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THREE-DIMENSIONAL EXTENSIONS OF THE

ALDAY–GAIOTTO–TACHIKAWA RELATION

D. V. Galakhov,∗† A. D. Mironov,∗‡ A. Yu. Morozov,∗ and A. V. Smirnov∗†

An extension of the two-dimensional (2d) Alday–Gaiotto–Tachikawa (AGT) relation to three dimensions

starts from relating the theory on the domain wall between some two S-dual supersymmetric Yang–

Mills (SYM) models to the 3d Chern–Simons (CS) theory. The simplest case of such a relation would

presumably connect traces of the modular kernels in 2d conformal theory with knot invariants. Indeed, the

two quantities are very similar, especially if represented as integrals of quantum dilogarithms. But there

are also various differences, especially in the “conservation laws” for the integration variables holding for

the monodromy traces but not for the knot invariants. We also consider another possibility: interpreting

knot invariants as solutions of the Baxter equations for the relativistic Toda system. This implies another

AGT-like relation: between the 3d CS theory and the Nekrasov–Shatashvili limit of the 5d SYM theory.
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1. Introduction

A long-expected relation was suggested in [1] (also see [2]–[12]), which can be considered one possible
3+3 counterpart of the celebrated 2+4 Alday–Gaiotto–Tachikawa (AGT) relation [13] between conformal
blocks and Nekrasov functions. This new relation is assumed to identify the modular transformation kernels
M(a, a′) of conformal blocks and the matrix elements in the three-dimensional (3d) Chern–Simons (CS)
theory. In its simplest version, the relation is between the trace of the modular kernel as a function of
the external dimensions and the Hikami integrals [14] representing the CS partition functions on S3 \K (a
3d sphere with a knot K removed) considered as functions of monodromies around K. Our task here is
to discuss possible explicit formulations of such a relation, omitting all the general context and reasoning
considered in detail in [1]. We indicate some problems with the exact identification of the modular trace
and knot invariants. We also emphasize the importance of another relation between knot invariants and
the 5d Seiberg–Witten (SW) theory, which implies another form of the AGT relation involving the 3d CS
theory.

2. Modular kernel

The conformal block BΓ(a|m|q) for a given graph Γ depends on three kinds of variables: a and m are
parameters (α-parameters) on the respective internal lines and external legs (the corresponding conformal
dimensions are quadratic in these parameters), and q parameterizes the graph itself. The modular trans-
formation does not change the graph Γ (while changing q → q′ and permuting the members of the set α of
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Fig. 1. Toric conformal block diagram: Δa = (ε2/4 + a2)/ε1ε2, Δα = (ε2/4 + α2)/ε1ε2.

external-leg parameters) and is realized as an integral transformation in the a variables:

BΓ(a|α|q) =
∫

dμ(a′)M(a, a′)BΓ(a′|α′|q′).

The function M(a, a′) depends on Γ and α but not on q and is called the modular kernel associated with
the particular modular transformation q → q′. In spirit, it is a Fourier kernel: M(a, a′) ∼ e4πiaa′/ε1ε2+···,
where the corrections are less singular at small ε1 and ε2.

The simplest example is provided by the modular transformation of the toric one-point function (see
Fig. 1), which on the Yang–Mills theory side describes the theory with adjoint matter with the mass
m = −iα + ε/2 = −2iα̃:

B(a|α| − 1/τ) =
∫

dμ(a′)M(a, a′|α)B(a′|α|τ). (1)

Here (see [15]),

B(a|α|τ) = q−(ν+1)/24ην(q)e2πiτa2/ε1ε2 ×

×
(

1 + 2q
(ε1 − m)(ε2 − m)

ε1ε2

(ε2 − 4a2 + m(m − ε))
ε2 − 4a2

+ O(q2)
)

, (2)

where

ν = 1 − 2m(ε − m)
ε1ε2

, ε = ε1 + ε2, q = e2πiτ , η(q) = q1/24
∞∏

k=1

(1 − qk).

According to [16], the modular kernel in (1) is given by

M(a, a′|α) =
23/2

s(α)

∫
s(a + r + α̃)s(a − r + α̃)
s(a + r − α̃)s(a − r − α̃)

e4πira′/ε1ε2 dr, (3)

where the measure is dμ(a′) = 4 sinh(2πε1a
′) sinh(2πε2a

′) da′. The function s(z) is the “quantum diloga-
rithm” [17], [18] (also see Appendix A below), i.e., the ratio of two digamma functions,

s(z|ε1, ε2) ∼
∏

m,n≥0

(m + 1/2)ε1 + (n + 1/2)ε2 − iz

(m + 1/2)ε1 + (n + 1/2)ε2 + iz
. (4)

In (3) and everywhere below except Sec. A.1 in Appendix A (which is for reference purposes), we omit the
parameters ε1 and ε2 from the dilogarithm arguments: s(z) ≡ s(z|ε1, ε2).

We note that M(a, a′|α) depends on the external momentum α̃, the internal dimension Δ(α), and the
central charge c = 1 + 6ε2/ε1ε2, but not on the modular parameter τ .

When α → 0, the conformal block becomes purely classical,

B(a|α|τ) → 1
η(q)

e2iπτa2/ε1ε2
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(the last factor in the parentheses in the right-hand side of (2)) becomes q1/12η−2(q) at m = 0), and the
modular transformation becomes the ordinary Fourier transformation,

M(a, a′|0)μ′(a)
�α=iε/2

=
√

2 cos
(

4πi
aa′

ε1ε2

)
. (5)

Hence, indeed
e−2πiτ−1a2/ε1ε2

η(−τ−1)
=

∫
da′ e4πiaa′/ε1ε2

e2πiτ(a′)2/ε1ε2

η(τ)
1

√
ε1ε2

.

We note that the monodromy kernel satisfies the unitarity relation

∫
dμ(a)M(a, b)M∗(a, b′) =

dμ(b′)
db′

δ(b − b′),

and it is therefore natural to define the trace as

tr ∼
∫

da′ dμ(a)
dμ(a′)

δ(a − a′).

The trace of monodromy kernel (3) thus defined contains two integrals, which split:

∫
daM(a, a|α) =

23/2

s(α)

∫∫
dr da

s(a + r + α̃)s(a − r + α̃)
s(a + r − α̃)s(a − r − α̃)

e4πira =
23/2

s(α)
T+(α̃)T−(α̃),

where

T±(α̃) =
∫

s(z + α̃)
s(z − α̃)

e±iπz2
dz. (6)

In fact, the quantities like (6) are well known from the CS theory, and this opens a way towards 3d extensions
of the AGT conjecture.

3. Examples from knot theory

Polynomial knot invariants can be defined as averages of the Wilson loop along the knot in the topo-
logical CS theory [19]:

〈K〉R =
〈

trR Pexp
∮

K

A

〉
CS

. (7)

This invariant depends on the knot K, the Lie algebra G, its representation R, the coupling constant of
the theory � = log q = 2πi/k (sometimes k is shifted to k + CA, as in the WZNW model [20]), and also
the monodromy u, which describes the deviation from the periodicity of the field A while circling around
the knot. We can assume that u is an eigenvalue of the matrix of the monodromy of the passage around
the knot K. On the other hand, we can consider that u takes values in the Cartan subalgebra of the gauge
group SU(2) and thus describes the representation R on the knot K.

The averages 〈K〉R are reasonable generalizations of the ordinary characters and, like all exact corre-
lators, have hidden integrability properties [21], [22]. We note an explicit example of this hidden structure:
the averages 〈K〉R satisfy K-dependent difference equations in R [23], which allows regarding them as
belonging to the family of generalized q-hypergeometric series. The q → 1 limit of these equations defines
the spectral curve Σ(K), and the saddle point of the corresponding integral representation defines the
associated SW differential. After that, the full �-dependence can be reconstructed using the topological
recursion [24] from this SW data [9].
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Invariants (7) have the remarkable property that at u = 0, they are finite polynomials in q = e2πi/k. In
the literature, these polynomials normalized by the quantum dimension have different conventional names
corresponding to the choice of the group and representation. Here, for convenience, we present Table 1
explaining the correspondence.

Table 1
Group/ Fundamental General representation

Representation representation with weight λ

N = 0
Convey–Alexander

polynomial
—

SU(2) Jones polynomial
Colored

Jones polynomial

SU(N) HOMFLY polynomial
Colored

HOMFLY polynomial

SO(N) Kauffmann polynomial
Colored

Kauffman polynomial{
SU(N)

}
t

Superpolynomial Colored superpolynomial

The last line in Table 1 describes an extension from (quantum) groups to MacDonald characters, which
leads to a one-parameter deformation (t-deformation) of (7), to superpolynomials [25], [26] involving the
Khovanov homology [27]. The further extension of the MacDonald functions to the Askey–Wilson–Kerov
level remains uninvestigated.

Six kinds of representations are currently known for the Wilson averages in CS theory. We briefly
describe them in the following subsections and present some explicit examples in Appendix B.

3.1. Representation in terms of the quantum R-matrix. The material in this subsection is
presented in more detail in [28].

The representation in terms of the quantum R-matrix appears when calculations in the CS theory are
done in the temporal gauge A0 = 0 [29]. The propagator is then ultralocal, and only the crossings (c) and
extremal points (e) in the projection of K on the xy plane contribute. The answer can therefore be written
schematically as

〈K〉R = trR

−→∏
e,c

UeRc,

where the ordered product is taken along the line K, R is the quantum R-matrix in the representation R,
and U = qρ is the “enhancement” of the R-matrix in the same representation. For the braid representation
of the knot, this formula reduces to the well-known formula for quantum group invariants of the knot:

〈K〉R = q−w(bK)Ω2(R) qtrR(bK), Ω2(R) =
trR(T aT a)

dimR
, qtrR bK = trR bKqρ⊗n

. (8)

Here, bK ∈ Bn is the element of the braid group representing the knot K, i.e., its closure gives K, Ω2(R) is
the value of the quadratic Casimir function in the representation R, and qtrR is the quantum trace over the
representation R, qtrR bK = trR bKqρ⊗n

. The function w(bk) is the so-called writhe number of the braid
bK and is equal to the total sum of orientations of the crossings:

bK =
∏
{k}

gnk

k =⇒ w(bK) =
∑
{k}

nk.
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Calculating (8) for a particular knot reduces to multiplying and taking the trace of relatively large
matrices. The braid representations of the first few knots and the writhe numbers of the corresponding
closures are presented in Table 2.

Table 2
Knot Braid representation Writhe number

31 b = g3
1 ∈ B2 w(b̂) = 3

41 b = g2
2g

−1
1 g2g

−1
1 ∈ B3 w(b̂) = 1

51 b = g5
1 ∈ B2 w(b̂) = 5

52 b = g3
2g1g

−1
2 g1 ∈ B3 w(b̂) = 4

61 b = g1g
−1
2 g3g1g

−1
2 g−2

3 ∈ B4 w(b̂) = −1

3.2. Representation in terms of the classical R-matrix and quantum associator. In this
subsection, we rely on the results in [30].

A similar representation for 〈K〉R in terms of classical instead of quantum R-matrices appears in the
calculation of (7) in the holomorphic gauge Az̄ = 0. But instead of the trivial insertions of qρ factors, we
now need to insert sophisticated Drinfeld associators [31]. In the holomorphic gauge, the theory reduces
to the Kontsevich integral of the knot [32]. In this case, the representation of the braid group Bn in R⊗n

can be constructed in terms of the Drinfeld associators as follows. For the element gk ∈ Bn, we have
gk → ΨkRkΨ−1

k , where

Rk = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗R ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n−k

, R = qT a⊗T a

, Ψk = Φk ⊗ 1⊗(n−k),

where Φk is the kth Drinfeld associator. If bK ∈ Bn is the braid representing some knot K, then we obtain

〈K〉R = qtrR(1)nq−w(bK)Ω2(R) qtrR(bK) (9)

for quantum invariant (7). The classical R-matrices R = qT a⊗T a

again appear just at the intersection
points of the K projection on a plane. But instead of the simple enhancement factors qρ, between them, we
must now insert the quantum associators [31] acting on k lines simultaneously. The Drinfeld associators are
solutions of the Knizhnik–Zamolodchikov equations [33] in the WZNW conformal theory [20]. In particular,
the kth associator describes the monodromy of the (k+2)-point function in the WZNW model, and the
Kontsevich integral is just the trace of the monodromy associated with the braid bK . A more detailed
description of this representation can be found in [34].

3.3. Representation in terms of Vassiliev invariants and Kontsevich integrals. In the per-
turbative expansion of the CS theory, the dependences of the Wilson average 〈K〉R on the knot K and on
the group structure G, R are nicely separated:

〈K〉R = dimq(R)
∞∏

m=0

dm∏
n=1

exp{�
mαm,n(K)rm,n(R)}, (10)

where dimq(R) is the quantum dimension of the representation:

dimq(R) =
qN/2 − q−N/2

q1/2 − q−1/2
.
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Fig. 2. A basis of independent Casimir functions up to degree 6.

The quantities αm,n(K) are the primary Vassiliev invariants [35], which are rational (!) numbers, naturally
represented either as modifications of the Gauss linking integrals in the Lorentz gauge ∂μAμ = 0 [36] or as
the Kontsevich integrals in the holomorphic gauge Az̄ = 0 or in terms of the writhe numbers [37] in the
temporal gauge A0 = 0.

The group factors rm,n(R) are the eigenvalues of the operators in the cut-and-join algebra [38] on the
GL(∞) characters χR and form a basis of the multiplicative independent Casimir eigenvalues of order m.
In each order m, we have dm independent Casimirs; the first few values of dm are

d1 = 0, d2 = 1, d3 = 1, d4 = 2, d5 = 3, d6 = 5.

The Casimir functions rm,n are polynomials of the rank and weight of the representations. Table 3 lists the
first four Casimirs for SU(n) and SO(n) in the fundamental representation and for SU(2) in the spin-J
representation.

Table 3
Group r2,1 r3,1 r4,1 r4,2

SU(n) − (n2 − 1)
4

−n(n2 − 1)
8

−n2(n2 − 1)
6

− (n2 + 2)(n2 − 1)
16

SO(n) − (n − 2)(n − 1)
16

− (n − 2)2(n − 1)
64

− (n − 2)3(n − 1)
256

(n − 1)(n − 2)(n2 − 5n + 10)
256

SU(2) −J(J + 1) −J(J + 1) −J(J + 1) 2J2(J + 1)2

Our choice of the basis of rm,n is shown in Fig. 2 in the form of chord diagrams: the circle denotes
the trace over the representation R, and the trivalent vertices depict the structure constants fabc of the
algebra. This notation is clear from the two examples

r2,1 =
1

dimR
fabc trR(T aT bT c), r3,1 =

1
dimR

fabefecd trR(T aT bT dT c).
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In the case of G = SL(2), the relevant representations R are labeled by the value of the spin J , and rkj(J)
are kth-degree polynomials in J . The series in exponential (10) can be reexpanded in the new variables �

and N = 2J + 1 = u/�:

F (K, �, u) = log〈K〉R − log N =
∞∑

k=0

�
k

dk∑
j=1

αkj(K)rkj(N/�) =
∑

k

�
kFk(K, u). (11)

These Fk(K, u) are infinite combinations of Vassiliev invariants of all orders. Such a reexpansion obscures
the K and R separation, which is obvious in (10), and all the information about the gauge group (rm,n)
and the knot (αm,n) is intermixed. Instead, this expansion is the knot theory counterpart of the genus
1/N -expansion in matrix models, and u = �N plays the role of the ’t Hooft coupling.

We note that for some knots (called hyperbolic), F (K) behaves as V (K, u)�−1 at small � [39], although
all terms in the series have positive powers of �. This is typical for genus expansion series: contributions of
each particular genus are all convergent series, but the sum over genera diverges. This sum can be analyzed
using the Padé summation methods (see [40], [41] for a recent description in the matrix model context).
The value of the coefficient V (K, u) at u = 1 coincides with the volume of S3 \ K in the uniquely defined
hyperbolic metric [42]. The situation is far more interesting for nonhyperbolic knots (toric or satellite; see
the plots in Appendix C).

3.4. Representation in terms of the quantum dilogarithm. In [23], polynomial invariants (7)
for the gauge group SU(2) with the spin J were systematically interpreted as generalized q-hypergeometric
functions. Such representations were previously widely used in particular examples. This means that these
Wilson averages can be represented in the form of finite sums:

〈K〉J = dimq(R)
∑

k1,...,kn

(q, N)k1 · · · (q, N)ki1

(q, N)ki2
· · · (q, N)kn

qp2(k1,...,kn). (12)

Here, N = 2J + 1, (q, N)k is the q-Pochhammer symbol,

(q, N)k =
k∏

i=1

(
q(N−i)/2 − q−(N−i)/2

)
,

and p2(k1, . . . , kn) is a certain quadratic function. The numbers of ki in sum (12), the quadratic polynomial
p2, and the arrangement of the Pochhammer symbols are determined by the knot K, and the summation
limits are determined by J . The existence of such a representation for knots directly follows from the
AJ conjecture for the colored Jones polynomials [43], which states that 〈K〉j is a solution of a certain
hypergeometric difference equation (also see Sec. 3.6 below). At the same time, the Pochhammer symbols
can be expressed in terms of the ratio of quantum dilogarithms:

(q, N)k = (−i)k s(iε2(N − 1 − k) + i(ε1 + ε2)/2)
s(iε2(N − 1) + i(ε1 + ε2)/2)

,

and expression (12) can be rewritten schematically as

〈K〉J = dimq(R)
∑

k1,...,kn

sk1 · · · ski1

ski2
· · · skn

qp2(k1,...,kn).

This expression provides a discrete version of the Hikami invariants.
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3.5. The Hikami formalism in the Chern–Simons theory. The idea of the Hikami formalism
is to calculate the CS partition functions using a triangulation of the 3d manifold M , i.e., decomposing it
into elementary symplices, tetrahedra. Each tetrahedron has four faces, we can choose two and call them
white. The other two are then black, and we glue black faces only to white faces. With each site, we
associate a number p with the white faces and p∗ with the black faces. When two sites are identified, the
two numbers are identified, pi = p∗j . Finally, with each tetrahedron, we associate a function G(p∗1, p

∗
2|p1, p2)

and integrates over all p-variables on identified faces. With each triangulation of S3, we thus associate a
multiple integral over all p-variables, one per each two-face of triangulation:

H(K|u) =
∫ ∏

simplices

dpi1 dpi2 dpi1 dpi2 G(p∗i1 , p
∗
i2 |pi1 , pi2)

∏
2-faces

δp∗
km

−pkn

∏
1-cycles

δ

(∑
j

pj − u

)
.

At the same time, geometrically, we can associate a knot K with the system of glued tetrahedra. Moreover,
the u-variables, which are associated with the one-cycles, can be interpreted as the U(1)-monodromies
around the knot K. Most importantly, the functions G were proved in [14] to be

G(p∗i1 , p
∗
i2 |pi1 , pi2) = δ(p1 + p2 − p∗1)s(p

∗
2 − p2 − iπ + �)ep1(p

∗
2−p2)/2�+�

2/6,

and the Hikami integral H(K|u) for the given K has exactly the same form as the Wilson average 〈K〉R
in Sec. 3.4 in the (�, u) variables, only the sum is replaced with an integral (see examples in Appendix B
below). Passing from sums to integrals is associated with switching from compact to noncompact groups.

3.6. Spectral curves and topological recursion. At least for G = SL(2), the average 〈K〉R is
annihilated by a K-dependent difference operator, i.e., satisfies a recursive relation in the spin J . This
statement is sometime called the AJ conjecture [43] (see [44], [45] for the first few examples except SL(2)).
In the variables u = N�, where N = D2J+1 = 2J + 1, we obtain

A(e�∂u , eu)〈K〉R = 0. (13)

In the �=0 limit, this operator becomes a (polynomial) function, and the difference equation becomes an
algebraic equation,

A(w, λ) = 0, (14)

defining the spectral curve Σ(K). We can further define the SW differential dS = log w d log λ. In the typical
examples of the knots 41 and m009, Eq. (14) is quadratic in w (we note that an additional U(1)-factor
w − 1 splits away, decreasing the degree of the equations by one):

Σ(K) : A(w, λ) = w +
1
w

− 2f

(
λ +

1
λ

)
= 0, w±(λ) = f ±

√
f2 − 1, (15)

and

dS =
(
log w+(λ) − log w−(λ)

)
d log λ = log

f +
√

f2 − 1
f −

√
f2 − 1

d log λ. (16)

Free energy (11), F = log〈K〉R, is in fact an exact SW prepotential, reconstructed in all orders of the
genus expansion in � from this data

(
Σ(K), dS

)
using the topological recursion in [24] (see [9] for detailed

examples of this reconstruction). One may wonder what the corresponding SW theory is. The formulas
in [46] describing the 5d version of the classical SW theory in terms of the relativistic Toda integrable
system can be easily recognized in (15) and (16). Equation (13) should then be a Baxter equation, which
is now known to describe the Nekrasov–Shatashvili (NS) deformation of the classical SW theory [47], [48]
(or, equivalently, the NS limit of the full SW theory). This observation implies a new kind of AGT duality,
which we discuss in Sec. 5 below. When A(w, λ) = 0 does not reduce to a quadratic equation in w, the
analysis is more complicated.
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4. A 3d AGT relation

The suggestion in [1] is to identify the modular kernels M(a, a′) associated with modular transforma-
tions S(q) −→ S(q′) of a punctured Riemann surface and amplitudes in the CS theory on the 3d space that
is the cylinder of the homotopy of S(q) to S(q′). In particular, the trace of M(a, a′) should coincide with
the invariant of the knot K formed by the trajectory of punctures under the homotopy in the 3d manifold,
and external momenta should coincide with monodromies around the knot. Of course, K depends on the
choice of the modular transformation. Indeed, there is an understandable analogy between quantities (18)
and (19) defined below. Both are multiple integrals of products of quantum dilogarithms s( · ), and there is
a natural identification of the parameters [1]:

2πi� = log q =
2πi

k + CG
= 2πib2 =

2πiε2
ε1

. (17)

But (18) and (19) differ in the number of s-functions, the number of arguments, and the integration
contours. Perhaps, the most striking difference is that the integration variables obey “conservation laws”
in the expressions for knot invariants, but this does not happen with the trace of the monodromy matrix.
To see this, we can use the property s(z) = 1/s(−z) to bring the integral to the canonical form with all the
s functions in the numerator: ∏

i

∫
Ci

dpi

∏
m

s(Am,ipi + Bm)eCijpipj+Dipi+E .

Then
∑

m Am,i = 0 in (6), but this relation is not satisfied for knot invariants, at least for some i, i.e., for
some integration variables. The simplest example of such a discrepancy is between the expression for the
trace of the toric transformation,

T±(α) =
∫

dz
s(z + α̃)
s(z − α̃)

e±iπz2
, (18)

and the expression for the Wilson–Hikami average associated with the knot 41,

〈4〉1 ∼
∫

s(z + u)s(z − u)e6πiuz/ε1ε2 dz. (19)

We hence see that together with similar appearances, the two constructions have serious differences, which
do not allow formulating an explicit 3d relation.

5. A route to an alternative AGT relation

The seeming failure of the 3+3 AGT relation can attract additional attention to possible alternative
variants of this relation: we can expect many different AGT-like relations to exist. The simplest possibility
is to extend the known 2+4 case to the case of 3+5 dimensions, i.e., to identify quantities in the 3d CS
theory and the quantities in a 5d Yang–Mills-type theory. This should be a much simpler exercise. The
equations in Sec. 3.6 describe knot invariants, but it is easy to recognize (15) as the spectral curve for the
relativistic Toda system and (16) as the corresponding SW differential [46]. These equations thus yield a
relation between the 3d CS theory and the 5d version of the SW theory formulated as a direct q-deformation
of the ordinary 4d SW theory. In the light of this relation, difference equation (13) is identified with the
Baxter equation for the same system. At the same time, the Baxter equations arise [47] in the NS limit [49]
of the Losev–Moore–Nekrasov–Shatashvili (LMNS) prepotential [50], and we thus obtain a new AGT-like
relation, supplementing the usual AGT relation [51]:

3d CS theory new AGT←→ NS limit of 5d LMNS prepotential
ordinary AGT←→

ordinary AGT←→ q-Virasoro conformal blocks.
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More precisely, in accordance with [47], the solution of the Baxter equation, i.e., 〈K〉R, must be associated
with the SW differential, its monodromies around the A- and B-cycles on the spectral curve yielding the
5d Nekrasov functions in the NS limit via the SW equations.

There are a few interesting points to be mentioned already at this stage. The dilogarithm formulas in
Secs. 3.4 and 3.5 for the knot invariants provide integral representations for solutions of Eqs. (13). They
are similar to the solutions in [52] for the open quantum relativistic Toda chain system. Such solutions are
unavailable for the closed chain, but solution (15) is just of this type! The point is that, first, solution (13)
defines a Baxter equation at some special point of the moduli space, for some special values of “energies.”
Hence, the fact that solutions are unavailable in such a form at a generic point does not preclude their
existence at some special point. Second, while classical solution (15) relates to the relativistic Toda type,
its quantization is ambiguous, and (13) is not the standard version of the Baxter equation considered in
the literature. It is important that when dealing with difference (and not differential) equations, we obtain
infinitely many solutions. To cope with this ambiguity, we consider two difference equations where there
might be only one differential equation. And this pair of equations is usually related by the symmetry
ε1 ↔ ε2, which is explicitly broken in our construction of knot invariants. In particular, it is explicitly
broken in basic AGT relation (17).

An unresolved interesting question remains. What should replace the knot invariants if this new AGT
duality is lifted to the entire LMNS deformation of the 5d LMNS theory and not only in the NS limit?

6. Conclusion

After the discovery of the AGT relation [13], using which we can describe the 2d conformal theory
in the general context of the SW and integrability theories [53], a search was immediately initiated for
its extension, which would do the same with the 3d CS theory. The goal of this paper is to switch the
discussion of the 3d AGT relations from the qualitative to a quantitative level. This became possible
because of the progress in the theory of knot invariants, which was briefly reviewed in Sec. 3 above (in fact,
some consequences of the CS theory have not yet been obtained, but this is mostly due to the insufficient
attention of researchers studying quantum field theory). Given a set of directly explicit formulas, we can
easily test various hypotheses. In this direction, we encountered several problems arising when studying the
hypothesis [1] that relates knot invariants to modular kernels based on the AGT relation. Instead of this,
using the AGT relation, we demonstrated that these invariants are connected with the 5d SYM theory.
This is a more direct and less intriguing possibility nevertheless also deserving attention.

Appendix A: Dilogarithm properties

A serious problem when discussing 3d AGT relations is the lack of a common notation: for the same
quantities, specialists from various fields use different notations that are distinguished by different rescalings.
The purpose of this appendix is to list some relations between various definitions of quantum dilogarithms
used in the literature. We also demonstrate the trick needed for taking the massless limit α → 0 of the
modular kernel M(a, a′), i.e., for deriving Eq. (5).

A.1. Various dilogarithms. The “quantum dilogarithm” [18] is defined as the ratio of two digamma
functions [17]:

s(z|ε1, ε2) =
∏

m,n≥0

(m + 1/2)ε1 + (n + 1/2)ε2 − iz

(m + 1/2)ε1 + (n + 1/2)ε2 + iz
=

Γ2(ε/2 + iz|ε1, ε2)
Γ2(ε/2 − iz|ε1, ε2)

.
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It has several periodicity properties:

s

(
z − iε2

2

∣∣∣∣ ε1, ε2

)
= 2 ch

(
πz

ε1

)
s

(
z +

iε2
2

∣∣∣∣ ε1, ε2

)
,

s

(
z − iε1

2

∣∣∣∣ ε1, ε2

)
= 2 ch

(
πz

ε2

)
s

(
z +

iε1
2

∣∣∣∣ ε1, ε2

)
,

s

(
z − iε

2

∣∣∣∣ ε1, ε2

)
= 4 sinh

(
πz

ε1

)
sinh

(
πz

ε2

)
s

(
z +

iε

2

∣∣∣∣ ε1, ε2

)
.

(A.1)

The definition of the quantum dilogarithm allows finding its integral representation

i log s(z|ε1, ε2) =
∫ ∞

0

dw

w

(
sin(2zw)

2 sinh(ε1w) sinh(ε2w)
− z

ε1ε2w

)
,

which can be used to obtain the asymptotic formula

i log s(z|ε1, ε2) =
πz2

2ε1ε2
− π

24
2ε1ε2 − ε2

ε1ε2
+ i

∞∑
n=0

Bn(1/2)
n!

(
2πi

ε2
ε1

)n−1

Li2−n(−e2πz/ε1). (A.2)

The resummation expansion

i log s(z0 + z|ε1, ε2) =
π(z0 + z)2

2ε1ε2
− π

24
2ε1ε2 − ε2

ε1ε2
+

+
∞∑

k=−1

∞∑
j=0

ik+1Bk+1(1/2)
(k + 1)! j!

(2π)k+j εk
2

εk+j
1

Li1−j−k(−e2πz0/ε1)zj

is also useful. The quantum dilogarithm is symmetric with respect to ε1 and ε2, but we have explicitly
chosen ε2 to be small here, this expansion playing a crucial role in the NS limit.

The definition of the quantum dilogarithm presented above is convenient for applications in the context
of the AGT conjecture, where the parameters ε1,2 are explicitly specified, but another variant that differs
by rescaling is encountered in the literature,

Sb(z) = exp
{

1
i

∫ ∞

0

dw

w

(
sin(2zw)

2 sinh(bw) sinh(b−1w)
− z

w

)}
, (A.3)

and hence

s(z|ε1, ε2) = S√
ε1/ε2

(
z

√
ε1ε2

)
.

A.2. Modular kernel. In this section, we present a standard trick for computing modular kernel (3)
in the simple limit of zero external dimension α̃ → iε/2. Considering the modular kernel in this limit
naively, we derive

M(a, a′) = 23/2

∫
dr

e4πia′r

16 sinh
(
π(a + r)/ε1

)
sinh

(
π(a + r)/ε2

)
sinh

(
π(a − r)/ε1

)
sinh

(
π(a − r)/ε2

)
from Eq. (A.1). The denominator in the integrand has double poles, which are glued together in the limit
α̃ → iε/2, and the chosen integration contour is pinched between them. Hence, we must take the limit more
carefully:

M(a, a′|0) =
∮

r=−a

dr
s(a + r + iε/2 + iλ)
s(a + r − iε/2 − iλ)

e4πia′r

4 sinh
(
π(a − r)/ε1

)
sinh

(
π(a − r)/ε2

) +

+
∮

r=a

dr
s(a − r + iε/2 + iλ)
s(a − r − iε/2 − iλ)

e4πia′r

4 sinh
(
π(a + r)/ε1

)
sinh

(
π(a + r)/ε2

) .
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Further, we have

s(a + r + iε/2 + iλ)
s(a + r − iε/2 − iλ

=
∏

m,n≥0

(m + 1/2)ε1 + (n + 1/2)ε2 − i(a + r + iε/2 + iλ)
(m + 1/2)ε1 + (n + 1/2)ε2 + i(a + r + iε/2 + iλ)

×

× (m + 1/2)ε1 + (n + 1/2)ε2 + i(a + r − iε/2 − iλ)
(m + 1/2)ε1 + (n + 1/2)ε2 − i(a + r − iε/2 − iλ)

=

=
∏

m,n≥0

(m + 1)ε1 + (n + 1)ε2 − i(a + r + iλ)
mε1 + nε2 + i(a + r + iλ)

×

× (m + 1)ε1 + (n + 1)ε2 + i(a + r − iλ)
mε1 + nε2 − i(a + r − iλ)

∼
m,n=0

∼
m,n=0

1
(a + r)2 − λ2

∼
λ→0

δ(a + r).

As a result, we obtain

M(a, a′|0) →
√

2 cos(4πiaa′/ε1ε2)
μ′(a)

.

A.3. Chern–Simons average. A different definition of the dilogarithm is commonly used to calcu-
late the standard quantities in the CS theory. For instance, the average for the knot 41 is usually written
as a function of the coupling constant h and the knot monodromy parameter u as (we note that � in our
formulas differs from h in [14] by a factor of 2)

〈41〉 = H(u, �) =
1√
π�

∫
dp

Φ�(p + iπ + �/2)
Φ�(−2u − p − iπ − �/2)

e−4u(u+p)/�−u,

where

Φ�(z) = Φ
(

z

πi�

∣∣∣∣ �

2πi

)
, Φ(z|τ) = exp

(
1
4

∫
dw

w

e2xz

sinh w sinh τw

)
.

In the previously discussed context of conformal field theory, we can encounter a similar function but with
rescaled parameters,

eb(z) = exp
(

1
4

∫
dw

w

e−2izw

sinh(bw) sinh(b−1w)

)
= Φ(−ibz|b2),

and hence

〈41〉 =
1√

2π(πib2)

∫
dp

eb((p + iπ + πib2)/2πb)
eb((−2u − p − iπ − πib2)/2πb)

e−2πib2u(u+p)/2πb2−u.

Introducing the new variables z = p/2πb, u′ = u/2πb, and Q = b + b−1, we obtain

〈41〉 =
2πb√

2π(πib2)

∫
dz

eb(z + iQ/2)
eb(−2u′ − z − iQ/2)

e8πiu′(u′+z)−2πbu′
.

We note that the functions eb and Sb given by (A3), although similar, differ slightly, in particular, they
differ by a factor: eb(z) = eπiz2/2e−iπ(2−Q2)/24Sb(z). Therefore,

〈41〉 =
√
−2i

∫
dz

Sb(z + iQ/2)
Sb(−2u′ − z − iQ/2)

e6πiu′(z+u′)−πu′(b−b−1) =
z→z−u′−iQ/2

=
z→z−u′−iQ/2

√
−2i

∫
dz Sb(z − u′)Sb(z + u′)e6πiu′z+2πu′/b+4πu′b.

Finally, the same expression in terms of the s(z) dilogarithms is

H

(
2πu√
ε1ε2

, πi
ε2
ε1

)
=

√
−2i

ε1ε2

∫
dz s(z − u)s(z + u) exp

{
6πiuz

ε1ε2
+

2πu

ε2
+

4πu

ε1

}
.
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A.4. Pochhammer symbols as dilogarithm ratios. We consider the Pochhammer symbols

(q, N)k =
k∏

j=1

(q(N−j)/2 − q−(N−j)/2) = 2k
k∏

j=1

sinh
(
πi�(N − j)

)
,

(q, N)∗k =
k∏

j=1

(q(N+j)/2 − q−(N+j)/2) = 2k
k∏

j=1

sinh
(
πi�(N + j)

)
.

Using periodicity conditions (A1), we can rewrite the hyperbolic sine products as

sinh
(

πiε2z

ε1

)
= − i

2
s(iε2z + i(ε1 − ε2)/2)
s(iε2z + i(ε1 + ε2)/2)

,

i.e., the Pochhammer symbols are

(q, N)k = (−i)k
k∏

j=1

s(iε2(N − 1 − j) + iε/2)
s(iε2(N − j) + iε/2)

= (−i)k s(iε2(N − 1 − k) + iε/2)
s(iε2(N − 1) + iε/2)

(A.4)

and, similarly,

(q, N)∗k = (−i)k s(iε2(N) + iε/2)
s(iε2(N + k) + iε/2)

.

We note that the average 〈41〉 can be expressed in terms of the symbol
(
q, N/

√
�

)
k/

√
�
, which has the

symmetry under the change � → �
−1:

〈41〉 =
i

cosh(iε2(N − 1/2) + iε/2)

∑
k∈Z+1/2

(−1)k s(iε2(N − 1/2 − k) + iε/2)
s(iε2(N − 1/2 + k) + iε/2)

.

In the limit ε2 → 0, N → ∞, iε2(N − 1/2) + iε/2 = ũ, the sum can be replaced with the integral to give

〈41〉 = − 1
ε2 cosh ũ

∫
dz eπz/ε2s(z − ũ)s(z + ũ),

which is quite similar to the Hikami formula, although the correct exponential factor is not restored in the
integrand.

Appendix B: Examples of knot invariants

In this section, we describe a few simplest examples of knots and also calculate some invariants in Sec. 3:
for each knot K, we find the corresponding annihilating operator A, the spectral curve, the braid-group
element, the combination of the classical R-matrix and Drinfeld associator, the expansion of F = log〈K〉R
in the primitive Vassiliev invariants, and the Hikami integral H(K|u) in terms of the relevant combination
of s-functions.

B.1. Unknot.

B.1.1. Quantum R-matrix representation. The simplest braid representation of the unknot U0

is the braid of a single strand, i.e., the closure of the only element in the group B1: bU0 = 1 ∈ B1. Hence,
the value of the polynomial invariant is given by the character

〈U0〉 = qtrR(1) = trR(qρ) = χR(zi)
∣∣
zi=qN−2i+1 ,

where χR is the character of the representation R (i.e., the corresponding Schur polynomial).
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B.1.2. Representation in terms of the Drinfeld associator. Formula (9) for the unknot gives
the average in the form of the trace of the first Drinfeld associator Φ3 (the so-called hump). The relation
to the invariant in the preceding subsection is not entirely trivial: 〈hump〉 is given as the inverse of 〈U0〉.
The associator is a tensor with six indices, and the corresponding trace is defined as the contraction

〈hump〉 =
dimR∑

i,k,m=1

(Φ3)
i,i,k
k,m,m. (B.1)

In the case of the fundamental representation of SU(N), this sum is computed explicitly, and the result is
represented as a particular value of the hypergeometric function (see [34]):

〈hump〉 =
N

F
(
[(N − 1)�, (N + 1)�], [1 + N�], 1

) =
N(q1/2 − q−1/2)
qN/2 − q−N/2

=
N

[N ]q
.

B.1.3. Representation in terms of the Vassiliev invariant. The first few Vassiliev invariants of
the unknot are

α2,1 = −2
3
, α3,1 = 0, α4,1 =

2
45

, α4,2 = − 2
45

, α5,1 = α5,2 = α5,3 = 0.

For example, using Table 3 and these invariants for the group SU(2) with spin J , we obtain1

〈U0〉J = N exp
{

h2 2
3
J(J + 1) − h4 2

45
(J + 1)(2J2 + 2J + 1)J + . . .

}
=

=
qN/2 − q−N/2

q1/2 − q−1/2
= [N ]q, N = 2J + 1.

B.1.4. A-polynomial. The colored Jones polynomial in the case with no knot,

KN (U0|q) = 〈U0〉J =
qJ+1/2 − q−(J+1/2)

q1/2 − q−1/2
=

qN/2 − q−N/2

q1/2 − q−1/2
,

is given by character (B.1), and it therefore satisfies the quantum Laplace equation on the Cartan lattice:

KN+1 − [2]q KN + KN−1 = 0.

As a result, the A-polynomial for the unknot can be defined as A(l, m) = (l − 1)2/2, and the quantum
A-polynomial is the q-Laplace operator

Â = Δq = l̂ − [2]q + l̂−1, ΔqKN = 0,

where the operators l̂ and m̂ act on the Jones polynomial as l̂KN = KN+1 and m̂KN = qNKN .

B.1.5. Polynomial invariants. The colored HOMFLY polynomial is given by [54]

〈U0〉Y = dimq(Y ) =
∏

i,j∈Y

q(N+j−i)/2 − q−(N+j−i)/2

qh(i,j)/2 − q−h(i,j)/2
.

Here, Y is the Young diagram corresponding to the representation of SU(N), and h(i, j) is the hook length
of a box in Y .

The superpolynomial is

P0(a, q, t) =
a1/2 − a−1/2

q1/2 − q−1/2
.

The colored superpolynomial can be found in [26] (see formulas (67) and (68) there).
1Here and hereafter, we use the expansion in the parameter h := 2πi�, and hence q = eh.
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B.2. Knot 31.

B.2.1. Representation in terms of the quantum R-matrix and Drinfeld associator. The
polynomial invariant for the knot 31 can be constructed using formulas (8) and (9). In this case, 31 is the
closure of the element b31 = g3

1 ∈ B2. In this representation, the knot has three positively oriented crossings
(w(b) = 3) and two strands (n = 2 in (9)).

B.2.2. Representation in terms of the Vassiliev invariant. The first few Vassiliev invariants of
the knot 31 are

α2,1 = 4, α3,1 = −8, α4,1 =
62
3

, α4,2 =
10
3

,

α5,1 = −176
3

, α5,2 = −31
3

, α5,3 = −8.

For example, using Table 3 for SU(2) gives

〈31〉 = [2J + 1]q exp
{
−4J(1 + J)h2 + 8J(1 + J)h3 +

+
2
3
J(1 + J)(−31 + 10J + 10J2)h4 + . . .

}
, h = 2πi�.

B.2.3. Representation in terms of the quantum dilogarithm. The colored Jones polynomial
for the knot 31 with N = 2J + 1 can be represented in the hypergeometric form:

KN(31|q) = [N ]q
N−1∑
i=0

(−1)iqi(i+3)/2(q, N)i(q, N)∗i ≡ [N ]qJN (31|q). (B.2)

Using (A.4), we obtain

JN ∼
N−1∑
k=0

qk(k+3)/2 s(iε2(N − 1 − k) + i(ε1 + ε2)/2)
s(iε2(N − 1) + i(ε1 + ε2)/2)

s(iε2N + i(ε1 + ε2)/2)
s(iε2(N + k) + i(ε1 + ε2)/2)

.

In the limit as N → ∞ with |q| > 1, this expression becomes

JN ∼ q3N2/2−3N/4. (B.3)

B.2.4. A-polynomial. The A-polynomial and the spectral curve for the knot 31 have the forms

A31(l, m) = m3 + l, Σ31 = {(m, l) ∈ C
2 : m3 + l = 0}.

We note that this spectral curve corresponds to the sphere and to the open relativistic Toda system. To
compute the quantum A-polynomial, we note that the Jones polynomial for the trefoil,

JN+1 + q3N+2 1 − qN

1 − qN+1
JN = qN q2N+1 − 1

qN+1 − 1
, (B.4)

satisfies difference equation (B.2), which can be rewritten as

1

B̂(m̂)
Â(l̂, m)JN (q) = 1, (B.5)
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where Â = qm̂3(m̂ − 1) + (qm̂ − 1)l̂ and B̂ = (qm̂2 − 1)m̂. Equivalently, (B.5) can be rewritten as
√

q

m̂3

1 − m̂

1 − qm̂2
(l̂ + q3/2m̂3)KN (q) = 1. (B.6)

In the leading order in the large-N limit, this equation reduces to

(l̂ + q3/2m̂3)KN (q) = 0, (B.7)

i.e., the quantum A-polynomial is2

Â31(l̂, m̂|q) = l̂ + q3/2m̂3.

We note that polynomial (B.3) solves (B.7). For finite N , Eq. (B.6) can be rewritten as [55]

ÂGJN (q) ≡ (l̂ − 1)
1

B̂(m̂)
Â(l̂, m̂)JN (q) = 0,

where

ÂG = − 1
qm̂

1 − q2m̂

1 − q2m̂2
l̂ 2 −

[
1
m̂

1 − qm̂

1 − qm̂2
− q2m̂2 1 − qm̂

1 − q3m̂

]
l̂ − q2m̂2 1 − m̂

1 − q2m̂
.

B.2.5. Polynomial invariants. The colored polynomial is known only for SU(3) (see Theorem 1
in [45]).

The superpolynomial (noncolored) has the form

P31(a, q, t) = P0(a, q, t)(aq−1 + aqt2 + a2t3).

Substituting t = −1, we obtain the HOMFLY polynomial from this superpolynomial. If we set a = qN in it,
then it corresponds to the SU(N) CS theory. The case a = q2 gives the Jones polynomial, and a = q0 = 1
gives the Alexander polynomial.

B.3. Knot 41.

B.3.1. Representation in terms of the quantum R-matrix and Drinfeld associator. The
polynomial invariant for the knot 41 can be constructed using formulas (8) and (9). In this case, knot 41

can be represented as the closure of the element b41 = g2
2g

−1
1 g2g

−1
1 ∈ B3. In this representation, the knot

has three positively oriented crossings, two negatively oriented crossings (w(b) = 1), and two strands (n = 3
in (9)).

B.3.2. Representation in terms of the Vassiliev invariant. The first few Vassiliev invariants of
knot 41 are

α2,1 = −4, α3,1 = 0, α4,1 =
33
3

, α4,2 =
14
3

, α5,1 = α5,2 = α5,3 = 0.

For instance, using Table 3 for SU(2) gives

〈41〉 = [N ]q exp
{

J(J + 1)h2

[
4 +

2
3
(14J2 + 14J − 17)h2 +

+
1
90

(2416J4 + 4832J3 − 9212J2 − 11628J + 8013)h4 +

+
1

1260
(109552J6 + 328656J5 − 973888J4 − 2495536J3 +

+ 1783146J2 + 3085690J − 1645097)h6 + . . .

]}
.

2A different choice of the variables is often made in the literature: q → q2 and �m → �m2.
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In the limit as N → ∞ (N = 2J + 1) with finite u = hN , only the terms of the zeroth degree in N survive,
and the series becomes

lim
N→∞

log〈41〉 = 1 + u2 +
7
12

u4 +
151
360

u6 + · · · =

=
∞∑

n=0

2u2n

(2n)!

∞∑
k=0

k2n−1

((
1 +

√
5

)
/2

)2 = − log
((

1 − m

γ

)(
1 − 1

γm

))
,

where γ =
(
3 +

√
5
)
/2 and m = eu. We note that a 1/� term would correspond to the genus 1/2 in the

’t Hooft expansion.

B.3.3. Representation in terms of the quantum dilogarithm. The colored Jones polynomial
for the knot 41 with N = 2J + 1 can be represented in the hypergeometric form:

KN(41|q) = [N ]q
N−1∑
i=0

(q, N)i(q, N)∗i ≡ [N ]qJN (41|q).

Formula (A.4) then gives

KN ∼
N−1∑
k=0

(−1)k s(iε2(N − 1 − k) + i(ε1 + ε2)/2)
s(iε2(N − 1) + i(ε1 + ε2)/2)

s(iε2N + i(ε1 + ε2)/2)
s(iε2(N + k) + i(ε1 + ε2)/2)

. (B.8)

B.3.4. Hikami representation. To obtain the Hikami integral representation from (B.8), we must
take the double limit ε2 → 0 and N → ∞ such that iε2(N − 1/2)+ iε/2 = ũ. In this limit, the sum in (B.8)
should be replaced with the integral, and we finally obtain

KN = − 1
ε2 cosh ũ

∫
dz eπz/ε2s(z − ũ)s(z + ũ). (B.9)

In Hikami’s terms, the presence of two dilogarithm functions in this integral shows that the hyperbolic
space S3 \ 41 can be obtained by gluing two tetrahedra. This representation for S3 \ 41 is well studied in
the literature (see, e.g., [56]).

B.3.5. A-polynomial. The A-polynomial and the spectral curve for the knot 41 have the forms

A41(l, m) = m2 + l(−1 + m + 2m2 + m3 − m4) + l2m2,

AΣ41 = {(m, l) ∈ C
2 : A41(l, m) = 0}.

To find the quantum A-polynomial, we note that the Jones polynomial for the knot 41 vanishes under the
action of the difference operator

Â = q2m̂2(1 − m̂)(1 − q3m̂2) − (qm̂ + 1)(1 − qm̂ − qm̂2 −

− q3m̂2 − q3m̂3 + q4m̂4)(1 − qm̂)2 l̂ + q2m̂2(1 − qm̂2)(1 − q2m̂)l̂ 2.

Moreover, in this case,
B̂ = qm̂(1 − q3m̂2)(1 − qm̂2)(1 + qm̂)
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(see formula (B.5)). In the large-N limit, the difference equation reduces to

[q3/2m̂2(1 − q3m̂2) − (1 − q2m̂2)(1 − qm̂ − qm̂2 − q3m̂2 − q3m̂3 + q4m̂4)l̂ +

+ q5/2m̂2(1 − qm̂2)l̂ 2
]
KN (q) = 0.

Hence, the quantum A-polynomial is

Â41(l̂, m̂|q) = q3/2m̂2(1 − q3m̂2) − (1 − q2m̂2)(1 − qm̂ − qm̂2 −

− q3m̂2 − q3m̂3 + q4m̂4)l̂ + q5/2m̂2(1 − qm̂2).

For finite N , the Jones polynomial satisfies the equation

ÂGJN (q) ≡ (l̂ − 1)
1

B̂(m̂)
Â(l̂, m̂)JN (q) = 0,

where

ÂG = − q2m̂(1 − q3m̂)
(1 + q2m̂)(1 − q5m̂2)

l̂ 3 +

+
1
q

(1 − q2m̂)(1 + qm̂ − 2q2m̂ − q3m̂2 + q4m̂2 − q5m̂2 − 2q6m̂3 + q7m̂3 + q8m̂4)
m̂(1 + qm̂)(1 − q5m̂2)

l̂ 2 −

− 1
q

(1 − qm̂)(1 − 2qm̂ + q2m̂ − qm̂2 + q2m̂2 − q3m̂2 + q2m̂3 − 2q3m̂3 + q4m̂4)
m̂(1 + q2m̂)(1 − qm̂2)

l̂ +

+
qm̂(1 − m̂)

(1 + qm̂)(1 − qm̂2)
.

B.3.6. Polynomial invariants. The superpolynomial is given by

P41(a, q, t) = P0(a, q, t)(a−1t−2 + q−1t−1 + 1 + qt + at2). (B.10)

B.4. Knot 52.

B.4.1. Representation in terms of the quantum R-matrix and Drinfeld associator. The
polynomial invariant for the knot 52 can be constructed using formulas (8) and (9). In this case, the knot
can be represented as the closure of the element b52 = g3

2g1g
−1
2 g1 ∈ B3. In this representation, the knot

has five positively oriented crossings, one negatively oriented crossing (w(b) = 4), and two strands (n = 3
in (9)).

B.4.2. Representation in terms of the Vassiliev invariant. The first few Vassiliev invariants of
the knot 52 are

α2,1 = 8, α3,1 = −24, α4,1 =
268
3

, α4,2 =
43
3

,

α5,1 = −368, α5,2 = −64, α5,3 = −56.

For instance, using Table 3 for SU(2) gives

〈52〉 = [N ]q exp
{
−8J(1 + J)h2 + 24J(1 + J)h3 +

+
4
3
J(1 + J)(−67 + 22J + 22J2)�4 + . . .

}
, h = 2πi�.
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B.4.3. Representation in terms of the quantum dilogarithm. The colored Jones polynomial
for the knot 52 with N = 2J + 1 can be represented in the hypergeometric form:

KN(52|q) = [N ]q
∑

0≤k≤l≤N−1

(q, N)l(q, N)l

(q, N)∗k
q−k(l+1) ≡ [N ]qJN (52|q).

Hence, formula (A.4) gives

JN ∼
∑

0≤k≤l≤N−1

(−i)k+2lq−k(l+1) s2(iε2(N − 1 − l) + i(ε1 + ε2)/2)
s2(iε2(N − 1) + i(ε1 + ε2)/2)

×

× s(iε2(N + k) + i(ε1 + ε2)/2)
s(iε2N + i(ε1 + ε2)/2)

,

JN =
i

s3(u)

∫
dz1

∫
dz2 s2(u − z)s(u + z) ×

× exp
{
−2πz1z2

ε1ε2
+

πi(z1 − z2)
ε1

+
2πi(2z1 + z2)

ε2

}
.

Again, the presence of three dilogarithms in this integral implies that the space S3 \ 52 can be realized by
gluing three tetrahedrons in the Hikami model.

B.4.4. A-polynomial. In the 52 case, we have

A(l, m) = 1 + l(−1 + 2m + 2m2 − m4 + m5) + l2(m2 − m3 + 2m5 + 2m6 − m7) + l3m7.

The quantum A-polynomial can be calculated as in the preceding cases, and we obtain the result

Â(l, m) = q1/2(1 − q4m̂2)(1 − q5m̂2) − (1 − q2m̂2)(1 − q5m̂2)
(
1 − 2qm̂ − q(q + q3)m̂2 +

+ q2(1 − q)(1 − q2)m̂3 + q5m̂4 − q6m̂5
)
l̂ + q5/2(1 − qm̂2)(1 − q4m̂2)m̂2 ×

×
(
1 − q2m̂ − q2(1 − q)(1 − q2)m̂2 + q4(1 + q3)m̂3 + 2q7m̂4 − q9m̂5

)
l̂ 2 +

+ q14(1 − qm̂2)(1 − q2m̂2)m̂7 l̂ 3.

We note that this is the simplest example where Â(l, m) is not quadratic but cubic in l. In this case, the
spectral curve is not hyperelliptic.

B.4.5. Polynomial invariants. The superpolynomial has the form

P52(a, q, t) = P0(a, q, t)(aq−1 + at + aqt2 + a2q−1t2 + a2t3a2qt4 + a3t5).

Appendix C: Examples of the volume conjecture

The volume conjecture states that in the large-N limit, the logarithm of the colored Jones polynomial
of a hyperbolic knot K is proportional to the volume of the complement of the knot in the three-dimensional
sphere S3:

log |JN (K)| ∼ N

2π
Vol(S3 \ K)

for q = e2πi/N and JN (K) = 〈K〉/ dimq(R).
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log JN (41)

N

Fig. 3. The plot of log JN (41) for N = 3, . . . , 100: the plot becomes linear for large N .

log |JN (31)|

log N

Fig. 4. The plot of log |JN (31)| for N = 3, . . . , 100 as a function of log N : the plot behaves linearly

with the slope 3/2 for large N .

In the case of the hyperbolic knot 41, formula (B.9) for q = e2πi/N gives

JN (41) =
N−1∑
k=1

k∏
j=1

4 sin2 πj

N
.
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We note that all terms in this formula are positive. The graph of this function for N = 3, . . . , 100 is shown
in Fig. 3. Using representation (B.8) and expansion (A.2) of the quantum dilogarithm function for large
N , we can approximate this sum by the integral

JN (41) ∼
∫

dz exp
{

N

2πi

(
Li2(−e−iz) − Li2(−eiz)

)}
.

Using the saddle point approximation, we obtain

d

dz

(
Li2(−e−iz) − Li2(−eiz)

)
= 0,

consequently log
(
(1 + e−iz)(1 + eiz)

)
= 0, and hence eiz = e2πi/3. As a result, we obtain

Vol(41) = −i
(
Li2(−e−2πi/3) − Li2(−e2πi/3)

)
≈ 2.02688 (C.1)

for the volume. This value can be measured directly as the slope in the plot in Fig. 3.
For the toric knot 31, the quantity JN (31) can take complex values, and the saddle point approximation

is therefore subtler. In Fig. 4, we present the graph of log
∣∣JN (31)

∣∣ as a function of log N for N = 3, . . . , 100.
The asymptotic behavior of |JN (31)| can be seen as expected [57] and is consistent with the volume conjec-
ture for the torus knot, |JN (31)| ∼ N3/2. The phase of JN (31) behaves in a much more complicated way
(see [58]).
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