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RENORMALIZATION GROUP IN A FERMIONIC HIERARCHICAL

MODEL IN PROJECTIVE COORDINATES

M. D. Missarov∗

We study the renormalization group action in a fermionic hierarchical model in the space of coefficients

determining the Grassmann-valued density of the free measure. This space is interpreted as the two-

dimensional projective space. The renormalization group map is a homogeneous quadratic map and has

a special geometric property that allows describing invariant sets and the global dynamics in the whole

space.
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1. Introduction

The fermionic model on the hierarchical lattice is specified by the Hamiltonian

H(ψ∗; α) =
∑

i,j∈Λ

d−α
n (i, j)[ψ̄1(i)ψ1(j) + ψ̄2(i)ψ2(j)] +

∑

i∈Λ

L(ψ∗(i); r, g),

where
L(ψ∗(i); r, g) = r(ψ̄1(i)ψ1(i) + ψ̄2(i)ψ2(i)) + gψ̄1(i)ψ1(i)ψ̄2(i)ψ2(i).

We recall that a hierarchical lattice Λ is defined as a set of integers Z with a hierarchical distance d(i, j),
i, j ∈ N. The distance d(i, j) = ns(i,j) if i �= j, where s(i, j) is the minimum value of s for which there
exists k such that i ∈ Vk,s, j ∈ Vk,s, where Vk,s = {j : j ∈ N, (k − 1)ns < j ≤ kns} and n is the size
of the elementary cell (a fixed natural number). Four-component spins ψ∗(i) = (ψ̄1(i), ψ1(i), ψ̄2(i), ψ2(i)),
whose components are the generators of the Grassmann algebra, are located at the nodes of this lattice. In
the case where n = pd with a prime p, the lattice Λ can be interpreted as the lattice of purely fractional
d-dimensional p-adic vectors (see [1]–[3]) with the p-adic distance between them.

It is also convenient to use the concept of the Grassmann-valued “density” of the free measure f(ψ∗) =
e−L(ψ∗;r,g) instead of the Lagrangian L(ψ∗; r, g). In the general case, the “density” of the free measure is
given by

f(ψ∗; c) = c0 + c1(ψ̄1ψ1 + ψ̄2ψ2) + c2ψ̄1ψ1ψ̄2ψ2,

where c = (c0, c1, c2) ∈ R
3. If c0 �= 0 (the regular case), then the coordinates r and g are related to c by

the formulas

r(c) = −c1

c0
, g(c) =

c2
1 − c0c2

c2
0

.

If c0 = 0 (for instance, as in the case where the density is given by the Grassmann delta function δ(ψ∗) =
ψ̄1ψ1ψ̄2ψ2), then the exponential representation is impossible.
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The triple (c0, c1, c2) can be naturally treated as a point in the two-dimensional real projective space
RP 2 because two sets that differ by a nonzero factor represent the same Gibbs state.

The block-spin transformation of the Kadanoff–Wilson renormalization group (RG) is defined by the
formula

r(α)ψ∗(i) = n−α/2
∑

j∈Vi,1

ψ∗(j).

The Gaussian part of the model Hamiltonian is invariant under the RG transformation, which reduces
to the transformation R(α) of the coupling constants, R(α)(r, g) = (r′, g′), in the non-Gaussian part,

r′ = λ

(
(r + 1)2 − g

(r + 1)2 − g/n
(r + 1) − 1

)
, g′ =

λ2

n

(
(r + 1)2 − g

(r + 1)2 − g/n

)2

g, (1)

where λ = nα−1. The RG transformation in the space of the free measure “density” coefficients is also
denoted by R(α): R(α)(c0, c1, c2) = (c′0, c

′
1, c

′
2),

c′0 = n2(c2 − 2c1 + c0)n−2

(
(c1 − c0)2 +

1
n

(c0c2 − c2
1)

)
,

c′1 = λn2(c2 − 2c1 + c0)n−2

(
(c1 − c0)(c2 − c1) +

1
n

(c0c2 − c2
1)

)
,

c′2 = λ2n2(c2 − 2c1 + c0)n−2

(
(c2 − c1)2 +

1
n

(c0c2 − c2
1)

)
.

(2)

If c2 − 2c1 + c0 �= 0, then we can omit this factor in formulas (2) because we consider the transformation in
the projective space.

The RG transformation in the c space seems more aesthetic and allows visualizing the picture of
the dynamics in the entire coupling-constant space because the projective space is compact and allows
eliminating some singularities in the (r, g) coordinates. Indeed, map (1) is not defined at the points of the
critical parabola g = n(r + 1)2, but formulas (2) of the RG transformation in the c space allow defining it.
A point (r, g) of the critical parabola can be written in the c coordinates as

(
1,−r, r2 − n(r + 1)2

)
, which

becomes (0, 1, (n−1)(r+(n+1)(n−1)−1)) under the transformation R(α) and thus leaves the plane (r, g).
But the subsequent iteration of R(α) moves this point into the regular region. Simple calculations show
that the nonregular region is mapped to the parabola g = (1/n)(r + λ)2 under the RG transformation.

The transformation R(α) has the trivial (Gaussian) fixed point (0, 0) and two non-Gaussian fixed points
in the (r, g) coordinates. In the c coordinates, the Gaussian point can be written as (1, 0, 0), and one more
fixed point (0, 0, 1) can be seen, giving the Grassmann delta function δ(ψ∗) = ψ̄1ψ1ψ̄2ψ2. We let δ denote
this fixed point. In addition, the RG transformation has two regular fixed points that for α �= 1 are given
in the (r, g) coordinates by the formulas

r+(α) =
n1/2 − nα−1

1 − n1/2
, g+(α) =

r+(α)(1 + r+(α))2

1 + r+(α) + n−1/2
, α �= 1

2
,

r−(α) =
−n1/2 − nα−1

1 + n1/2
, g−(α) =

r−(α)(1 + r−(α))2

1 + r−(α) − n−1/2
.

At α = 1, we have the entire line of fixed points {g = 0, r �= −1}. The map R(α) itself, like the map
from RP 2 to RP 2, is well defined everywhere except the point (1, 1, 1) because R(α)(1, 1, 1) = (0, 0, 0).
It is given by the coordinates (−1, 0) in the (r, g) plane. We call this point the singular point of the RG
transformation.
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In [4]–[9], we studied the RG dynamics in the (r, g) coordinates, although we used the c coordinates to
obtain the global picture. Here, we describe the invariant sets and the RG dynamics in the c space. Many
proofs then become clearer and simpler because of the special geometric property of the transformation
R(α) expressed in Lemma 1. Hereafter, we assume that α > 1. In this case, the fixed point δ is the only
attracting fixed point. We note that the fermionic hierarchical model is interesting because it admits an
exact RG analysis and is an anticommuting analogue of the bosonic φ4 theory, where the RG is studied
only in the perturbation theory framework in the neighborhood of the Gaussian point.

2. Invariant sets and RG dynamics in the projective space

To describe the global flow of the RG dynamics, we use the (r, g) coordinates and the projective c

coordinates simultaneously. More precisely, we consider the realization of the projective c space in the form
of the hemisphere S = {(c0, c1, c2) : c2

0+c2
1+c2

2 = 1, c0 ≥ 0}, where the opposite points of the boundary circle
c2
1 + c2

2 = 1 are identified. To obtain the flat (two-dimensional) picture, we use the orthogonal projection
S on the disc D = {(c1, c2) : c2

1 + c2
2 ≤ 1}. The regular point (r, g) then corresponds to

(
c1(r, g), c2(r, g)

)
,

where

c1(r, g) = − r√
1 + r2 + (r2 − g)2

, c2(r, g) = − r2 − g√
1 + r2 + (r2 − g)2

.

We note that the points
(
c1(r, g), c2(r, g)

)
belong to the interior of the disc D. The trivial fixed point r = 0,

g = 0 is also represented by the point (0, 0) in the c coordinates. The fixed point given by the delta function
in the c coordinates is determined by the point (0, 1). The line g = 0 in the c space is described by the
curve l0 = {(c1(r, 0), c2(r, 0)); r ∈ R}. We note that

(
c1(r, 0), c2(r, 0)

)
→ (0, 1) as r → ±∞. Completing

the curve l0 with the limit point (0, 1), we obtain a closed curve l in the c space. The lower half-plane
{(r, g) : g < 0} is given in the c space by the region D1 bounded by the curve l.

We consider the parametric family of curves in the (r, g) space given by functions of the form

g1(r; a, b) =
r − a

r − b
(r + 1)2.

Lemma 1. The equality

R(α)(r, g1(r; a, b)) = (r′, gλ(r′; a′, b′))

holds, where

r′ = λ
a − b − 1 + n−1

1 − n−1
· r − a1

r − b1
,

a1 =
(n−1 − 1)a

a − b − 1 + n−1
, b1 =

b − n−1a

1 − n−1
,

gλ(r′; a′, b′) =
r′ − a′

r′ − b′
(r′ + λ)2,

a′ = λa, b′ = λ(n(b + 1) − 1), λ = nα−1.

Proof. The lemma is proved by direct calculation.

It is easy to see that

c1(r, g1(r; a, b)) → c0
2(a, b) = − 1√

1 + (a − b − 2)2
,

c2(r, g1(r; a, b)) → c0
2(a, b) =

a − b − 2√
1 + (a − b − 2)2
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as r → ±∞. The points
(
c0
1(a, b), c0

2(a, b)
)

belong to the circle c2
1 + c2

2 = 1, and we compactify the curves

{c1(r, g1(r; a, b)), c2(r, g1(r; a, b)); r ∈ R},

adding the new limit points
(
c0
1(a, b), c0

2(a, b)
)

to them.
We note that the function g1(r; a, b) is undefined at the point r = b, but because

c1(r, g1(r; a, b)) → 0, c2(r, g1(r; a, b)) → 1

as r → b, we can define the curves at the point r = b by c1(b, g1(b; a, b)) = 0 and c2(b, g1(b; a, b)) = 1.
We choose the parameter b such that b = b′ = λ(n(b + 1)− 1) and let b0 = −(λn− λ)/(λn − 1) be the

solution of this equation. We consider the regions

G+(a) = {(r, g) : r ≥ a, 0 ≤ g ≤ g1(r; a, b0)},

G−(a) = {(r, g) : r ≤ a, 0 ≤ g ≤ g1(r; a, b0)}

in the (r, g) space. We also consider the curves

γ+(a) = {r, g1(r; a, b0) : r ≥ a}, γ−(a) = {r, g1(r; a, b0) : r ≤ a}.

We note that each point in G+(a) or G−(a) respectively belongs to a curve γ+(ã) or γ−(ã), where ã ≥ a

or ã ≤ a. Let T 0
+(a), T 0

−(a), l0+(a), and l0−(a) denote the images of G+(a), G−(a), γ+(a), and γ−(a)
in the c space. We add the limit point

(
c0
1(a, b0), c0

2(a, b0)
)

to the curves l0+(a) and l0−(a) and let l+(a)
and l−(a) denote the obtained curves. We also add the limit points

(
c0
1(ã, b0), c0

2(ã, b0)
)
, ã ≥ a, and(

c0
1(ã, b0), c0

2(ã, b0)
)
, ã ≤ a, to the respective regions T 0

+(a) and T 0
−(a) and let T+(a) and T−(a) denote the

obtained regions.
The region T+(a) is the curvilinear triangle in the c space bounded by the three curvilinear segments

l+(a), the segment of the disc D1 boundary {(c1(r, 0), c2(r, 0)) : r ≥ a}, where

c1(r, 0) = − r√
1 + r2 + r4

, c2(r, 0) =
r2

√
1 + r2 + r4

,

and the segment of the disc D boundary {(c1(ã), c2(ã)) : ã ≥ a}, where

c1(ã) = − 1√
1 + (ã − b0 − 2)2

, c2(ã) =
ã − b0 − 2√

1 + (ã − b0 − 2)2
.

The last two segments meet at the vertex (0, 1) because
(
c1(ã), c2(ã)

)
→ (0, 1) as ã → +∞. Analo-

gously, T−(a) is the curvilinear triangle bounded by the segment l−(a), the segment of the D1 boundary{
t(c1(r, 0), c2(r, 0)) : r ≤ a}, and the segment of the D boundary

{
(c1(ã), c2(ã)) : ã ≤ a

}
.

We consider the images of the introduced regions G+(a), G−(a), T+(a), and T−(a) under the RG
transformation R(α). Let

G′
+(a) = R(α)G+(a), G′

−(a) = R(α)G−(a),

T ′
+(a) = R(α)T+(a), T ′

−(a) = R(α)T−(a).
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Theorem 1. If a ≥ −(1 − n−1)/(λn − 1), then

G′
+(a) = {(r, g) : λa ≤ r < r1(a; λ), 0 ≤ g < g1(r; λa, b0)} ∪

∪
{

(r, g) : r1(a; λ) ≤ r, 0 ≤ g <
1
n

(r + λ)2
}

.

If a ≤ b0 = −λ(n − 1)/(λn − 1), then

G′
−(a) = {(r, g) : r1(a; λ) < r ≤ λa, 0 ≤ g < g1(r; λa, b0)} ∪

∪
{

(r, g) : r ≤ r1(a; λ), 0 ≤ g <
1
n

(r + λ)2
}

,

where

r1(a; λ) = λ

((
1 − 1

n

)−1

a + (λn − 1)−1

)
. (3)

Proof. It follows from Lemma 1 that

R(α)(r, g1(r; a, b0)) = (r′, gλ(r′; a′, b0)),

where

r′ = λ

(
a

(
1 − 1

n

)−1

+ (λn − 1)−1

)
r − a1

r − b1
,

a1 = − (1 − n−1)a
a + (1 − n−1)/(λn − 1)

, b1 = − (λn − λ)/(λn − 1) + n−1a

1 − n−1
,

gλ(r′; (a′
1, b0)) = gλ(r′; (λa, b0)) =

r′ − λa

r′ − b0
(r′ + λ)2.

(4)

It follows from Eqs. (1) and (2) that a1 > b1 if a > −(1−n−1)/(λn−1) and that r′ increases monotonically
with r for r > b1. If a < −λ(n − 1)/(λn − 1), then b1 > a1, and r′ decreases monotonically with r for
r < b1.

Let a > 0. Then each curve γ+(a) = {(r, g1(r; a, b0)) : r ≥ a} is mapped into γ′
+(a) = {(r, gλ(r; λa, b0)) :

λa ≤ r < r1(a; λ)}, where r1(a; λ) is given by (1). We note that gλ(r1(a; λ); λa, b0) = n−1(r1(a; λ) + λ)2.
Any point of the region G+(a) belongs to γ+(ã) for some ã ≥ a, and γ+(ã) ⊂ G+(a) for all ã ≥ a. It hence
follows that the family of curves γ′

+(ã), ã ≥ a, covers the set G′
+(a).

Let a < b0 = −λ(n − 1)/(λn − 1). Then the curve γ−(a) = {(r, g1(r; a, b0)) : r ≤ a} is mapped into
γ′
−(a) = {(r, gλ(r; λa, b0)) : r1(a; λ) < r ≤ λa}, where r1(a; λ) is also given by (1). The family of curves

γ−(ã), ã ≤ a, covers the set G−(a). Consequently, the family γ′
−(ã), ã ≤ a, covers the set G′

−(a). The
statement of the theorem hence follows.

Theorem 2. If a ≥ 4, then

G′
+(a) ⊂ G+

(
λ + 1

2
a

)
⊂ G+(a).

If a ≤ −4, then

G′
−(a) ⊂ G−

(
λ + 1

2
a

)
⊂ G−(a).

All points belonging to G+(a), a ≥ 4, or G−(a), a ≤ −4, tend to δ, the fixed point (0, 1), under iterations

of the RG transformation.
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Proof. Let a ≥ 4. We show that the curve γ′
+(a) belongs to the set G+((λ + 1)a/2). Because γ′

+(a)
is part of the curve given by the equation g = gλ(r; λa, b0), it suffices to show that

g1

(
r;

λ + 1
2

a, b0

)
≥ gλ(r; λa, b0). (5)

Direct calculation shows that

g1

(
r;

λ + 1
2

a, b0

)
− gλ(r; λa, b0) =

=
λ − 1
r − b0

[
a − 4

2
r2 + (2λ + 1)

(
a − λ + 1

2λ + 1

)
r + a

(
λ2 + λ +

1
2

)]
. (6)

It is hence easy to see that inequality (5) holds for a ≥ 4 if r ≥ λa.
Let a ≤ −4. We note that r − b0 < 0 for r ≤ a. We use Eq. (6). To prove inequality (5), it suffices to

show that
a − 4

2
r2(2λ + 1)

(
a − λ + 1

2λ + 1

)
r < 0 (7)

because a(λ2 + λ + 1/2) < 0 for negative a. Inequality (5) holds if

a − 4
2

r + (2λ + 1)a − (λ + 1) > 0

for r < λa. Taking a ≤ −4, r < λa, and λ > 1 into account, we obtain

a − 4
2

r + (2λ + 1)a − (λ + 1) ≥ a − 4
2

λa + (2λ + 1)a − (λ + 1) =
a2λ

2
+ a − λ − 1 ≥

≥ −4aλ

2
+ a − λ − 1 = a(1 − 2λ) − λ − 1 >

> 4(2λ − 1) − λ − 1 = 7λ − 5 > 0.

It hence follows that

g1

(
r;

λ + 1
2

a, b0

)
≥ min

(
gλ(r; λa, b0),

1
n

(r + λ)2
)

for a ≥ 4 and r ≥ λa and for a ≤ −4 and r ≤ λa. It follows from Theorem 1 with (λ + 1)/2 > 1 taken into
account that

G′
+(a) ⊂ G+

(
λ + 1

2
a

)
⊂ G+(a) for a ≥ 4,

G′
−(a) ⊂ G−

(
λ + 1

2
a

)
⊂ G−(a) for a ≤ −4.

Let Rn(α)(r, g) = (r(n), g(n)). If a ≥ 4 and (r, g) ∈ G+(a), then r(n) ≥ ((λ + 1)/2)na and g(n) <

n−1(r(n) + λ)2. Because r(n) → ∞ as n → ∞, c1(r(n), g(n)) → 0 and c2(r(n), g(n)) → 1 as n → ∞.

We obtain the following corollary from Theorem 2.

Corollary 1. The regions T+(a) for a ≥ 4 and T−(a) for a ≤ −4 are invariant under the RG trans-

formation and belong to the attraction area of the fixed point δ.
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