivial solution ψ0. Con-
cretely, it is given by

M =
{( N∑

j=−∞
ajz

j

)
e
�∞

i=1 tiz
i

=
( N∑

j=−∞
ajz

j

)
ψ0

∣∣∣∣ aj ∈ R for all j

}
,

and its elements M are also called oscillating functions. The space M can be made into an R[ξ, ξ−1)-module
analogously to obtaining the R[ξ, ξ−1)-module structure on O. In particular, it is a free R[ξ, ξ−1)-module
with the generator ψ0.

We again distinguish a special class of elements of M: an element ψ ∈ M is called an oscillating

function of type z� if it has the form

ψ = ψ(t, z) =
{

z� +
∑
k<�

αkzk

}
ψ0 = K.ψ0, K = ξ� +

∑
k<�

αkξk. (55)

An oscillating function ψ of type z� is called a wave function of the KP hierarchy if there is an operator
L of form (27) such that Eqs. (49) hold for L and ψ. We note that in this case, L is a solution of the
KP hierarchy because all manipulations described in this section are allowed, and if ψ = K.ψ0, then L

is obtained by dressing ξ with K, i.e., L = KξK−1. Analogues of Proposition 3 and Corollary 2 hold in
the KP setting. We formulate them for completeness of the exposition; the proofs repeat those presented
above.

Proposition 4. 1. Let ψ be an oscillating function of type z� and L be a first-order operator in

R[ξ, ξ−1) that is a potential solution of the KP hierarchy. We assume that for all i ≥ 1, there exists a

differential operator Pi ∈ R[ξ] such that

Lψ = zψ, ∂i(ψ) = Piψ.

Then Pi = Bi for all i ≥ 1. In particular, L is a solution of the KP hierarchy.

2. Let ψ1 = K1.ψ0 and ψ2 = K2.ψ0 be two wave functions of the KP hierarchy corresponding to the

same solution L. Then the dressing operators K1 and K2 differ by an element K in D(0)1 that is constant

for all relevant derivations, i.e., for all i ≥ 1,

∂i(K) = ∂(K) = 0.

Remark 4. In [3], we will present a geometric setting that allows constructing wave functions of the
strict KP hierarchy, where the product of the perturbation and the exponential factor converges.
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