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EXTENDED RESOLVENT OF THE HEAT OPERATOR WITH A

MULTISOLITON POTENTIAL

M. Boiti,∗ F. Pempinelli,∗ and A. K. Pogrebkov†

We consider the heat operator with a general multisoliton potential and derive its extended resolvent

depending on a parameter q ∈ R
2. We show that it is bounded in all variables and find its singularities

in q. We introduce the Green’s functions and study their properties in detail.
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1. Introduction

We consider the Kadomtsev–Petviashvili II (KP-II) equation [1]

(ut − 6uux1 + ux1x1x1)x1 = −3ux2x2 ,

where u = u(x, t), x = (x1, x2), and the subscripts x1, x2, and t denote partial derivatives. From the
early 1970s, it has been known that this equation is integrable [2], [3] and can be considered a prototypical
(2+1)-dimensional equation, being a generalization of the celebrated Korteweg–de Vries (KdV) equation.
The KP-II equation is integrable by virtue of its association with the operator

L(x, ∂x) = −∂x2 + ∂2
x1

− u(x), (1.1)

which yields the well-known heat conduction equation or heat equation, for short. The spectral theory of
operator (1.1) was developed in [4]–[7] for a real potential u(x) rapidly decaying at spatial infinity. But
this is not the most interesting case, because the KP-II equation was in fact proposed in [1] to describe a
weak two-dimensional transverse perturbation of the one-soliton solution of the KdV equation. The main
difficulty in studying this problem arises because the soliton solutions of the KP equations do not decay at
spatial infinity and have a ray behavior on the x plane (see, e.g., [8]–[11]). Correspondingly, the integral
equations defining the Jost solutions in this case are just meaningless because their kernels do not exist.

A theory of the KP-II equation that also includes solitons still awaits its construction, similarly to what
was successfully done for the KP-I equation in [12]. Following the approach in that paper, we generalize the
standard inverse scattering transform (IST) method and consider the so-called scattering on a nontrivial
background, i.e., we consider a potential

ũ(x) = u(x) + u′(x), (1.2)
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where u(x) is some multisoliton potential and u′(x) is a smooth function decaying sufficiently rapidly in both
its variables, which we can consider a perturbation of the soliton potential. The Jost solution corresponding
to the operator ˜L with the potential ũ can be defined as the solution of the integral equation

˜Φ(x,k) = Φ(x,k) +
∫

dy G(x, y,k)u′(y)˜Φ(y,k), (1.3)

where k ∈ C is a spectral parameter, Φ(x,k) is the Jost solution corresponding to the operator L with the
multisoliton potential u, and G(x, y,k) is its total Green’s function,

(

−∂x2
+ ∂2

x1
− u(x)

)

G(x, x′,k) = δ(x − x′).

Let the perturbation u′(x) decrease at infinity faster than 1/(x2
1 + x2

2). Then if the Green’s function
satisfies the boundedness condition, i.e., if the function

G(x, x′,k) = eik(x1−x′
1)+k2(x2−x′

2)G(x, x′,k) (1.4)

is bounded in x, x′ ∈ R
2 and k ∈ C and has finite limits at infinity, then the kernel of (1.3) is well defined,

and we can in fact use the standard technique [4]–[7] to prove that the solution ˜Φ(x,k) exists. We were
thus able to develop the IST for a solution describing a perturbation of the one-soliton solution [13]. But
the case of an arbitrary number of solitons remains open for investigation. For this case in [14], we derived
a total Green’s function, which is a natural generalization of the Green’s function for a decaying potential.
As shown in [12] and [13], to describe the singularities of the Jost solutions, we need some additional
Green’s functions. Therefore, to be able to work with a heat operator with a generic multisoliton potential,
following [12], we introduce its extended resolvent (this was done for some multisoliton solutions in [15]),
which is a more general object than the Green’s function. Namely, we introduce a two-dimensional real
parameter q = (q1, q2) and consider the extended Lax operator

L(x, ∂x + q) = −∂x2 − q2 + (∂x1 + q1)2 − u(x). (1.5)

Then the extended resolvent of heat operator (1.1) is defined as the tempered distribution M(x, x′; q) with
respect to all its six variables x, x′, q satisfying the differential equation

L(x, ∂x + q)M(x, x′; q) = Ld(x′, ∂x′ + q)M(x, x′; q) = δ(x − x′), (1.6)

where Ld(x, ∂x) is the operator dual to L(x, ∂x).
The extended resolvent can be considered the generating functional of the different Green’s functions

of the operator L given by (1.1). Indeed, we introduce the “hatted” operator

̂M(x, x′; q) = eq(x−x′)M(x, x′; q), qx = q1x1 + q2x2, (1.7)

which, of course, is not necessarily a tempered distribution. Nevertheless, it is easy to see that

L(x, ∂x)̂M(x, x′; q) = Ld(x′, ∂x′)̂M(x, x′; q) = δ(x − x′). (1.8)

In particular, the total Green’s function is obtained via the reduction

G(x, x′,k) = ̂M(x, x′; q)
∣

∣

∣q1=Imk,
q2=Im2 k−Re2 k

. (1.9)
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Constructing the distribution M(x, x′; q) is the subject of this paper. It was shown in [16] that heat
operator (1.1) with a multisoliton potential u(x) can have left and right annihilators in some polygonal
regions of the q plane, and the resolvent consequently cannot exist in those regions. We provide an explicit
expression for the extended resolvent and prove that it exists as a tempered distribution and satisfies (1.6)
outside some special polygonal regions (the same as shown in [16]). We show that in this region, reduc-
tion (1.9) is always possible for an arbitrary k ∈ C and, as a result, we obtain the total Green’s function
derived in [14]. Under this condition, the fact that M(x, x′; q) is a tempered distribution means that the
boundedness condition is satisfied for function (1.4). In accordance with the procedure followed in the case
of the nonstationary Schrödinger operator in [12], describing the singularities of the total Green’s function
on the complex plane of the spectral parameter requires some special reductions of the extended resolvent,
i.e., auxiliary Green’s functions. We conclude this paper with a detailed study of these singularities.

2. Heat operator with a multisoliton potential and its Jost
solutions

Soliton potentials [8]–[11], [15]–[17] are characterized by two natural numbers (topological charges)
Na ≥ 1 and Nb ≥ 1. Let N = Na + Nb; hence, N ≥ 2. We introduce N real parameters

κ1 < κ2 < · · · < κN

and functions
Kn(x) = κnx1 + κ2

nx2, n = 1, . . . ,N . (2.1)

Let eK(x) = diag{eKn(x)}Nn=1 be a diagonal N×N matrix, D be an N×Nb constant matrix, and V be an
“incomplete Vandermonde matrix,” i.e., the Nb×N matrix

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1

κ1 κ2 · · · κN

...
...

. . .
...

κNb−1
1 κNb−1

2 · · · κNb−1
N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Then the soliton potential is given by

u(x) = −2∂2
x1

log τ(x),

where the τ -function can be expressed as

τ(x) = det
(

VeK(x)D
)

. (2.2)

For the Jost and dual Jost solutions (the respective solutions of heat operator (1.1) and its dual), we have

Φ(x,k) = e−ikx1−k2x2χ(x,k), χ(x,k) =
τΦ(x,k)

τ(x)
,

Ψ(x,k) = eikx1+k2x2ξ(x,k), ξ(x,k) =
τΨ(x,k)

τ(x)
,

(2.3)

and the equality (the Miwa shift)

τΦ(x,k) = det
(

VeK(x)(κ + ik)D
)

, τΨ(x,k) = det
(

V eK(x)

κ + ik
D

)

,
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where κ + ik = diag{κn + ik}Nn=1.
To study the properties of the potential and the Jost solutions, it is convenient to use the representation

for the τ -functions that follows from the Binet–Cauchy formula for the determinant of a product of matrices:

τ(x) =
1

Nb!

N
∑

{ni}=1

D({ni})V ({ni})
Nb
∏

l=1

eKnl
(x), (2.4)

χ(x,k) =
1

Nb! τ(x)

N
∑

{mi}=1

D({mi})V ({mi})
Nb
∏

l=1

(κml
+ ik)eKml

(x), (2.5)

ξ(x,k) =
1

Nb! τ(x)

N
∑

{ni}=1

D({ni})V ({ni})
Nb
∏

l=1

eKnl
(x)

κnl
+ ik

, (2.6)

where we use the notation

V ({ni}) = det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1

κn1 κn2 · · · κn
N

b

...
...

. . .
...

κNb−1
n1

κNb−1
n2

· · · κNb−1
n

N
b

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≡
∏

1≤i<j≤Nb

(κnj − κni),

D({ni}) = det

⎛

⎜

⎜

⎜

⎝

Dn1,1 · · · Dn1,Nb

...
. . .

...

Dn
N

b
,1 · · · Dn

N
b
,Nb

⎞

⎟

⎟

⎟

⎠

(2.7)

for the maximal minors of the matrices V and D and {mi} = {m1, . . . , mN
b
} and {ni} = {n1, . . . , nN

b
} denote

unordered sets of Nb indices from the interval {1, . . . ,N}. We recall that the maximal minors of a matrix
satisfy the Plücker relation: for any subsets {m1, . . . , mN

b
} and {n1, . . . , nN

b
} of indices ranging from 1 to N

and arbitrary j ∈ {1, . . . , Nb},

D({mi})D({ni}) =
Nb
∑

s=1

D(m1, . . . , ms−1, nj , ms+1, . . . , mN
b
) ×

×D(n1, . . . , nj−1, ms, nj+1, . . . , nN
b
). (2.8)

We note that the only x-dependent terms in (2.4)–(2.6) are exponentials of sums of linear func-
tions (2.1). Consequently, the asymptotic behavior of the function τ(x) and of the potential has a sectorial
structure on the x plane. To specify this structure as x → ∞, we introduce the directions (rays) rn such that
along rn, the function x1 +(κn +κn+Nb

)x2 is bounded and (κn+Nb
−κn)x2 → −∞, n = 1, . . . ,N . Here, we

assume that the indices are defined modulo N , and because N = Na+Nb, we hence say that n+Nb = n−Na

for n > Na. As a result, we have Na rays in the direction x2 → −∞ and Nb rays in the direction x2 → +∞.
The sector σn is swept by the ray rn rotating counterclockwise up to the ray rn+1. These sectors are non-
intersecting and cover the entire x plane with the exception of the rays. In [9], we proved that the leading
exponentials in τ(x) as x → ∞ are the exponentials exp

(
∑n+Nb−1

l=n Kl(x)
)

, each leading in the correspond-
ing sector σn of the x plane. More precisely, if the coefficients zn = V (n, . . . , n+Nb−1)D(n, . . . , n+Nb−1)
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are nonzero for all n = 1, . . . ,N (again under the condition that the indices are defined modulo N ), then
the function τ(x) has the following asymptotic behavior along rays and inside sectors:

x
rn−→ ∞ : τ(x) =

(

zn + zn+1e
KNb+n(x)−Kn(x) + o(1)

)

exp
( n+Nb−1

∑

l=n

Kl(x)
)

,

x
σn−→ ∞ : τ(x) =

(

zn + o(1)
)

exp
( n+Nb−1

∑

l=n

Kl(x)
)

.

(2.9)

The regularity of the potential u(x) on the x plane is equivalent to the absence of zeros of τ(x). It
is clear that it suffices to impose the condition that the matrix D is totally nonnegative (TNN), i.e., that
D(n1, . . . , nN

b
) ≥ 0 for all 1 ≤ n1 < · · · < n

N
b
≤ N . On the other hand, it follows directly from (2.9) that it

suffices to require zn > 0 for the nonsingularity of the asymptotic potential. In the case of a TNN matrix,
this condition is equivalent [18] to the condition that all maximal minors of the matrix D are positive, i.e.,
a totally positive (TP) matrix.

We also mention that the asymptotic forms of the functions χ(x,k) and ξ(x,k) are bounded on the
x plane because the x-dependent exponentials enter the denominators and numerators of expressions (2.5)
and (2.6) with coefficients proportional to D({ni}). This means that the leading asymptotic behavior of
the denominators of χ(x,k) and ξ(x,k) on the x plane is not weaker than the behavior of their numerators
(for more details, see [8], [9], [16], [17], where the same notation is used).

In what follows, we need the values χ(x, iκn) of χ(x,k) and the residues ξn(x) of ξ(x,k) at k = iκn.
Taking (2.3) and (2.5), (2.6) into account, we obtain

χ(x, iκn) =
(−1)Nb

Nb! τ(x)

N
∑

{mi}=1

D({mi})V ({mi}, n)
Nb
∏

l=1

eKml
(x), (2.10)

ξn(x) =
1

iNb! τ(x)

N
∑

{ni}=1

D({ni})
Nb
∑

j=1

δnjn(−1)j−1V (n1, . . . , n̂j , . . . , nN
b
)

Nb
∏

l=1

eKnl
(x), (2.11)

where {{mi}, n} = {m1, . . . , mN
b
, n}, the hat over n̂j indicates that this index is omitted, and the Kronecker

symbol δnjn in the right-hand side of (2.11) appears because the residues of the terms in the sum are
nonzero only when nj = n for some j.

Using the analytic properties of χ(x,k) and ξ(x,k) (see (2.5), (2.6)), we can write their product in
terms of the values χ(x, iκn) and ξn(x) as

χ(x,k)ξ(x′,k) = 1 +
N

∑

n=1

χ(x, iκn)ξn(x′)
k − iκn

, (2.12)

which is also useful in what follows. In [16], we demonstrated that the Jost solutions satisfy the Hirota
bilinear identity

N
∑

n=1

Φ(x, iκn)Ψn(x′) = 0, (2.13)

where Ψn(x) analogously to (2.11) denotes the residue of Ψ(x,k) at k = iκn.
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3. Extended resolvent M(x, x′; q)

We prove that the resolvent M(x, x′; q), i.e., a tempered distribution in its six real variables satisfy-
ing (1.6), can be written as a sum of continuous (in some sense) and discrete parts whose definitions and
properties are given below:

M(x, x′; q) = Mc(x, x′; q) + Md(x, x′; q). (3.1)

We also identify the infinite region on the q plane where M(x, x′; q) is a tempered distribution and prove
that M(x, x′; q) is in fact bounded for q in this region. For both summands, we use the hat notation
introduced in (1.7):

Mc(x, x′; q) = e−q(x−x′)
̂Mc(x, x′; q), Md(x, x′; q) = e−q(x−x′)

̂Md(x, x′; q). (3.2)

Hence, we first define

̂Mc(x, x′; q) = − sgn(x2 − x′
2)

2π

∫

dα θ((q2 + α2 − q2
1)(x2 − x′

2)) ×

× Φ(x, α + iq1)Ψ(x′, α + iq1), (3.3)

where the Jost and dual Jost solutions Φ(x,k) and Ψ(x,k) are defined in (2.3), the integration is along the
real axis, and θ is the Heaviside function. The properties of Mc are given in the following lemma.

Lemma 1. The integral in the right-hand side of (3.3) exists, and the function Mc given in (3.2) is a

bounded function of its arguments for all x, x′, q ∈ R
2 and has finite limits at infinity.

Proof. Because of (2.3) and (3.2), we can write

Mc(x, x′; q) = M0(x, x′; q) −
N

∑

n=1

χ(x, iκn)ξn(x′)
sgn(x2 − x′

2)
2π

∫

dα
θ((q2 + α2 − q2

1)(x2 − x′
2))

α + i(q1 − κn)
×

× e−iα(x1−x′
1+2q1(x2−x′

2))−(q2+α2−q2
1)(x2−x′

2), (3.4)

where we use (2.12) for the product χ(x,k)ξ(x′,k) and M0(x, x′; q) is the extended resolvent of operator (1.5)
in the case of a zero potential:

M0(x, x′; q) = − sgn(x2 − x′
2)

2π

∫

dα θ((q2 + α2 − q2
1)(x2 − x′

2)) ×

× e−iα(x1−x′
1+2q1(x2−x′

2))−(q2+α2−q2
1)(x2−x′

2). (3.5)

Then the statement of the lemma follows directly because the factors in (3.4) and (3.5) decrease exponen-
tially.

Applying heat operator (1.1) to ̂Mc(x, x′; q) in (3.3), we obtain

L(x, ∂x)̂Mc(x, x′; q) =
δ(x2 − x′

2)
2π

∫

ds Φ(x, s + iq1)Ψ(x′, s + iq1).
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The integral in the right-hand side can be computed explicitly by virtue of (2.3): substituting (2.8) in it,
we obtain

δ(x2 − x′
2)

2π

∫

ds Φ(x, s + iq1)Ψ(x′, s + iq1) = δ(x − x′) − δ(x2 − x′
2)p(x, x′, q1) +

+ iδ(x2 − x′
2)θ(x

′
1 − x1)

N
∑

n=1

Φ(x, iκn)Ψn(x′), (3.6)

where the last term cancels because of (2.13). In (3.6), we set

p(x, x′, q1) = i

N
∑

n=1

θ(q1 − κn)Φ(x, iκn)Ψn(x′). (3.7)

We note that p(x, x′, q1) does not belong to the space of Schwartz distributions, because it can increase
exponentially in some directions in the x plane [16]. It follows from (2.13) that

p(x, x′, q1) = 0 for any q1 /∈ [κ1, κN ], (3.8)

and this function can be rewritten in either of the forms

p(x, x′, q1) =
i

2

N
∑

n=1

sgn(q1 − κn)Φ(x, iκn)Ψn(x′) ≡ −i

N
∑

n=1

θ(κn − q1)Φ(x, iκn)Ψn(x′). (3.9)

We also note that by definition,

L(x, ∂x)p(x, x′, q1) = 0 for any q ∈ R
2. (3.10)

We define the second term in (3.1) as (also see (3.2))

̂Md(x, x′; q) = ∓θ(±(x2 − x′
2))p(x, x′, q1), (3.11)

and by (3.10), we have
L(x, ∂x)̂Md(x, x′; q) = δ(x2 − x′

2)p(x, x′, q1)

for any choice of sign in the right-hand side. With (3.6) taken into account, this proves that the function

̂M(x, x′; q) = ̂Mc(x, x′; q) + ̂Md(x, x′; q) (3.12)

satisfies the first equality in (1.8) or M(x, x′; q) given by (3.1) satisfies the first equality in (1.6) by virtue
of (1.7). The second equalities in (1.6) and (1.8) are proved analogously. We note that by (3.8),

Md(x, x′; q) = 0 for all q1 /∈ [κ1, κN ]. (3.13)

Therefore, to prove that M(x, x′; q) is the extended resolvent, we must prove that Md(x, x′; q) belongs to
the class of tempered distributions and specify the choice of signs in (3.11). For this, we must find the
dependence of Md(x, x′; q) on its variables explicitly.
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We first consider the function p(x, x′, q1) defined in (3.7). Substituting equalities (2.10) and (2.11), by
virtue of the antisymmetry of the minors of the matrices D and V (see (2.7)), after summing over n, we
obtain

p(x, x′, q1) =
−1

Nb!(Nb − 1)! τ(x)τ(x′)

N
∑

{mi}=1

N
∑

{ni}=1

D({mi})D({ni})θ(q1 − κn
N

b

) ×

× V ({mi}, nN
b
)V (n1, . . . , nn

N
b
−1

) ×

× exp
( Nb

∑

l=1

Kml
(x) + Kn

N
b

(x) +
Nb−1
∑

l=1

Knl
(x′)

)

. (3.14)

Further, we use formula (2.8) for the product of the minors of the matrix D with j = Nb and exchange
the summation indices: ms ↔ nN

b
, s = 1, . . . , Nb. We note that under this exchange, the first Vander-

monde determinant changes sign, while the second Vandermonde determinant and also the exponential are
unchanged. Therefore, we have

p(x, x′, q1) =
1

Nb!(Nb − 1)! τ(x)τ(x′)

Nb
∑

s=1

N
∑

{mi}=1

N
∑

{ni}=1

D({mi})D({ni}) ×

× θ(q1 − κms)V ({mi}, nN
b
)V (n1, . . . , nN

b
−1) ×

× exp
( Nb

∑

l=1

Kml
(x) + Kn

N
b

(x) +
Nb−1
∑

l=1

Knl
(x′)

)

. (3.15)

Now exchanging ms and m
N

b
and summing over s, we obtain Nb equal terms. Finally, we multiply (3.14)

by Nb, add to (3.15), and divide this sum by Nb + 1, which gives

p(x, x′, q1) =
1

((Nb − 1)!)2(Nb + 1)τ(x)τ(x′)

N
∑

{mi}=1

N
∑

{ni}=1

D({mi})D({ni}) ×

×
(

θ(q1 − κm
N

b

) − θ(q1 − κn
N

b

)
)

V ({mi}, nN
b
)V (n1, . . . , nN

b
−1) ×

× exp
( Nb

∑

l=1

Kml
(x) + Kn

N
b

(x) +
Nb−1
∑

l=1

Knl
(x′)

)

,

and hence for all n = 1, . . . ,N − 1 for κn ≤ q1 ≤ κn+1,

p(x, x′, q1) =
1

((Nb − 1)!)2(Nb + 1)τ(x)τ(x′)

∑

{mi},{ni}
D({mi})D({ni}) ×

×
(

θ(q1 − κm
N

b

) − θ(q1 − κn
N

b

)
)

V ({mi}, nN
b
)V (n1, . . . , nN

b
−1) ×

× exp
( Nb

∑

l=1

Kml
(x) + Kn

N
b

(x) +
Nb−1
∑

l=1

Knl
(x′)

)

.

Here and hereafter, the sum over {mi}, {ni} assumes summation over all selections m1, . . . , mN
b

and n1,

. . . , n
N

b
from the set {1, . . . ,N} such that the interval [κn, κn+1] belongs to the interval [κm

N
b

, κn
N

b

]. We

note that this sum does not contain terms with m
N

b
= n

N
b
because of the factor V ({mi}, nN

b
).
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Fig. 1. The polygon P in the case N = 5.

By (3.2) and (3.11), we find that for all n = 1, . . . ,N − 1 for κn ≤ q1 ≤ κn+1,

Md(x, x′; q) =
∓θ(±(x2 − x′

2))e−q(x−x′)

((Nb − 1)!)2(Nb + 1)τ(x)τ(x′)

∑

{mi},{ni}
D({mi})D({ni}) ×

×
(

θ(q1 − κm
N

b

) − θ(q1 − κn
N

b

)
)

V ({mi}, nN
b
)V (n1, . . . , nN

b
−1) ×

× exp
( Nb

∑

l=1

Kml
(x) + Kn

N
b

(x) +
Nb−1
∑

l=1

Knl
(x′)

)

(3.16)

under the same condition on the summation over {mi}, {ni}. Representation (3.16) for Md(x, x′; q) gives
one more proof of relation (3.13).

In [16], we demonstrated that extended operator (1.5) can have annihilators when q belongs to some
polygons on the q plane. Therefore, the operator inverse to (1.5) (the extended resolvent) cannot exist for
any value of q. We introduce the polygon P inscribed in the parabola q2 = q2

1 in the q plane (see Fig. 1)
with vertices at the points (κn, κ2

n) for n = 1, . . . ,N and the characteristic function

ε(q) =
N−1
∑

m=1

(

θ(q1 − κn+1) − θ(q1 − κn)
)(

θ(qn,n+1) − θ(q1N )
)

, (3.17)

where
qmn = q2 − (κm + κn)q1 + κmκn. (3.18)

Obviously, this polygon divides the strip κ1 < q1 < κN in the q plane into two disconnected parts. Moreover,
this polygon consists of substrips given by subsequent κ values as

κn < q1 < κn+1, qn,n+1 > 0, n = 1, . . . ,N − 1, q1,N < 0.

Taking (3.13) into account, we can now prove the following result.

Lemma 2. Let the {Na, Nb}-soliton potential u(x) be such that its τ -function (2.2), (2.4) satisfies the

condition that on any subset {n1 < · · · < n
N

b
} ⊂ {1, . . . ,N}, the ratio

1
τ(x)

Nb
∏

l=1

eKn
l
(x) (3.19)
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is bounded for all x and has finite limits at spatial infinity. Then Md(x, x′; q) for all q in the strip κ1 ≤
q1 ≤ κN and outside the polygon P is a bounded function of all its arguments including values at infinities

if the upper sign in (3.11) is chosen for q above the polygon P and the bottom sign is chosen for q below

the polygon P .

Proof. Because of (3.13), we consider only q belonging to the strip κ1 ≤ q1 ≤ κN . We set zmn =
x1 + (κm + κn)x2. Using the identity

θ(q1 − κm) − θ(q1 − κn) = sgn(zmn − z′mn)
[

θ((q1 − κm)(zmn − z′mn)) − θ((q1 − κn)(zmn − z′mn))
]

,

we then rewrite (3.16) in the form

Md(x, x′; q) =
∓θ(±(x2 − x′

2))
((Nb − 1)!)2(Nb + 1)τ(x)τ(x′)

×

×
∑

{mi},{ni}
D({mi})D({ni}) sgn(zm

N
b
n

N
b

− z′m
N

b
n

N
b

)V ({mi}, nN
b
)V (n1, . . . , nN

b
−1) ×

×
[

θ((q1 − κm
N

b

)(zm
N

b
n

N
b

− z′m
N

b
n

N
b

)) − θ((q1 − κn
N

b

)(zm
N

b
n

N
b

− z′m
N

b
n

N
b

))
]

×

× exp
( Nb

∑

l=1

Kml
(x) + Kn

N
b

(x) +
Nb−1
∑

l=1

Knl
(x′) − q(x − x′)

)

(we recall that the summation over {mi}, {ni} ranges all m1, . . . , mN
b
and n1, . . . , nN

b
in the set {1, . . . ,N}

such that [κn, κn+1] ⊆ [κm
N

b

, κn
N

b

]).
We decompose this expression into a sum of two terms in correspondence with the two terms in the

square brackets, replace q(x − x′) in the exponential with the identity q(x − x′) = Km(x) − Km(x′) +
qmn(x2 − x′

2) + (q1 − κm)(zmn − z′mn), where Km(x) and qmn are defined in (2.1) and (3.18), and finally
set m = m

N
b
and n = n

N
b
in the first term and n = m

N
b
and m = n

N
b
in the second term. We thus obtain

Md(x, x′; q) = M (1)(x, x′; q) + M (2)(x, x′; q), (3.20)

where in each substrip κn ≤ q1 ≤ κn+1, n = 1, . . . ,N ,

M (1)(x, x′; q) =
∓θ(±(x2 − x′

2))
((Nb − 1)!)2(Nb + 1)

∑

{mi},{ni}
sgn

(

zm
N

b
n

N
b

− z′m
N

b
n

N
b

)

×

× e
−qm

N
b

n
N

b

(x2−x′
2)

V ({mi}, nN
b
)V (n1, . . . , nN

b
−1) ×

× θ((q1 − κm
N

b

)(zm
N

b
n

N
b

− z′m
N

b
n

N
b

))e
−(q1−κm

N
b

)(zm
N

b
n
N

b

−z′
m

N
b
n
N

b

)
×

×
D({mi}) exp

(
∑Nb−1

l=1 Kml
(x) + Kn

N
b

(x)
)

τ(x)
×

×
D({ni}) exp

(
∑Nb−1

l=1 Knl
(x′) + Km

N
b

(x′)
)

τ(x′)
(3.21)
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and

M (2)(x, x′; q) =
±θ(±(x2 − x′

2))
((Nb − 1)!)2(Nb + 1)

∑

{mi},{ni}
sgn

(

zm
N

b
n

N
b

− z′m
N

b
n

N
b

)

×

× e
−qm

N
b

n
N

b

(x2−x′
2)

V ({mi}, nN
b
)V (n1, . . . , nN

b
−1) ×

× θ((q1 − κn
N

b

)(zm
N

b
n

N
b

− z′m
N

b
n

N
b

))e
−(q1−κn

N
b

)(zm
N

b
n
N

b

−z′
m

N
b
n
N

b

)
×

×
D({mi}) exp

(
∑Nb

l=1 Kml
(x)

)

τ(x)
D({ni}) exp

(
∑Nb

l=1 Knl
(x′)

)

τ(x′)
. (3.22)

The right-hand sides of these relations depend on x and x′ via the exponential factors and the τ -functions
in the denominators. Because the extended resolvent must belong to the space of tempered distributions,
it suffices to show that the right-hand sides of equalities (3.21) and (3.22) cannot increase at the spatial
infinity. We consider the behavior with respect to x of these two expressions in detail.

First, recalling definition (3.18) of qmn, we note that for q belonging to the nth substrip κn ≤ q1 ≤ κn+1

such that qn,n+1 ≤ 0, i.e., for q in this substrip below the polygon P or on its bottom border, all other
qm

N
b
,n

N
b

in the sum are nonpositive. Similarly, if q1,N ≥ 0, i.e., q belongs to the substrip κn ≤ q1 ≤ κn+1

above the polygon P or on its upper border, then all other qm
N

b
,n

N
b

in the summation are nonnegative.

Therefore, if we choose the signs in the right-hand side of (3.21) and (3.22) as indicated in the lemma
condition, then the exponentials in the second lines decrease or are bounded when x or q tends to infinity.
The exponentials in the third lines of (3.21) and (3.22) decrease or at least do not increase by virtue of the
factors in front of them.

Hence, we should verify the behavior with respect to x and x′ of the last two fractions in (3.21)
and (3.22). The situation is trivial in the case of relation (3.22). The last two exponentials in the numerators
of those fractions have the same coefficient (minor of D) as in τ(x) and τ(x′) in the denominators, and
these fractions are therefore bounded as x and x′ increase. The situation with (3.21) is more complicated.
We consider the next-to-last factor in that expression. If the minor D({mi}) in the numerator is nonzero
and D(m1, . . . , mN

b
−1, nN

b
) �= 0, then the same exponential is present in both the numerator and τ(x) in

the denominator, and the fraction is therefore bounded. But if D(m1, . . . , mN
b
−1, nN

b
) = 0, then such an

exponential is not contained in τ(x), and in the direction where that exponential dominates (if such a
direction exists), the fraction increases at large distances. The same also holds for the last factor in the
right-hand side of equality (3.21). The boundedness of these fractions and consequently of the entire
expression (3.21) is guaranteed by the condition imposed on (3.19). The lemma is proved.

Remark 1. The lemma condition imposed on expression (3.19) is sufficient for the lemma to hold,
but it is not necessary, and the boundedness of Md(x, x′; q) requires additional study. Nevertheless, it
is clear that this condition is satisfied for a TP matrix D. If we impose the condition zn > 0 on the
matrix D instead of the TP condition, then all leading exponentials are present in τ(x), as noted when
discussing (2.9). Therefore, the lemma condition is satisfied if τ(x) has no zeros in the finite domain. To
avoid these singularities, it suffices to additionally require that the matrix D be TNN.

Remark 2. The boundedness of M(x, x′; q) in q for q ∈ R
2\P , on the boundaries of P , and in the limit

as q1,2 → ∞ follows from the boundedness of Mc(x, x′; q) in (3.4) and also M (1)(x, x′; q) and M (2)(x, x′; q)
in (3.21) and (3.22). In the next section, we consider the behavior of M(x, x′; q) with respect to q in detail.
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Remark 3. We have proved that under the conditions in Lemma 2, the function M(x, x′; q) is a
bounded function of its arguments and has a finite asymptotic behavior. This means that this function
belongs to the class of tempered distributions, i.e., it is the extended resolvent of the heat operator L(x, x′; q)
for q outside the polygon P .

4. Properties of the resolvent and Green’s functions

4.1. Extended resolvent inside and outside the parabola q2 = q2
1. The local properties of the

extended resolvent are easier to study in terms of kernel (1.7). Under special reduction (1.9), this kernel is
just the total Green’s function G(x, x′,k), where k ∈ C is the spectral parameter. Indeed, in this case, the
difference q2 − q2

1 = −Re2 k is nonpositive, and q1N (see (3.18)) is less than or equal to zero in the interval
κ1 ≤ q1 ≤ κN . Therefore, this reduction maps the exterior region of the parabola q2 = q2

1 to the complex-k
plane (more precisely, it is a one-to-two map because the reduction depends on |Rek| and not on Rek).
Taking condition (3.13) into account, we see that the part of the strip κ1 ≤ q1 ≤ κN outside the parabola is
located below the polygon P , and by Lemma 2, we should therefore choose the lower sign in (3.11). Hence,
by (3.1), (3.3), and (3.7), we obtain

G(x, x′,k) = − sgn(x2 − x′
2)

2π

∫

dα θ((α2 − Re2 k)(x2 − x′
2)) ×

× Φ(x, α + i Imk)Ψ(x′, α + i Imk) +

+ iθ(x′
2 − x2)

N
∑

n=1

θ(Im k − κn)Φ(x, iκn)Ψn(x′), (4.1)

which coincides with the Green’s function derived in [14]. The boundedness (see (1.4)) proved in that paper
now follows from the boundedness of the resolvent at infinity.

The interior part of the parabola, as noted when discussing (3.17), is divided by the polygon P into
the part above the polygon (q1,N ≥ 0) and N−1 lenses bounded by the parabola and its chords connecting
the points (κn, κ2

n) and (κn+1, κ
2
n+1), n = 1, . . . ,N − 1 (see Fig. 1). All these lenses are below the polygon

P . Taking into account that both ̂Mc(x, x′; q) and ̂Md(x, x′; q) are independent of q2 for q2 ≥ q2
1 and by

analogy with (1.9), we introduce the auxiliary Green’s functions

G+(x, x′, Imk) = ̂M(x, x′; q)
∣

∣

q1=Imk
, q2 ≥ q2

1 , q2 ≥ (κ1 + κN )q1 − κ1κN ,

G−(x, x′, Imk) = ̂M(x, x′; q)
∣

∣

q1=Imk
, q2 ≥ q2

1 , q2 ≤ (κn + κn+1)q1 − κnκn+1

(4.2)

for n = 1, . . . ,N − 1. Again, by (3.1), (3.3), (3.7), and (3.11) (with the appropriate sign chosen according
to Lemma 2), we obtain

G+(x, x′, Imk) = − θ(x2 − x′
2)

2π

∫

dα Φ(x, α + i Imk)Ψ(x′, α + i Imk) −

− iθ(x2 − x′
2)

N
∑

n=1

θ(Im k − κn)Φ(x, iκn)Ψn(x′), (4.3)

G−(x, x′, Imk) = − θ(x2 − x′
2)

2π

∫

dα Φ(x, α + i Imk)Ψ(x′, α + i Imk) +

+ iθ(x′
2 − x2)

N
∑

n=1

θ(Im k − κn)Φ(x, iκn)Ψn(x′). (4.4)
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The boundedness of these Green’s functions follows from the boundedness of the extended resolvent accord-
ing to Lemma 2. Namely, by (1.7) and (4.2), the function eImk(x′

1−x1)+s(x′
2−x2)G+(x, x′, Imk) is bounded

for any real s such that
s ≥ Im2 k + max{0, (κN − Imk)(Imk − κ1)},

and eImk(x′
1−x1)+s(x′

2−x2)G−(x, x′, Imk) is bounded for any real s such that

Im2 k ≤ s ≤ Im2 k + (κn+1 − Imk)(Imk − κn), n = 1, . . . ,N − 1.

4.2. Singularities of the Green’s functions. To describe the singularities of the considered re-
ductions of the resolvent, it is convenient to use representation (3.4) for it, and by (1.7), (2.3), (3.12),
and (3.7), (3.11), we can hence write

̂M(x, x′; q) = ̂M0(x, x′; q) −
N

∑

n=1

Φ(x, iκn)Ψn(x′)
{

sgn(x2 − x′
2)

2π

∫

dα
θ((q2 + α2 − q2

1)(x2 − x′
2))

α + i(q1 − κn)
×

× e(q1−κn−iα)(x1−x′
1)−((α+iq1)2+κ2

n)(x2−x′
2) ± iθ(±(x2 − x′

2))θ(q1 − κn)
}

, (4.5)

where

̂M0(x, x′; q) = − sgn(x2 − x′
2)

2π

∫

dα θ((q2 + α2 − q2
1)(x2 − x′

2))e
(q1−iα)(x1−x′

1)+(q1−iα)2(x2−x′
2)

as a result of (1.7) and (3.5) and the sign in the right-hand side of (4.5) must be chosen according to
Lemma 2. It is easy to see that the kernel ̂M(x, x′; q) outside the parabola q2 = q2

1 is a continuous function
of q for q �= (κn, κ2

n), n = 1, . . . ,N .
From (4.5), using reduction (1.9), we obtain the following representation of the total Green’s function

given by (4.1):

G(x, x′,k) = − sgn(x2 − x′
2)

2π

∫

Imk′=Imk

d Rek′ θ
(

(Re2 k′ − Re2 k)(x2 − x′
2)

)

×

× e−ik′(x1−x′
1)−k′2(x2−x′

2) −
N

∑

n=1

Φ(x, iκn)Ψn(x′) ×

×
{

sgn(x2 − x′
2)

2π

∫

Imk′=Imk

d Rek′ θ
(

(Re2 k′ − Re2 k)(x2 − x′
2)

)

k′ − iκn
×

× e−(κn+ik′)(x1−x′
1)−(κ2

n+k′2)(x2−x′
2) − i

2
θ(x′

2 − x2) sgn(Im k − κn)
}

, (4.6)

where we use expression (3.9) for p(x, x′, q1). By the preceding discussion, formula (4.6) defines a continuous
function of k ∈ C for all k �= iκn.

To study the behavior of the Green’s functions near the points k = iκn, we first consider the Green’s
function G+ given by (4.3). By relation (4.5), we have

G+(x, x′, Imk) = − θ(x2 − x′
2)

2π

{∫

Imk′=Imk

d Rek′ e−ik′(x1−x′
1)−k′2(x2−x′

2) +

+
N

∑

n=1

Φ(x, iκn)Ψn(x′)
( ∫

Imk′=Imk

d Rek′ e−(κn+ik′)(x1−x′
1)−(κ2

n+k′2)(x2−x′
2)

k′ − iκn

+

+ iπ sgn(Imk − κn)
)}

. (4.7)
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It is easy to see that this Green’s function is continuous in Imk and, moreover, G+(x, x′, Imk) is independent
of Imk. Indeed, differentiating with respect to Imk, we use the fact that the exponentials are analytic in
k′ = Rek′ + i Imk and decay rapidly as Rek′ → ∞ and also that ∂k′(k′− iκn)−1 = πδ(Rek′)δ(Imk′−κn).
Hence, the derivative of the first term and of each term in the summation are independently equal to zero,
and we can therefore set

G+(x, x′) = − θ(x2 − x′
2)

2π

{∫

dα e−iα(x1−x′
1)−α2(x2−x′

2) +

+
N

∑

n=1

Φ(x, iκn)Ψn(x′)
∫

dα

α
e−iα(x1−x′

1+2κn(x2−x′
2))−α2(x2−x′

2)

}

, (4.8)

where the integral is understood in the principal value sense. The result can also be calculated explicitly
in terms of hypergeometric functions.

On the other hand, using (4.3) and (4.4), we directly obtain

G−(x, x′, Imk) = G+(x, x′) +
i

2

N
∑

n=1

sgn(Imk − κn)Φ(x, iκn)Ψn(x′), (4.9)

and G−(x, x′, Imk) is discontinuous for all Imk = κn, more precisely,

G−(x, x′, κn + 0) − G−(x, x′, κn − 0) = iΦ(x, iκn)Ψn(x′), n = 2, . . . ,N − 1. (4.10)

Therefore, considering the difference between the expressions in (4.6) and (4.7), we deduce that the
total Green’s function can be written in the form

G(x, x′,k) = Greg(x, x′,k) + GΔ(x, x′,k), (4.11)

where

Greg(x, x′,k) = G+(x, x′) +
1
2π

∫

|Rek′|≤|Rek|,
Imk′=Imk

d Rek′ e−ik′(x1−x′
1)−k′2(x2−x′

2) +

+
1
2π

N
∑

n=1

Φ(x, iκn)Ψn(x′) ×

×
∫

|Rek′|≤|Rek|,
Imk′=Imk

d Rek′ e−(κn+ik′)(x1−x′
1)−(κ2

n+k′2)(x2−x′
2) − 1

k′ − iκn
. (4.12)

The last integral term is regularized by subtracting 1 in the numerator, which compensates the zero in the
denominator at k′ = iκn. Correspondingly,

GΔ(x, x′,k) =
1
iπ

N
∑

n=1

Φ(x, iκn)Ψn(x′) arccot
Imk − κn

|Rek| , (4.13)

where a term proportional to the left-hand side of (2.13) is omitted. This expression, obviously, is discon-
tinuous at k = iκn, n = 1, . . . ,N , and only at those points. Namely,

GΔ(x, x′,k) =
1
iπ

Φ(x, iκn)Ψn(x′) arccot
Imk− κn

|Rek| −

− i

N
∑

m=n+1

Φ(x, iκm)Ψm(x′) + o(1), k ∼ iκn, n = 1, . . . ,N . (4.14)
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We also note that because of (4.11)–(4.13),

G(x, x′,k)
∣

∣

Rek=0
= G+(x, x′) − i

2

N
∑

n=1

sgn(κn − Imk)Φ(x, iκn)Ψn(x′), (4.15)

where we assume that Imk �= κn, n = 1, . . . ,N . As a result of (2.13) and (4.9), this gives

G(x, x′,k)
∣

∣

Rek=0
= G−(x, x′, Imk). (4.16)

On the other hand, in the vicinity of the points iκn, we have

G(x, x′,k) = G+(x, x′) +
1
iπ

Φ(x, iκn)Ψn(x′) arccot
Imk − κn

|Rek| −

− i

N
∑

m=n+1

Φ(x, iκm)Ψm(x′) + o(1), k ∼ iκn, n = 1, . . . ,N . (4.17)

In a subsequent publication, we will show that these properties of the Green’s functions allow solving
the problem formulated in the introduction, i.e., allow generalizing the IST method to the case of perturbed
multisoliton potentials (1.2) of heat operator (1.1).
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