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LIMIT RELATION BETWEEN TODA CHAINS AND THE ELLIPTIC

SL(N, C) TOP

G. A. Aminov∗

We study a limit relation between the elliptic SL(N, C) top and Toda chains. We show that in the case

of the nonautonomous SL(2, C) top, whose equations of motion are related to the Painlevé VI equation,

it turns out to be possible to modify the previously proposed procedure and in the limit obtain the

nonautonomous Toda chain, whose equations of motion are equivalent to a particular case of the Painlevé

III equation. We obtain the limit of the Lax pair for the elliptic SL(2, C) top, which allows representing the

equations of motion of the nonautonomous Toda chain as the equation for isomonodromic deformations.

Keywords: integrable system, nonautonomous system, Painlevé equation, Inozemtsev limit, topological
structure of phase space

1. Introduction

This paper is a continuation of [1], where the case of the autonomous SL(N, C) top was considered.
Here, we consider four integrable systems whose equations of motion have a Lax representation with the
spectral parameter [2]–[4]: the periodic and nonperiodic Toda chains, the elliptic Calogero–Moser model,
and the elliptic SL(N, C) top. These systems are related to each other, which was previously established
in [5]–[8]. Inozemtsev proposed a procedure giving a limit relation between the Toda chains and the elliptic
Calogero–Moser system [5]. Levin, Olshanetsky, and Zotov constructed a symplectic transformation from
the Calogero–Moser system to the elliptic SL(N, C) top [6].

To obtain the limit systems of the elliptic top, which are equivalent to Toda chains, we use a procedure
similar to the Inozemtsev limit. The Inozemtsev limit is a combination of the trigonometric limit, infinite
shifts of particle coordinates, and a rescaling of the coupling constant. To obtain the limit systems equivalent
to the Toda chains, we must combine the Inozemtsev limit and an infinite shift of the spectral parameter.
Because the spectral parameter of the elliptic SL(N, C) top is defined on a complex torus T 2 with a modulus
τ , under the trigonometric limit Im τ → +∞, we obtain systems with the spectral parameter on an infinite
complex cylinder C/Z.

In the case of the elliptic SL(2, C) top, it is convenient to use an explicit form of a symplectic map from
the phase space of the elliptic Calogero–Moser system to the phase space of the top (see Eq. (7) below).
The coordinate shifts of the elliptic Calogero–Moser system used in the Inozemtsev limit then induce a
rescaling of the elliptic SL(2, C) top coordinates (see Sec. 2).

In the case of the elliptic SL(N>2, C) top, it is much more complicated to derive the explicit form of
the symplectic map between the phase spaces of the elliptic Calogero–Moser system and elliptic top. We
therefore rescale the coordinates in accordance with the limit behavior of the Lax matrix, thus generalizing
the method developed for N = 2 to the case N > 2 (see Sec. 3).
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The limit procedure described above can be further generalized to the nonautonomous case. In Sec. 4,
we consider the system of the nonautonomous elliptic SL(2, C) top, where the role of time is played by the
elliptic curve parameter τ [9], [10]. The equations of motion of the nonautonomous SL(2, C) top can be
written as an isomonodromic deformation equation [11]–[13]:

∂τLrot − 1
2πi

∂zM
rot = 2[Lrot, M rot],

where Lrot and M rot are Lax matrices of the elliptic SL(2, C) top. A generalization of the limit procedure
is to represent the elliptic curve parameter as a sum of two terms τ = τ1 + τ2. The imaginary part of the
second term τ2 tends to infinity in the limit, while the first term plays the role of time in the limit system.
Thus, the nonautonomous Toda chain and the representation of its equations of motion as an equation for
isomonodromic deformations are obtained simultaneously.

Because the equations of motion of the nonautonomous elliptic SL(2, C) top are equivalent to a par-
ticular case of the Painlevé VI equation [14], [15], the equations of motion of the obtained nonautonomous
Toda chain are equivalent to a particular case of the Painlevé III equation [16], [17].

We review the necessary information concerning the integrable systems that we consider here.

1.1. Elliptic SL(N, C) top. The elliptic SL(N, C) top is an example of the Euler–Arnold top [18],
whose phase space is defined by a coadjoint action orbit of the group SL(N, C):

Rrot = {S ∈ sl(N, C), S = g−1S(0)g},

where g ∈ SL(N, C) is defined modulo left shifts G0 commuting with S(0). There is the nondegenerate
Kirillov–Kostant symplectic form

ωrot = Tr(S(0)dgg−1 ∧ dgg−1)

on the phase space of the top Rrot.
The dynamics of the system is governed by the Hamiltonian

Hrot = −1
2

TrSJ(S), (1)

where

J(S) =
∑

mn

JmnsmnTmn, Jmn = E2

(
m + nτ

N
, τ

)
,

m, n ∈ {0, . . . , N − 1}, m2 + n2 �= 0,

E2(z, τ) is the second Eisenstein function [19] defined on the complex torus T 2 : C/(2ω1Z + 2ω2Z) with
ω1 = 1/2, τ = ω2/ω1, while smn are the coordinates in a special basis {Tmn} in the algebra sl(N, C), which
forms the sine algebra (see Appendix A).

The equations of motion can be written in the Lax form [20]

dLrot

dt
= N [Lrot, M rot]. (2)

The factor N in Eq. (2) is related to the definition of the Lax matrices in the sine algebra basis (see
Appendix A):

Lrot =
∑

m,n

smnϕ

[
m

n

]
(z)Tmn, ϕ

[
m

n

]
(z) = e

(
−nz

N

)
φ

(
−m + nτ

N
, z

)
,

M rot =
∑

m,n

smnf

[
m

n

]
(z)Tmn, f

[
m

n

]
(z) = e

(
−nz

N

)
∂uφ(u, z)|u=−(m+nτ)/N ,
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where e(z) ≡ e2πiz, i ≡
√
−1, and φ is a combination of theta functions (see Appendix B). Hamiltonian (1)

is related to the Lax matrix as

Hrot =
1
2

Tr(Lrot)2 − 1
2

TrS2E2(z, τ). (3)

The Poisson brackets for the variables smn follow from the commutator [Tab, Tcd] (see (A.1) in Ap-
pendix A) of the basis elements Tab and Tcd:

{sab, scd} = 2i sin
[

π

N
(bc − ad)

]
sa+c,b+d. (4)

Passing to standard basis (A.2) yields

{Sij , Skl} = N(Skjδil − Silδkj). (5)

1.2. The elliptic Calogero–Moser model. The elliptic Calogero–Moser system was first described
in the quantum case [21], [22]. The phase space represents the space of momenta and coordinates in the
center-of-mass frame,

RCM =
{

(u,v),
N∑

i=1

ui = 0,
N∑

i=1

vi = 0
}

,

with the canonical symplectic form ωCM = (dv ∧ du). The Hamiltonian is quadratic in the momenta v,

HCM =
N∑

i=1

v2
i

2
+ m2

∑

i>j

E2(ui − uj , τ).

The equations of motion produced by this Hamiltonian can be represented in the Lax form:

dLCM

dt
= [LCM, MCM],

where

LCM
ij = δijvi + m(1 − δij)φ(ui − uj, z),

MCM
ij = −δij

∑

k �=j

E2(uj − uk) +
∂φ(u, z)

∂u

∣∣∣∣
u=ui−uj

.

1.3. Toda chains. The periodic and nonperiodic Toda chains are systems with N interacting particles
on the line. The phase space is a space of momenta and coordinates of particles in the center-of-mass frame,

RT =
{

(u,v),
N∑

i=1

ui = 0,

N∑

i=1

vi = 0
}

,

with the canonical symplectic form ωT = (dv ∧ du). The Hamiltonian of the nonperiodic system is

HaT =
1
2

N∑

i=1

v2
i + 4π2M2

N−1∑

i=1

e(ui+1 − ui),

and we have

HpT =
1
2

N∑

i=1

v2
i + 4π2M2

N∑

i=1

e(ui+1 − ui), uN+1 = u1,

in the periodic case.
The equations of motion of the periodic and the nonperiodic Toda chains are equivalent to the corre-

sponding Lax equations [23]–[25]

d

dt
LaT = [LaT, MaT],

d

dt
LpT = [LpT, MpT].
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2. Elliptic SL(2, C) top and Toda chains

In [6], Levin, Olshanetsky, and Zotov established the relation between the Calogero–Moser system and
the elliptic SL(N, C) top in the form of the singular gauge transformation

Lrot(z) = Ξ(z)LCM(z)Ξ−1(z).

This transformation leads to the symplectic map between the phase spaces

RCM → Rrot, (u,v) 	→ S, (6)

which for N = 2 takes the form

s01 = −v
θ01(0)θ01(2u)
ϑ′(0)ϑ(2u)

− m
θ2
01(0)

θ00(0)θ10(0)
θ00(2u)θ10(2u)

ϑ2(2u)
,

s10 = v
θ10(0)θ10(2u)
ϑ′(0)ϑ(2u)

+ m
θ2
10(0)

θ00(0)θ01(0)
θ00(2u)θ01(2u)

ϑ2(2u)
,

s11 = −iv
θ00(0)θ00(2u)
ϑ′(0)ϑ(2u)

− im
θ2
00(0)

θ10(0)θ01(0)
θ10(2u)θ01(2u)

ϑ2(2u)
.

(7)

The basic idea of the procedure used is to regard the coordinates of the elliptic SL(2, C) top as functions
of the coordinates of the Calogero–Moser system (u,v) and then shift the coordinates (u,v) as in passing
to the Inozemtsev limit.

2.1. The limit system equivalent to a periodic Toda chain. To obtain a periodic Toda chain
in the limit, we combine the coordinate shift u = U + τ/4, the coupling-constant scaling M = mq1/4

(q ≡ e(τ)), the spectral parameter shift z = z̃ + τ/2, and the trigonometric limit q → 0. From symplectic
map (7) between the phase spaces, we then obtain an expansion of the functions sij(u, v) in powers of q.
We take the renormalized coordinates of the SL(2, C) top as the coordinates of the limit top:

s̃10 = lim
q→0

s10 = − iv
π

,

s̃01 = lim
q→0

s01q
1/4 = M cos(2πU),

s̃11 = lim
q→0

s11q
1/4 = −M sin(2πU).

(8)

Renormalized coordinates (8) form the Lie algebra obtained by contracting the algebra sl(2, C):

{s̃10, s̃11} = 2is̃01, {s̃11, s̃01} = 0, {s̃01, s̃10} = 2is̃11. (9)

A symplectic leaf is defined by the condition

s̃2
01 + s̃2

11 = const = M2,

which is a limit of the Casimir function of the elliptic SL(2, C) top,

s2
01 + s2

10 + s2
11 = const = m2.
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Formulas (8) define a symplectic map of the canonical coordinates (U, v) to the coordinates on the symplectic
leaf of the limit top and are hereafter called the bosonization formulas.

Taking the behavior of the functions ϕ
[

m
n

]
(z) and f

[
m
n

]
(z) (see (A.10) and (A.11) in Appendix B) in

the considered limit into account, we obtain the Lax pair and the Hamiltonian of the limit top [1]:

L̃rot = lim
q→0

Lrot = 4π

⎛

⎜⎝
i
4
s̃10 s̃01 sin(πz̃) − s̃11 cos(πz̃)

s̃01 sin(πz̃) + s̃11 cos(πz̃) − i
4
s̃10

⎞

⎟⎠ ,

M̃ rot = lim
q→0

M rot = π2

⎛

⎜⎜⎝
s̃10 4(s̃01 + is̃11) e

(
− z̃

2

)

4(s̃01 − is̃11) e
(
− z̃

2

)
−s̃10

⎞

⎟⎟⎠ ,

H̃rot = lim
q→0

Hrot = −π2s̃2
10 + 8π2s̃2

01 − 8π2s̃2
11.

By direct verification, we can confirm that the equations of motion preserve the Lax form in the limit:

dL̃rot

dt
= {H̃rot, L̃rot} = 2[L̃rot, M̃ rot].

Using bosonization formulas (8), we can obtain a periodic Toda chain [1].

2.2. The limit system equivalent to a nonperiodic Toda chain. In the case of a nonperiodic
Toda chain, we use the parameters of the coordinate shift u = U + τ/8 and of the coupling constant
renormalization M = mq1/8. The shift of the spectral parameter remains the same: z = z̃ + τ/2. The
trigonometric limit q → 0 yields the coordinates of the limit top:

s̃10 = lim
q→0

s10 = − iv
π

,

s̃01 = lim
q→0

s01q
1/4 =

1
2
M e(U),

s̃11 = lim
q→0

s11q
1/4 =

i
2
M e(U).

(10)

Renormalized coordinates (10) define the same algebra (9) as in the periodic case, but the symplectic leaf
is defined by a different expression:

s̃2
01 + s̃2

11 = 0.

The Lax pair and the Hamiltonian of the limit top take the form [1]

L̃rot = 4π

⎛

⎜⎝
i
4
s̃10 s̃01 sin(πz̃) − s̃11 cos(πz̃)

s̃01 sin(πz̃) + s̃11 cos(πz̃) − i
4
s̃10

⎞

⎟⎠ ,

M̃ rot = π2

⎛

⎜⎜⎝
s̃10 4(s̃01 + is̃11) e

(
− z̃

2

)

4(s̃01 − is̃11) e
(
− z̃

2

)
−s̃10

⎞

⎟⎟⎠ ,

H̃rot = −π2s̃2
10 + 8π2s̃2

01 − 8π2s̃2
11.

Bosonization formulas (10) transform the limit top into a nonperiodic Toda chain [1].
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3. Elliptic SL(N>2, C) top and Toda chains

We consider a limit that is a combination of the spectral parameter shift z = z̃ + τ/2, the coordinate
scaling, and the trigonometric limit q → 0. In this case, the coordinate scaling is defined not by symplectic
map (6) between phase spaces as in the case N = 2 but by the behavior of the Lax matrix of the elliptic
top system in the described limit.

3.1. The limit system equivalent to a periodic Toda chain. In the described limit, the behavior
of the Lax matrix of the elliptic top is defined by the expansion of the function ϕ

[
m
n

]
(z) in a series in q

(see Appendix B). Taking this into account, we use the coordinate renormalization

smn = s̃mnq−g(n), g(n) =
1 − δn0

2N
, m, n ∈ {0, . . . , N − 1}, m2 + n2 �= 0,

which yields the three-diagonal Lax matrix of the limit system. In the limit, the renormalized coordinates
form a Lie algebra with respect to the Poisson brackets [1]. The limit Lax matrices and the Hamiltonian

L̃rot = lim
q→0

Lrot, M̃ rot = lim
q→0

M rot, H̃rot = lim
q→0

Hrot

satisfy the Lax equation
dL̃rot

dt
= {H̃rot, L̃rot} = N [L̃rot, M̃ rot] (11)

and are independent of the variables s̃mn, 1 < n < N − 1, 0 ≤ m ≤ N − 1. Therefore, the Hamiltonian
equations of motion in these variables are not described by Eq. (11). But these variables on the generic
symplectic leaf are functions of the variables included in the Lax matrix [1].

We can introduce the bosonization formulas for the coordinates of the limit system. For this, it is
convenient to pass to the standard basis using formula (A.2). In the standard basis, the bosonization
formulas for the renormalized coordinates S̃ij have the form [1]

S̃ii =
N

2πi
(vi−1 − vi),

S̃i,i+1 = MN e(ui),

S̃i+1,i = MN e(−ui),

S̃i,i+k = ci,i+k e
( i+k−1∑

n=i

un

)
, 2 ≤ k ≤ N − 2, ci,i+k = const,

(12)

where u and v are canonical coordinates,

{vi, uj} = δij , i, j ∈ {1, . . . , N},

and
N∑

i=1

ui = 0,

N∑

i=1

vi = 0.

The variables u and v have the dynamics of a periodic Toda chain in the center-of-mass frame. Using (12)
and the gauge transformation

L̃rot → g−1L̃rotg, M̃ rot → g−1M̃ rotg +
1
N

g−1ġ,

gij = δij e
(

iz̃

N

) i−1∏

k=1

e(−uk),
(13)
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we transform the limit Lax matrices and the Hamiltonian into the known Lax matrices and the Hamiltonian
of a periodic Toda chain:

L̃rot = 2πiMN

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

2πiM
e(u2 − u1) 0 · · · 0 − e(z̃)

−1
v2

2πiM
e(u3 − u2) 0 · · · 0

0 −1
. . . . . . . . .

...
... 0

. . . . . . . . . 0

0
...

. . . . . . . . . e(uN − uN−1)

e(u1 − uN − z̃) 0 · · · 0 −1
vn

2πiM

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M̃ rot = 4π2MN

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e(u2 − u1) 0 · · · 0
... 0 e(u3 − u2)

. . .
...

...
...

. . . . . . 0

0 0 · · · 0 e(uN − uN−1)

e(u1 − uN − z̃) 0 · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H̃rot = N2
N∑

i=1

v2
i

2
+ 4π2M2N2

N∑

i=1

e(ui+1 − ui) = N2HpT.

3.2. The limit system equivalent to a nonperiodic Toda chain. To obtain the Lax matrix for
a nonperiodic Toda chain, we must consider a renormalization of the standard basis coordinates that differs
from the preceding case:

Sij = S̃ijq
−g(i,j), g(i, j) =

1 − δij − δi1δjN/2
2N

, i, j ∈ {1, . . . , N}.

The algebra of coordinates of the limit system in the standard basis has the same limit as in the periodic
case, and the limit Lax matrices and the Hamiltonian satisfy the same Lax matrix equation (11). The
variables {

S̃ij , 1 < (j − i) mod N < N − 1, 1 ≤ i ≤ N, 1 ≤ j ≤ N
}
∪ {S̃1N}

are not included in the limit Lax matrices and Hamiltonian. The Hamiltonian equations of motion for these
variables can be integrated after solving Eq. (11) [1].

We can introduce bosonization formulas for the variables of the limit system [1]:

S̃ii =
N

2πi
(vi−1 − vi), i ∈ {1, . . . , N},

S̃i,i+1 = MN e(ui), i ∈ {1, . . . , N},

S̃i+1,i = MN e(−ui), i ∈ {1, . . . , N − 1},

S̃1,N = const · e(−uN ),

S̃i,i+k = ci,i+k e
( i+k−1∑

n=i

un

)
, 2 ≤ k ≤ N − 2, ci,i+k = const.

(14)
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The canonical coordinates u and v have the dynamics of a nonperiodic Toda chain in the center-of-mass
frame. After substitution (14) and gauge transformation (13), the limit Lax matrices and Hamiltonian take
the known form of the Lax matrices and Hamiltonian of a nonperiodic Toda chain:

L̃rot = 2πiMN

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

2πiM
e(u2 − u1) 0 · · · · · · 0

−1
v2

2πiM
e(u3 − u2) 0 · · · 0

0 −1
. . . . . . . . .

...
... 0

. . . . . . . . . 0

0
...

. . . . . . . . . e(uN − uN−1)

e(u1 − uN − z̃) 0 · · · 0 −1
vn

2πiM

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M̃ rot = 4π2MN

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e(u2 − u1) 0 · · · 0
... 0 e(u3 − u2)

. . .
...

...
...

. . . . . . 0

0 0 · · · 0 e(uN − uN−1)

e(u1 − uN − z̃) 0 · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H̃rot = N2
N∑

i=1

v2
i

2
+ 4π2M2N2

N−1∑

i=1

e(ui+1 − ui) = N2HaT.

4. Nonautonomous SL(2, C) top and Toda chain

We consider the nonautonomous SL(2, C) top, where the role of time is played by the elliptic curve
parameter τ . The Lax pair for this top satisfies the isomonodromic deformation equation

∂τLrot − 1
2πi

∂zM
rot = 2[Lrot, M rot], (15)

which is equivalent to the equations of motion

dsmn

dτ
= {Hrot, smn}.

We obtained the Toda chain from the elliptic SL(2, C) top in the autonomous case above. Our goal now
is to obtain the nonautonomous Toda chain whose equations of motion (in the case N = 2) are equivalent
to a particular case of the Painlevé III equation. For this, we modify the limit procedure as follows.

We represent the elliptic curve parameter τ as τ = τ1 + τ2 and consider the trigonometric limit
Im τ2 → +∞, keeping τ1 as the time. Thus,

dsmn

dτ
=

dsmn

dτ1
.

Just as in the autonomous case, we shift the spectral parameter as z = z̃ + τ/2 and scale the coordinates as

smn = s̃mnq
−g(n)
2
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or
s10 = s̃10, s01 = s̃01q

−1/4
2 , s11 = s̃11q

−1/4
2 ,

where q2 ≡ e(τ2).
Because the spectral parameter shift is time dependent in the considered limit procedure, Eq. (15) is

transformed as

∂τ1L
rot − ∂z̃

(
M rot

2πi
+

1
2
Lrot

)
= 2[Lrot, M rot],

where Lrot = Lrot(s, z̃ + τ/2, τ) and M rot = M rot(s, z̃ + τ/2, τ). The Hamiltonian of the elliptic SL(2, C)
top is written as (1)

Hrot = −J01s
2
01 − J10s

2
10 − J11s

2
11.

In the limit q2 → 0,

J10 = π2 + o(1), J01 = −8π2q1/2 + o(q1/2
2 ), J11 = 8π2q1/2 + o(q1/2

2 ),

where q ≡ e(τ). For the Hamiltonian, we then have

H̃rot = lim
q2→0

Hrot = −π2s2
10 − 8π2q

1/2
1 (s̃2

11 − s̃2
01),

where q1 ≡ e(τ1).
The limit algebra is obtained by contraction of the algebra sl(2, C):

{s̃10, s̃11} = 2is̃01, {s̃11, s̃01} = 0, {s̃01, s̃10} = 2is̃11.

The equations of motion preserve their form in this limit,

ds̃mn

dτ1
= {H̃rot, s̃mn},

and are equivalent to the isomonodromic deformation equation

∂τ1L̃
rot − ∂z̃M̃

rot = [L̃rot, M̃ rot], (16)

where
L̃rot = lim

q2→0
4πiLrot, M̃ rot = lim

q2→0
(2M rot + 2πiLrot).

Just as in the autonomous case, the algebra admits the bosonization

s̃10 = − iv
π

, s̃01 = M cos(2πU), s̃11 = −M sin(2πU).

The Lax pair then becomes

L̃rot =

(
4iπv 16iMπ2 sin(π(2U + z̃))q1/4

1

−16iMπ2 sin(π(2U − z̃))q1/4
1 −4iπv

)
,

M̃ rot =

(
0 8Mπ2 cos(π(2U + z̃))q1/4

1

8Mπ2 cos(π(2U − z̃))q1/4
1 0

)
.
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We write the Hamiltonian

H̃rot = v2 + 8M2π2 e
(

τ1

2

)
cos(4πU)

and the equation of motion of the limit system in the variables U and v,

dv

dτ1
= 32M2π3 e

(
τ1

2

)
sin(4πU),

dU

dτ1
= 2v.

(17)

We show that Eqs. (17) are equivalent to a particular case of the Painlevé III equation. For this, we change
the variable as 32iMπ e(τ1/4) = t and represent system (17) by the single second-order differential equation

1
t

d

dt
t
d(4πU)

dt
= sin(4πU).

5. Conclusion

In our previous paper [1], we obtained systems equivalent to Toda chains from the elliptic SL(N, C) top
using a limit procedure close to the Inozemtsev limit. Here, we have given a generalization of the previously
proposed procedure to the nonautonomous SL(2, C) top and Toda chain. It was previously known that
the nonautonomous SL(2, C) top and Toda chain are related by some Inozemtsev limit [16]. But we here
showed that the nonautonomous Toda chain together with the linear problem can be obtained from the
nonautonomous SL(2, C) top; namely, the proposed limit of the Lax matrices for the elliptic SL(2, C) top
allows writing the equations of motion for the nonautonomous Toda chain in the form of an isomonodromic
deformation equation. An analogous result can also be obtained for the nonautonomous SL(N>2, C) top,
but the equations of motion for such nonautonomous systems are not directly related to Painlevé equations.

In this paper, we have considered the limit relation between the linear problems for particular cases of
the Painlevé VI and Painlevé III equations. A natural continuation of this problem is to describe the limit
relation between the linear problems for the general forms of the Painlevé VI and Painlevé III equations.

Appendix A: Sine algebra

To simplify the formulas, we use the notation ∨ for the logical “or” and also the notation

δ̃(n) =

⎧
⎨

⎩
1, n ≡ 0 mod N,

0, n �≡ 0 mod N.

The elements Tmn of the basis in sl(N, C), which generates the sine algebra, can be defined as

(Tmn)ij = e
(

mn

2N

)
e
(

im

N

)
δ̃(j − i − n), (m �= 0) ∨ (n �= 0), m, n ∈ {0, . . . , N − 1}.

For m, n ∈ Z (m �≡ 0 mod N) ∨ (n �≡ 0 mod N), the quasiperiodicity properties hold for the basis elements
of the sine algebra and for the coordinates in this basis:

Tmn = e
(

mn − (m mod N)(n mod N)
2N

)
Tm mod N, n mod N ,

smn = e
(

(m mod N)(n mod N) − mn

2N

)
sm mod N, n mod N ,
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where e
(
(mn − (m mod N)(n mod N))/(2N)

)
= ±1.

The commutation relations have the form

[Tmn, Tkl] = 2i sin
[

π

N
(kn − ml)

]
Tm+k,n+l. (A.1)

The relations
Sij =

∑

m,n

smn(Tmn)ij , smn =
1
N

∑

i,j

Sij(T−m,n)ij (A.2)

hold between the coordinates {Sij} in the standard basis and the coordinates {smn} in the sine algebra
basis.

Appendix B: Degenerate elliptic functions

The definitions and properties of elliptic functions are essentially taken from [19] and [26]. The basic
object is the theta function with the characteristics

θ

[
a

b

]
(z, τ) =

∑

j∈Z

q(j+a)2/2 e((j + a)(z + b)).

We also need the Eisenstein functions

εk(z) = lim
M→+∞

M∑

n=−M

(z + n)−k, k ∈ N,

Ek(z) = lim
M→+∞

M∑

n=−M

εk(z + nτ).

(A.3)

To determine the limits of the Lax matrices, we use the series expansions of the functions

ϑ(z) = θ

[
1/2
1/2

]
(z, τ) =

∑

j∈Z

q(j+1/2)2/2 e
((

j +
1
2

)(
z +

1
2

))
, (A.4)

φ(u, z) =
ϑ(u + z)ϑ′(0)

ϑ(u)ϑ(z)
, (A.5)

ϕ

[
m

n

]
(z) = e

(
−nz

N

)
φ

(
−m + nτ

N
, z

)
, (A.6)

f

[
m

n

]
(z) = e

(
−nz

N

)
∂uφ(u, z)|u−(m+nτ)/N . (A.7)

These functions satisfy the relations

φ(u, z)φ(−u, z) = E2(z) − E2(u),

∂uφ(u, z) = φ(u, z)(E1(u + z) − E1(u))
(A.8)

and have the parities

Ek(−z) = (−1)kEk(z), ϑ(−z) = −ϑ(z), φ(u, z) = φ(z, u) = −φ(−u,−z)
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and quasiperiodicity properties

E1(z + 1) = E1(z), E1(z + τ) = E1(z) − 2πi,

E2(z + 1) = E2(z), E2(z + τ) = E2(z),

ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = −q−1/2 e(−z)ϑ(z),

φ(u + 1, z) = φ(u, z), φ(u + τ, z) = e(−z)φ(u, z).

(A.9)

We set z = z̃ + τ/2 and examine the degeneration of elliptic functions (A.6) and (A.7) in the limit
Im τ → +∞. In view of (A.5), the series expansion of the function ϕ

[
m
n

]
(z) reduces to the series expansion

of the theta function. Considering the leading nonzero term in the expansions, we obtain

ϑ

(
−m

N
− n

N
τ

)
=

⎧
⎪⎪⎨

⎪⎪⎩

2q1/8 sin
(

π
m

N

)
+ o(q1/8), n = 0,

iq1/8−n/(2N) e
(
− m

2N

)
+ o(q1/8−n/(2N)), 0 < n < N,

ϑ

(
z̃ +

τ

2
− m

N
− n

N
τ

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−iqn/(2N)−1/8 e
(

1
2

(
m

N
− z̃

))
+ o(qn/(2N)−1/8), 0 ≤ n <

N

2
,

−2q1/8 sin
(

π

(
z̃ − m

N

))
+ o(q1/8), n =

N

2
,

iq3/8−n/(2N) e
(

1
2

(
z̃ − m

N

))
+ o(q3/8−n/(2N)),

N

2
< n < N,

which yields

φ

(
−m + nτ

N
, z̃ +

τ

2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π e
(

m

2N

)
sin−1

(
π

m

N

)
+ o(1), n = 0,

2πiqn/N e
(

m

N

)
+ o(qn/N ), 0 < n <

N

2
,

4πq1/2 sin
(

π

(
z̃ − m

N

)
e
(

1
2

(
m

N
+ z̃

))
+ o(q1/2), n =

N

2
,

−2πiq1/2 e(z̃) + o(q1/2),
N

2
< n < N,

,

ϕ

[
m

n

](
z̃ +

τ

2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π e
(

m

2N

)
sin−1

(
π

m

N

)
+ o(1), n = 0,

2πiqn/(2N) e
(

m

N
− nz̃

N

)
+ o(qn/(2N)), 0 < n <

N

2
,

4πq1/4 e
(

m

2N

)
sin
(

π

(
z̃ − m

N

))
+ o(q1/4), n =

N

2
,

−2πiq(N−n)/(2N) e
(

N − n

N
z̃

)
+ o(q(N−n)/(2N)),

N

2
< n < N.

(A.10)

To find the limit of the function f
[

m
n

]
, we expand E1(x̃ − στ) in a series in q. In view of (A.3), we

obtain

E1(x̃ − στ) = lim
M→+∞

M∑

n=−M

ε1(x̃ + (n − σ)τ) = ε1(x̃ − στ) +

+ lim
M→+∞

M∑

n=1

(ε1(x̃ + (n − σ)τ) + ε1(x̃ − (n + σ)τ)).
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Using the explicit expression for the function ε1(x) [19]

ε1(x) = π cot(πx) = πi
e(x) + 1
e(x) − 1

= πi ×

⎧
⎨

⎩
−1 − 2 e(x) + o(e(x)), Im x → +∞,

1 + 2 e(x) + o(e(x)), Im x → −∞,

we can obtain the result for the leading term in the expansion of the function E1(x̃ − στ):

E1(x̃ − στ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

π cot(πx̃) + o(1), σ = 0,

πi + 2πiqσ e(−x̃) + o(qσ), 0 < σ <
1
2
,

πi + 2πiq1/2(e(−x̃) − e(x̃)) + o(q1/2), σ =
1
2
,

πi − 2πiq1−σ e(x̃) + o(q1−σ),
1
2

< σ < 1,

and, using (A.9), the generalization of the last formula in the case σ ∈ R:

E1(x̃ − στ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2πi
σ� + π cot(πx̃) + o(1), {σ} = 0,

2πi
σ� + πi + 2πiq{σ} e(−x̃) + o(q{σ}), 0 < {σ} <
1
2
,

2πi
σ� + πi + 2πiq1/2(e(−x̃) − e(x̃)) + o(q1/2), {σ} =
1
2
,

2πi
σ� + πi − 2πiq1−{σ} e(x̃) + o(q1−{σ}),
1
2

< {σ} < 1,

where {σ} is the fractional part of the number σ.
We now consider the expansion of the function ∂uφ(u, z)|u=ũ−στ in the limit Im τ → +∞ taking (A.8)

into account. Assuming that z = z̃ + τ/2 and considering all possible values of σ, we find

∂uφ(u, z)|u=ũ−στ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−π2 sin−2 πũ + o(1), σ = 0,

4π2q e(−ũ) + o(q), 0 < σ <
3
4
,

4π2q3/4[e(−ũ) − e(ũ + z̃)] + o(q3/4), σ =
3
4
,

−4π2q3/2−σ e(ũ + z̃) + o(q3/2−σ),
3
4

< σ < 1.

Finally, using (A.7), we obtain

f

[
m

n

](
z̃ +

τ

2

)
=

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π2 sin−2

(
π

m

N

)
+ o(1), n = 0,

4π2 e
(

m

N

)
e
(
−nz̃

N

)
qn/(2N) + o(qn/(2N)), 0 < n <

3N

4
,

4π2

[
e
(

m

N

)
− e
(
− n

N
+ z̃

)]
e
(
−3

4
z̃

)
q3/8 + o(q3/8), n =

3N

4
,

−4π2 e
(
−m

N
+ z̃

)
e
(
−nz̃

N

)
q3(1−n/N)/2 + o(q3(1−n/N)/2),

3N

4
< n < N.

(A.11)
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