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DEGENERATING THE ELLIPTIC SCHLESINGER SYSTEM

G. A. Aminov∗† and S. B. Artamonov∗†

We study various ways of degenerating the Schlesinger system on the elliptic curve with R marked points.

We construct a limit procedure based on an infinite shift of the elliptic curve parameter and on shifts of

the marked points. We show that using this procedure allows obtaining a nonautonomous Hamiltonian

system describing the Toda chain with additional spin sl(N, C) degrees of freedom.

Keywords: integrable system, isomonodromic deformation, Schlesinger system, Toda chain, Inozemtsev
limit

1. Introduction

This paper is devoted to using limit procedures to study various degenerations of the elliptic general-
ization [1]–[4] of the Schlesinger system [5] and of the nonautonomous elliptic SL(N, C) top. The methods
considered for constructing these limit transitions can be generalized to the case of the Painlevé equations
related to the elliptic Schlesinger system and to integrable systems arising in various domains of theoretical
physics. In particular, the Painlevé and Schlesinger equations have important applications in matrix model
theory [6]–[8] and conformal field theory [9], [10]. Some integrable systems are related to the low-energy
effective action in supersymmetric gauge theories [11]–[13].

Relations between different integrable systems were studied in [14]–[17] and other papers. Inozemt-
sev [14] proposed a procedure establishing a limit relation between the Toda chains and the elliptic Calogero–
Moser model. The Inozemtsev limit method was later generalized and used to establish relations between
other integrable systems [15]. A singular symplectic transformation of the Calogero–Moser system into the
elliptic SL(N, C) top was constructed in [16]. Using this transformation, Smirnov obtained integrable sys-
tems of tops on the sl(N, C) algebra equivalent to the N -particle trigonometric and rational Calogero–Moser
systems [17].

The Schlesinger system [5] is the following system of first-order differential equations for R matrices
Si, i = 1, . . . , R, located at R marked points xj ∈ CP

1, j = 1, . . . , R:

∂Si

∂xj
=

[Si,Sj ]
xi − xj

, i �= j,

∂Si

∂xi
= −

∑

j �=i

[Si,Sj ]
xi − xj

.

(1.1)

Equations (1.1) describe the preservation conditions for the monodromies of the linear system on CP
1 of

the form
dΨ
dz

=
R∑

i=1

Si

z − xi
Ψ.

∗Institute for Theoretical and Experimental Physics, Moscow, Russia, e-mail: aminov@itep.ru,

artamonov@itep.ru.
†Moscow Physico-Technical Institute, Moscow, Russia.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 174, No. 1, pp. 3–24, January, 2013.

0040-5779/13/1741-0001

c©

1



It was shown in [18] that in the case of 2×2 matrices and four marked points, the Schlesinger system is
equivalent to the Painlevé VI equation [19].

The generalization in [1]–[4] of the Schlesinger system describing isomonodromic deformations on an
elliptic curve is called the elliptic Schlesinger system. It is a nonautonomous Hamiltonian system defined
on the space of R copies of the Lie coalgebra sl(N, C)∗, and the role of time in this system is played by
the parameter τ of the elliptic curve Στ = C/(Z + τZ) and the positions xi, i = 1, . . . , R, of the marked
points on Στ . The phase space of this Hamiltonian system is the direct product of R copies of coadjoint
orbits of the group SL(N, C), and each orbit is related to one of the marked points xi. We can therefore
regard the elliptic Schlesinger system as a system of interacting nonautonomous elliptic SL(N, C) tops. An
autonomous version of the elliptic Schlesinger system is the integrable Gaudin system [20]–[22], which is a
Hitchin system on the elliptic curve Στ with R marked points.

From the elliptic SL(N, C) top, we previously obtained the Toda chains for N ≥ 2 in the autonomous
case [23], [24] and for N = 2 in the nonautonomous case [25]. Here, we generalize the limit procedure
in [23]–[25] to the case of the elliptic Schlesinger system and obtain a nonautonomous Hamiltonian system
describing the Toda chain with additional spin sl(N, C) degrees of freedom.

The proposed procedure is based on the generalizations [23]–[25] of the Inozemtsev limit [14], i.e.,
the limit transition from the elliptic Calogero–Moser system to the Toda chain in the autonomous case.
In the Inozemtsev limit, we perform infinite shifts of coordinates of the elliptic Calogero–Moser system,
renormalize the coupling constant, and take the trigonometric limit in which the imaginary part of the
elliptic curve parameter tends to infinity. In the case of the nonautonomous elliptic Schlesinger system,
the elliptic curve parameter τ plays the role of time and cannot be simply taken to infinity. We therefore
introduce an infinite shift of the parameter τ using the change of variable

τ = τ1 + τ2, (1.2)

where the first summand τ1 becomes the time in the limit system and we use the second, constant term to
take the trigonometric limit Im τ2 → +∞. From the elliptic curve standpoint, in the trigonometric limit,
we obtain the complex cylinder C/Z from the complex torus C/(Z + τZ).

In Sec. 2, we obtain a nonautonomous Toda chain from the system of the elliptic SL(N, C) top with the
spectral parameter z for N > 2. For this, in addition to replacement (1.2), we perform the time-dependent
shift of the spectral parameter z = z̃ + τ/2 and time-independent scaling transformations of coordinates
analogous to those previously proposed in [23].

In Sec. 3, we consider the reduction of the Schlesinger elliptic system in which the Lax operator L(z)
is the sum of R copies of the Lax operator of the elliptic SL(N, C) top,

L(z) =
R∑

i=1

Li(z − xi).

Introducing various shifts of the marked points xi, we can realize its own type of reduction on each copy
of the elliptic SL(N, C) top. We construct the limit procedure that describes two possible variants of
reductions of copies of the elliptic top. We take the limit procedure described in Sec. 2 as the first reduction
variant and the trigonometric limit as the second. To simplify expressions, we apply the first reduction
variant to the first r copies of the elliptic top and the second reduction variant to the remaining p = R− r

copies. For this, in addition to replacement (1.2), we perform shifts of the marked points xi = x̃i − τ/2,
i = 1, . . . , r, together with scaling transformations of the coordinates of the corresponding copies of the Lie
coalgebra sl(N, C)∗. In Sec. 3.2.1, we show that the limit systems obtained at fixed p in the case r > 1 are
equivalent to limit systems obtained in the case r = 1 in which only one copy of the elliptic top transforms
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into the Toda chain. Using the proposed reduction scheme for the elliptic Schlesinger system, we thus obtain
the nonautonomous system describing the Toda chain with additional spin sl(N, C) degrees of freedom.

We present the necessary facts about the systems under consideration.

1.1. The elliptic Schlesinger system. The elliptic Schlesinger system is defined on the space of R

copies of the Lie coalgebra g∗ ∼ sl(N, C)∗:

PR,N =
R⊕

i=1

g
∗
i , g

∗
i =

{
Si =

∑

m,n

si
mnTmn

}
,

where the basis {Tmn}, m, n = 0, . . . , N − 1, m2 + n2 �= 0, is described in Appendix A. On the space PR,N ,
we have the linear Poisson structure

{si
mn, sj

kl} = 2iδij sin
(

π(nk − ml)
N

)
si

m+k,n+l, (1.3)

where i =
√
−1. This Poisson system is degenerate, and its symplectic leaves are R copies of the coadjoint

orbits Oi, i = 1, . . . , R, of SL(N, C). The phase space of the elliptic Schlesinger system has the form

RR,N ∼ PR,N

/{
cμ(i) = cμ(i)0

}
∼

∏

i

Oi,

where cμ(i) are Casimir functions of the orders μ = 2, . . . , N corresponding to the orbits Oi.
The role of system times is played by the parameter τ of the elliptic curve Στ = C/(Z + τZ) and the

positions xi, i = 1, . . . , R, of the marked points on Στ . For the singular point positions xi and the elliptic
curve parameter τ to have the sense of local coordinates in an open cell in the moduli space of elliptic
curves with R marked points, we can impose the condition

∑R
i=1 xi ∈ (Z + τZ) on xi.

The elliptic Schlesinger system is a nonautonomous Hamiltonian system with the equations of motion

∂τSi = {H0,Si},

∂xk
Si = {Hk,Si}, i, k = 1, . . . , R,

(1.4)

where

H0 =
1

4πi

(
∑

j �=i

∑

m,n

si
mn sj

−m,−n f

[
m

n

]
(xj − xi) −

−
R∑

i=1

∑

m,n

si
mn si

−m,−n E2

(
m + nτ

N

))
, (1.5)

Hk = −
∑

i�=k

∑

m,n

sk
mn si

−m,−n ϕ

[
m

n

]
(xi − xk) (1.6)

and

ϕ

[
m

n

]
(z) = e

(
−nz

N

)
φ

(
−m + nτ

N
, z

)
, (1.7)

f

[
m

n

]
(z) = e

(
−nz

N

)
∂uφ(u, z)

∣∣
u=−(m+nτ)/N

, (1.8)
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e(z) ≡ e2πiz, and the functions φ(u, z) and Ek(z) are defined in Appendix B (see the respective formu-
las (B.3) and (B.1)).

We can represent Hamiltonian equations of motion (1.4) as the zero-curvature conditions

∂τL − ∂zM
0 = [L, M0],

∂xk
L − ∂zM

k = [L, Mk], k = 1, . . . , R,
(1.9)

where

L(z) =
R∑

i=1

∑

m,n

si
mn ϕ

[
m

n

]
(z − xi)Tmn, (1.10)

M0(z) =
1

2πi

R∑

i=1

∑

m,n

si
mn f

[
m

n

]
(z − xi)Tmn, (1.11)

Mk(z) = −
∑

m,n

sk
mn ϕ

[
m

n

]
(z − xk)Tmn. (1.12)

Hamiltonians (1.5) and (1.6) are related to the expansion of Tr L2(z) over the elliptic function basis,

1
2N

TrL2(z) = 2πiH0 +
R∑

k=1

(
H2,kE2(z − xk) + HkE1(z − xk)

)
, (1.13)

where H2,k are the quadratic Casimir functions corresponding to the orbits Ok,

H2,k =
1
2

∑

m,n

sk
mn sk

−m,−n. (1.14)

We can write Poisson brackets (1.3) using the classical Belavin–Drinfeld r-matrix r(z) [26]–[28]:

{L1(z), L2(w)} = [r(z − w), L1(z) + L2(w)],

where

r(z) = −
∑

m,n

ϕ

[
m

n

]
(z)Tmn ⊗ T−m,−n, (1.15)

L1(z) = L(z) ⊗ Id, and L2(w) = Id ⊗ L(w).

1.2. The elliptic SL(N, C) top. The elliptic SL(N, C) top is an example of the Euler–Arnold
top [29], whose phase space is given by a coadjoint orbit of SL(N, C),

Rrot = {S ∈ sl(N, C), S = g−1S(0)g},

where g ∈ SL(N, C) is defined modulo left shifts G0 commuting with S(0). In the phase space Rrot of the
top, we have the nondegenerate symplectic Kirillov–Kostant form ωrot = Tr

(
S(0)(dg)g−1 ∧ (dg)g−1

)
.

The system dynamics is governed by the Hamiltonian

Hrot = −1
2

TrSJ(S), (1.16)
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where J(S) =
∑

m,n Jmn smnTmn, smn are the coordinates in the basis {Tmn} of the algebra sl(N, C), which
constitute the sine-algebra (see Appendix A),

Jmn = E2

(
m + nτ

N
, τ

)
, m, n = 0, . . . , N − 1, m2 + n2 �= 0,

and E2(z, τ) is the second Eisenstein function [30] defined on the complex torus C/(2ω1Z + 2ω2Z) with
ω1 = 1/2 and τ = ω2/ω1.

We can write the equations of motion in the Lax form [31],

dLrot

dt
= N [Lrot, M rot].

The multiplier N is related to the definition of the Lax matrices in the sine-algebra basis (see Appendix A):

Lrot =
∑

m,n

smn ϕ

[
m

n

]
(z)Tmn, M rot =

∑

m,n

smn f

[
m

n

]
(z)Tmn.

Hamiltonian (1.16) is related to the Lax matrix:

Hrot =
1
2

Tr(Lrot)2 − 1
2

TrS2E2(z, τ). (1.17)

We obtain the Poisson brackets for the smn from the commutator [Tab, Tcd] of the basis elements Tab and
Tcd (see formula (A.1) in Appendix A),

{sab, scd} = 2i sin
(

π(bc − ad)
N

)
sa+c,b+d. (1.18)

Passing to standard basis (A.2), we obtain {Sij , Skl} = N(Skjδil − Silδkj).

1.3. The Toda chains. Periodic and nonperiodic Toda chains composed from N interacting particles
are defined in the center-of-mass frame on the phase space

RT =
{

(u,v) :
N∑

i=1

ui = 0,

N∑

i=1

vi = 0
}

with the canonical symplectic form ωT = (dv ∧ du). The Hamiltonian of the nonperiodic Toda chain is

HAT =
1
2

N∑

i=1

v2
i + 4π2M2

N−1∑

i=1

e(ui+1 − ui),

while we must add the term corresponding to interaction between the first and last particles for the periodic
chain,

HPT =
1
2

N∑

i=1

v2
i + 4π2M2

N∑

i=1

e(ui+1 − ui), uN+1 = u1.

The equations of motion of both the periodic and the nonperiodic Toda chains admit the Lax form [32]–[34]:

dLAT

dt
= [LAT, MAT],

dLPT

dt
= [LPT, MPT].
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2. The nonautonomous SL(N, C) top and the Toda chain

We consider the nonautonomous elliptic SL(N, C) top in which the elliptic curve parameter τ plays
the role of time. The Lax pair of the top satisfies the isomonodromy deformation equations:

∂τLrot − 1
2πi

∂zM
rot = N [Lrot, M rot], (2.1)

which are equivalent to the Hamiltonian equations of motion

dsmn

dτ
= {Hrot, smn}.

We previously applied various limit procedures to the elliptic SL(N, C) top to obtain Toda chains in the
autonomous case for N ≥ 2 and in the nonautonomous case for N = 2 [23]–[25]. In this section, we construct
a nonautonomous Toda chain from the elliptic SL(N, C) top for N > 2. The Hamiltonian equations of
motion of this nonautonomous system are

∂τ1uj = N2vj , ∂τ1vj = 8π3iM2N2q
1/N
1

(
e(uj+1 − uj) − e(uj − uj−1)

)
, (2.2)

where the factor q
1/N
1 in the right-hand side of the second equation depends on time explicitly, q1 ≡ e(τ1).

As mentioned above, the limit procedure is based on an infinite shift of τ , which we describe by the
variable change τ = τ1 + τ2, where the first term τ1 becomes the time in the limit system and we use
the second, constant term to take the trigonometric limit Im τ2 → +∞. After such a replacement, the
Hamiltonian of the nonautonomous elliptic top becomes Hrot = Hrot(s, τ1 + τ2). We now consider the
system dynamics with respect to τ1, interpreting the constant parameter τ2 as the time reference point.
The Hamiltonian equations of motion with respect to τ1,

dsmn

dτ1
= {Hrot, smn},

admit the Lax representation equivalent to (2.1)

∂τ1L
rot − 1

2πi
∂zM

rot = N [Lrot, M rot], (2.3)

where Lrot = Lrot(s, z, τ1 + τ2) and M rot = M rot(s, z, τ1 + τ2). We next perform a spectral parameter shift
depending on τ1,

z = z̃ +
τ

2
, (2.4)

and a scaling transformation of coordinates independent of τ1,

smn = s̃mnq
−g(n)
2 , g(n) =

1 − δ̃(n)
2N

, (2.5)

where we introduce the notation

q2 ≡ e(τ2), δ̃(n) =

⎧
⎨

⎩
1, n ≡ 0 modN,

0, n �≡ 0 modN.

The trigonometric limit as Im τ2 → +∞ then corresponds to the limit as q2 → 0.
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After replacement (2.5), Poisson bracket (1.18) becomes

{s̃ab, s̃cd} = 2i sin
(

π(bc − ad)
N

)
q

g(b)+g(d)−g(b+d)
2 s̃a+c,b+d.

The coordinates s̃mn hence constitute a Lie algebra with respect to the Poisson bracket in the limit as
q2 → 0 under the condition

g(k) + g(n) − g(k + n) ≥ 0 (2.6)

for all k and n. The function g(n) defined in (2.5) satisfies condition (2.6), and all the nonzero Poisson
brackets of the limit system variables are

{s̃a0, s̃cd} = −2i sin
(

πad

N

)
s̃a+c,d.

Hence, we find that the limit algebra is solvable and is obtained by the contraction from sl(N, C).
In what follows, we conveniently use the standard basis in which replacement (2.5) becomes

Sij = S̃ijq
−g(i,j)
2 , g(i, j) =

1 − δij

2N
.

In the variables S̃ij , the limit algebra becomes

{S̃ii, S̃jk} = NS̃jk(δik − δij). (2.7)

Because spectral parameter shift (2.4) is time dependent in our procedure, Eq. (2.3) becomes

∂τ1L
rot − ∂z̃

(
M rot

2πi
+

Lrot

2

)
= N [Lrot, M rot],

where Lrot = Lrot(s, z̃ + τ/2, τ) and M rot = M rot(s, z̃ + τ/2, τ). In the limit under consideration, the
isomonodromy deformation equation hence transforms into the equation

∂τ1L̃
rot − ∂z̃M̃

rot = [L̃rot, M̃ rot],

where
L̃rot = lim

q2→0
2πiNLrot, M̃ rot = lim

q2→0
(NM rot + πiNLrot).

We then represent the limit Lax matrices in the standard basis:

L̃rot
ij = − 4π2

N∑

m=1

N−1∑

k=1

S̃mm
e(k(i − m)/N)
e(−k/N) − 1

δij −

− 4π2Nq
1/2N
1 S̃i+1,i+2 e

(
− z̃

N

)
δi+1,j + 4π2Nq

1/2N
1 S̃i,i−1 e

(
z̃

N

)
δi,j+1,

M̃ rot
ij = − π2

N∑

m=1

N−1∑

k=1

cot
(

πk

N

)
sin−1

(
πk

N

)
e
(

i − m + 1/2
N

)
S̃mmδij +

+ 2π2Nq
1/2N
1

(
S̃i+1,i+2 e

(
− z̃

N

)
δi+1,j + S̃i,i−1 e

(
z̃

N

)
δi,j+1

)
,
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where again q1 ≡ e(τ1).

As was shown in [23] in the autonomous case, algebra (2.7) admits the bosonization

S̃ii =
N

2πi
(vi−1 − vi), S̃i,i+1 = MN e(ui), S̃i+1,i = MN e(−ui),

S̃i,i+k = ci,i+k e
( i+k−1∑

n=i

un

)
, k = 2, . . . , N − 2, ci,i+k = const,

(2.8)

where u and v are the canonical coordinates of the nonautonomous periodic Toda chain in the center-of-mass
frame,

{vi, uj} = δij , i, j = 1, . . . , N,

N∑

i=1

ui = 0,

N∑

i=1

vi = 0. (2.9)

Passing to the coordinates u,v, we obtain the Lax pair for the nonautonomous Toda chain,

L̃rot = −4π2MN2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̄1 e+
2 0 · · · 0 e−N

e−1 v̄2 e+
3

. . .
... 0

0 e−2
. . . . . . 0

...
...

. . . . . . . . . . . . 0

0 · · · 0
. . . . . . e+

N

e+
1 0 · · · 0 e−N−1 v̄N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.10)

where we introduce the notation

v̄k =
vk

2πiM
, e±k = ± e

(
±uk ∓ z̃

N

)
q1/2N , k = 1, . . . , N,

for brevity. The elements of the matrix M rot are

M̃ rot
ij = πN

N∑

m=1

N−1∑

k=1

cot
(

πk

N

)
e
(

k(i − m)
N

)
vmδij +

+ 2π2MN2q
1/2N
1

(
e
(

ui+1 −
z̃

N

)
δi+1,j + e

(
z̃

N
− ui−1

)
δi,j+1

)
.

We write the Hamiltonian in the form

H̃rot = N2
N∑

i=1

v2
i

2
+ 4π2M2N2q

1/N
1

N∑

i=1

e(ui+1 − ui).

We note that the explicit time dependence is contained in q
1/N
1 ≡ e(τ1/N).

The Hamiltonian equations of motion in u and v are (2.2).
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3. Reducing the elliptic Schlesinger system

The equations of motion of the elliptic Schlesinger system admit Lax form (1.9), where the Lax matrices
L and M0 are sums of R copies of Lax matrices (1.10) and (1.11) of the elliptic SL(N, C) top, the matrices
Mk have form (1.12), and the elliptic curve parameter τ and the marked points xk, k = 1, . . . , R, are the
system times.

Taking the marked points xk on the elliptic curve as the limit procedure parameters, we can obtain
a separate reduction type for each copy of the elliptic SL(N, C) top. In this paper, we construct a limit
procedure allowing two types of reductions for these copies of the elliptic top. The first reduction type is
analogous to the limit procedure described in Sec. 2. It produces a nonautonomous Toda chain from the
nonautonomous elliptic SL(N, C) top. In the second reduction type, the Lax matrix of the elliptic top
transforms into the free system Lax matrix with preservation of the algebra sl(N, C). To simplify expres-
sions, we apply the first reduction type to the first r copies of the elliptic top and the second reduction type
to the remaining R−r copies. For this, we perform the infinite shift of the elliptic curve parameter τ using
coordinate change (1.2) together with the following shifts of the marked points and scaling transformations
of the coordinates:

xi = x̃i −
τ

2
, si

mn = s̃i
mnq

−g(n)
2 , i = 1, . . . , r. (3.1)

3.1. The Toda chain and the sl(N, C)-spin degrees of freedom for N > 2. Before describing
the limit system equations of motion and their Lax representation, we define the new set of commut-
ing Hamiltonians and the corresponding times. We here consider only equations of motion generated by
quadratic Hamiltonians.

3.1.1. The quadratic Hamiltonians of the limit system. The coordinate change in (3.1) results
in contracting the first r copies of sl(N, C) in the limit as Im τ2 → +∞. The algebra of the remaining
R−r copies of the elliptic top is then preserved. All the nonzero Poisson brackets of the limit system are
therefore

{s̃i
m0, s̃

i
nk} = −2i sin

(
πmk

N

)
s̃i

m+n,k, i = 1, . . . , r,

{sj
mn, sj

kl} = 2i sin
(

π(nk − ml)
N

)
sj

m+k,n+l, j = r + 1, . . . , R,

(3.2)

or, in the standard basis,

{S̃i
mm, S̃i

nk} = NS̃i
nk(δmk − δ̃nm), i = 1, . . . , r,

{Sj
mn, Sj

kl} = N(Sj
knδml − Sj

mlδkn), j = r + 1, . . . , R.
(3.3)

Because the algebra of the first r copies of the elliptic top is not preserved in the limit under considera-
tion, the initial Hamiltonians (1.5) and (1.6) of the Schlesinger elliptic system do not transform directly into
the limit system Hamiltonians. To find the quadratic Hamiltonians of the limit system, we turn to elliptic
function basis expansion (1.13) of the trace of the squared Lax matrix (1.10) of the Schlesinger system. In
the limit procedure under consideration, matrix (1.10) transforms into the limit system Lax matrix:

L̃(z) = lim
Im τ2→+∞

L(z) =
r∑

i=1

L̃i(z − x̃i) +
R∑

j=r+1

L̃j(z − xj), (3.4)
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where

L̃i(z − x̃i) =
∑

m,n

s̃i
mn ϕT

mn(z − x̃i)Tmn, i = 1, . . . , r,

L̃j(z − xj) =
∑

m,n

sj
mn ϕS

mn(z − xj)Tmn, j = r + 1, . . . , R,

and we define the functions ϕT
mn(z) and ϕS

mn(z) in (3.6) below. We find the expansion of the squared Lax
matrix of the limit system by taking the limit in expansion (1.13):

1
2N

Tr L̃2(z) = 2πi
(

H̃0 −
H̃r

2

)
+ π

R∑

i=r+1

(
H̃i cot(π(z − xi)) + πH2,i sin−2(π(z − xi))

)
, (3.5)

where

H̃0 = lim
Im τ2→+∞

H0 =
1

2πi

r∑

i=1

∑

m,n

( r∑

j=i+1

s̃i
mn s̃j

−m,−n fS
mn(x̃j − x̃i) +

+
R∑

j=r+1

s̃i
mn sj

−m,−n fT
mn(xj − x̃i)

)
+

1
2πi

r∑

i=1

HT,i −

− π

4i

R∑

i=r+1

N−1∑

m=1

sin−2

(
πm

N

)(
si

m0 si
−m,0 + 2

R∑

j=i+1

si
m0 sj

−m,0

)
,

H̃r = lim
Im τ2→+∞

r∑

i=1

Hi = −
r∑

i=1

R∑

j=r+1

∑

m,n

s̃i
mn sj

−m,−nϕT
mn(xj − x̃i),

H̃i = lim
Im τ2→+∞

Hi =
r∑

j=1

∑

m,n

s̃j
mn si

−m,−n ϕT
mn(xi − x̃j) −

−
∑

r≤j≤R,
j �=i

∑

m,n

si
mn sj

−m,−n ϕS
mn(xj − xi), i = r + 1, . . . , R.

In the formula for H̃0, HT,i denotes the terms equivalent to the Hamiltonians of the nonautonomous Toda
chain whose explicit form is given in (3.11) below. In the latter expressions, we also introduce the new
functions fT

mn(z), fS
mn(z), ϕT

mn(z), and ϕS
mn(z), which are obtained from the expansions of f

[
m
n

]
(z) and

ϕ
[
m
n

]
(z) in the parameter q2 at the origin. Some of these functions manifest an explicit dependence on the

time τ1. For example, fT
mn(z) = fT

mn(z, τ1), fS
mn(z) = fS

mn(z, τ1), and ϕT
mn(z) = ϕT

mn(z, τ1). Using formulas
in Appendix B, we find that for N > 2,

fT
mn(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−π2 sin−2

(
πm

N

)
, n = 0,

4π2q
1/2N
1 e

(
m − z

N

)
, n = 1,

0, 1 < n < N,

10



fS
mn(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π2 sin−2

(
πm

N

)
, n = 0,

4π2q
1/N
1 e

(
m − z

N

)
, n = 1,

0, 1 < n < N − 1,

4π2q
1/N
1 e

(
z − m

N

)
, n = N − 1,

(3.6)

ϕT
mn(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π e
(

m

2N

)
sin−1

(
πm

N

)
, n = 0,

2πiq1/2N
1 e

(
m − z

N

)
, n = 1,

0, 1 < n < N − 1,

−2πiq1/2N
1 e

(
z

N

)
, n = N − 1,

ϕS
mn(z) =

⎧
⎪⎪⎨

⎪⎪⎩

π

(
cot(πz) − cot

(
πm

N

))
, n = 0,

π e
(

z

2
− zn

N

)
sin−1(πz), 0 < n < N.

The obtained coefficients in expansion (3.5) determine the set of quadratic Hamiltonians and Casimir
functions of the limit system. The coefficients H2,i, i = r +1, . . . , R, are the limit system Casimir functions
because the algebra of coordinates of the corresponding copies of the elliptic top is preserved. The functions
H̃ = H̃0 − H̃r/2 and H̃i, i = r + 1, . . . , R, comprise the set of quadratic Hamiltonians. We now prove that
these functions are indeed the limit system Hamiltonians.

Proposition 1. The coefficients H̃ and H̃i, i = r + 1, . . . , R, of expansion (3.5) are in involution,

{H̃, H̃i} = 0, i = r + 1, . . . , R,

{H̃i1 , H̃i2} = 0, i1, i2 = r + 1, . . . , R.

Proof. We write Poisson brackets (3.2) and (3.3) in the r-matrix form,

{L̃1(z), L̃2(w)} = [r̃(z − w), L̃1(z) + L̃2(w)],

where L̃1(z) = L̃(z) ⊗ Id, L̃2(w) = Id ⊗ L̃(w), and the matrix r̃(z) is the limit of classical elliptic r-
matrix (1.15) as Im τ2 → +∞,

r̃(z) = lim
Im τ2→+∞

r(z) = −
∑

m,n

ϕS
m,n(z)Tm,n ⊗ T−m,−n.

We then obtain
{Tr L̃2(z), Tr L̃2(w)} = Tr{L̃2(z), L̃2(w)} = 0 (3.7)

for the Poisson bracket between Tr L̃2(z) and Tr L̃2(w). Because the Hamitonians H̃i, i = r + 1, . . . , R,
are the residues of Tr L̃2(z)/2N at the points z = xi, expression (3.7) implies that they are in involution:
{H̃i1 , H̃i2} = 0 for all i1, i2 = r + 1, . . . , R. Because the Hamiltonians H2,i, i = r + 1, . . . , R, are Casimir
functions of the limit system, it follows from expansion (3.5) that for the free term H̃ = H̃0 − H̃r/2, we
have {H̃, Tr L̃2(z)} = 0 or {H̃, H̃i} = 0 for all i = r + 1, . . . , R.
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3.1.2. The equations of motion. We have obtained quadratic Hamiltonians and can now determine
the time set of the limit system. As stated above, instead of τ in the limit system, we have τ1 corresponding
to the dynamics governed by the Hamiltonian H̃ . The remaining Hamiltonians H̃i determine the dynamics
with respect to the times xi, i = r + 1, . . . , R. The limit system is therefore a nonautonomous Hamiltonian
system with the equations of motion

∂τ1 s̃
i = {H̃, s̃i}, ∂xk

s̃i = {H̃k, s̃i}, i = 1, . . . , r, k = r, . . . , R, (3.8)

∂τ1s
i = {H̃, si}, ∂xk

si = {H̃k, si}, i = r, . . . , R, k = r, . . . , R. (3.9)

We must make an important comment here. By the definition of the function ϕT
mn(z) (see formulas (3.6)),

the dependence of Lax matrix (3.4) on s̃i, i = 1, . . . , r, reduces to the dependence on sums of the form∑r
k=1 e(cnx̃k)s̃k

mn, where cn = 0,±1/N depending on n. The same holds for the dependence of the limit
system Hamiltonians, defined in expansion (3.5), on s̃i. This results in equations of motion (3.8) becoming
equivalent at different i = 1, . . . , r. We can say that the marked points xi, i = 1, . . . , r, merge at infinity
after shifts (3.1). Hence, in the proposed limit procedure, it makes sense to consider only the case r = 1,
in which one copy of the elliptic top transforms into the Toda chain. We can then write the equations of
motion of the limit system as

∂τ1S̃
1 = {H̃, S̃1}, ∂xk

S̃1 = {H̃k, S̃1}, k = 2, . . . , R,

∂τ1s
i = {H̃, si}, ∂xk

si = {H̃k, si}, i, k = 2, . . . , R.
(3.10)

Before writing the equations of motion in an explicit form, we pass from the coordinates of the first
copy of the elliptic top to the coordinates representing the generalized degrees of freedom of the Toda chain.
As shown in Sec. 2, the limit algebra of the variables of S̃1 admits such a transition, and the bosonization
formulas are then analogous to (2.8):

S̃1
ii =

N

2πi
(vi−1 − vi), S̃1

i,i+1 = MN e(ui), S̃1
i+1,i = MN e(−ui),

S̃1
i,i+k = ci

i,i+k e
( i+k−1∑

n=i

un

)
, k = 2, . . . , N − 2, cj,j+k = const,

where u and v are the canonical coordinates in the center-of-mass frame and satisfy relations (2.9).
After passing to the coordinates u,v, we must add the following Lax matrix of the nonautonomous

Toda chain (analogous to matrix (2.10)) to the Lax matrix (3.4) of limit system:

L̃rot = 2πiMN

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̄1 e+
2 0 · · · 0 e−N

e−1 v̄2 e+
3

. . .
... 0

0 e−4
. . . . . . 0

...
...

. . . . . . . . . . . . 0

0 · · · 0
. . .

. . . e+
N−1

e+
1 0 · · · 0 e−N−1 v̄N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where now

v̄k =
vk

2πiM
, e±k = ± e

(
±uk ∓ z

N

)
q1/2N , k = 1, . . . , N.
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We must also add the Hamiltonian of the nonautonomous Toda chain

HT,1 = N
N∑

j=1

v2
j

2
+ 4π2M2Nq

1/N
1

N∑

j=1

e(uj+1 − uj) (3.11)

to H̃ .
We can now write the explicit form of the Hamiltonian equations of motion for the Toda-chain general-

ized degrees of freedom u and v and for the sl(N, C) degrees of freedom sj , j = 2, . . . , R. We first describe
the dynamics of these degrees of freedom with respect to the time τ1. The equations of motion for u and
v are determined by the nonautonomous Toda chain Hamiltonian HT,1 and by the terms describing the
interaction between the Toda chain degrees of freedom and the sl(N, C) degrees of freedom from H̃0 and
H̃1:

∂τ1uj =
N

2πi
vj −

1
2i

R∑

k=2

N−1∑

m=1

sk
m0 e

(
mj

N

)
cot

(
πm

N

)
,

∂τ1vj = 4π2M2Nq
1/N
1

(
e(uj+1 − uj) − e(uj − uj−1)

)
−

− 2π2Mq
1/2N
1

R∑

k=2

(
e
(

uj +
x̃1 − xk

N

)
Sk

j,j−1 − e
(
−uj +

xk − x̃1

N

)
Sk

j,j+1

)
.

The equations of motion for sj, j = 2, . . . , R, are determined by terms with interactions between different
copies of the sl(N, C) degrees of freedom from H̃0 and by terms with interactions between the Toda chain
degrees of freedom and the sl(N, C) degrees of freedom from H̃0 and H̃1:

∂τ1s
i
mn = 2πMq

1/2N
1

N∑

j=1

N−1∑

l=0

e
(

l

2N
− jl

N

)(
sin

(
π(nl − m)

N

)
e
(

uj +
x̃1 − xi

N

)
si

m−l,n−1 +

+ sin
(

π(nl + m)
N

)
e
(
−uj−1 +

xi − x̃1

N

)
si

m−l,n+1

)
+

+
N∑

j=1

N−1∑

l=1

vjs
i
m+l,n e

(
jl

N

)
sin

(
πnl

N

)
cot

(
πl

N

)
−

− π

R∑

k=2

N−1∑

l=1

sk
l0 si

m−l,n sin
(

πnl

N

)
sin−2

(
πl

N

)
.

To describe the dynamics with respect to the times xk, k = 2, . . . , R, we write the corresponding
Hamiltonians H̃k explicitly:

H̃k =
N∑

j=1

vjS
k
jj + 2πiMq

1/2N
1

N∑

j=1

(
e
(

uj +
x̃1 − xk

N

)
Sk

j,j−1 −

− e
(
−uj +

xk − x̃1

N

)
Sk

j,j+1

)
−

∑

2≤i≤R,
i�=k

∑

m,n

sk
mn si

−m,−n ϕS
mn(xi − xk).
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These Hamiltonians contain terms of two types. The terms of the first type describe interactions between
the Toda-chain degrees of freedom and the sl(N, C) degrees of freedom; these terms determine the equations
of motion for u and v,

∂xk
uj = Sk

jj ,

∂xk
vj = 4π2Mq

1/2N
1

(
e
(

uj +
x̃1 − xk

N

)
Sk

j,j−1 + e
(
−uj +

xk − x̃1

N

)
Sk

j,j+1

)
.

On the other hand, the terms of the second type describe the interaction between different copies of the
sl(N, C) degrees of freedom; these terms determine the equations of motion for si, i = 1, . . . , R, i �= k:

∂xk
si

mn = 2i
∑

l,j

sk
lj si

m−l,n−j sin
(

π(mj − nl)
N

)
ϕS

lj(xi − xk).

The equations of motion for the variables sk are determined by the terms of both types and are

∂xk
sk

mn = 4πMq
1/2N
1

N∑

j=1

N−1∑

l=0

e
(

l

2N
− jl

N

)(
sin

(
π(nl + m)

N

)
e
(
−uj−1 +

xk − x̃1

N

)
sk

m−l,n+1 −

− sin
(

π(nl − m)
N

)
e
(

uj +
x̃1 − xk

N

)
sk

m−l,n−1

)
−

− 2i
∑

2≤i≤R,
i�=k

∑

l,j

sk
m+l,n+j si

−l,−j sin
(

π(mj − nl)
N

)
ϕS

lj(xi − xk) −

− 2i
N∑

j=1

N−1∑

l=1

vj sk
m+l,n e

(
jl

N

)
sin

(
πnl

N

)
.

3.1.3. The Lax representation for the limit equations of motion. We can represent equations
of motion (3.10) in the Lax form:

∂τ1L̃ − ∂zM̃
0 = [L̃, M̃0], (3.12)

∂xk
L̃ − ∂zM̃

k = [L̃, M̃k], k = 2, . . . , R, (3.13)

where the Lax matrix L̃ is defined in (3.4) and the matrices M̃k, k = 2, . . . , R, are the limits of the matrices
Mk as Im τ2 → +∞,

M̃k(z) = lim
Im τ2→+∞

Mk(z) = −
∑

m,n

sk
mn ϕS

mn(z − xk)Tmn, k = 2, . . . , R.

We find the Lax matrix M̃0 by considering the equations of motion of the limit system with respect to the
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time τ1:
∂τ1S̃

1 = {H̃, S̃1}, ∂τ1s
j = {H̃, sj}, j = 2, . . . , R.

The Hamiltonian H̃ is related to the Hamiltonians of the elliptic Schlesinger system:

H̃ = lim
Im τ2→+∞

(
H0 −

H1

2

)
.

We now construct the Lax representation for the Hamiltonian equations of motion of the elliptic
Schlesinger system with the Hamiltonian H0 − H1/2. We can write these equations of motion as

∂τ1s
i =

{
H0 −

H1

2
, si

}
= ∂τsi − 1

2
∂x1s

i, i = 1, . . . , R.

Rewriting Eqs. (1.9) in the form

R∑

i=1

∑

m,n

ϕ

[
m

n

]
(z − xi)Tmn ∂τsi

mn = [L, M0],

R∑

i=1

∑

m,n

ϕ

[
m

n

]
(z − xi)Tmn ∂xk

si
mn = [L, Mk], k = 1, . . . , R,

we obtain the expression for ∂τ1s
i:

R∑

i=1

∑

m,n

ϕ

[
m

n

]
(z − xi)Tmn ∂τ1s

i
mn =

[
L, M0 − M1

2

]
.

Using the replacement x1 = x̃1 − τ/2, we transform the obtained expression into the sought Lax equation

∂τ1L − ∂z

(
M0 − M1

2

)
=

[
L, M0 − M1

2

]
. (3.14)

In the limit procedure under consideration, Eq. (3.14) transforms into (3.12). For the Lax matrix M̃0 of
the limit system, we then obtain

M̃0 = lim
Im τ2→+∞

(
M0 − M1

2

)
.

Using the functions fT
mn(z), fS

mn(z), and ϕT
mn(z), we reduce the matrix M̃0 to the form

M̃0(z) =
1

2πi

∑

m,n

s̃1
mn

(
fT

mn(z − x̃1) + πiϕT
mn(z − x̃1)

)
Tmn +

+
1

2πi

R∑

i=2

N−1∑

m=1

si
m0 fS

m0(z − xi)Tm0.

4. Conclusion

We have described several ways to reduce the elliptic Schlesinger system using a limit procedure based
on infinite shifts of the elliptic curve parameter τ and of r marked points xi. We showed that for a fixed
p = R−r, the case r > 1 is equivalent to the case r = 1 because the shifted marked points merge at infinity.
As a result, we obtained a nonautonomous Hamiltonian system describing the Toda chain with additional
spin sl(N, C) degrees of freedom and represented the equations of motion of the obtained system in the
form of zero-curvature equations (3.12) and (3.13).
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The described limit procedure can be adapted to the case of the elliptic Gaudin system, which is an
integrable version of the elliptic Schlesinger system. In the limit, we then obtain an autonomous version
of the system constructed in Sec. 3. It can be expected that this autonomous system will be integrable
because its Lax operator is analogous to (3.4) except that it is explicitly time dependent.

Appendix A: The sine-algebra

The basis elements Tmn of the sine-algebra in sl(N, C) are defined as

(Tmn)ij = e
(

mn

2N

)
e
(

im

N

)
δ̃(j − i − n), m, n = 0, . . . , N − 1, m2 + n2 �= 0.

For elements with the indices m, n ∈ Z such that m �≡ 0 modN or n �≡ 0 modN , we can introduce the
quasiperiodicity condition

Tmn = e
(

mn − (m mod N)(n mod N)
2N

)
Tm modN, n modN ,

smn = e
(

(m mod N)(n mod N) − mn

2N

)
sm mod N, n modN ,

where

e
(

mn − (m mod N)(n mod N)
2N

)
= ±1.

The commutation relations in the sine-algebra basis then become

[Tmn, Tkl] = 2i sin
(

π(kn − ml)
N

)
Tm+k,n+l. (A.1)

The coordinates {smn} in the sine-algebra basis are related to the coordinates {Sij} in the standard basis
expansion of the SL(N, C) algebra as

Sij =
∑

m,n

smn(Tmn)ij , smn =
1
N

∑

i,j

Sij(T−m,n)ij . (A.2)

Appendix B: Elliptic functions

We borrow the definitions and properties of the elliptic functions from [30] and [35]. The principal
object is the theta function with characteristics,

θ

[
a

b

]
(z, τ) =

∑

j∈Z

q(j+a)2/2 e((j + a)(z + b)),

where q = e(τ) ≡ e2πiτ . We also need the Eisenstein functions

εk(z) = lim
M→+∞

M∑

n=−M

(z + n)−k,

Ek(z) = lim
M→+∞

M∑

n=−M

εk(z + nτ), k ∈ N.

(B.1)
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For taking limits of the Lax matrices, we use the series expansion

ϑ(z) = θ

[
1/2
1/2

]
(z, τ) =

∑

j∈Z

q(j+1/2)2/2 e((j + 1/2)(z + 1/2)). (B.2)

We set

φ(u, z) =
ϑ(u + z)ϑ′(0)

ϑ(u)ϑ(z)
. (B.3)

This function satisfies the equalities

φ(u, z)φ(−u, z) = E2(z) − E2(u),

∂uφ(u, z) = φ(u, z)
(
E1(u + z) − E1(u)

)
.

(B.4)

We also have the parity properties

Ek(−z) = (−1)kEk(z), ϑ(−z) = −ϑ(z), φ(u, z) = φ(z, u) = −φ(−u,−z)

and the quasiperiodicity properties

E1(z + 1) = E1(z), E1(z + τ) = E1(z) − 2πi,

E2(z + 1) = E2(z), E2(z + τ) = E2(z),

ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = −q−1/2 e(−z)ϑ(z),

φ(u + 1, z) = φ(u, z), φ(u + τ, z) = e(−z)φ(u, z).

(B.5)

We set z = z̃+τ/2 and investigate the reductions of the elliptic functions ϕ
[
m
n

]
in (1.7) and f

[
m
n

]
in (1.8)

in the limit as Im τ → +∞. By (B.3), the series expansion of ϕ
[
m
n

]
(z) reduces to the series expansion of

the theta function. Taking the leading nonzero term of the expansion, we obtain

ϑ

(
−m

N
− nτ

N

)
=

⎧
⎪⎪⎨

⎪⎪⎩

2q1/8 sin
(

πm

N

)
+ o(q1/8), n = 0,

iq1/8−n/2N e
(
− m

2N

)
+ o(q1/8−n/2N ), 0 < n < N,

ϑ

(
z̃ +

τ

2
− m

N
− n

N
τ

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−iqn/2N−1/8 e
(

m/N − z̃

2

)
+ o(qn/2N−1/8), 0 ≤ n <

N

2
,

−2q1/8 sin
(

π

(
z̃ − m

N

))
+ o(q1/8), n =

N

2
,

iq3/8−n/2N e
(

z̃ − m/N

2

)
+ o(q3/8−n/2N ),

N

2
< n < N,

which gives

φ

(
−m + nτ

N
; z̃ +

τ

2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π e
(

m

2N

)
sin−1

(
πm

N

)
+ o(1), n = 0,

2πiqn/N e
(

m

N

)
+ o(qn/N ), 0 < n <

N

2
,

4πq1/2 sin
(

π

(
z̃ − m

N

))
e
(

m/N + z̃

2

)
+ o(q1/2), n =

N

2
,

−2πiq1/2 e(z̃) + o(q1/2),
N

2
< n < N,
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and

ϕ

[
m

n

](
z̃ +

τ

2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π e
(

m

2N

)
sin−1

(
πm

N

)
+ o(1), n = 0,

2πiqn/2N e
(

m − nz̃

N

)
+ o(qn/2N ), 0 < n <

N

2
,

4πq1/4 e
(

m

2N

)
sin

(
π

(
z̃ − m

N

))
+ o(q1/4), n =

N

2
,

−2πiq(N−n)/2N e
(

N − n

N
z̃

)
+ o(q(N−n)/2N ),

N

2
< n < N.

To find the limit of f
[
m
n

]
, we expand E1(x̃− στ) in a series in q = e(τ). Taking (B.1) into account, we

obtain

E1(x̃ − στ) = lim
M→+∞

M∑

n=−M

ε1(x̃ + (n − σ)τ) =

= ε1(x̃ − στ) + lim
M→+∞

M∑

n=1

(
ε1(x̃ + (n − σ)τ) + ε1(x̃ − (n + σ)τ)

)
.

Using the explicit expression for ε1(x) [30],

ε1(x) = π cot(πx) = πi
e(x) + 1
e(x) − 1

= πi

⎧
⎨

⎩
−1 − 2 e(x) + o(e(x)), Im x → +∞,

1 + 2 e(x) + o(e(x)), Im x → −∞,

we obtain the result for the leading term in the expansion of E1(x̃ − στ):

E1(x̃ − στ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π cot(πx̃) + o(1), σ = 0,

πi + 2πiqσ e(−x̃) + o(qσ), 0 < σ <
1
2
,

πi + 2πiq1/2
(
e(−x̃) − e(x̃)

)
+ o(q1/2), σ =

1
2
,

πi − 2πiq1−σ e(x̃) + o(q1−σ),
1
2

< σ < 1.

Using (B.5), we generalize this formula to the case σ ∈ R:

E1(x̃ − στ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2πi�σ� + π cot(πx̃) + o(1), {σ} = 0,

2πi�σ� + πi + 2πiq{σ} e(−x̃) + o(q{σ}), 0 < {σ} <
1
2
,

2πi�σ� + πi + 2πiq{σ} e(−x̃) + o(q{σ}), {σ} =
1
2
,

2πi�σ� + πi − 2πiq1−{σ}(e(−x̃) − e(x̃)
)

+ o(q1/2),
1
2

< {σ} < 1,

where we let {σ} denote the fractional part of σ.
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We now consider the expansion of the function ∂uφ(u, z)
∣∣
u=ũ−στ

in the limit as Im τ → +∞ using
formula (B.4). Setting z = z̃ + τ/2 and taking all possible values of σ into account, we obtain

∂uφ(u, z)
∣∣
u=ũ−στ

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π2 sin−2 πũ + o(1), σ = 0,

4π2q e(−ũ) + o(q), 0 < σ <
3
4
,

4π2q3/4
(
e(−ũ) − e(ũ + z̃)

)
+ o(q3/4), σ =

3
4
,

−4π2q3/2−σ e(ũ + z̃) + o(q3/2−σ),
3
4

< σ < 1.

Taking definition (1.8) into account, we finally obtain the expression

f

[
m

n

](
z̃ +

τ

2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π2 sin−2

(
πm

N

)
+ o(1), n = 0,

4π2 e
(

m

N

)
e
(
−nz̃

N

)
qn/2N + o(qn/2N ), 0 < n <

3N

4
,

4π2

(
e
(

m

N

)
− e

(
− n

N
+ z̃

))
e
(
−3z̃

4

)
q3/8 + o(q3/8), n =

3N

4
,

−4π2 e
(
−m

N
+ z̃

)
e
(
−nz̃

N

)
q3(1−n/N)/2 + o(q3(1−n/N)/2),

3N

4
< n < N.

Acknowledgments. The authors are especially grateful to M. A. Olshanetsky and A. V. Zotov for
setting the problem and for the useful discussion. The authors thank the Organizing Committee of the
International Workshop “Classical and Quantum Integrable Systems” (CQIS–2012) for the possibility to
report the results in this paper.

This work was supported in part by the Federal Target Program “Scientific and Scientific-Pedagogical
Cadres of Innovation Russia” in 2009–2013 (State Contract No. 14.740.11.0347), the Program for Supporting
Young Scientists—Candidates of Science (Grant No. MK-1646.2011.1), and the Russian Foundation for
Basic Research (Grant Nos. 12-01-00482, S. B. A.; 12-02-00594, G. A. A.; and 12-02-91000-ANF).

REFERENCES

1. A. M. Levin and M. A. Olshanetsky, Amer. Math. Soc. Transl. Ser. 2, 191, 223–262 (1999).

2. K. Takasaki, Lett. Math. Phys., 44, 143–156 (1998).

3. D. A. Korotkin, “Isomonodromic deformations in genus zero and one: Algebro-geometric solutions and

Schlesinger transformations,” in: Integrable Systems: From Classical to Quantum (CRM Proc. Lect. Notes,

Vol. 26, J. Harnad, G. Sabidussi, and P. Winternitz, eds.), Amer. Math. Soc., Providence, R. I. (2000), pp. 87–

104.

4. Yu. Chernyakov, A. Levin, M. Olshanetsky, and A. Zotov, J. Phys. A, 39, 12083–12101 (2006).

5. L. Schlesinger, J. für Math., 141, 96–145 (1912).
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