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PRECISE CHARM- AND BOTTOM-QUARK MASSES: THEORETICAL

AND EXPERIMENTAL UNCERTAINTIES

K. G. Chetyrkin,∗ J. H. Kühn,∗ A. Maier,∗ P. Maierhöfer,† P. Marquard,∗

M. Steinhauser,∗ and C. Sturm‡

We consider recent theoretical and experimental improvements in determining charm- and bottom-quark

masses. We present a new, improved evaluation of the contribution of the gluon condensate 〈αsG
2/π〉

to the charm mass determination and a detailed study of potential uncertainties in the continuum cross

section for bb̄ production, together with a study of the parametric uncertainty from the αs-dependence

of our results. The final results, mc(3GeV) = 986(13) MeV and mb(mb) = 4163(16) MeV, together with

the closely related lattice determination mc(3GeV) = 986(6) MeV, currently represent the most precise

determinations of these two fundamental standard-model parameters. We critically analyze the theoretical

and experimental uncertainties.
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The past years have witnessed a significant improvement in determining charm- and bottom-quark
masses as a consequence of improvements in experimental techniques and also in theoretical calculations.
Quark mass determinations can be based both on a variety of experimental results and on theoretical
calculations. One of the most precise methods currently is based on an idea advocated more than thirty
years ago in [1]. We briefly review the most recent results obtained using this method. Interest in this
approach was renewed after significant advances were achieved in higher-order perturbative calculations. In
particular, the four-loop results (i.e., the coefficients Cn discussed below) are now available for the Taylor
coefficients of the vacuum polarization, analytically up to n = 3 and numerically up to n = 10. The
considered method uses the fact that the vacuum polarization function Π(q2) and its derivatives evaluated
at q2 = 0 can be regarded as short-range quantities with an inverse scale characterized by the distance
between the reference point q2 = 0 and the location of the threshold q2 = (3 GeV)2 for the charm quark
and q2 = (10GeV)2 for the bottom quark. This idea was used in [2] after the first three-loop evaluation
of the moments became available [3]–[5]. The method was then further improved in [6] using the four-loop
results [7], [8] for the lowest moment. An analysis that included the additional theoretical results in [9]–[11]
and experimental results was presented in [12]. Here, we present an improved treatment of the contribution
of the gluon condensate to the moments of the charm correlator and critically consider the behavior of the
R ratio for the production of heavy quarks with the b flavor in the transition region from the threshold to
the perturbative continuum and the related influence on finding the value of mb.

We recall some basic notation and definitions. The vacuum polarization ΠQ(q2) induced by a heavy
quark Q with the charge QQ (we do not take the so-called singlet contributions into account here) is an
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analytic function with poles and a branch cut at q2 = M2
J/ψ for the charm quark (or q2 = M2

Υ for the
bottom quark). Its Taylor coefficients Cn defined by

ΠQ(q2) ≡ Q2
Q

3
16π2

∑

n≥0

Cnzn

can currently be evaluated in perturbative QCD (pQCD) up to the order α3
s . Here, z ≡ q2/4m2

Q, where
mQ = mQ(μ) is the running MS mass at the scale μ. Using a once-subtracted dispersion relation

ΠQ(q2) =
1

12π2

∫ ∞

0

ds
RQ(s)

s(s − q2)
,

where RQ denotes the familiar R ratio for the production of heavy quarks with the flavor Q, we can
express the Taylor coefficients in terms of the moments of RQ. Equating perturbatively calculated and
experimentally measured moments,

Mexp
n =

∫
ds

sn+1
RQ(s), (1)

leads to an (n-dependent) determination of the quark mass,

mQ =
1
2

(9Q2
Q

4
Cn

Mexp
n

)1/2n

. (2)

Significant progress has been made in evaluating the moments perturbatively since the first analysis
in [1]. The O(α2

s ) contribution (three loops) was evaluated up to terms with n = 8 more than 13 years
ago [3]–[5] and recently even up to n = 30 [13], [14]. The two lowest moments (n = 0, 1) of the vector
correlator were evaluated in O(α3

s ), i.e., in the four-loop approximation [7], [8]. The two corresponding
lowest moments for the pseudoscalar correlator were found using lattice simulations in [15] in order to
obtain the charm-quark mass [16]. The second and third moments were evaluated for the vector, axial,
and pseudoscalar correlators in [9], [10]. Finally, these results were combined with information about the
threshold and high-energy behavior in the form of a Padé approximation, and the full q2-dependence of all
four correlators and the next moments from n = 4 up to n = 10 were reconstructed [11]. Moreover, the
results were obtained with sufficient accuracy.

Most of the experimental input for both the charm and the bottom quarks was compiled and used
in [6]. In [6], [12], an estimate for the gluon condensate was taken into account, giving a tiny contribution
in the charm case. This estimate for the moments was obtained based on the results in [17] with the
next-to-leading order (NLO) terms in [18] taken into account:

δMnp
n =

12π2Q2
c

(4m2
c,pole)n+2

〈
αs

π
G2

〉
an

(
1 +

αs

π
bn

)
, (3)

where

an = −2n + 2
15

Γ(n + 4)
Γ(4)

Γ(7/2)
Γ(n + 7/2)

,

b1 =
135779
12960

, b2 =
1969
168

, b3 =
546421
42525

, b4 =
661687433
47628000

.

Using the O(αs) pole-MS-mass conversion, i.e., the relation

mQ(μ)
mQ,pole

= 1 − αs

π

(
4
3

+ log
μ2

m2
Q

)
,
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we can express (3) in terms of the MS mass at the scale μ = 3 GeV with the new coefficients b̄n = bn −
(2n+4)

(
4/3+log(μ2/m2

Q)
)
. But because the mass appears in (3) with a high inverse power, this conversion

becomes unstable1 (although the effect obtained in [6], [12] was small, it nevertheless deserves attention).
We therefore prefer to use the formulation in (3) directly on the mass shell with the parameters mc,pole =
1.5GeV, α

(4)
s (3 GeV) = 0.258 (obtained from α

(5)
s (MZ) = 0.1189), and 〈αsG

2/π〉 = 0.006±0.012GeV4 [19].
The contributions to the moments are presented in Table 1 for both the leading-order (LO) and the

NLO predictions; moreover, the contributions from the narrow resonances (Mres
n ), threshold (Mthresh

n ), and
continuum (Mcont

n ) copied directly from [6] are presented in this table. The results for the charm-quark
mass mc(3GeV) are presented in Table 2, again for the two choices of the condensate contribution.

Table 1

n
Mres

n Mthresh
n Mcont

n Mexp
n Mnp

n (LO) Mnp
n (NLO)

×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1)

1 0.1201(25) 0.0318(15) 0.0646(11) 0.2166(31) −0.0001(3) −0.0002(5)

2 0.1176(25) 0.0178(8) 0.0144(3) 0.1497(27) −0.0002(5) −0.0005(10)

3 0.1169(26) 0.0101(5) 0.0042(1) 0.1312(27) −0.0004(8) −0.0008(16)

4 0.1177(27) 0.0058(3) 0.0014(0) 0.1249(27) −0.0006(12) −0.0013(25)

Experimental moments in GeV−2n as defined in (1), separated according to the con-
tributions from the narrow resonances, the charm threshold region, and the continuum
region above

√
s = 4.8GeV. The contribution from the gluon condensate in the LO

and NLO are shown in the last two columns.

Table 2

n mc(3 GeV)
[npLO]

mc(3GeV)
[npNLO]

exp αs μ npLO npNLO
total

[npLO]
total

[npNLO]

1 0.986 0.986 0.009 0.009 0.002 0.001 0.001 0.013 0.013

2 0.976 0.975 0.006 0.014 0.005 0.001 0.002 0.016 0.016

3 0.976 0.975 0.005 0.015 0.007 0.001 0.003 0.017 0.017

4 1.000 0.999 0.003 0.009 0.031 0.001 0.003 0.032 0.032

Results for mc(3 GeV) in GeV including the LO or NLO gluon condensate contribution.
Errors are from experimental errors, the uncertainty of the constant αs, the variation of μ,
and the different options for the gluon condensate.

It can be seen from Tables 1 and 2 that the effect of the gluon condensate remains small, in partic-
ular, for the three lowest moments. The final result mc(3 GeV) = 986(13) does not differ from the result
in [6], [12]. The consistency of this result with the results for n = 2, 3, 4 can be regarded as additional con-
firmation of this value. Passing to the scale-invariant mass mc(mc) [20] including the four-loop coefficients
of the renormalization group functions, we have [12] mc(mc) = 1279(13)MeV. At this point, we recall
that a recent study [21] in combination with a lattice simulation for the pseudoscalar correlator and also
with the perturbative three- and four-loop results [5], [15], [10] has led to mc(3 GeV) = 986(6)MeV, which
agrees remarkably with [6], [12]. Moreover, a fair agreement is also found with a recent analysis based on
finite-energy sum rules using results up to the four-loop order in the perturbation theory [22], which leads
to the result mc(3 GeV) = 1008(26)MeV.

1We thank S. Bodenstein for drawing our attention to this fact.
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Until about two years ago, the only measurement of the cross section above but still close to the B-meson
threshold, i.e., in the region between 10.6 and 11.2GeV, had been performed by the CLEO collaboration
in the mid-1980s [23]. Its large systematic uncertainty was responsible for a sizable fraction of the final
error in mb in the analysis in [6]. This measurement was superseded by results obtained by the BABAR
collaboration [24] with a systematic error around 3%. In [12], the radiative corrections were unfolded and
used to obtain a significantly improved determination of the moments. The CLEO and BABAR data are
shown in Fig. 1 together with the theory prediction based on the pQCD in the order O(α2

s ). We note that
Rb(

√
s) flattens out above 11.1GeV, and we should therefore expect agreement between the pQCD and the

experiment. The result for the region above 11.1GeV is shown in Fig. 2, again with the theory prediction.
Averaging the data points above 11.1GeV, we obtain Rb = 0.32 with negligible statistical and un-

correlated systematic errors. The correlated systematic error is stated to be 3.5%. In [6], [12], data and
pQCD were taken at face value for

√
s respectively below and above 11.2GeV (with linear interpolation be-

tween the last data point Rb(11.2062GeV) = 0.331 and the pQCD prediction RpQCD
b (11.24GeV) = 0.387),

yielding the moments and the quark masses presented in Tables 3 and 4.

Table 3

n Mres,(1S-4S)
n Mthresh

n Mcont
n Mexp

n

×10(2n+1) ×10(2n+1) ×10(2n+1) ×10(2n+1)

1 1.394(23) 0.287(12) 2.911(18) 4.592(31)

2 1.459(23) 0.240(10) 1.173(11) 2.872(28)

3 1.538(24) 0.200(8) 0.624(7) 2.362(26)

4 1.630(25) 0.168(7) 0.372(5) 2.170(26)

Moments for the bottom quark system in GeV−2n.

Table 4

n mb(10 GeV) exp αs μ total mb(mb)

1 3.597 0.014 0.007 0.002 0.016 4.151

2 3.610 0.010 0.012 0.003 0.016 4.163

3 3.619 0.008 0.014 0.006 0.018 4.172

4 3.631 0.006 0.015 0.020 0.026 4.183

Results for mb(10GeV) and mb(mb) in GeV obtained from
Eq. (2): the errors are from experimental errors, the uncer-
tainty of αs, and the variation of μ.

Our considerations are based on the assumption that the pQCD is valid in the region above ∼ 11.2GeV,
where the relative momentum of b and b̄ quarks has reached about 5GeV. Indeed, from the behavior of
Rb shown in Fig. 1, it is understandable that Rb, obviously, quickly reaches the level predicted by the
pQCD. But in view of the 20% deviation between data and the pQCD around 11.2GeV, we can consider
the possibility that either the pQCD is valid only at significantly higher energies (case A) or the systematic
error of the BABAR data is significantly underestimated, requiring a shift of the data by a sizeable amount
(case B). These variants should be considered “worst case” scenarios. Nevertheless, we demonstrate that
the resulting shifts are only slightly larger than the error quoted in [12]. We consider the two cases in detail.
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Fig. 1. Comparison of rescaled CLEO data (divided by 1.28) for Rb with BABAR data [12], [24]:

the black bar on the right corresponds to the theory prediction [25].

Fig. 2. The same data as in Fig. 1 in the region around
√

s = 11.2 GeV magnified: only the BABAR

data is shown. The shaded band corresponds to a linear interpolation between R(11.2062 GeV) and

R(13GeV) (see case A in the text). The black bar on the right corresponds to the theory predic-

tion [25].

Case A. We suppose that the pQCD holds only at higher energies, for example, above 13GeV with lin-
ear interpolation between Rb(11.2GeV) = 0.32 and RpQCD

b (13GeV) = 0.377. The results for the moments
and mb(10GeV) are shown in the respective Tables 5 and 6, assuming a 4% uncertainty at

√
s = 11.2062GeV

and no uncertainty for R(13GeV). A remarkable stability is observed for the bottom quark mass as can be
seen from Table 6. For n = 2, we obtain mb(10GeV) = 3.630GeV.

Case B: We suppose that the pQCD holds at 11.2GeV and that the systematic error obtained in [24]
is underestimated. Therefore, we rescale the data in the threshold region by the factor RpQCD

b /Rb =
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Table 5

n
Mres,(1S-4S)

n Mthresh
n Mcont

n Mexp
n

×10(2n+1) ×10(2n+1) ×10(2n+1) ×10(2n+1)

1 1.394(23) 0.270(11) 2.854(17) 4.518(31)

2 1.459(23) 0.226(9) 1.133(11) 2.819(27)

3 1.538(24) 0.190(8) 0.596(8) 2.324(26)

4 1.630(25) 0.159(6) 0.353(5) 2.142(26)

Moments for the bottom quark system in GeV−2n ob-
tained in case A: the contribution from the linear inter-
polation is contained in Mcont

n .

Table 6

n mb(10 GeV) exp αs μ total mb(mb)

1 3.631 0.014 0.007 0.002 0.016 4.183

2 3.630 0.010 0.012 0.003 0.016 4.182

3 3.631 0.008 0.014 0.006 0.018 4.183

4 3.637 0.007 0.015 0.020 0.026 4.189

Bottom quark mass in GeV obtained in case A: the errors
are from experimental errors, the uncertainty in αs, and the
variation of μ.

0.387/0.32 ≈ 1.21 corresponding to a shift of about 7σ. We show the results for the moments in Table 7
and the corresponding predictions for mb(10GeV) in Table 8 with mb(10GeV) = 3.592GeV for n = 2. As
expected, the trend of increasing mb with increasing n already evident in Table 4 is even more pronounced.

As in the charm case, the result for the bottom-quark mass based on the lower moments is more stable
than the result based on moments n = 4 and above. To suppress the theoretically evaluated input above
11.2GeV (which corresponds to roughly 60% for the lowest, 40% for the second, and 26% for the third
moment), we choose the result based on the second moment as our final result,

mb(10GeV) = 3610(16)MeV, (4)

which corresponds to mb(mb) = 4163(16). We note that cases A and B are regarded as “worst case”
scenarios; nevertheless, the respective shifts (for n = 2) are 20MeV and −18MeV, only slightly exceeding
the 16MeV uncertainty. We therefore use the original result (4). The explicit αs-dependence of mc and mb

can be found in [12]. In the ratio of charm- and bottom-quark masses, part of the dependence on αs and
on μ cancels:

mc(3 GeV)
mb(10GeV)

= 0.2732− αs(MZ) − 0.1189
0.002

· 0.0014± 0.0028.

This combination might be a useful input to the analysis of bottom decays.
In Fig. 3, we compare the results of this analysis with other results. The mc value is obviously within

the range obtained by other methods. Our result for mb is slightly shifted toward the lower values, although
it is still consistent with most other results.
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Table 7

n Mres,(1S-4S)
n Mthresh

n Mcont
n Mexp

n

×10(2n+1) ×10(2n+1) ×10(2n+1) ×10(2n+1)

1 1.394(23) 0.347(14) 2.911(18) 4.651(32)

2 1.459(23) 0.290(12) 1.173(11) 2.921(28)

3 1.538(24) 0.242(10) 0.624(7) 2.404(27)

4 1.630(25) 0.203(8) 0.372(5) 2.205(27)

Moments for the bottom quark system in GeV−2n ob-
tained in case B.

Table 8

n mb(10 GeV) exp αs μ total mb(mb)

1 3.570 0.015 0.008 0.002 0.017 4.124

2 3.592 0.010 0.012 0.003 0.016 4.146

3 3.607 0.008 0.014 0.006 0.018 4.160

4 3.622 0.006 0.015 0.020 0.026 4.175

Bottom-quark mass in GeV obtained in case B: the errors
are from experimental errors, the uncertainty in αs, and the
variation of μ.

The results presented in [12] constitute the most precise values for the charm- and bottom-quark masses
available to date.2 It is nevertheless tempting to indicate the dominant errors and thus identify potential
improvements. In the case of the charm quark, the error is dominated by the parametric uncertainty in
the strong coupling αs(MZ) = 0.1189 ± 0.002. The experimental and theoretical errors are comparable,
the former being dominated by the electronic width of narrow resonances. In principle, this error could
be further reduced by the high luminosity measurements at BESS III. A further reduction of the (already
tiny) theoretical error, for example, by a five-loop calculation, seems difficult. Our results are additionally
supported by comparison with the abovementioned results of numerical lattice calculations.

Improvements in determining the bottom-quark mass could come from experimental input, for example,
through an improved determination of the electronic widths of the narrow Υ resonances or through a second,
independent measurement of the R ratio in the region from Υ(4S) up to 11.2GeV. We already discussed
the slight mismatch between the theory prediction above 11.2GeV and the data in the region below with
their systematic error of about 3%. An independent measurement in the continuum region, for example,
by the BELLE collaboration, would be extremely important. In this connection, it may be useful to collect
the most important pieces of evidence supporting this remarkably small error. Part of the discussion is
applicable to both charm and bottom quarks, and part is specific to only one of them. In particular, for
charm (but also for bottom to some extent), the dependence of the result on μ increases for the higher
moments beginning with n = 4 and dominates the total error. We therefore concentrate on the moments
n = 1, 2, 3, which were used for the mass determination, and we mention the results for n = 4 only for
illustration.

We begin with the charm quark. We immediately emphasize that the primary quantity to be determined

2A slightly more precise result for the charm quark was obtained in [21].
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Fig. 3. Comparison of recent determinations of mc(3GeV) and mb(mb): the shaded band indicates

the values obtained in [12].

is the running mass at the 3GeV scale, which is the scale characteristic for the production threshold and
hence for the whole process. Furthermore, the strong coupling α

(4)
s (3 GeV) = 0.258 is already sufficiently

small at this scale such that the higher-order terms in the perturbation series decrease rapidly. Last but
not least, for many other processes of interest, such as B-meson decays into charm or processes involving
virtual charm quarks such as B → Xsγ or K → πνν̄, the characteristic scale is of the order of 3GeV or
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Fig. 4. Values of mc(3GeV) for n = 1, 2, 3, 4: for each value of n, the results from left to right

correspond to including terms of the orders α0
s , α1

s , α2
s , and α3

s .

higher. Artificially running the mass first down to O(1 GeV) and then back to a higher scale thus leads to
an unnecessary inflation of the error.

The theoretical uncertainty, resulting in particular from our ignorance of yet uncalculated higher orders,
and the error in evaluating the experimental moments affects the quark mass determination. The former
was estimated [6] by evaluating mc(μ) at different renormalization scales between 2 and 4GeV (of course,
appropriately changing the coefficients Cn) and subsequently evolving mc(μ) to mc(3 GeV). The error
estimates based on these considerations are listed in Table 2.

The stability of the result under including higher orders is also evident in Fig. 4, where the results
from different values of n are displayed separately in order of αi

s with i = 0, 1, 2, 3. This argument can be
made in more detail from the quantitative standpoint by rewriting (2) in the form3

mc =
1
2

(
9Q2

c

4
C

Born

n

Mexp
n

)1/2n

(1 + r(1)
n αs + r(2)

n α2
s + r(3)

n α3
s ) ∝

∝ 1 −

⎛

⎜⎜⎜⎝

0.328
0.524
0.618
0.662

⎞

⎟⎟⎟⎠ αs −

⎛

⎜⎜⎜⎝

0.306
0.409
0.510
0.575

⎞

⎟⎟⎟⎠α2
s −

⎛

⎜⎜⎜⎝

0.262
0.230
0.299
0.396

⎞

⎟⎟⎟⎠ α3
s , (5)

where the rows in the right-hand side correspond to the moments with n = 1, 2, 3, 4. We note that the
coefficients decrease as the order of αs increases. Estimating the relative error by rmax

n (αs(3 GeV))4 leads
to 1.4, 2.3, 2.7, 2.9� for n = 1, 2, 3, 4 and thus to an error estimate clearly smaller than the one based on
the dependence on μ.

3The QED corrections are contained in C
Born
n .
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pQCD

Fig. 5. The dependence R(
√

s) for different energy intervals around the charm threshold region: the

solid line corresponds to the theoretical prediction.

The consistency between the results for different values of n is more evidence supporting our consider-
ation (see Fig. 4 and Table 2). For the three lowest moments, the difference between the maximum and the
minimum values amounts to only 10MeV. This is a further indication of the self-consistency of our data
set. We illustrate this aspect with a critical discussion of the “continuum contribution,” i.e., the region
above 4.8GeV, where data points are available only at widely separated points. Instead of experimental
data, we used the theoretical prediction for R(s) to evaluate the contribution to the moments. If the true
contribution from this region were shifted down by 10%, for example, then this would move the mc value
derived from n = 1 up by about 20MeV. But this same shift would lead to a small increase by 3MeV
for n = 2 and leave the results for higher n practically unchanged. Furthermore, theoretical predictions
and measurements in the region from 4.8GeV up to the bottom-meson threshold, wherever available, are
in excellent agreement, as shown in Fig. 5, with deviations well within the statistical and systematic errors
of 3% to 5%. Last not least, the result described above agrees perfectly with the abovementioned recent
results of numerical lattice calculations.

We now discuss the bottom quark with mb evaluated at μ = 10GeV. Again, we first study the
stability of the perturbative expansion and then study the consistency of the experimental input. With
αs(10GeV) = 0.180, the higher-order corrections decrease even more rapidly than in the charm case.
Varying the scale μ between 5GeV and 15GeV leads to a completely negligible shift between 2MeV and
6MeV (see Table 4). As before, we can consider the analogue of Eq. (5) with the correction factor:

mb

mBorn
b

= 1 −

⎛

⎜⎜⎜⎝

0.270
0.456
0.546
0.603

⎞

⎟⎟⎟⎠ αs −

⎛

⎜⎜⎜⎝

0.206
0.272
0.348
0.410

⎞

⎟⎟⎟⎠α2
s +

⎛

⎜⎜⎜⎝

−0.064
0.048
0.051
0.012

⎞

⎟⎟⎟⎠α3
s .

Taking rmax
n (αs(10GeV))4 for an error estimate leads to a relative error of 0.28, 0.48, 0.57, 0.63� for

n = 1, 2, 3, 4, which is also smaller than our previous estimate.
We now turn to a critical discussion of the experimental data. The contribution from the four lowest

Υ resonances was taken directly from the Particle Data Group data [26] with systematic errors obtained
by linearly extrapolating the three lowest Υ resonances. The recent measurements of Rb in the threshold
region up to 11.20GeV [24] were analyzed in [12] and provided results consistent with the earlier analysis
in [6] but led to a significant reduction of the error in the mb value.
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Compared with the charm analysis, analysis in the bottom case shows that a larger contribution arises
from the region where experimental data are replaced with the theoretically predicted Rb with relative
contributions of 63%, 41%, 26%, 17% for n = 1, 2, 3, 4. This is particularly characteristic of the lower
moments. We therefore prefer to use the result for n = 2; as an alternative, we could also use the result for
n = 3.

We collect the arguments for this approach:

1. For light and charmed quarks, the value of R predicted based on the pQCD works extremely well
already in the region 2 to 3GeV above threshold. No systematic deviation has been observed between
theoretical and experimental results in the case of massless quarks starting from around 2 GeV and
for the scattering cross section including the charm quark at energies equal to or above 5GeV up to
the threshold region for the bottom quark (see Fig. 5). It hence seems hard to expect that the same
approach is doomed to fail when considering the production of bottom quarks.

2. If the true value of Rb in the continuum (above 11.2GeV) significantly differed from value predicted
by the theory, then the results for n = 1, 2, 3 would be mutually inconsistent. Specifically, a shift of
the continuum term by 5% would move mb derived from n = 1, 2, 3 respectively by about 64MeV,
21MeV, and 9MeV.

We summarize. The charm- and bottom-quark mass determinations have made significant progress in
recent years. A further reduction of the theoretical and experimental error seems difficult at present, but
independent experimental results on the R ratio would help to further consolidate the current situation. The
confirmation obtained using a recent lattice calculation with similarly small uncertainty gives additional
confidence in the result for mc.
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14. A. Maier, P. Maierhöfer, and P. Marquard, Nucl. Phys. B, 797, 218–242 (2008).

15. C. Sturm, JHEP, 0809, 075 (2008); arXiv:0805.3358v1 [hep-ph] (2008).

16. I. Allison et al. (HPQCD Collab.), Phys. Rev. D, 78, 054513 (2008); arXiv:0805.2999v2 [hep-lat] (2008).

17. V. A. Novikov, L. B. Okun, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin, and V. I. Zakharov, Phys. Rep.,

41, 1–133 (1978).

18. D. J. Broadhurst, P. A. Baikov, V. A. Ilyin, J. Fleischer, O. V. Tarasov, and V. A. Smirnov, Phys. Lett. B, 329,

103–110 (1994); arXiv:hep-ph/9403274v1 (1994).

19. B. L. Ioffe, Prog. Part. Nucl. Phys., 56, 232–277 (2006); arXiv:hep-ph/0502148v2 (2005).
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