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RESOLVENTS AND SEIBERG–WITTEN REPRESENTATION FOR A

GAUSSIAN β-ENSEMBLE

A. D. Mironov,∗† A. Yu. Morozov,† A. V. Popolitov,† and Sh. R. Shakirov†‡

The exact free energy of a matrix model always satisfies the Seiberg–Witten equations on a complex

curve defined by singularities of the semiclassical resolvent. The role of the Seiberg–Witten differential

is played by the exact one-point resolvent in this case. We show that these properties are preserved

in the generalization of matrix models to β-ensembles. But because the integrability and Harer–Zagier

topological recursion are still unavailable for β-ensembles, we must rely on the ordinary Alexandrov–

Mironov–Morozov/Eynard–Orantin recursion to evaluate the first terms of the genus expansion. We

restrict our consideration to the Gaussian model.
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1. Introduction

Seiberg–Witten (SW) prepotentials F(�a) [1]–[4] are defined from the peculiar set of implicit equations

�a =
∮

�A

Ω,
∂F(�a)

∂�a
=

∮
�B

Ω, (1)

where Ω is a type-(m, 0) analytic form (holomorphic, meromorphic, or even having essential singularities)
on a family of 2m-dimensional complex manifolds with a system of conjugate cycles �A and �B. When
system (1) is solvable (its consistency is guaranteed by the Riemann identities, for example), the �a are
called flat coordinates on the moduli space of the family (or, simply, the flat moduli), and F(�a) is a
“semiclassical” or Whitham τ -function on this space satisfying a set of the (generalized) Witten–Dijkgraaf–
Verlinde–Verlinde equations (usually as a consequence of the residue formula) [5]. This is already a classical
branch of science, presented in great detail in numerous papers.

It was recently understood that although the SW equations are “semiclassical,” they perfectly survive
various quantization procedures. The conceptual meaning of this phenomenon is still a riddle, but the very
fact is becoming established ever more reliably. The latest example is the Bohr–Sommerfeld representa-
tion [6], [7] of the Losev–Moore–Nekrasov–Shatashvili (LMNS) free energy [8] in the Nekrasov–Shatashvili
limit [9] ε2 = 0: if we also set ε1 = 0, then the obtained free energy is just the ordinary SW prepotential
in [1], [3], but it is remarkable that Eqs. (1) survive when at least the first “quantization parameter” ε1 is
switched on. It was claimed in [10], [11] that the SW equations in fact survive under even further defor-
mation, when both ε1 and ε2 are nonzero. This claim is inspired by the Alday–Gaiotto–Tachikawa (AGT)
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relations [12]–[14], which provide a matrix model representation of the LMNS partition function [15], [10].
In the course of the argument, the fundamental fact is used that the exact matrix model free energies admit
the SW representation with the role of the SW differential played by the one-point resolvent

ΩMM(z) = ρ1(z) =
〈

Tr
dz

z − M

〉
MM

, (2)

which is a meromorphic differential on the spectral curve ΣMM. Again, the SW representation is easily
verified for the planar free energy (for which it was already discussed in [16], [17]), but it turns out that
it also survives when all higher-genus corrections in powers of the string coupling constant gs (i.e., the
t’ Hooft’s coupling Λ = gN) are switched on. This fact is still less known and underestimated. It was
mentioned in passing in [18] and [19], but its real significance can be seen from its use in a conceptual
proof of the AGT relations, in which the topological recursion procedures [18], [20] were used to construct
a double deformation of the SW prepotential, where gs =

√
−ε1ε2 �= 0 and β = b2 = −ε1/ε2 �= 1.

Our goal here to provide more illustrations of the SW representation of exact matrix model free energies
and to make this crucially important technique more understandable and more convenient to use. This
paper is devoted to this issue, and we intentionally avoid discussing other topics. The first illustration of
this kind was already provided in the appendix to [11]; we reproduce the derivation in that work here and
extend it to the case β �= 1. We do not consider non-Gaussian models here, because that requires rather
cumbersome calculations, but we will address this question in subsequent papers. Of course, an essentially
non-Gaussian β-ensemble is used in the AGT relations: the open-contour Dotsenko–Fateev integral in the
spirit of [10], [21], which we do not consider here. But the SW representation undoubtedly also exists there,
and for arbitrary β, and in all orders of the genus expansion.

2. The case β = 1: A source of questions and educated guesses

The partition function is defined as

Z(N) =
1

N !

∫
dλ1 · · · dλN

∏
i<j

|λi − λj |2β exp
[
− 1

2g

∑
i

λ2
i

]
. (3)

For β = 1, it is equal to

Z(N) = (
√

2π)N√
g

N2
N−1∏
k=1

k!. (4)

Hence, for the free energy F = log Z (up to terms quadratic and linear in N), we have

F (N) =
N−1∑
k=1

log(k!). (5)

It turns out [22] that Z(N) is a Toda-chain τ -function and F (N) has SW representation (1). Namely, let
ρ1(z) be the one-point resolvent of the model,

ρ1(z) =
〈∑

i

1
z − λi

〉
. (6)

Then the system of partial differential SW equations

− 1
2πi

∮
A

ρ1(z) dz = a, −
∮

B

ρ1(z) dz =
∂FSW

∂a
(7)
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determines the SW prepotential, which is equal to the free energy

FSW(N) = F (N), (8)

as can be verified using the explicit expression for the resolvent in [11], and this equality just gives the SW
representation of the free energy of the matrix model.

Another fact worthy of attention is that the one-point resolvent satisfies the difference equation [23], [24]

ρ1(N + 1, z) + ρ1(N − 1, z) − 2ρ1(N, z) =
∂2

∂z2
ρ1(N, z), (9)

which implies that its B-periods satisfy [11]

ΠB(N + 1) + ΠB(N − 1) − 2ΠB(N) = − 1
N

. (10)

Equation (9) is closely related to the integrability of Z(N), i.e., to the Toda chain equation [22]

Z(N)∂2
1Z(N) − ∂1Z(N)∂1Z(N) = Z(N + 1)Z(N − 1), (11)

where ∂1Z(N) = 〈
∑

i λi〉 and ∂2
1Z(N) = 〈(

∑
i λi)2〉. Equation (10) is a weaker corollary of (9).

Knowing these facts, we naturally pose the following questions:

1. Does (8) also hold in the case β �= 1?

2. Is there some β-deformed version of (9) and (10)?

The remainder of the paper is devoted to answering the first question affirmatively. Partial progress in
answering the second question is outlined in the appendix.

3. Resolvents

3.1. Ward identities: Generalities. A powerful technique for evaluating correlators in matrix
models is known by various names: the Virasoro constraints, the loop equations, and the Ward identi-
ties [25], [18]. It relies on the “general covariance” of the partition function, i.e., the invariance of the
integral under an arbitrary change of the integration variables. For the eigenvalue integral, not necessarily
Gaussian, the Virasoro constraints can be deduced as follows [26]. We consider the obvious identity

∑
k

∫
dλ1 · · · dλN

∂

∂λk

(
λn

kΔ2β exp
[
−1

g

∑
i

V (λi)
]
Si1 · · ·Sim

)
= 0, (12)

where Si =
∑

a λi
a and Δ is the absolute value of the Vandermonde determinant. Here, V (λ) =

∑
k Tkλk;

only T2 = 1/2 is nonzero in the Gaussian case.
It is easily verified that

∑
k

∂

∂λk
(λn

kΔ2β) =
(

β
n−1∑
a=0

SaSn−1−a + (1 − β)nSn−1

)
Δ2β , (13)

and this is the only part of the equation that changes when β is changed. Differentiating the potential term
gives ∑

k

λn
k

∂

∂λk

[
exp

(
−1

g

∑
i

V (λi)
)]

=
(
−1

g

∑
a

V ′(λa)λn
a

)
exp

[
−1

g

∑
i

V (λi)
]
, (14)

507



and this is the only model-dependent part of our consideration. Differentiating the remaining terms gives

∑
k

λn
k

∂

∂λk
(Si1 · · ·Sim) =

m∑
j=1

ijSi1 · · ·Sij+n−1 · · ·Sim . (15)

Having all the ingredients of the equations, we can now write them in various forms.
Virasoro constraints. If we write the disconnected correlator as

Ci0,...,im = 〈Si0 . . . Sim〉, (16)

then the above considerations imply that

β
n−1∑
a=0

Ca,n−1−a,i1,...,im + (1 − β)nCn−1,i1,...,im −

− 1
g

∑
k

kTkCn−1+k,i1,...,im +
m∑

j=1

ijCi1,...,ij+n−1,...,im = 0. (17)

Differential (W̃ ) operators. If we work with the general partition function (with infinitely many nonfixed
times), then we can write these equations as a differential equation for the (full) partition function. Namely,
let the potential have the form

V (λ) = (T0 + t0)N +
∞∑

k=1

(Tk + tk)λn, (18)

where Tk are background values of source fields (usually, only finitely many of them are nonzero) and tk are
perturbations of these background values. The partition function can then be regarded as a formal series
in tk. We note that for the nonnormalized average, we can obtain

〈Sa〉 = −g
∂

∂ta
〈1〉, (19)

and Virasoro constraints (17) can hence be written as

∂

∂ti1
· · · ∂

∂tim

( ∞∑
k=0

k(Tk + tk)
∂

∂tk−1+n
+ g(1 − β)n

∂

∂tn−1
+ g2β

n−1∑
a=1

∂2

∂ta∂tn−1−a

)
Z = 0. (20)

Loop equations. The loop equations arise when we sum all the Virasoro constraints with the coefficients
1/zn+1 and write the resulting equation in terms of the resolvents. For this, it is convenient to rewrite the
Vandermonde part of the identity as

∑
k

∂

∂λk
(λn

kΔ2β) =
(

2β
∑
i<j

λn
i − λn

j

λi − λj
+

∑
a

nλn−1
a

)
Δ2β . (21)

Summing all the contributions, we now obtain

βr(z0, z0, z1, . . . , zm) + (β − 1)
∂

∂z0
r(z0, z1, . . . , zm) +

+
m∑

j=1

∂

∂zj

r(z1, . . . , zm) − r(z1, . . . , z0, . . . , zm)
zm − z0

−

− 1
g

∞∑
k=0

kTkzk−1
0 r(z0, z1, . . . , zm) +

+
1
g

∞∑
k=0

kTk

k−2∑
j=0

zj
0

1
2πi

∮
∞

dz zk−2−jr(z, z1, . . . , zm) = 0, (22)
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where r(z0, . . . , zm) is the disconnected resolvent

r(z0, . . . , zm) =
〈∑

i0

1
z0 − λi0

· · ·
∑
im

1
zm − λim

〉
. (23)

To solve these equations perturbatively in g, we must rewrite the disconnected resolvents in terms of the
connected ones. The iteration procedure then becomes well defined: at each step of the procedure, we have
a system of linear equations for ρi,j with a fixed value of i + j. The expansion in powers k of g, as usual,
counts contributions of genus k/2 Riemann surfaces in the string (or topological) expansion. Here, ρi,j

denotes the genus j/2 contribution to the i-point connected resolvent.

3.2. Prerequisite: Particular correlators. The Ward identities in the form of the Virasoro con-
straints are very useful for evaluating concrete correlators Ci1,...,im . The advantage of this method is that
the answers are exact in g and the disconnected correlators need not be rewritten in terms of the con-
nected ones for the iteration procedure to work (this drastically simplifies the work if symbolic computer
computations are used).

To give a picture of what individual correlators look like, we provide the first few one- and two-point
correlators (we note that K denotes the connected correlators, and Λ ≡ Ng):

Kk = Ck =
〈∑

i

λk
i

〉
=

〈〈∑
i

λk
i

〉〉
,

K0 = Λ, K2 = Λ(βΛ − β + 1),

K4 = Λ(2β2Λ2 − 5β2Λ + 3β2 + 5βΛ − 5β + 3),

K6 = 5β3Λ4 + (22β2 − 22β3)Λ3 + (32β3 − 54β2 + 32β)Λ2 +

+ (−15β3 + 32β2 − 32β + 15)Λ,

K8 = 14β4Λ5 + (93β3 − 93β4)Λ4 + (234β4 − 398β3 + 234β2)Λ3 +

+ (−260β4 + 565β3 − 565β2 + 260β)Λ2 +

+ (105β4 − 260β3 + 331β2 − 260β + 105)Λ, . . .

(24)

and

Kk,j = Ck,j − CkCj =
〈〈∑

i

∑
l

λk
i λj

l

〉〉
,

K1,1 = Λ,

K1,3 = 3Λ(β(Λ − 1) + 1), K2,2 = 2Λ(β(Λ − 1) + 1),

K1,5 = 10β2Λ3 + 5(5β − 5β2)Λ2 + 5(3β2 − 5β + 3)Λ,

K2,4 = 4Λ(β(Λ − 1)(β(2Λ − 3) + 5) + 3),

K3,3 = 3Λ(β(Λ − 1)(β(4Λ − 5) + 9) + 5), . . . .

(25)
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In terms of the CFT-inspired variables M = bΛ and Q = b − 1/b, b =
√

β, they have the forms

K0 =
M

b
, K2 = M(M − Q), K4 = Mb(1 + 2M2 − 5MQ + 3Q2),

K6 = Mb2(5M(2 + M2) − (13 + 22M2)Q + 32MQ2 − 15Q3),

K8 = Mb3(21 + 14M4 − 93M3Q + 160Q2 + 105Q4 −

− 5MQ(43 + 52Q2) + M2(70 + 234Q2)), . . .

(26)

and

K1,1 =
M

b
, K1,3 = 3M(M − Q), K2,2 = 2M(M − Q),

K1,5 = 5Mb(1 + 2M2 − 5MQ + 3Q2),

K2,4 = 4Mb(1 + 2M2 − 5MQ + 3Q2),

K3,3 = 3Mb(1 + 4M2 − 9MQ + 5Q2), . . . .

(27)

We note the remarkable simplification in comparison with (24) and (25).

3.3. The answer for the resolvent at β = 1. For completeness of the picture (and in part to
emphasize the relative complexity of the case β �= 1), we begin from the well-known one-point resolvent at
β = 1 [18]:

ρ1 =
〈∑

i

1
z − λi

〉
=

∞∑
k=0

ρ1,kgk. (28)

The particular genus contributions are

ρ1,0(z) =
1
2
(z − y(z)), ρ1,2(z) =

Λ
y5(z)

, (29)

ρ1,4(z) =
21Λ(Λ + z2)

y11(z)
, ρ1,6(z) =

11Λ(158Λ2 + 558Λz2 + 135z4)
y17(z)

, . . . , (30)

where y2(z) = z2 − 4Λ and all ρ1,2k+1 vanish. General formulas for ρ1,2n can be obtained from the exact
Harer–Zagier functions by an integral transformation (see [23], [18], [24]).

3.4. The answer for ρ1 at arbitrary β �= 1. Loop equations (22) in the case of the Gaussian
model acquire a very simple form

βr(z0, z0, z1, . . . , zm) + (β − 1)
∂

∂z0
r(z0, z1, . . . , zm) +

+
∑

j

∂

∂zj

r(z1, . . . , zj , . . . , zm) − r(z1, . . . , z0, . . . , zm)
zj − z0

−

− 1
g
z0r(z0, z1, . . . , zm) +

Λ
g2

r(z1, . . . , zm) = 0, (31)
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where r denotes the disconnected resolvent

r(z1, . . . , zm) =
〈∑

i1

1
z1 − λi1

· · ·
∑
im

1
zm − λim

〉
. (32)

To solve this system of equations, we should rewrite the disconnected correlators in terms of the connected
ones and replace the connected correlators with their Laurent expansion [27]. Thus, assuming that ρ1(z) =
(1/g)

∑∞
i=0 ρ1,i(z) · gi (and the even parts of ρ are hence associated with oriented surfaces, and the odd

parts are associated with the nonoriented surfaces, with half-integer genera), we obtain the first few terms

ρ1,0(z) =
z

2β
− y(z)

2β
=

1
2β

(z − y(z)),

ρ1,1(z) =
1/2 − 1/(2β)

y(z)
+

z/(2β) − z/2
y2(z)

=
β − 1
2βy(z)

(
1 − z

y(z)

)
,

ρ1,2(z) =
5β2Λ − 9βΛ + 5Λ

y5(z)
+

β + 1/β − 2
y3(z)

+
−βz − z/β + 2z

y4(z)
,

ρ1,3(z) = (β − 1)
(

10 − 19β + 10β2

2βy5(z)

(
1 − z

y(z)

)
+

+
5Λ(5 − 9β + 5β2)

y7(z)
− Λz(30 − 43β + 30β2)

y8(z)

)
,

ρ1,4(z) =
1

y7(z)

[
37β3 − 273β2

2
+ 199β +

37
β

− 273
2

]
+

+
1

y8(z)

[
−37β3z +

273β2z

2
− 199βz − 37z

β
+

273z

2

]
+

+
419β4Λ − 1357β3Λ + 1897β2Λ − 1357βΛ + 419Λ

y9(z)
+

+
−240β4Λz + 824β3Λz − 1168β2Λz + 824βΛz − 240Λz

y10(z)
+

+
1105β5Λ2 − 3240β4Λ2 + 4375β3Λ2 − 3240β2Λ2 + 1105βΛ2

y11(z)
,

ρ1,5(z) = (β − 1)
[
706 − 2379β + 3367β2 − 2379β3 + 706β4

2βy9(z)(1 − z/y(z))
+

+
4351− 13458β + 18508β2 − 13458β3 + 4351β4

y11(z)
−

− 3Λz(1530− 4241β + 5764β2 − 4241β3 + 1530β4)
y12(z)

+ (33)

+
55βΛ2(221 − 648β + 875β2 − 648β3 + 221β4)

y13(z)
−

− 4βΛ2z(3390− 7883β + 10420β2 − 7883β3 + 3390β4)
y14(z)

]
,

ρ1,6(z) =
1

y11(z)

[
4081β5 − 40405β4

2
+ 44699β3 − 57155β2 + 44699β +

4081
β

− 40405
2

]
+
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+
1

y12(z)

[
−4081β5z +

40405β4z

2
− 44699β3z + 57155β2z − 44699βz −

− 4081z

β
+

40405z

2

]
+

1
y13(z)

[
77597β6Λ − 340402β5Λ + 702694β4Λ −

− 878293β3Λ + 702694β2Λ − 340402βΛ + 77597Λ
]
+

+
1

y14(z)
[
−59040β6Λz + 269328β5Λz − 564000β4Λz + 707424β3Λz −

− 564000β2Λz + 269328βΛz − 59040Λz
]
+

1
y15(z)

[
451720β7Λ2 −

− 1792898β6Λ2 + 3483419β5Λ2 − 4266464β4Λ2 + 3483419β3Λ2 −

− 1792898β2Λ2 + 451720βΛ2
]
+

1
y16(z)

[
−189840β7Λ2z + 821128β6Λ2z −

− 1656256β5Λ2z + 2049936β4Λ2z − 1656256β3Λ2z + 821128β2Λ2z −

− 189840βΛ2z
]
+

1
y17(z)

[
828250β8Λ3 − 3012930β7Λ3 + 5531740β6Λ3 −

− 6644070β5Λ3 + 5531740β4Λ3 − 3012930β3Λ3 + 828250β2Λ3
]
,

where y2(z) = z2−4Λβ defines the spectral curve, which in this case is the torus with a degenerated handle
(located at the infinity of the complex plane).

The β → 1/β symmetry. The AGT relation implies that the β-deformed matrix model should be
related to some CFT with the central charge of the corresponding CFT given by

c = 1 − 6
(√

β − 1√
β

)2

. (34)

This suggests that there should be the symmetry β → 1/β in the matrix model although this is far from
obvious in the original expression (3). Indeed, it is easily seen that if the quantities are rescaled as

z′ =
√

βz, ρ′1,g = (
√

β)g+1ρ1,g, (35)

then the resulting expressions ρ′1,g are symmetric under β → 1/β.

4. Seiberg–Witten construction

4.1. Ideology. The SW construction, originally proposed to obtain the low-energy effective action in
the N=2 SUSY gauge theory, is in fact a manifestation of a more general principle.

The starting objects in the SW representation are the algebraic curve and the meromorphic differential
λSW on it. Given such data, we can write the system of equations

∮
Ai

λSW ∼ ai,

∮
Bi

λSW ∼ ∂FSW

∂ai
, (36)

where Ai and Bi form a symplectic basis of cycles on the algebraic curve and the proportionality coefficients
in the equations depend slightly on the adopted setup.
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It turns out that an important source of the initial SW data is the so-called eigenvalue models (EVMs).
Namely, the role of the algebraic curve is played by the spectral curve of the given EVM, and the role of
the SW differential is played by ρ1(z) dz, where ρ1 is the one-point resolvent. We note that the original SW
construction corresponds to the zeroth order of the genus expansion of the resolvent in g, and taking further
terms of the expansion into account corresponds to deforming (quantizing) the original SW differential and
prepotential. Remarkably, not only the zeroth approximation but also all the free energy continues to
satisfy the SW equations.

We fix the proportionality coefficients in the SW equations by

− 1
2πi

∮
Ai

ρ1(z) dz = ai, −β

∮
Bi

ρ1(z) dz =
∂FSW

∂ai
, (37)

because the relation between the free energy and the SW prepotential is most transparent in such a nor-
malization. We note that β appears as a coefficient in the second equation [7].

4.2. Calculation of A- and B-periods. We now apply the SW construction to ρ1 found in Sec. 3.4.
The spectral curve is given by the equation

y2 = z2 − 4Λβ. (38)

The A-cycle encircles the ramification points −
√

4Λβ and
√

4Λβ, and the B-cycle encircles
√

4Λβ and ∞.
Because the value of the A-period in this case is equal to the residue at infinity, the A-period receives

contributions only from ρ1,0 and ρ1,1:

a = − 1
2πi

∮ √
4Λβ

−
√

4Λβ

ρ(z) dz = N +
1 − β

2β
. (39)

At this point, we note that the dependence a(N) is linear and ∂/∂a can be safely replaced with ∂/∂N in the
SW equation for the B-period. We can therefore write everything in terms of N to simplify the calculations
in what follows.

Evaluating the B-periods is trickier. We must use the formula

∮ +∞

√
4Λβ

dz

yp(z)
=

1
22p−3(Λβ)(p−1)/2

Γ(p − 1)Γ(1 − p/2)
Γ(p/2)

. (40)

To derive this formula, we must make the change of variables z = ((2 − ζ)/ζ)
√

4Λβ and note that the
resulting integral is proportional to the integral representation for the Euler B-function:

∮ +∞

√
4βΛ

(z2 − 4βΛ)−p/2 dz = (4βΛ)−p/2+1/2

∮ +∞

1

(w2 − 1)−p/2 dw =

= (4βΛ)−p/2+1/24−p/22
∮ 1

0

(1 − ζ)−p/2ζp−2 dζ =

= 2−2p+3(βΛ)−p/2+1/2 Γ(1 − p/2)Γ(p− 1)
Γ(p/2)

. (41)

The terms in (33) with odd powers of z do not contribute to the periods, because they are total derivatives.
For instance, ∮ +∞

√
4Λβ

z dz

yp(z)
= − 1

p − 2

∮ +∞

√
4Λβ

d

(
1

yp−2(z)

)
= 0. (42)
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We note that this is a contour integral and the contour does not pass through the singularities of the
integrand.

Alternatively, we can use the fact that y(z) and also its B-periods satisfy the differential equation

∂

∂Λ
yp = −2βpyp−2. (43)

Together with the initial conditions ∮
B

dz

y(z)
= − logβΛ (44)

and ∮
B

yp dz = 0|Λ=0, p �= −1, (45)

this gives the expressions for the integrals over the B-periods of odd powers of y(z), which are presented in
Table 1 (integrals of even powers vanish).

Table 1

n
∮
B

yn dz
∮
B

y−n dz

1 −2β(Λ − Λ log(βΛ)) − log(βΛ)

3 −6β

(
βΛ2 log(βΛ) − 3βΛ2

2

)
− 1

2βΛ

5 −10β

(
11β2Λ3

3
− 2β2Λ3 log(βΛ)

)
1

12β2Λ2

7 −14β

(
5β3Λ4 log(βΛ) − 125β3Λ4

12

)
− 1

60β3Λ3

9 −18β

(
959β4Λ5

30
− 14β4Λ5 log(βΛ)

)
1

280β4Λ4

11 −22β

(
42β5Λ6 log(βΛ) − 1029β5Λ6

10

)
− 1

1260β5Λ5

13 −26β

(
11979β6Λ7

35
− 132β6Λ7 log(βΛ)

)
1

5544β6Λ6

Hence, for the B-periods of ρ1,i, we obtain the following (in the case of ρ1,0 and ρ1,1, we must evaluate
the respective integrals for p = −1 + ε and 1 + ε and then neglect the terms that diverge as ε → 0; this is
safe because these terms are constant and linear in Λ):∮

B

ρ1,0(z) dz = −Λ logΛ,

∮
B

ρ1,1(z) dz =
1 − β

2β
log Λ,

∮
B

ρ1,2(z) dz =
−1 + 3β − β2

12β2Λ
,

∮
B

ρ1,3(z) dz =
1 − β

24β2Λ2
,

∮
B

ρ1,4(z) dz =
1 − 5β2 + β4

360β4Λ3
,

∮
B

ρ1,5(z) dz =
−1 + β3

240β4Λ4
,

∮
B

ρ1,6(z) dz =
−2 + 7β2 + 7β4 − 2β6

2520β6Λ5
.

(46)
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Remarkably, although the complexity of ρ1,i increases very rapidly (exponentially) as i increases, the com-
plexity of their B-periods increases more slowly (linearly).

Already at this stage, it can be seen that these formulas agree with the formulas for general terms
in [27], ∮

B

ρ1,2m+2 dz =
m+1∑
s=0

B2m−2sB2s
Γ(2m + 1)

Γ(2s + 1)Γ(2m− 2s + 3)
β−2s 1

N2m+1
, m ≥ 0,

∮
B

ρ1,2m+1 dz =
(

1
2β

− 1
2β2m

)
B2m+2(2m − 1)

(2m + 1)(2m + 2)
1

N2m
, m ≥ 1.

(47)

In [27], they were deduced from Eq. (51), which we now verify.

4.3. Relation to free energy. The partition function for the β-deformed Gaussian integral over
eigenvalues is defined as

Z(N) =
1

N !

∫
dλ1 . . . dλN

∏
i<j

|λi − λj |2β exp
(
− 1

2g

∑
i

λ2
i

)
(48)

and can be calculated explicitly. The corresponding generalization of expression (4) in the case β �= 1 is
(see [27])

Z(N) = (
√

2π)N (
√

g)βN2+(1−β)N
N∏

k=1

Γ(1 + βk)
Γ(1 + β)

· 1
Γ(N + 1)

. (49)

We are now ready to verify that the free energy

F (N) = log Z ∼
N∑

k=1

log Γ(1 + βk) − log N ! (50)

is exactly equal to the SW prepotential.
Indeed, we can calculate the derivative of F (N) with respect to N and apply the Euler–Maclaurin

formula (see Eq. (72) in the appendix). As a result, we obtain

∂

∂N
F

(
Λ
g

)
=

1
g
βΛ log Λ +

β − 1
2

log Λ + g
1 − 3β + β2

12βΛ
+ g2 β − 1

24βΛ2
+ g3−1 + 5β2 − β4

360β3Λ3
+

+ g4 1 − β3

240β3Λ4
+ g5 2 − 7β2 − 7β4 + 2β6

2520β5Λ5
+ o

(
1
Λ5

)
.

This expression can now be compared with (45), taking the factor −β in (37) into account. Finally, we
obtain

F = FSW. (51)

The main statement in this paper is:

The exact free energy of the Gaussian β-ensemble satisfies SW equations (37) with the exact resolvents

playing the role of the SW differential.

Appendix: Toward an understanding of β �= 1

In this appendix, we outline a few topics that are poorly understood but are crucially important for
the future theory of β-ensembles.

515



A.1. Integrability. We saw that the free energy and resolvent at β = 1 satisfy integrable differential-
difference equations (9) and (10). These equations are intimately related to the Toda integrable structure
of the Gaussian matrix model (the Kadomtsev–Petviashvili hierarchy plays the role of the Toda hierarchy
in the non-Gaussian case). In particular, the Toda equation can be written as

∂2

∂t21
log Z(N) =

Z(N + 1)Z(N − 1)
Z2(N)

, (52)

and, in terms of the free energy,

F (N + 1) − 2F (N) + F (N − 1) = log
(

∂2

∂t21
F (N)

)
. (53)

Differentiating with respect to ti and using the Virasoro constraints, we obtain

Ki(N + 1) − 2Ki(N) + Ki(N − 1) =
i(i − 1)

N
Ki−2(N). (54)

Summing these equations with the weights 1/zi+1, we obtain Eq. (9). Equation (10) can be obtained
from (9) by integrating it along the B-period on the spectral curve.

A very important and intriguing question is what is the β-deformation determination of the integrability
of the Toda or Kadomtsev–Petviashvili hierarchy, but it is difficult to answer directly. As we see, Eq. (10)
can be β-deformed rather easily, but integrability requires more: we need a β-deformation of (9), which is
still unknown.

A.1.1. Difference equation for periods. For β = 1, Eq. (10) is

ΠB(Λ + 1) − 2ΠB(Λ) + ΠB(Λ − 1) = − 1
Λ

, (55)

where ΠB(Λ) denotes the B-period of ρ. We can show (e.g., by expanding the left-hand side of the equation
in the series in 1/Λ) that for β �= 1, this equation becomes

ΠB

(
Λ +

1
β

)
− ΠB(Λ) − ΠB

(
Λ +

1 − β

β

)
+ ΠB(Λ − 1) = − 1

βΛ
. (56)

A.1.2. Difference equation for resolvents. Nevertheless, we have been unable to find a β-
deformed analogue of (9), and even the corrections of the first order in β − 1 are lacking. We can say
that in the required generalization, both sides of (9) are most probably deformed more strongly than
in (56).

A.2. Harer–Zagier topological recursion. A detailed description of the Harer–Zagier functions
for β = 1 can be found, for example, in [24]. Describing the matrix model correlators in terms of the
resolvents has two advantages: it provides Ward identities (17) in the simple form of loop equations (22),
and it reveals the important hidden structure, the spectral curve. The drawbacks are the divergence of
genus expansion series and the lack of explicit formulas for the exact correlators (in terms of the coupling
constant).

The last two problems can be solved, for example, by passing from the exact resolvents to the Harer–
Zagier functions, where the correlators are summed with additional factorial factors, i.e., the Padé method.

Much less is known for β �= 1. So far, we have been able to obtain the Harer–Zagier functions only for
specific values of β �= 1. Attempts to find at least the first correction in β − 1 led to some generalizations
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of the hypergeometric equations, which suggests that something conceptually new should be done for the
results to become simple for arbitrary β. Our preliminary results are presented below.

The one-point Harer–Zagier generating function is defined as

φ(z) =
4β

τ2 − 1

∞∑
k=0

∞∑
N=0

Ck

(
N

β
, β

)
zk

(2k − 1)!!

(
τ − 1
τ + 1

)N

, (57)

where Ck(N/β, β) is the one-point correlator in the β-deformed matrix model with matrix size equal to
N/β.

The case β = 1. The Harer–Zagler function has the form

φ(β = 1, z, τ) =
1

1 − τz2
. (58)

This is the classical result of Harer and Zagier. It satisfies the differential equation derived from the
integrability conditions

λ
∂

∂λ

(
(1 − λ)2

λ
ϕ(λ, x)

)
= x

∂

∂x
(x2ϕ(λ, x)), (59)

where ϕ = ((τ2 − 1)/4)φ and λ = (τ − 1)/(τ + 1).
It turns out that the two- and three-point Harer–Zagier functions can also be found, and they are

expressed in terms of the arctan function [24], i.e., they remain elementary functions.
The case β = 2. The Harer–Zagier function for the SO(N) matrix model has the form

φ(β = 2, z, τ) =
τ

τ − z − z2τ
+

+
√

z(τ + 1)
2(τ − z − z2τ)3/2

arctan
(

2
√

z(zτ − z − 1)
√

τ − z − z2τ

1 + (2 − 3τ)z + (2 − 2τ + 2τ2)z2

)
, (60)

and it satisfies
[
2z + 2τ2z + τ

2z
+ (z − τ + τ2z)

∂

∂z

]
φ(β = 2, z, τ) =

τ

2z
+

2 + 2τ + 2τ2z + τ2

2(2z + 1)(1 − zτ)
(61)

with the initial conditions φ(β = 2, z, τ) = 1 + (τ − 1)z + . . . .
The case β = 1/2. The Harer–Zagier function for the Sp(N) matrix model has the form

φ(β = 1/2, z, τ) =
1

1 − τz
+

√
z

1 + τ

1
(1 − τz)3/2

arctan
(

2
√

z + τz
√

1 − zτ

2 − z − 2τz

)
, (62)

and it satisfies
[(

1
z
− 3τ − 5

2

)
− z(1 + τ)

∂

∂z
+

(1 + τ)(2 − τz)
z

∂

∂τ

]
φ

(
β =

1
2
, z, τ

)
=

1
z

(63)

with the initial conditions φ(β = 1/2, z, τ) = 1 + (τ + 1/2)z + . . . .

It can be seen that in the two cases β = 2, 1/2, which correspond to classical groups, the Harer–Zagier
functions are expressed in terms of arctangents. But this is not the case in the general situation.

The case β = 3. The Harer–Zagier function for β = 3 satisfies the differential equation

(1 + 8z2τ + 24z2τ2 + 9z3τ − zτ − 6z − 33z2)φ + (11z2τ − 18z3 − 2z + 9z4τ)
∂φ

∂z
+

+ (9z − 12z2τ + 12z2τ3 − 9zτ2)
∂φ

∂τ
= 1 − 4z − 4zτ. (64)
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At particular values of z, it becomes the hypergeometric equation and hence has no solutions expressed in
terms of elementary functions. Consequently, what we presumably seek is some clever deformation of the
arctan function from the previously described cases.

We observe that the complexity of results increases as we move further and further away from β = 1.
Further work is needed to clarify the situation.

A.3. Identities for free energy. It turns out that for β �= 1, the Gaussian free energy has more
structure than might be expected.

A.3.1. Definitions. We define the partition function without the factor 1/N !. To avoid ambiguities,
we mark all the quantities in this normalization with tildes.

The partition function for the Gaussian model that we consider is

Z̃(N, β) =
∫

dλ1 · · · dλN

∏
i<j

(λi − λj)2β exp
(
− 1

2g

∑
i

λ2
i

)
= N !Z(N, β). (65)

Instead of (49), we now have

Z̃(N, β) = (
√

2π)N (
√

g)βN2+(1−β)N
N∏

k=1

Γ(1 + βk)
Γ(1 + β)

. (66)

The free energy is now defined as

F̃ (N, β) = log Z̃ ∼
N∑

k=1

log Γ(1 + βk), (67)

where the equivalence means equality up to terms quadratic and linear in the matrix size N (they can be
absorbed into a redefinition of β and g).

A.3.2. Difference equation. The free energy defined above satisfies a certain difference equation.
We consider

G̃(N, β) = F̃ (N, β) − F̃ (N − 1, β) = log Γ(1 + βN). (68)

It is then obvious that

G̃(N, β) − G̃

(
N − 1

β
, β

)
= log(βN), (69)

which implies that
∂

∂N
G̃(N, β) − ∂

∂N
G̃

(
N − 1

β
, β

)
=

1
N

. (70)

A.3.3. Exact relation between FSW and F̃ . Comparing (56) and (70) yields

FSW(N, β) = F̃

(
N − 1

β
, β

)
=

N−1/β∑
k

log Γ(1 + βk), (71)

and the only peculiarity is therefore the change in the upper summation limit. In the case β = 1, it
becomes N − 1 and acquires a clear physical meaning: dividing the partition function by N ! implies that
the eigenvalues are pairwise indistinguishable bosons.
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A.3.4. Direct comparison of series. Instead of the existence of difference equation (70), we can
use simpler means. For example, we can consider expansions of the prepotential and free energy in the
perturbation theory at large N . Looking at these expansions, we can advance several hypotheses on the
relation between these quantities. One way to obtain these expansions is to use the Euler–Maclaurin
formula.

Euler–Maclaurin formula. We need this formula in the form

∂

∂N

N−1∑
k

f(k) = f(N) − 1
2
f ′(N) +

1
12

f ′′(N) − 1
720

f ′′′′(N) − · · · =

=
∞∑

m=0

Bm

m!
∂mf(N), (72)

where Bm are the Bernoulli numbers,
∑

(Bm/m!)tm = t/(et − 1). The lower summation limit is inessential
because it is independent of N . In the following examples, we chose k = 0:

f(k) = 1,
∂

∂N
N = 1,

f(k) = k,
∂

∂N

N(N − 1)
2

= N − 1
2
,

f(k) = k2,
∂

∂N

N(N − 1)(2N − 1)
6

= N2 − N +
1
6

= N2 − 2N

2
+

2
12

,

f(k) = k3,
∂

∂N

N2(N − 1)2

4
= N3 − 3

2
N2 +

1
2
N = N3 − 3N2

2
+

6N

12
+ 0, . . . .

Various series, as is. Here, all equalities are understood up to terms linear and constant in N or Λ.
Summing contributions from different genera, we find

∂

∂N
FSW

(
Λ
g

)
=

1
g
βΛ log Λ +

β − 1
2

log Λ + g
1 − 3β + β2

12βΛ
+ g2 β − 1

24βΛ2
+

+ g3−1 + 5β2 − β4

360β3Λ3
+ g4 1 − β3

240β3Λ4
+ g5 2 − 7β2 − 7β4 + 2β6

2520β5Λ5
+ o

(
1
Λ5

)
. (73)

Expanding F at various points, we obtain

∂

∂N
F̃

(
Λ
g
− 1

β

)
=

1
g
βΛ log Λ +

β − 1
2

log Λ + g
1 − 3β + β2

12βΛ
+ g2 β − 1

24βΛ2
+

+ g3−1 + 5β2 − β4

360β3Λ3
+ g4 1 − β3

240β3Λ4
+ g5 2 − 7β2 − 7β4 + 2β6

2520β5Λ5
+ o

(
1
Λ5

)
,

∂

∂N
F̃

(
Λ
g

)
=

1
g
βΛ log Λ +

1 + β

2
log Λ + g

1 + 3β + β2

12βΛ
− g2 1 + β

24βΛ2
−

− g3 1 − 5β2 + β4

360β3Λ3
+ g4 1 + β3

240β3Λ4
+ g5 2 − 7β2 − 7β4 + 2β6

2520β5Λ5
+ o

(
1
Λ5

)
,

∂

∂N
F̃

(
Λ
g
− 1

)
=

1
g
βΛ log Λ +

1 − β

2
log Λ + g

1 − 3β + β2

12βΛ
+ g2 1 − β

24βΛ2
−

− g3 1 − 5β2 + β4

360β3Λ3
+ g4 β3 − 1

240β3Λ4
+ g5 2 − 7β2 − 7β4 + 2β6

2520β5Λ5
+ o

(
1
Λ5

)
.

(74)
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Interpretation. Looking at the series written above, we can easily propose the relations

FSW

(
Λ
g

, β

)
= F̃

(
Λ
g
− 1

β
, β

)
= −F̃

(
−Λ

g
− 1, β

)
= −F̃

(
Λ
g

,−β

)
. (75)

The first equality was expected from our previous analysis of the difference equation for the free energy.
It turns out that F̃ with shifted arguments also satisfies the same difference equation. Indeed,

− F̃ (N,−β) + F̃ (N − 1,−β) = − log Γ(1 − βN),

− log Γ(−βN) + log Γ(1 − βN) = log(−βN).
(76)

For F̃ (−N −1, β), we must assume that the lower summation limit is less than −N −1 (which seems rather
weird from the standpoint of common sense):

− F̃ (−N − 1, β) + F̃ (−N, β) = − log Γ(1 − βN). (77)

Normally, shifting the expansion point for some function does not lead to series similar to the initial
series but produces something that looks completely different. The fact that this is not the case here
may indicate that some mathematical structure not yet discovered is involved in this scenario. Perhaps,
it is only a peculiar property of the Gaussian potential, but it might be that such equalities hold in more
complicated cases. It would be interesting to see which of these unexpected identities survive generalization
to non-Gaussian models.
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