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TOPOLOGICAL EXPANSION OF THE B-ENSEMBLE MODEL AND
QUANTUM ALGEBRAIC GEOMETRY IN THE SECTORWISE
APPROACH

© L. O. Chekhov,* B. Eynard,’ and O. Marchalf

We construct the solution of the loop equations of the 3-ensemble model in a form analogous to the solution
in the case of the Hermitian matrices 8 = 1. The solution for § = 1 is expressed in terms of the algebraic
spectral curve given by y? = U(zx). The spectral curve for arbitrary (3 converts into the Schrédinger
equation ((h0)? — U(z))¢(x) = 0, where h < (v/3 —1/y/B8)/N. The basic ingredients of the method
based on the algebraic solution retain their meaning, but we use an alternative approach to construct a
solution of the loop equations in which the resolvents are given separately in each sector. Although this
approach turns out to be more involved technically, it allows consistently defining the B-cycle structure
for constructing the quantum algebraic curve (a D-module of the form y* — U(x), where [y, 2] = h) and
explicitly writing the correlation functions and the corresponding symplectic invariants Fy, or the terms of
the free energy in an 1/N 2_expansion at arbitrary k. The set of “flat” coordinates includes the potential
times ty, and the occupation numbers €,. We define and investigate the properties of the A- and B-cycles,

forms of the first, second, and third kinds, and the Riemann bilinear identities. These identities allow

finding the singular part of Fo, which depends only on €,.
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1. Introduction

In contemporary mathematical physics, the notion of quantum surfaces is rather often encountered,
appearing in many different guises. Having no intention to describe all problems in which quantization
of the space-time coordinates themselves occurs (which pertains mainly to string or brane models), we
nevertheless stress that the main feature of most, if not all, of these models is that the consideration is
commonly restricted to the simple geometry of the sphere or torus. The observables in these theories are not
the coordinates themselves, which cease to commute with each other and satisfy some postulated quantum
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algebras, but objects related to representations of these algebras, because only these objects admit a classical
interpretation. We here propose a new approach for describing these so-called “quantum surfaces,” namely,
we begin with solutions of the standard one-dimensional Schrédinger equation with a polynomial potential
and construct a higher-genus quantum surface (which is an analogue of a classical hyperelliptic Riemann
surface) for which we can define analogues of all the main notions of algebraic geometry.

This paper is an “alternative version” of our paper where we introduced the notion of quantum algebraic
geometry [1]. In both versions, the origin of quantum algebraic geometry is the same: the Schrodinger
equation ((hd)? — U(z))¥(z) = 0. The principal difference is that we here define all quantities starting
from the one-point resolvents differently in different sectors, i.e., these resolvents are constructed based on
different solutions of the Schrodinger equation in different Stokes sectors of the complex plane. This allows
rigorously defining the integrations over A- and B-cycles and also presenting a self-consistent procedure for
constructing the correlation functions and symplectic invariants.

The correlation functions W,gh)(xl, ..., xp) and the symplectic invariants F, for any planar algebraic
curve given by a polynomial equation

E(x,y) = Z&-,jxiyj =0
2

were defined in [2], [3]. The invariants F3(£) are described in terms of algebraic geometry based on the
Riemann surface of the equation £(x,y) = 0. On the matrix model side, these invariants are terms of the
1/N2-expansion (the genus expansion) of the free energy calculated in [4] for the one-matrix model and
in [5] for the two-matrix model.

We introduce the notion of a “quantum curve” for which £(z,y) is a noncommutative polynomial of =
and y:

Ey)=> Ea'y’,  [ya]=h
2]

The notion of a quantum curve is also known as D-modules, i.e., a quotient of the space of functions by
Ker &(z,y), where y = hd/0x.

Our construction is based on functions ¢ (x) satisfying &(z, ;) (x) = 0, and we show that all the
basic notions of algebraic geometry can be consistently defined within this construction. Although some
objects, branch points for example, lose their explicit meaning, we can define cycles, forms, Bergman kernels,
period matrices and the corresponding Abel maps and also other objects consistently. It is nevertheless
quite surprising that almost all relations of classical algebraic geometry, for instance, the Riemann bilinear
identity, the modified Rauch variational formula, and the topological recurrence relations defining the
correlation functions and symplectic invariants, retain their significance for i # 0.

The symplectic invariants JFj, were first introduced for the solution of loop equations arising in the
1-Hermitian random matrix model [2], [4]. They were later generalized to other Hermitian multimatrix
models [5], [6].

The models corresponding to the quantum surface are the G-ensembles classified by the exponent (.
The three Wigner ensembles (see [7] with the change 8 — [3/2) correspond to § = 1 (Hermitian matrix
case), f = 1/2 (real symmetric matrix case), and 8 = 2 (real self-dual quaternion matrix case), but we can
easily define a B-ensemble eigenvalue model for any real value of 3 as the N-fold integral of the form

/ dAs - AAN|AN) PP NVIEZ VO,

where A is the Vandermonde determinant.
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The solution in [2] was generalized in [8] to the [-ensemble models, but the solution was given as a
double half-infinite sum for 8 = O(1) at large N,

[eS) k
F=> N22hk(\/ﬂ— \/15> Fhok.

h,k=0

The coefficients Fj, i in this series were computed in [8].
Here as in [1], we assume that i = (v/3—1/+/3)/N, and we therefore perform an (infinite) resummation
in the above formula; the free-energy expansion then takes the standard form

F = N>"F(h).
h=0

The coefficients Fy, , in [8] can be recovered by computing the semiclassical small h-expansion of Fy, ().
We demonstrate that F, (%) is the natural generalization of the symplectic invariants in [3] for a “quantum
spectral curve” £(x,y) with [y, z] = h.

We also define analogues of the multipoint resolvents

N N
Wi (21, ..., 20) = N”<Z(:c1 —A) D (@ - Aj)1> :

j=1 J=1
where the angle brackets denote averaging with the weight |[A(X)|2fe= NV 55 VA9 and the subscript
“conn” means that we select the connected part of the correlator. These resolvents themselves admit the
1/N?-expansion in the form

Wo(z1,...,2n) = Z N2y () (g ).
h=0

Here, we calculate all the terms Wéh) using the modified diagram technique.

The main tool used to study the (-eigenvalue model is the loop equation method. We obtain loop
equations from the invariance of an integral under a special change of variables. Loop equations for the
[-eigenvalue model were obtained in [9], [10], and we solve them here order by order of the perturbation
theory in 1/N? with a fixed h.

Models of the indicated type recently received a new impulse for development from the Alday, Gaiotto,
and Tachikawa (AGT) conjecture [11] relating Nekrasov’s instanton function [12] to conformal blocks of the
Liouville theory. These conformal blocks can in turn be described by a matrixlike model (see [13], [14]).
The relation to the Nekrasov parameters €; 2 is explicit: ejeq ~ 1/N 2 and ¢ /€2 ~ (3. Therefore, using
the approach developed here, we can construct nonperturbative solutions of Nekrasov’s formulas in €; /€.
Here, we investigate only the case of polynomial potentials; the generalization to the realistic logarithmic
potentials appearing in the AGT conjecture will be the subject of a subsequent publication.

This paper has the following structure. We collect the generalities on the Stokes phenomenon pertaining
to solutions of the Schrédinger equation in Sec. 2. We describe our quantum Riemann surface in Sec. 3, where
we introduce A- and B-cycles, filling fractions ¢;, and the first-kind functions (analogues of holomorphic and
Krichever—-Whitham meromorphic differentials) and also the system of flat coordinates and the Riemann
period matrix. In Sec. 4, we introduce the recursion kernels and the second- and third-kind (bi)differentials.
In Sec. 5, we go beyond the leading approximation in 1/N? and construct correlation functions of all orders
using a Feynman-like diagram technique. We reveal the origin of our recursive procedure in Sec. 6, where
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we develop the variations with respect to the set of flat coordinates in detail. A summary of the results
is contained in Sec. 7. In the next two sections (completely new compared with [1]), we investigate the
link to the S-ensemble models (Sec. 8) and construct the free-energy terms based on this analysis (Sec. 9).
In Appendixes A-C, we prove the three main theorems in Sec. 5 concerning properties of the correlation
functions, and Appendix D contains a new formula expressing Fy in terms of the filling fractions €. In
matrix models, the singular term has the structure (€2 /2)log¢;. In the quantum geometry, this term turns
out to be proportional to the integral of logT'(¢;), which is the first actual example of calculations in the
case of quantum Riemann surfaces.

2. Schrodinger equation and resolvents

2.1. Solutions of the Schrodinger equation. We begin with the Schrodinger equation

Wy (@) = U(x)y (), (2.1)

where U(x) is a polynomial of even degree 2d for which we define the polynomial “potential” V' (x) of degree
d+1 by

d
V(@) =2(VU)y =) trpa, (2.2)
k=0

where ()4 denotes the positive part of the Laurent series. In the matrix model language (see Sec. 8),

t1,...,tas1 are called the times associated with the potential V(z). We also define the polynomial of
degree d — 1
V/ 2 V//
Py = V@ gy - n @, (2.3)
4 2
Finally, we introduce
. zP(x)
to=1 24
0 wLH;O V’(l’) ’ ( )

which is the normalized total number of eigenvalues (particles) or the temperature. The remaining coeffi-
cients of P are fixed by introducing the “filling fractions” €; below.

2.1.1. Stokes sectors. A function ¥(z) that is a solution of the Schrédinger equation exhibits the
Stokes phenomenon: although (z) is an entire function, its asymptotic behavior is discontinuous near oo,
where it has an essential singularity. Let 0y = Arg(ts+1) be the argument of the leading coefficient of the
potential V(x). We define the Stokes rays

9 k+1/2
Lk:{a:: Arg(x):—d_fl T d—i—{ },

along which Re V' (x) vanishes asymptotically, together with the corresponding Stokes sectors

Sk:{x:Arg(x)e] b k—1/2 6 k+1/2{}7

Td1 T T de1 ) a1 T ae

i.e., Sk is the sector between Ly_1 and L.
We note that asymptotically, Re V(z) > 0 in even sectors and Re V(z) < 0 in odd sectors.
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Fig. 1. Example of the Stokes sector partition and structure of zeros for the Schrédinger equation
solution 1 (z) that decreases in the light-colored sector and increases in all other sectors (the degree
of the potential V() is four).

2.1.2. The Stokes phenomenon: Decreasing solution. Investigations of the Schrédinger equa-
tion show that () is an entire function with the large-z expansion in each sector Sy

B
¢(x)§ etV (@)/2h,Cr <Ak + x’“ +. ) (2.5)

where the sign 4+ can change in the passage from one sector to another as can the numbers Ay, By, Ck, . ..

! In each sector S, there

(and in the general case, all the coefficients of the series in 1/27 at infinity).
exists a unique solution that decreases exponentially along each asymptotic direction inside the sector.
We now separate solutions in the even and odd sectors and consider the set {1, (2)} of solutions each of
which decreases in the corresponding even sector. We thus introduce a sectorwise system of solutions of
the Schrédinger equation.

The Stokes theorem is a useful result, stating that if the asymptotic value of ¥ (x) is exponentially
small in some sector, then the same asymptotic series expansion (2.5) holds in the two adjacent sectors
(and v(x) therefore increases exponentially in those two sectors).

In the general position case, (i.e., for a potential U(z) of general form), the solution ¢, (x) decreases
only in the sector S, and is exponentially large in all other sectors (see Fig. 1). But if the Schrédinger
potential U(z) is special, then there may exist several sectors where ¢, (x) is exponentially small (which
means that 1., () = ¥4, (x) for some a; # a2).

In what follows, we mainly consider the general position case and therefore assume all the functions
1, are different unless otherwise stated.

The case studied in [15] is the most degenerate case, where the same solution 1 is exponentially small
in d+1 sectors.

2.1.3. Zeros of ¥. Every ¢,(x) is an entire function with an essential singularity at co and with
(@)

isolated zeros s; The number of these zeros can be finite or infinite. In the latter case, zeros can
accumulate only near co and only along the Stokes rays L; bordering the sectors (see Fig. 1). This zero
accumulation along the ray L; occurs if and only if ¢4 () is exponentially large on both sides of the ray.

Therefore, no accumulation of zeros of the function 1, (x) occurs along the lines that border the « sector,

1The corresponding series is asymptotic and hence cannot be continued analytically to other sectors.
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and this function can therefore have only a finite number of zeros inside the “larger” sector when we join
the « sector with the adjacent parts of the two neighboring sectors.

If U(z) is general, then each ¢, (x) has an infinite number of zeros, the zeros accumulate at co along
all rays L; with j # a,a — 1. An important property of any solution ¢, is that

1
Woaw =" 20

In [1], we define the genus of the Schrodinger equation to be related to the number of rays of zero
accumulation of a selected function ¢y. But this definition depends on the scheme, and we can in principle
obtain different genera for the same function U(z). The clear understanding of this is still lacking; a possible
explanation is that we actually deal with different sections of an ambient infinite-genus quantum surface.

2.1.4. Sheets. In sector S, we have the asymptotic expansion
Yo () ~ e~V (@)/2 0 /b (Aa + 110‘ + .. .),

and the function ¥, has the same asymptotic expansion in the two adjacent sectors. We consider an « sheet
of the quantum Riemann surface to be the union of these three sectors with a possible analytic continuation
into a bounded domain of the complex plane. We consider only the sheets enumerated by even « and, in
contrast to [1], consider them on an equal footing: they are all equivalent in the approach developed here.
Sheets obviously overlap; we must introduce boundaries (cuts) between them.

2.2. Resolvent. The first ingredient of our strategy is to define a resolvent similar to the one in
matrix models. We define the resolvent sectorwise: for x € S,

o _ 04(@)

ol L V@)

) T2 @7)

where a quantity defined sectorwise is indicated by setting the sector index above the variable as for the
argument of the resolvent. It follows from this definition that w(z) has simple poles at zeros of 1, in the
corresponding sector. The boundaries between sectors overlap, but we fix them more explicitly in what
follows (see the picture of the partition of the complex plane by A-cycles). A straightforward computation

then gives

@ t 1
LU(Q:)N 0+O< 2)7 .T_>OOa,OOai1,
T T

i.e., the resolvent in each sheet has the asymptotic properties of a standard matrix-model resolvent.
The main property of w(x) is that it satisfies the Riccati equation. We have

V! (2)w(T) — w?(T) — hw' () (V') () 52 Valz) hV”(g;)

4 Yo (T) 2
_ (V') (=) V' (z) _
=, U@ -n 7 = P), (2.8)

where P(z) is a polynomial of degree d — 1 in x, and this polynomial is the same for all sheets of the
quantum Riemann surface introduced below.

3. Quantum Riemann surface
In this section, we define the notions of A- and B-cycles and the first-kind differentials dual to them.
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Fig. 2. The original integration contour Cp.

Fig. 3. Example of pushing the contour Cp from infinities to the set of .Z—cycles.

3.1. The integration contour Cp and the set of .A- and B-cycles. In papers on matrix models
(at an early stage before coming to residues at the branch points), we have the special integration contour
Cp that encircles all the singularities of resolvents, not considering all other possible singular points. The
analogue of such a contour in our case is the union of d+1 contours, one per sheet, that pairwise coincide in
far asymptotic domains of odd Stokes sectors and separate all the zeros of the function 1, from the infinity
004 (which is always possible because we have a finite number of zeros in each sheet). We have

f dz f(z Z/%“ du (& (3.1)

Oa—1

for any function f (%) that has no asymptotic zero accumulation along the boundary rays of the sector S,
(see Fig. 2). Here and hereafter, we assume that f (%) may depend on a finite number of derivatives of
Yo (x); the symbol f (%) then indicates that we substitute the solution 9, (x) as an argument.

We now deform the integration contour Cp pushing it through the “middle” part of the complex plane

(@)

and taking the residues at the zeros s;”’ of the corresponding functions v, as shown in Fig. 3. On the

way, we might break some contours, representing them as the unions of newly introduced contours all of
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which are stretched between different asymptotic directions. As a result, we obtain a system of exactly

2d contours in which (not considering the residues at zeros sgo‘))

all the contours are pairwise identified
and represent edges of d “cuts.” As a result, we obtain a complete system of d cuts ﬂi, 1 =1,...,d, that
separate all the odd-numbered infinities? and determine the corresponding sheets of the quantum Riemann
surface. If the functions ¥, (z) coincide for some sheets, then we can identify these sheets. We note that
we definitely have an arbitrariness in constructing this system of cuts; we can also arbitrarily assign the
residues inside the sheet to belong to one of several contours bounding this sheet.

We call the cut separating two sheets a cycle Aq, and it is characterized by four indices: ay and a_
are indices of the sheets separated by this cut (they are even numbered in our classification); a; and a_
are indices of infinities that are asymptotic for this cut (they are odd numbered).

Into correspondence with each complete set {,Za}izl of ﬂ—cycles7 we uniquely assign the set {ga}izl
of g—cycles that go pairwise between the even-numbered infinities (a4 and «_) such that the intersection

index ./Za o gg = 504,5-

Definition 3.1. We define the integrals over the cycles ,Za and the conjugate cycle ga as (see Fig. 4)

§oars@ ™ [T an (5 - 1)+ Res £, (32)
o 00 _ s; (o)

da f(z) /O%+ do (F(F) = £(0)), (3.3)
Ba o _

where the residues in the first expression are taken at those zeros of ¢, that are assigned to the corre-
sponding contour.

Because the prescription for the sheet assignment follows from definitions (3.2) and (3.3) of the cycle
integrals, we omit the sheet labels in the corresponding integrands in what follows.

Remark 3.1. The assignment of residues in the « sheet to the contours bounding this sheet is arbi-
trary; we therefore have a (discrete) ambiguity in definition (3.2) of the A-cycle integrals. But the notion
of the integral over Cp is well defined and is independent of the choice of the A-cycles. Obviously,

fdxf Z]{ dz f(x

We now introduce the “genuine” A- and B-cycles, which are direct analogues of the set of A- and
B-cycles on a standard Riemann surface. For this, we select one among the A-cycles, for example, the cycle
Ay and the conjugate cycle By. We then identify A; = A; and B, = B; — By, it =1,...,d — 1, in the sense

of Definition 3.1, i.e.,
fd f()deff dz (),

]{dxf defjf dz f(x dxf() i=1,....d—1,

and we call the number ¢ = d — 1 of independent A— and B-cycles the genus of the quantum Riemann

(3.4)

surface.

The newly introduced A- and B-cycles again satisfy the standard intersection formula A, NBg = 04,3,
and most of our construction features depend only on the homology class of the paths A, and B, at the
asymptotic infinities, but in the intermediate considerations, it is useful to choose a representative, the
intersection point P,, A, N By = {Pa}.

2In what follows, we identify an infinity “point” with the corresponding number with the related asymptotic direction.
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Fig. 4. The pattern of ./zlv—cycles (dashed lines) and g—cycles (dotted lines) for the example in Fig. 3.

3.2. Filling fractions. In random matrix models, the notion of filling fractions is just the A-cycle
integrals of the resolvent. If the A-cycles are chosen to be in the physical sheet (which is possible, for
example, in the hyperelliptic case), then the discontinuity of the resolvent along the corresponding cuts
determines the eigenvalue density, and the A-cycle integrals determine the portions of eigenvalues lying on
the corresponding interval of the eigenvalue distribution. They are therefore called the filling fractions.

In the case of the quantum surface, we define the “filling fractions” €, as

o= ! rw(z) Ooa+a:waf—wa33_ o=
ea_méacz (@) / dz (w(F) — (), L. d (3.5)

o0

o _

We note that this definition depends on where we place the contours and (in the case where a sheet is
bounded by more than one j—cycle) we also have a freedom to assign residues inside the sheet to different
;l-cycles. Therefore, the filling fractions are defined up to integers times .

For the difference in the right-hand side of (3.5), we have

o+ - wo‘+ YOt

" Yo, (@)Ya_(2)’

where wa, o, = (’1+¢a_ — ), 1o, is the Wronskian of the two solutions. Therefore, this difference
decreases exponentially in sectors where both the solutions 9., and v,_ increase, and we can identify the
asymptotic domains of the A-cycle integrals with “branch points.”

We have Zi:l €n = tg, which follows from the simple fact that summing the integrals over /T—cycles
is equivalent to integrating over Cp. This also means that we should take only d — 1 = g of the variables
€1,...,€q as independent variables if we regard tg as an independent variable, and we naturally choose these
g variables €, to be the filling fractions corresponding to the cycles A, of the quantum Riemann surface.

Remark 3.2. In the case ¢ = —1 in [1], the only filling fraction is €¢; = tp, and it is given by the
(finite) sum of residues of the function w at the zeros s;,

€=ty = ZRSGSW = h#{s:},

and t( is hence discrete in this case. For g > 0, the variables €,, a« = 1,...,g, and tg can take arbitrary,
not necessarily integer, values.
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3.3. First-kind functions. After defining the cycles, the next important step is to define the first-,
second-, and third-kind differentials. We begin by defining the first-kind differentials.

Let hg, k=1,...,d — 1, be a basis in the complex vector space of polynomials of degree < d — 2. We
introduce the functions

o(T) = hwg(x) /OO ) da’ by, (2" )2 (2). (3.6)

We use the same polynomial hy(z") for all sheets of the Riemann surface.

We note that because every ¢, (x) is a solution of the Schrédinger equation, vy (%) has double poles
with zero residues at the s§a) (at the zeros of 1, ) and behaves as O(1/22) in the sector S, and inside all the
sectors where 1), is exponentially large (if the polynomial hy(z’) has a degree less than d — 2). Therefore,
the integrals

It :7{ devg(z), a=1,...,9, k=1,...,d—1,

are well defined in the general case. If the matrix I o, with & = 1,...,d — 1 has the full rank (which we
assume in what follows), then we can choose the canonically normalized basis of hj such that

Iyo = k0 (3.7)

The functions v (z), k = 1, ..., g are therefore natural analogues of canonically normalized holomorphic
forms (first-kind differentials). We now extend this notion to the meromorphic (Whitham-Krichever)
differentials [16]. For this, we consider the following basis hy, k = 1,2,..., in the space of polynomials of
arbitrary order. The first d—1 elements of this basis are the original polynomials Ay, each of which has a
degree not exceeding d — 2. Each polynomial hy with k£ > d — 1 has exactly the degree kK — 1 and must be
chosen on the following grounds. We define the functions vy, () with k > d — 1 exactly as in (3.6). Now let
hi, be a polynomial of arbitrary (fixed) degree k — 1. The coefficients of hy, k > d — 1, are uniquely fixed
by the normalization conditions:

the residue condition d
ﬁ xf’uk(l’) =0 k-a, 1=0,1,..., k>d—1, (3.8)
D

and the normalizing condition

devp(z) =0, a=1,...,d—1, k>d. (3.9)
Aa

Remark 3.3. Although the functions vy (%) generally increase as zF—¢

as ¥ — 00, integral (3.8) and
also normalizing condition (3.9) are well defined for any finite [ and k because the difference vk(af )— vk(ax_ )
is exponentially small as ¢ — 004, for any k and we can integrate it along Cp weighted by any polynomially

increasing function. Integral (3.8) is therefore a natural analogue of the residue at infinity of order { + 1.

3.4. Riemann matrix of periods. An interesting quantity in standard algebraic geometry is the
Riemann matrix of periods provided by integrals of the holomorphic differentials over B-cycles. An analo-
gous “quantum” Riemann period matrix 7; 5, 4,5 =1,...,g is

Tai déf% dz v;(x).
Ba

We note that this definition makes sense because v;(x), i = 1,...,g, behaves as O(1/2?) in the sectors
that are asymptotic for the B-cycles. Because the residues of v; (%) vanish at all zeros sg-a), these integrals

depend only on the homology class of B-cycles.
Like for the classical Riemann matrix of periods, we have the following property.
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00,

Fig. 5. The path of integration with respect to the variable x’ in the expression for the recursion
kernel K (z,7).

Theorem 3.1. The period matrix T is symmetric: 7; ; = T; ;.

This result follows from Theorem 4.8 below because

j{ dx]{ dz B(x, z) = 2im dz ve(T) = 2i778 4,
Bgs Bgs

after which we can apply the equality B(, g) = B(g, ) (see Theorem 4.9 on the symmetry of the Bergman
kernel).

4. Recursion kernels

One of the key geometric objects in [3] and [15] is the “recursion kernel” K(z,z). It was used to
construct a solution of loop equations in the context of matrix models [5]. We use its analogue K (z, z)
below to construct the third- and second-kind differentials.

4.1. The recursion kernel. We first define the kernel

T 2(z

and for each a =1,..., g, we define

hCy(2) :74 dz K(z,2) = /o%+ de (K(7,2) — K(% , 2)). (4.2)

o o _

In these expressions, we must also specify the integration contours with respect to the variable 2’ from the
infinities 0o, to the point = on the cycle A,. We assume that these contours go first from the corresponding
infinity along the part of the adjoint cycle B, that lies in the sheet a until it reaches the intersection point
P,; after this point, we integrate along the cycle A, towards the final point x (see Fig. 5).

To find the domain of the function K (%, z), we slightly deform the integration contours over edges of
the K—cycles as shown in Fig. 6; then for the variable z lying in the domain that is “inner” with respect
to integrations from infinities for all the functions ,_, i.e., for the domain that is separated from all the
infinities co,, by the drawn apart edges of the A—cycles the kernel K (x z) is well defined (and it develops
logarithmic cuts if we push the variable z through the boundary of the sheet S, ).

We now need to describe the analytic properties of the introduced functions. For a fixed z, the kernel
K (T, z) is defined for z in the crosshatched domain in Fig. 6.

Taking an integration path between oo, and z, we find that K (Z, 2) is defined for z outside this path.
Across the path Jooa, 2], K (Z, 2) has a discontinuity with respect to z:

~ 21 2
5.K(%,2) = ,’: 338
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Fig. 6. The domain of variable z (crosshatched) in (4.1) (we slightly deform the A-cycle integrals).

A similar statement is true for Co(2): when z crosses the line of the cycle Ag, we have

2imy3, (2) /%i dz”

; v3 (e (4.3)

5.Cp(z) =

We now define the recursion kernel K (, z), which is the main ingredient in our construction.

Definition 4.1. The recursion kernel K (I, z) is

«

K(T,2) = K(@,2) =Y 0;(T)C;(2).

It is defined for z in the crosshatched domain in Fig. 6.

Theorem 4.1. The kernel K has the following properties:

For a fixed z, K(T,2z) ~ O(z72) as  — oo in all sectors (if the function a(z) increases in all the
sectors except Sy,).

The normalization condition is

f QoK (,2) =0, j=1,....d—1. (4.4)
A;j

At the zeros sg-a) of o, K (%‘, z) has double poles with zero residues.

Proof. The first statement follows from the asymptotic behavior of v, (Z) given by (3.6) and the kernel
K(Z,2), K(Z,2) ~ O(z~%). The second statement follows from the definition of the kernel K, and the third

statement follows from (2.6).

Theorem 4.2. We have K (%, 2) ~ O(z~%) in all sectors at infinity. More precisely, we have

Z—00

Ko~ 3 K

k+1 2
z
k=d—1
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where

g
Ki(@) = Kp(z) = > v;(7) ¢ da’ Ky (a'), (4.5)
=1 As
Ri@®) =, o [ @) (1.6
M3 () Joo, o
Proof. We can expand IA{(%, z) in a series as
s =\ Ki(T)
K(z,2) ~ _Z Skl
k=0

where Ky () is defined in (4.6), and (4.5) is therefore satisfied for Ky (7). For k < d — 2, (2/)* can be
represented as a linear combination of polynomials h;(z'),

d—1
@)k =" bighs(a’),
B=1
and from the normalizing condition, we immediately obtain
dl’/ IA(k(a:/) = bk,a,

and therefore Ky (x) =0 for k < d — 2, which implies that K (z,z) = O(z~%). The theorem is proved.

4.2. Third-kind differential: The kernel G’(:%, g) We now define the second important kernel,
which is an analogue of the third-kind differential. The kernel G (%, g) is

Vb)) houK (3 ). (4.7)

Integrating by parts gives

ap 1 2 [ et (V) YRR
G =~ e T ) /oo 2 — 2 Vel )<wa<xf> wﬁ(z>>
a QN2 Cj(z)
_h;vj(x)wﬁ(z)azw%(z)

In what follows, we are often in a situation where we take two integration contours Cp_ and Cp, and must
interchange the order of integration (or the order in which these two contours intersect the B-cycles). It is
then obvious from the definition of the A-cycles that we must interchange the variables « and z within the
same sector, and we therefore need permutation relations for G(%, g) with a« = 8. As © — z, we then find
that G(Z,%) ~ 1/(z—=x), i.e., there is a simple pole with the unit residue at z = 2. Because the combination

(o)

is regular at 2’ = z, interchanging the order of integration over Cp, and Cp. then just gives the residue at
z = x; no logarithmic cut occurs.
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Theorem 4.3. The function G(%, g) is analytic in x with a simple pole at x = z with the residue —1

for a = [, with double poles at the sg-a) (zeros of Yo (z)) with zero residues, and possibly with an essential

singularity at oco.

The function G’(%, g) is analytic in z with a simple pole at z = x with the residue +1 for o = (3, with
simple poles at z = s;ﬁ ), and with a discontinuity across A.,-cycles with v =1,..., g (this discontinuity has
opposite signs depending on which line of the cycle A, v+ or «_, we cross; no discontinuity occurs when

crossing the last cycle /Td):
a B+

5.G(%, 7)) = T2imvz(2).
We also have

dx G(z, g) =0.
Aa

Proof. All the discontinuities of K (Z,z) except those arising in expression (4.3) for Cj(z) are pro-
portional to ¢2Z(z) and vanish in G(z,z) given by (4.7). The discontinuity of C;(z) gives F2i, and the
discontinuity of G(Z, g) is therefore 6,G(Z, Bzi) = :|:2i7rvg(%).

Because K (,z) is regular at z = s;ﬁ), it is clear that G(Z, g) has simple poles at z = s;ﬁ) with the
residue —2hK (z, sgﬁ)).

In the variable x, K (%, z) has double poles at = sg-a) with zero residues, and this property also holds
for G(%,2).

The property that the A-integral vanishes follows immediately from (4.4). The theorem is proved.

Theorem 4.4. As ¥ — 0o, for any «, we have the asymptotic behavior G(&, g) = O0(1/2?). At large
z in the sector S, we have

. a B « «
lim G(z,z2) = G(x,008) = 0y gtar1Ka—1(T), (4.8)

Z— 00~

where 1,3 = £1 depending on the asymptotic behavior of 1g ~ e=V/2M in the sheet Sy

Proof. The large-z behavior G(%,g) follows from Theorem 4.1. The large-z behavior is given by

Theorem 4.2, i.e., G(%,g) ~ +V'(2)K(%,2) ~ +tqy1Ka—1(T). The sign depends on the behavior of the
solution in this sector.

4.3. The Bergman kernel B(%, g) In classical algebraic geometry, the Bergman kernel is the
fundamental second-kind bidifferential; it is the derivative of a third-kind differential. Using the same

definition as in [15], we set

B(%,%) = —;aza(%, 2).

We call the kernel B the “quantum” Bergman kernel.

Theorem 4.5. The quantum Bergman kernel B(%, g) is an analytic function of x. For o = (3, it has
a double pole at © = z in both the variables x and z with a zero residue, has double poles in x and in
z at the respective zeros sg-a) and sgﬁ ) with zero residues, and possibly has an essential singularity at co.
Differentiation eliminates the discontinuity in the kernel G across A-cycles, and B(%, g) is hence defined
analytically in the whole complex plane.
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Proof. These properties follow from those of G(%, g) in Theorem 4.3. In particular, the only discon-

tinuity of G(%, g) is along the A-cycles and is independent of z. Therefore, B(%, g) is continuous there.

Theorem 4.6. We have the asymptotic behaviors B(%,g) = O(1/2%) as * — oo in all sectors and

B(t, g) = O(1/2%) as z — oo in all sectors.

Proof. Such behavior of the kernel follows from the large-z and large-z behaviors of G(%, g)

Theorem 4.7. The kernel B satisfies the loop equations

Vo () ag 1 UL () /balT) — Vh(2) [0s(2) ) 5
(21%(@ +81> (B( %) 2(:c—z)2) + 0. . = PV (x,2), (4.9)

where PQ(O) (z, g) is a polynomial in x of a degree not exceeding d — 2, and
%(2) a B 1 Vo (@) /Yalz) = ¥5(2)/Ys(2) <) a
< ¥3(2) +82) (B(x,z) - 2(3:_2)2) + 0y . =P, (z,z2), (4.10)

where ]52(0) (%, z) Is a polynomial in z of a degree not exceeding d — 2.

Proof. We begin by proving the first loop equation for B(x z) Let

i.e., we have
d—1

BE.2) = BED —Zuj(%)yf iz’ B".%).

j=1 j

Because h;(x) = (2¢’ (2)/a(z) + )vj( ) is itself a polynomial of degree not exceeding d — 2, it suffices
a B

to prove Eq. (4.9) fo (x z). We have
(@) o \me s 1 [ U4(2) L
(21%(33) + 5w>B(x,z) = 2(’92 <2¢5(z) - 82) s
_ 1 i V(2)

and therefore

(550 0 ) (B b, )0, SOl BN

This proves Eq. (4.9) with
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We now prove the second loop equation for B (%, g) We have

(a4 o) (4 -

where the differential operator in the right-hand side is

2 1

~ 1
U(x) = =, 02+ LU0+ ,U'(2) (4.11)

and is therefore independent of the solution ¢3(z) with which we started. This operator is just the Gelfand-
Dikii operator [17]. We then obtain

(o )88 = i [ awin(- 2o 10+ 20

Integrating the first term by parts three times, introducing Y, (x) = ¢.,(x) /1. (z) (and taking into account
that Y + Y2 = U), we obtain

1/123(2) B(% g _ 1 9 Yo(z)
(%(z)*az)B( 4= *

This implies that

ox T —2z

_ 1 /w ! 2($/)<2U(2)—U(9€’)+U’(z)+U’(x’)>. (4.12)

@ (2! — 2)? -z

(2%EZ§ +az> (E(%,?) - 1 2) L 0 Ya(@) =Ys(2) _

The obtained expression is obviously a polynomial in z. The expression in parentheses in the right-hand
side of (4.12) is a skew-symmetric polynomial in 2’ and z of a degree not exceeding 2d — 2. Moreover, all the
terms with (2/)* with k < d — 2 become linear combinations of v; () after integration and vanish identically
when we apply the projection to the subspace of zero A-cycle integrals. Therefore, the minimum power of

2’ that contributes to the answer is (z/)4~!. But there is no term (2/)?-1z4-!

in the parentheses because
it would contradict the skew-symmetricity. The first nonzero term that might contribute is proportional
to (2/)4=129-2, which obviously means that the obtained polynomial P\”(Z, z) has a degree not exceeding

d—2in z.

Theorem 4.8. For each a =1,...,g, we have
7{ dz B(z,?2) = 0, 7{ dz B(%,2) = 0, (4.13)
A; A;
and
]{ dz B(%, z) = 2imv; (). (4.14)
B

J
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Proof. The vanishing of A-cycle integrals in the x variable is by construction. For the z variable, we
have

7{% dz B(2,z) = /Ooﬁ+ dz (B(gf;) _ B(%,Bz_)) _

o0

a B- a B a B-
=, (G(#,005,) = G(3,005,) — G(2, 5 )+ G(T,05 ),

and the asymptotic conditions for the function G in all four cases in the right-hand side of the equality are
the same. From Theorem 4.4, we therefore conclude that the result is zero.
We now turn to the integral over a cycle Bg:

74 dy B(%,y) = discontinuity of G(Z,y) at /Tg -
B[-}

1 a B+ a B- a B+ a fB-
- (G({E, 0054-) - G(xv OOB+) - G(xa OOg_) + G(CE, 005_)) =
= 2mi(1 = 65,0)v5 (%) + 2K 41 (2),
where we again use the asymptotic conditions in Theorem 4.4. This formula implies that if we integrate

B; for j = 1,...,d — 1, which is the difference of integrals over the cycles gj and gd, then we obtain
formula (4.14). The theorem is proved.

The main property of the Bergman kernel is given in the following theorem.
Theorem 4.9. The kernel B(z, g) is symmetric, B(Z, g) = B(z,x).

Proof. The proof uses the fact that B (%, g) satisfies the loop equation in the two variables. We have

(o o) G o) (5= L) -

(o) ) (05, )~ _
= (210 ) (A2 -, ) TR,

We then obtain

(Q%EZ; +82>P2(0)(a:,§) - <2zigg +8z)§§0)(%az) =

)8 Vo (@) /Valx) — Pj(2)/1s(2)

r— =z

)
)
ARCAC) Vo (@) /Va(x) — Pi(2)/1p(2)
(20i0) +o)o. v
U(x) -U(z) U'(z)+U'(2)
(x — 2)? T—z

)
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and hence
$—Z2 wi}(Z)—F(? ]:(0)21254— UZ—FQ?—ZU/Z =

= (z —2)? Ya(@) PO, » x s —2)U' (z) ¥ R(a, »
= ( ) (2¢a(x)+aw)P2 (w,2) 42U (x) + ( JU'(z) = R(z, z2). (4.15)

Here, the left-hand side is a polynomial in z, and the right-hand side is in turn a polynomial in z. Therefore,
R(z, z) is a polynomial in both variables of a degree not exceeding d in each variable. Moreover, we must
have R(z,z) = 2U(z). Therefore, we must have

R(z, 2) = ;2 <;V’(x)V’(z) - hV/(“”; B ZV/(‘Z)  P(a) - P(z)) + (2 — 2)2R(z, 2),

where E(x, z) is a polynomial in both variables of a degree not exceeding d— 2 in each variable. Substituting
this polynomial in (4.15) and using the symmetry under x < z, we obtain

P5(2) O 8 _ BOE Y — Bl Bls
<2W(z)+az)(132 (z,2) = By (%,2)) = R(z, 2) - R(z, ). (4.16)

We can then decompose the right-hand side in the basis h;(x)h;(z),

d—1

ij=1

Applying the integral operator

z

]' /1.2 / /
FO i [ 4 BEIE) (.17)

oo
to differential equation (4.16), we obtain

d—1
B8 ~ a ~ ~ B8
P(2,2) = PO (Z,2) = > (Rij — Rja)ha(w) v (2) + Ay (),

i,j=1
where A;(z) is some integration constant.
Using loop equations (4.7) we then subtract and obtain

/ ~
(2% w0 ) (635 - BE5) = PV D - BV ),
and applying integral operator (4.17) with respect to the variable x in the sheet S,, we obtain

d—1
BE,2) - BES) = 3 (Ruy — By)vi@);(2) + Alx) + Al2),

i,j=1

where A(z) and A(z) the integration constants.
Further, the large-z and large-z behavior of B implies that A(z) = A(z) = 0, and therefore
B
z

B(E2) = BEE) = Y (R — B, (4.18)

Now using Theorem 4.8 for all ¢ and j,

7{ de(x,g):% dz B(%,2) = 0,
A

Aj

we obtain ﬁl ji= ﬁM for all ¢ and j, which completes the proof of the symmetricity of the Bergman kernel.
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We therefore see that our “quantum Bergman kernel” has all the features of the standard Bergman
kernel associated with a Riemann surface: it is symmetric, has no discontinuities, and has the double pole
with zero residue at coinciding arguments (which in our case corresponds to coinciding arguments on the
same sheet Sy). Using all these kernels, we can then generalize the recursive procedure in [2], [5], [15] and
define the correlation functions (see the next section).

4.4. Meromorphic forms and the Riemann bilinear identity. A meromorphic form R(%) is
defined as
1 x
(0%

R(z) = () ) dx’ r(z Y2 (2), (4.19)

where 7(z) is a rational function of = that behaves as at most O(z%~2) at large  and whose poles 7; are
such that

Pges Y2 (x)r(z) = 0.

The holomorphic forms vj( ) and the kernels G(Z, g) and B(T, g) are meromorphic forms of z.
A meromorphic form R(%) defined by (4.19) has poles at x = r;, the poles of r(z). The degree of these

poles is one less than that of r(z). The form R(%) has double poles with zero residues at the sl(»a)

and
behaves as O(x~2) in all sectors (also having an accumulation of poles along the rays L; of accumulations
of zeros of ¢,). We note that the integrals ¢, daR(x) are well defined.

We prove the following theorem (Riemann bilinear identity).

Theorem 4.10. For z in the sector S, (outside the crosshatched domain in Fig. 6), we have the
representation formula for the meromorphic form R (%)

Z Z RebGzyR(g)—

=Tq

B TZES,@
a BB K a
Y Y Res GEORG) + Y 0 ]{ dy R(y). (4.20)
B S(ﬁ)esﬁuﬁzsiﬁ) j=1 Aj

Proof. We begin with the integral of G(2,y)R(y) over Cp (Fig. 2)

Op+1 38
dy G(Z,y)R Z/ dszy) ().

Cp c0g_1

B
This integral is identically zero because of the asymptotic conditions G(g,y) — 1/y as y — oog and

B B
R(Y) ~ 1/y* as y — oo and because no accumulation of zeros occurs for the function R(Y) on the
boundaries between the sectors Sg and Sg+i. We can then push the integration contours through the

complex plane towards the ,Z—cycles as in Fig. 3. The residues at the points r; and s,(f )

give the two double
summations in (4.20). The residue at the point z = y in the sector S, gives the left-hand side because it
follows from Theorem 4.3 that G(g, 3) = 1/(z — y) + regular terms. It remains to consider the integrals
along the ;l—cycles. For this, we note that our integrations over y are outer with respect to the integrations

over the variable z along A-cycles in formula (4.2) for the factors C;, and when we push the integration

. . B L .
over y through that over x, we have the discontinuity of G(g, yi ), which is equal to 2miv; (g) No such
discontinuity occurs for the cycle Ag. All these discontinuities are independent of y, and the contour integral
of the product hence factors for each cycle A; and gives the last term in (4.20).
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a B
To evaluate the remaining integrals inside the crosshatched domain in Fig. 6, we recall that G(z,¥y) =
w%(y)ay (K(%, y)/w%(y)) Integrating by parts, we then obtain

/OO”+ dz (G DR — 6, 5 )R(%)) =

g

and these contributions vanish for all the cycles .Ag. The theorem is proved.
5. Correlation functions: Diagram representation

In this section, we define the sectorwise versions of the quantum correlation functions considered in [1]
(deformations of “classical” correlation functions introduced in [2], [3], [5]). Our definitions follow from
(non-Hermitian) eigenvalue models (see Sec. 8), but they are also applicable in the general setting of an
arbitrary Schrodinger equation.

5.1. The definition and the properties of correlation functions. We define the functions

éh) (xl, ey %Z), called the n-point correlation functions of “genus” h by the recurrence relations

(e a1 a2 a1 Qa2

W:L(O)(%) = w(), Wg(o)(l"l,@) B(z1,2), (5.1)

W,(L}j_)l (a:o, J) = dx K(%B, x) <W§ZZ21)($, x,J) +

Cp,

+ Z SW WD (e J\I)), (5.2)

r=0 ICJ

where J = {x1,...,2,} and the symbol Y >/ means that we exclude the terms r = 0, I = &; r = 0,
I ={x;};r="h,I=J\{x;}; and r = h, I = J. Here, the integration over the contour Cp, is defined
n (3.1), and
(h) (h) Qp 577,,25}1,050(1,042
w,, ) W, ey — : 5.3
(T1,...,2n) = (1, -, 5) 21— )2 (5.3)
The point zy in these expressions is outside the integration contour Cp, for x, and all the z; are outside
the A-cycles of the projection integrals.
The main property of the introduced correlation functions is that these quantities solve the loop
equations in the 1/N2-expansion. We also prove the following properties.

Theorem 5.1. Each function W,gh) (%i, .. ,%2) with 2 — 2h — n < 0 is analytic in all its arguments

(evi)

with poles only as x; — s;*’. It vanishes at least as O(1/x2) as x; — 004, and has no discontinuities across

A-cycles. Consequently, we have the equality
/ dx W7(1+1 ({E J) = to(sn O(Sh 0- (54)
Cp,

Proof. We proceed by recursion on 2h + n. The analyticity is obvious. The theorem is already

(0)

proved for W,’. We suppose that it holds for 2¢g + n and prove it for 7(H_)l (zo,21,...,2Tn). To prove
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the asymptotic behavior, we note that Definition 4.1 implies, first, that the term fCD dy K (:%, y)Uéh)(y, J),
v
where we introduce the notation

a (h— 1) (h—r)
UM () =W, (2,7,J) +Z Z W\I\+1 nw,_ \I\+1($7J\I) (5.5)
r=0 ICJ

for brevity, is of the order of v ?(x) f;a d' Y2 (2")/(2')? ~ 27972, and the leading contribution hence

comes from the terms proportional to v; (%) ~ 272, which completes the proof of the theorem.

We also have the following simple lemma, which follows from equality (5.4) and from the normalization
conditions for the kernel K(%, ).

Lemma 5.1. For all (n,h) # (0,0), we have

7{~ den+1(x J) =

Ao

We now formulate the first of our main theorems.

Theorem 5.2. For 2 —2h —n <0, Wéh) satisfies the loop equation. This means that the function

« Qan ! x h a « Qan
Pfgﬁ_)l(x;xi,...,a: )= ( Z Egﬁi +3I)W§Z_g1(x T1,...,%n) +

h
/ (h—r) (h=1) a «
+Z Wm+1 z, W, |1|+1($ JND+ W, 0 (x,2,0) +
r=0ICJ
(h) o (h) 0
W, (@, I\ Az })0a,a; — W, ' (25, I\ {z;})

+Z%< AT (5.6)

j J

is a polynomial in the variable x of a degree not exceeding d — 2 and is independent of the choice of the
sector Sy.

The proof is in Appendix A.

Theorem 5.3. Fach W,gh) is a symmetric function of all its arguments.

(0)

The special case W5 is proved in Appendix B, and the theorem is proved in Appendix C.

Theorem 5.4. For 2 —2h —n <0, W(h)( .. 7;%;;) is homogeneous of degree 2 — 2h — n,

d+1 g
9 ) ) ) o
S, Y W "y
<h3ﬁ+j—1tj3tj +i:1 “ e +t08t > (L. 80)
= (2—2h —n)W(T, ..., 25).

Proof. Under a change ty — Ay, h — Ak, ¢, — Ae;, and tg — Atg, the Schrodinger equation remains

unchanged, and ¢ is therefore unchanged. The kernel K is changed to K/, and nothing else is changed.

By the recurrence relation, Wéh) is then multiplied by A2=2h—",
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5.2. Diagram representation. The diagram representation for the correlation functions structurally
coincides with the one for the correlation functions in one- and two-matrix models [2], [4], [5]. We introduce

the three kinds of propagators

T Y T Yy z Yy
——- —-
« a B a B
K(z,y) G(z,Y) B(z,y)

and assume the partial ordering from “infinity” to “A-cycles” to be from left to right in graphical expressions.
We represent the terms Wrgh)(J ) as graphs with three-valent vertices. We assign its own variable £ to each
inner vertex and assume that the integration over this variable is along the contour Cp. The order of
integration depends on which vertex is closer to the “A-cycles”: we begin by integrating at the innermost
vertex. We also have n outer legs (one-valent vertices) corresponding to the points T i=1,...,n. They
are assumed to be outside all the inner integrations. For example, the term W?fo) (1,22, x3) then has the

form

and recurrence relation (5.2) becomes

Tl Tl

Wi (& D

p
|
)N

xo

W, (0, 0) | = 0

(8¢ —+u
(33,5 M
+
2

w6 TN\

n—|I|4+1

JNT

«
|
|

Tn Tn

We now formulate the diagram technique for constructing the functions W,gh)(J ) for n > 0 and 2g —
2+ mn > 0. It is formally the same as the one in [2], [5]. In the given order, all diagrams contribute with
the corresponding automorphism multipliers constructed according to the following rules:

The diagram for " (J) contains exactly n external legs and h loops.

We segregate one variable, for example, x1, and take all the maximum connected rooted subtrees
starting at the vertex x; and not going to any other external leg.

We associate the directed propagators K (z,y) with all the edges of the rooted subtree; the direction
is always from the root to branches.

All other propagators that comprise exactly h inner propagators and n—1 remaining external legs are
B(z,y) if the vertices z and y are distinct and B(z, z) for the loop composed of a single propagator.

Each rooted tree establishes a partial ordering on the set of three-valent vertices of the diagram; we
allow the inner propagators B(z,y) to connect only comparable vertices (a vertex is comparable to
itself).
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6. Deformations

In this section, we consider the variations of correlation functions W,gh) under infinitesimal variations
of the Schrédinger potential U(x) or fi. Infinitesimal variations of the resolvent w(z) can be decomposed in
the basis of “meromorphic forms” vk(%), k=1,.... We set these forms to be dual to special cycles with
the duality kernel being the Bergman kernel. It turns out that the classical A = 0 formulas retain their
form for i # 0.

6.1. Variation of the resolvent. We consider an infinitesimal polynomial variation U — U + U,
h — h+ §h. Because U = (V')2/4 — hV" /2 — P, we have
V/ / h 1 5h 1
oU = 2(5V —2(5V — 2(5V — 6P

We can also consider variations of V’(z) with respect to the higher times 5, k =1,...,
V' (x) = Z Sty xF L
k=1

Then for k < d+ 1, the polynomial § P has a degree not exceeding d — 1, and for k > d+ 1, 6 P has a degree
not exceeding k — 2.
Computing 6 (¢, (2)/¥a(z)), we obtain

and for w() = V'(2)/2 + ", () /v (z), we have

RO I

o OV'(x) .
2 Yalz) M3 ()

dw() oh

/rxi da' 2 (') <5U(a:’) —9 Y U(z’)), (6.2)

6.2. Variations with respect to “flat” coordinates. We choose a system of “flat” coordinates
€1,.--,€d—1,t0,%1,... on the genus-(d—1) manifold.

6.2.1. Variations with respect to the filling fractions. For the filling fraction de,, we have
dV’ =0 and hence 6U(z) = —dP(z), where deg 0P < d — 2. We can therefore decompose it in the basis hq:

dP(x) = Z Carhas.
From (6.2), we hence have dw(z) = — "/ CarVar () dz, and because 2ime, = §,  w, we obtain

2i7r§a7a/ = ow = — Z]{ dx Cq" V! (ﬁ) = —Cq'’-
.Aa/ " Ayl

Therefore, 0U(x)/de, = 2imhe(x) and

5. (1) :2ma(§:)dx=7{ dz B(Z, 2).

Ba

w(

€a

The flat coordinate €, is dual to the holomorphic form v,, which is in turn dual to the cycle B,:

€q = ! 74 w, Oc,w = 2imv4 () dx :7{ dz B(z).
-Aoc

- 2im 5.,

164



6.2.2. Variation with respect to to. We have §U(x) = —6P(x) = —tqy1 297 + Q(z), where
deg @ < d — 2. Using Eq. (6.2), we obtain

Suw(#) = wzlm / " (<t (@) + Q)R ),

and the polynomial @ must be chosen such that ¢ A dw = 0. We therefore have

0w(T) = —tg1 Kq 1(2) =

= —tg+1 <i€d1(%) - :Z_jvﬁ(%)?i

B

where

~

%: 1 zx/x/szv/
R = Ly [ @)

O

and K () is the kth term in the large-z expansion of

o = Kk(%,z)
K(fa'z):—z Sh+1
k=0

in Theorem 4.2. From Theorem 4.4, we have G(z,00,) = nathKd_l(%). It hence follows that

S = ;(G(%,oolz+) G005 ) = /OOCZ+ 2 B(3, 2).

0037

The integral in this expression is taken over the last cycle Ed.
The flat coordinate ¢y is then dual to the third-kind meromorphic form —2G(%, 00), which is in turn
dual to the cycle [oo; 004, :

to :% dzw(z), S, w() :/ " dz B(T, 2).
Cp

00 _
6.2.3. Variations with respect to tx: The two-point correlation function. Because

_fodz W)
tk—ﬁDzkhw(z), k=0,1,...,

the conditions 0ty /0t, = O, and Oty /0eg = 0 imply

72) i fi (hﬁ((;)) O ?i * ai (hﬁ((;) -0

and from general variational form (6.1), we conclude that (cf. (3.8) and (3.9))

8(2 (hiiii) = Vaer (5).

We formulate the following lemma.
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Lemma 6.1. We have the equalities

« 1 (e}
Va4 (T) = 2i777£ dz” B(z,z), r=1,2,..., (6.3)
D>T

where Cp > = means that the contour Cp separates x from all infinities cog, 3 =1,2,....

Proof. That the expression in (6.3) has the desired structure follows from the explicit form of the
kernel B. We need only verify the normalization conditions. It is obvious that the A-cycle integrals vanish.
It remains to prove the equality

1 dx 1 dx 2"
Sy = (z) = d B(z.z).
d,l 2 féD ZEl Vd+ (iC) (227'(')2 £D>w 2 ‘iD Qfl r (Z il')

Interchanging the order of integration contours and taking into account that ! B(z,x) ~ z7!=2

“fasx — o0,

we conclude that the only nonzero contribution comes from the double pole at x = z, and consequently

1 d T 1
. 7{ f(é)z) _ | 7{ dea™"1 =5,
2im Jeo, ot \ 0z 7 2im Je, '

We now define the loop insertion operator

Z=T

o0

o o, D
AV (y) _;ry ot

T

applying which to hi)’ /1, we obtain

31?@) <h zig§> = iyrl ]{DCD dz B(%, 2)z",

and because fCD dz B(%,z) = 0, we add the term with 7 = 0 into the sum, obtaining

dz o
?f “ B(%,2)
y>Cp Y — 2

in the right-hand side. We note that the point y lies between some infinity, cog for example, and the
integration contour Cp. Pulling the contour of integration through the point y to infinity, we obtain zero

. .- B . .
because of the asymptotic conditions for B (:%, ). The only nonzero contribution therefore comes from the

residue at y = z, which finally gives

~

B} Vo (@ ) 1_ap

5 — _B&Y. 6.4
i ("o ) o)
Correspondingly, because V' (x)/dV (y) = 1/(y — z)?, we obtain

a B 0
x,Y

W@ 9) = o 0@

for the two-point correlation function WQ(O) (z,y).
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6.3. Variation of higher correlation functions. We note that for all the above variations with
respect to the flat coordinates, we have a cycle dw* and a (sector-independent) function A}  such that

Sw(T) = /5 * dz B(z, 2)A%(2).

The following theorem allows computing infinitesimal variations of any W™ under a variation of the
Schrédinger equation.

Theorem 6.1. Under an infinitesimal deformation U — U + dU, we have

SWM(Z1, .. &) = de' W (21, .. ) A (2),

dw*

where (6w*, A} ) is the cycle dual to the deformation of the resolvent w — w + éw.

Proof. We prove this theorem by induction. We begin with the loop equation for W,(Lh)(%, J):

wl() T (h)xa: T
( %()Jrha) (&) + UM (&, % .0) = PP (2, 7). (6.5)

Taking a variation § with respect to an arbitrary flat coordinate, we obtain

(@) (h) (% AR (&2 1) sp(y
< ol )+ﬁ8gg>5Wn ( ,J)—I—(Z(Sﬁwa( ))Wn (z,J) + UM (z,2; ) = 6PM (x, ),

where 5P7(Lh)(x, J) is a polynomial in z of a degree not exceeding d — 2. Here, both

h) & & '@[Jl (55) / S /
SUM (z,x;0),  20h 7 = / dz' 2B(x, 2" )A*(z')
¢Ot (ZII) Sw
can be expressed by the induction assumption in the dual-cycle-integration form. Moreover,
SUM(Z,2;J) = de' UM (2,5 0,2 )A* (o)) — | da’ 2B(,2")A* () - W (Z,0)  (6.6)

dw* Sw*

because no term containing the two-point correlation function W2( )(% x ) appears in 5U,(Zh)(%, T J).
Using the loop equation of form (6.5) relating W,EH(QJ; J,z’) and Ul +1(3: &; J,a'), we observe that the
second term in the right-hand side of (6.6) cancels the contribution of 26k, (z)/vq(z), and we obtain

<2th£ % + o, >< ; de' W (%, 0,2 )A* (2) — s, (%,J)> =

— P () — / A PO @ 2 A ) = Y (i),

where the right-hand side is a polynomial in x of a degree not exceeding d — 2 expressed in the basis of the
polynomials h;(z). Using (6.2), we obtain

/dx WM (&, 2 ) A (2') — sW P (& Zaz

but because both TW\" (x J) and W,E +)1 (x, J,2') have vanishing A-cycle integrals, it follows that a; = 0,
ie.,

5W,§h>(§":,J)=/ d' W, (&, J,2')A* ().

w*

The theorem is proved.
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Corollary 6.1. For alln >0 and h > 0,

(h)
M D arw o),
Ba

Oeg,

7. Classical and quantum geometry: Summary

their quantum counterparts.
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planar curve

hyperelliptic

planar curve

potential

resolvent

physical sheet(s)

branch points

double points

genus g = —1

Aq-cycles
a=1,...,¢g

extra Ag4-cycle

B-cycles

holomorphic forms,
first-kind differentials

period matrix

filling fractions

third-kind form

classical
geometry (i =0)
E(Izy) = Ei,j Eiy]'xiij
E(z,y) =0

y* =U(x),
degU = 2d
V/
w) ="\ 4y
2
!
ym_‘/(l‘)7 wwto
oo 2 T

simple zeros of U(z),
U(a;) =0, U'(a;) # 0,
i=1,...,2d+2
double zeros of U(z),
U(a;)=0,U'(a;) =0
degenerate surface
surround pairs of

branch points

surrounds last pair of
branch points

In the following table, we summarize the comparison between items in classical algebraic geometry and

quantum
geometry
B(z,y) =%, ; Bia'y ly, 2] = h,
E(xz,h0z)Y =0
Ry = U,
[y, z] =h

() =2(/U(@)),

o V'(z) | Iy (x)
Y@= @)

combined sectors where
ha’ V'(x) to
~ — , W
1[) oo 2 x
rays L; of accumulations of zeros of 1,
i=1,...,2d +2

rays without accumulations
of zeros of ¥

¥e¥/?" is polynomial

surround pairs of rays
of accumulating zeros

surrounds last pair of rays
of accumulating zeros

AN Bj = (52‘,j
hz(x) o 1 \/‘z r 20 ’
vi(x) = — , vi(x) = dx" Y5, (x Yhi(x'),
(z) 2 /U () (z) () | Vo (@) hi(z")
h; are polynomials, degh; < d — 2,
normalized: dzvi(z) =0ai,a=1,...,d—1
Ao

Tij :f dzvi(z), 4,j=1,...,9,
BA

J

Tij = T

g
inea:f drw(z), a=1,...,9, Gd:to—ZGa
a=1

o

G, %) =

1

z—»zz—([,"

G(x,z) ~
(2w(2) = V'(2) — hd:) K (%, 2)



classical quantum

geometry (i =0) geometry

recursion kernel

~ 1 1 o 1 ° de L,
K(z,z K(z,z) = / (T
(@2) z—x2,/U(x) (2) b2 (z) ooal“’—zd)( )
a B
Bergman kernel, B(%, g) _ _BZG;$7 Z)’
second-kind differential oo 1
B ~
(x7 Z) Q(x _ 2
a B B «
symmetry B(z,z) = B(z,x
bilinear Riemann f{l dz B(zx, g) =0,
identity Ai
j{ dz B(z,%) = 2imvi (%)
B;
meromorphic forms R(z)dx = r(z) dz R(z) = ! /w da’ r(z' )2 ()
2,/U(z)’ mp2 () Joo,, o

r(x) is rational with poles r;, r(z)

0(z"7?),

PS.?S r(z)(z) =0

h o ]. [e% h—
Wi @)=Y i fc dz K(T,2) (W, (2,2, ) +

higher correlators

C; surrounds

! (s) (s
+ Z W1+‘I|(Z,I)W1+u,‘(z,[,)),

s+s/=h, IUI'=J
Zi 247 jci ch

the branch point L;

symmetry Wéh)(:rl, ceyTp) = W}zh)(:rg(l), C s To(n)), O € Sn

variations

and dual cycles

N E 5tk1’k71

variation dtg

variation de;

U(z) — U(z) + oU(z),

U™ Bu(®) = / dz' B(%,2') Asu ()

SU*

Nk
6 w(T) = da’ (xk) B(Z,z)
Cp

a Oo‘iJr / @y
Otow(T) = / dz'B(z,z")

d_
Sew(@) = f dz' B(3,2)
B;

variations of higher cor- SW (z1,.. . an) = / dz’ W,Yj_)l (1,...,Tn, 2" ) As(2))
sU*

relators

8. Application: Matrix models

The main reason for the interest in Wéh)

is that they satisfy the loop equations for the random [-

eigenvalue ensembles. We can therefore identify them with the correlation functions (resolvents) of these

ensembles.
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We consider a (possibly formal) matrix integral

Z:/ dAM e~ (NVB/to) eV (M)
EN,B

where V(z) is some polynomial, Ex ; = Hy is the set of Hermitian matrices of size N, Ey /5 is the set of
real symmetric matrices of size N, and Ey 2 is the set of quaternion self-dual matrices of size N (see [7]).

Alternatively, we can integrate over the angular part and obtain an integral only over eigenvalues [7]:

N
Z = /d>\1 cedAn |AN) PP H e~ (NVB/to)V(X) (8.1)

=1

where A(A) = [[,;(A; — A;) is the Vandermonde determinant.

We generalize the matrix model to arbitrary values of 8 taking integral (8.1) as a definition of the

hzjﬁ(”‘ jﬂ)

We note that i = 0 corresponds to the Hermitian case 8 = 1, and & — —# corresponds to § — 1/0.

B-model integral. For this, we take

8.1. Correlation functions and loop equations. We define the connected correlation functions
(the resolvents)

1 1
Wk(x1,~-~axk):ﬁk/2< Z 1 — N mxk—)\' >
) . i1 Tk conn

ULyeeey?
and

Wo=F =logZ.

When considering variations in the potential V' (x), we again assume that these resolvents satisfy the asymp-
totic conditions sectorwise, which means that they are also defined sectorwise. And we assume (this is
automatically true if we consider formal matrix integrals) that there is a large-N expansion of the type
(where we assume i = O(1))

o o oo N 2—2h—k (h) yon o
Wi(1,...,78) = ) o W (@, .. xn), (8.2)
h=0

00 N 2—2h N 00 N 2—2h
Wozfzz(t0> W )Ez<t0> Fn. (8.3)
h=0

h=0

The loop equations are obtained by integrating by parts, for example, the identity

_ 9 1 28 TT o= (NVB/t)V(A)
0= ;/d/\l d)\Na/\i <x_ /\i|A()\)| 1;[e (8.4)
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gives

0

1 1 1 NVBV (M) \
Z<9€—/\i)2+26;x—)\i)\i—)\-_ to {E—)\i>_

i J

5
(

K2

2

K3

(

1 1 1 NVBV'(W)\
($—/\i)2+ﬁ;$—)\i$—/\j_ to 33—)\1>_
(

1-3 1 NVBVOW\
— )2 ﬁzx—)\x >_

x —)\ to T — N\

B-1,,

=0 it 4 a( R + W) -

B B

R e )

2

We define the polynomial
Vi(z) = V' (N
=) =
We then have the loop equation in [8]

W2(z) + hiVW{(x) b Wala, ) = iV(v’(:,;)W1 (2) - Pi().
0 0

Using expansion (8.2), we obtain the Riccati equation
Wi (@)” + ho, Wi (@) = V' (@)W1 (2) = P (),

satisfied by w(x) = Wl(o) (z). The correlation functions of S-eigenvalue models therefore satisfy the topo-
logical recursion formulated in Sec. 5.1.

8.2. Variation with respect to fi. In this subsection, we use the analogy with the [-eigenvalue
ensemble to suggest the possible form of the last remaining building block of our construction, which is
the variation with respect to A, the exponent of the Vandermonde determinant in (8.1). Up to irrelevant
multipliers, we can consider 19/0h instead of 89/9[, for which we have

0

ﬂaﬁ

N
2
log Z ~ Zﬂ/d)\l-~~d/\NA(/\)2510g|A(/\)|He‘(NW/tO)V(Ai), (8.5)

=1

and the logarithm of the Vandermonde determinant thus appears.
. . . @ .
It seems impossible to construct expression (8.5) only from W;(z), but we can use the two-point

v B
correlation function Wy (%, ¥) instead. Adopting a S-model-inspired definition of W5(Z, ) as a two-resolvent
correlation function (not necessarily connected),

Wa(z,y) = / dA; - d/\NZ A Zy A (N)|*N e~ (NVB/t)V(Y)
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W

Fig. 7. The origin of the integration contour Cp in the matrix-model concept. The inner dots are \;

and the outer dots are A\; + d, v = 0, 2,4, 6; thin arrowed lines are the logarithmic cuts.

we then introduce the regularization (both IR and UV, if speaking in physical terms). At this point, we
also split all the eigenvalues ); into clusters, each of which corresponds to some sector S,. For each term
1/(y — A;), we then integrate over y from A, to x + ., along the straight lines all of which are parallel.
The regularization parameters depend only on the sector number ~y, and the limit of removed regularization
corresponds to A, — oo, and 6, — 0. We then obtain

28 [+ o
2 e ~

N € N

1 ooy e
203 —(NVB/to)V(Xi)
N/dAl...dANA(A) >, /A U [ e Vvamven -
YJ

.
i=1 =17 T i=1

N
1
:/dAl"'dANA(M”Zx_A- *

=1

N

67 1 B »
X Z Z (log |z + 6, — A, | —log |Ay| + O<Av>) He (NVB/to)V(Ai) (8.6)

v Jy=1 =1

We now want to integrate over x to obtain expression (8.5). Obviously, we must choose the integration
contour in a rather specific way: we want it to encircle all the poles in x = \; in the variable = leaving
all the logarithmic cuts from oo, to A; 4+ 0 in the corresponding sector outside (see Fig. 7). Given such a
contour, we can then integrate over = by residues at the points A; (we recall that in the eigenvalue model
pattern, we do not yet have boundaries between sectors inside the complex plane; they appear because
of the collective effect of taking the A poles into account by virtue of sectorwise regularization chosen).
Evaluating the integral over z in (8.6) by the sum of residues at \;, we obtain

N €y
243 28
Z/d)\l---d)\NA()\) <ZZZlog|)\i+5W—)\jw|—

i=1 v jy=1

N
~NY e log|Ay |+ o( ! )) T[ - VVorev o)
v v i=1
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log 1_[(/\Z —Aj+0)| —
i#]

- 25]\726V log |Ay| + 25267 log |6+],
v B!

= 2§/d/\1---d/\N AN

where the first term in the right-hand side gives the sought integral (8.5) as 6, — 0 and the last two terms
diverge in the limit of removed regularization. But these two terms depend only on the filling fractions and
therefore contribute to only the potential-independent part of Fy, and we can remove them by the proper
normalization.

9. The free energy

We use the variations and Theorem 5.4 to define the Fj,.

9.1. The operator H. Theorem 5.4 gives
d+1
(2 —2h —n — hap) WM = <t08t0 + Ztkatk + Zel )

In Sec. 6, we expressed the derivatives of W,gh) as integrals of W( )1 up to the action of hd/0h,

h i 0
+)1 = W(h)

2—2h—n— () — 7w
( h—n h@h)Wn W 8V

n

where H is the linear operator acting as

d+1 g
H.f(x) =ty da:f —I—Z/ da: , (x)—|—261j{ dx f(x)
i=1 vBi
We set, Wéh) = Fp for n =0 and h > 2. The free energy Fj, for h > 2 is the functions for which
(2 — 2h — hop)Fp = HW .

9.2. The derivative 7 8/0h. The matrix-model considerations in the preceding section imply that
constructing the derivative in & of the correlation function Wéh)(J ) would involve resolvents of the order
n + 2. In other words,

9 (h) ¢ 1 (h=1) &
hahW (J) ‘/CD£<‘/OOd§ Wn+2 (5757”7)—’_

h
+>03 / g Wil &, 0w D, J\I)) (9.1)

r=01CJ

where £ must be taken to be an “innermost” variable in the sense that taking fg d¢' B(&',y) = G(&,y) into
account, we everywhere replace

El_)-) B _)-)45'
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and

without adding additional factors.

We note that the sum in (9.1) ranges all cases, not necessarily stable ones, and we therefore begin by
studying nonstable contributions to stable cases (2h —2+4n > 0). We note that all these contributions then
come from the second term in (9.1).

9.2.1. The casesr =0, I = @ and r = h, I = J. We consider the situation where n > 1. We
can then fix x; to be the root of all the subtrees composed from the K-propagators, and £ can then be the
variable of any of the external B-legs. The contribution to Wrgh)(J ) then includes all the insertions

[Ew©@ & 3 W ffw® & ¢ W

R A

We consider the first diagram; the second is analogous to the first. Changing the integration order over &

and 7 in the second diagram gives

Jewi :5 W i\ W[y
1 " 1 - l

Here, the sum of the first two terms contains the integral of the total derivative of [ ¢ d¢’ Wl(o) &) -G(n,§),
and because

Gn.€) ~ O(E™), / de' WO ¢ / 5,m~mog|5|

this contribution vanishes. Only the third contribution coming from the residue at £ = n survives, and this
contribution is just minus the action of the H operator on the external leg B(n, ). Hence,

i & /Y
— e — (),
n n

Therefore, the total contribution of the two cases r =0, [ = @ and r = h, [ = J exactly cancels the action
of the H operator.

9.2.2. The case r = 0, I = {x1}. We begin with the identity

/ L deGEOK(E ) = Ky 9.2)
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(we recall that inequalities of the type x > Cp, > y indicate the mutual positions of points and integration
v
contours). Indeed, writing G(,€) = Y2 (€)0e (K (z, €)/¥2(€)) and integrating by parts, we obtain

ZK(&&)K(E,@/)E” [ ax@ol !+ Enec)

>CD5 >y

The substitution obviously gives zero, and only the residue at & = y contributes in the second term, thus
producing (9.2). An obvious corollary is the second convolution formula

o B a B
[ acGoneh--BED. (9.3)
I>CD£ >y
In the case r = 0, I = {x1}, we have the diagram
11— W (& T\ {}) | = -V ().

9.2.3. The case r = h, I = J \ {z,}. Here, we need another identity,
a B
dg G(z,€)B(&,Y) = 0. (9-4)
gc,y>CD£

To obtain it, we represent the functions G and B in terms of the kernel K, i.e., we have

/ dg G(%,€) B(E, 1) =
gc,y>CD£

o G (oG i
ol i

B
Here, the substitution gives zero, and the third-order differential operator acting on the kernel K (¥, &) is

— K(%BW,6)

again Gelfand-Dikii operator (4.11), which is independent of the sector . The integrand is also obviously
regular at all zeros of the ¢ functions, and the total integration over K—cycles therefore just gives zero.

Therefore, the contribution of the case r = h, I = J \ {z,,} is zero, and the total contribution of all
the unstable cases together with the action of the operator H just gives the original contribution W,Sh)(J )
taken with the opposite sign.

9.3. Examples of applying h d/8h.

9.3.1. Reconstructing W{®) (J). We now use formula (9.1) to reconstruct the correlation function
,§0)(J ). In the zero-genus case, we need only take the contributions of nonconnected subdiagrams (the
second term in (9.1)) into account. We choose the root of the first subdiagram, ffo dg’ VV‘(IT‘)H(E’,I), at
x1; the point £ is then the end of some other (nonrooted) leg G(, &) of the first diagram. For the second
diagram, we choose the root at the end £ of the leg with the corresponding propagator K (&, p). As a result
of integrating over &, using (9.2), we find that these two diagrams are sewed along the propagator K (7, p),
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thus producing a connected diagram with the maximum subtree of propagators K rooted at the external
point x7. We can now ask how many times the given diagram can be obtained as a composition of two
diagrams in formula (9.1). We obtain this diagram by first breaking it into two parts by cutting some of
the internal arrowed lines (also including the external line K (z1, k) if we take the nonstable contributions
into account) and then sewing again along the same line. Obviously, we obtain this diagram as many times
as the total number of arrowed lines (with the minus sign from (9.2)), i.e., 2 —n for W,(LO)(J ). Hence, using
definition (9.1) for the action of i /9%, we obtain

0 ~ 0
O (] — (2 — O
<h6h+H.aV>Wn (J) = (2= n)WO (),

which is a particular case of formula (9.1).

. 0 . . . .
9.3.2. Acting on W; )(:Bl, x2). Here, we consider the action on a nonstable correlation function

0 ap o 6(1 @
Wy ) = BELB) -

Excluding the terms that compensate the action of H , we find that the action of & 0/0h gives

a1 azy 1 B d¢ o _ _
‘/3”1>ch >x2 a9 <B(£’ =) (€ - $2)2> ~/T1@2>CD5 T — €B(x2,§) + (1 z2)

Q2 a1

= —2B(&1,73) + B(21,43) + B(%3,%1) = 0,

which again is in accordance with formula (9.1) (the expression (z1 < 22) in the left-hand side denotes
terms obtained by interchanging z1 and x» in the integrals).

9.3.3. Acting on F;. We expect that applying formula (9.1) in the case of F; gives zero, perhaps
up to some irrelevant regularizing factors. Nonstable terms do not contribute; the only contribution comes
from the first term in (9.1), which gives

G-, )=

E4+6a / _
" e 0 VRO 1

A 2

Integrating by parts in the second term, we obtain fCDg d€ h;(€)C;(€) up to terms of the order O(dq), and
the integrand turns out to be independent of the sector and nonsingular at zeros of ¥, and therefore gives
zero when integrated. In the first term, integrating the term with 1/(£ — &)? by parts in the variable ¢
and taking into account that
. (¢3<§'>> RAGH
g—e & —E\ Y3 Ya(§)
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we obtain

/ %(5%@+/“%%%M&%@W%@%ﬂ%®%@W%@v:

c val®) " ), .
- /c ae( -2y + [ df/(s' L e 8 (o) ) -
“ a2 a2 %3(5) a6 en)) =
- /c (26 . dg'(f’ e e e Le)) -
- /c e 26+ / (ol og 15)22 o o))
v

. IR AGIENT 1
- /c (=276 e o

T+0, 1
):/ d§<5 +0(5a)).
O CD£ e

The result is hence a constant, which diverges in the limit of removed regularization but is otherwise
independent of all the variables (the same phenomenon occurs when calculating the corresponding action
of the H operator on F; in the standard matrix models [4], [8]).

9.3.4. Acting on Wl(l)(sc). In the case of Wl(l)(x), we have two possible contributions: the one
from nonstable graphs gives Wl(l) () with the (desired) factor —1, and the other would come from the first
term in (9.1) originating from the WPEO) term, i.e.,

/C a | dn K (%,1)G(n, €)B(n, €),

where the contour of integration over n goes between the points & and £. We set integrals of this type to
be zero, which provides the last required prescription for the diagram technique describing the free energy
terms Fj,.

9.4. The term Fj. For the stable cases (h # 0,1), we can now formulate the diagram technique for
the term F3. We need the diagrams describing the stable terms Wf”(é) and Wl(h_r)(f) with1 <r<h-1
(h=1) (¢ &
and WQ (57 6)

f&

(_?\77 h=l h
(2h=2)Fh = “>pe wih -y - w," W

h—1)

=3

=~

Here, the sum in the first term ranges all the diagrams contributing to WQ( that have distinct vertices
to which the external legs are attached; we then amputate both these legs and join the vertices n and p (the
vertex p is always the first three-valent vertex in the rooted tree) by the propagator K (n, p). The integration

over £ is already taken into account, and we thus obtain an extra minus sign. We cannot integrate that
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easily in the second term, where the integration over £ is such that p > Cp, > 7 and the symbol J ¢ indicates
that we must insert the integration

(o or%

E+6o¢ [e3 (e
/ dt / de' K (€, p)K (£ )
p>Cp,>n

between the integrations over the variables p and 7.

10. Conclusion

We have defined a quantum version of algebraic geometry notions, which allows solving the loop
equations in the case of an arbitrary S-ensemble.

The notion of branch points becomes “blurred.” A branch point is no longer a point but an asymptotic
accumulation line along which we integrate instead of taking the residue at the branch point.

Another surprising property pertains to the cohomology theory, which makes sense only if the cycle
integral of any form depends only on the homology class of the cycle, i.e., we need all forms to have zero
residues at the zeros s;. This “no-monodromy” condition is automatically satisfied for our forms coming
from the Schrodinger equation, and it is equivalent to the set of Bethe ansatz equations satisfied by s;,
similar to what occurs in the Gaudin model [18].

In contrast to [1], there is no explicit dependence here on the chosen sector. But even the total number
of A-cycles and the rank of the period matrix may vary depending on the choice of cuts in the complex
plane. This might be because we do not have an actual finite-genus (classical) Riemann surface. Analytic
continuation may never result in sewing the corresponding solutions of the Schrédinger equation, and we
therefore deal with different (finite-genus) sections of an ambient infinite-genus surface. Then the genus is
indeed no longer deterministic.

Using the sectorwise approach, we can define the symplectic invariants. In Appendix D, we present
the first nontrivial calculation of this sort: the dependence of the leading term on the filling fractions.

Here, we restricted ourself to the case of hyperelliptic curves, i.e., second-order differential equations,
which corresponds to the one-matrix model. The first straightforward generalization is to include the
logarithmic potentials in the consideration, which would produce the Nekrasov functions nonperturbatively
in the parameter eo/e;. A more challenging problem is to generalize this approach to linear differential
equations of any order, which would correspond to a two-matrix J-ensemble model. In this case, we can
also presumably define the notions of sheets, branch points, forms, and correlation functions. We also expect
the preservation of the Bethe ansatz property ensuring a no-monodromy condition claiming that all cycle
integrals depend only on the homology classes of cycles. The difference between the hyperelliptic case and
the general case is comparable to the difference between the patterns in [2] and [5], i.e., the definition of the
kernel K must be more involved and less explicit, but we postpone this discussion for further publications.

It would also be interesting to see whether the quantities F, have a symplectic invariance or, more
precisely, a “canonical invariance,” i.e., whether they are invariant under any change (x,y) — (Z,y) such
that [7,2] = [y, z] = h.

Appendix A: Proof of Theorem 5.2

We now prove Theorem 5.2, that all Wéh) satisfy the loop equation, i.e.,

/
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( r) (h—1)
+Z Z Wu\+1 W |1|+1(x INT) +Win (z,2,7) +
r=0 ICJ

(h) o | WM g\
+Z&w<w" (@, J\{z;Dda,a; =W, (25, J\{ J}))

T — Ty

is a polynomial in z of a degree not exceeding d — 2. From the definition, we have (with U from (5.5))

1 « — aj
W) =, i dz K (%, 2) (U,Eiz”(z,zw + B AW (= T\ {xm).

J

Acting with h(2¢),(2)/1a(2) + 05) on K(z, z) gives

and the second part is obviously a polynomial satisfying the assertions in the theorem. Pulling the contour
of integration over z to infinity (with = originally outside the integration contour) and taking into account
that the integral at infinity vanishes because of the asymptotic conditions, we find that only the residue at
z = x and the residue at z = x; in the second term in the parentheses contribute. The integration result is

o W)
oxj x—x;

U,(fml) x, T +ZB (x5, )W (&, T\ {a;}) —I—Z

and taking (5.3) into account, we obtain the assertions in the theorem.

Appendix B: The symmetricity of W(O)

Theorem B.1. The three-point function WPEO) is symmetric.

Proof. Introducing Y, = —2k!, /1)y, from the definition, we obtain

Wg(o)(xg,xi,xz) = . dx K(a:g,a:)B(a:i,x)B(xz,a:) = dr KoG| G =
1T Cp 4y Cp

1

=4 7{ dz Ko((hKY + YK{ +Y'K1)(hK) + YK} + Y'K>)) =
1T Cp

=5 do Ko (RPK{KY + Y (K{KY + K{K}) + hY'(K{ Ky + K} K1) +
1T Cop
+Y?K{K)+ YY'(K1 K} + K{K2) + (Y')’ K1 K>),
where we introduce the shorthand notation K; = K (z;,x) and G; = G(x;,x), all the derivatives are with
respect to x, and we omit the sector indices.

The combinations KoK1Ksf(z), where f(x) is sector-independent (f = 1,U,U’,...), vanish after
integration with respect to x because each Kj; is also sector-independent with respect to z. We can then
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use the Riccati equation Y,2 = 2AY. + 4U to replace Y,2 with 2hY and Y, Y. with hY, which gives

1
Wy (o, ar,w0) = 7% d Ko (hY (K{KY + K{Kb) + hY' (K[ K + K5 Ky) +
D

+2hY'K{K} + hY" (K1 K} + K{K2) + (Y')’K1K>) =

- 4}77 ]iD dx Ko (hY (K1 K3) + hY' (K1 K>)" + hY" (K1 Ka)' + (Y')’ K1 K) =

- 4; A do (Y')?KoK1 Ky + h(Y"Ko(K1K3)' — (Y Ko)' K{Ky — (Y'Ko) (K1K3)') =
= 4;7 e da (V') KoK 1Ky — h((Y Ko) K1 K5+ Y'Kj(K1K3)') =

= 4; 7{ dx (V') KoK 1Ky — hY K(K{ Kb — hY' (K K{ K + K{K Ky + KK K>).

This expression is explicitly symmetric in zg, 1, and x2. The theorem is proved.
Appendix C: Proof of Theorem 5.3

We prove that each Wéh) is a symmetric function of all its arguments. The special case of WPEO)
was proved in Appendix B. The symmetricity of the two-point correlation function Wéo) was proved in
Theorem 4.9.

For technical reason, it is easier to proceed with the proof for nonconnected correlation functions. We

introduce two types of them: the correlation function

TERIOTS SR L ©)

{Iy,....I+} j=1

where the summation ranges all partitions {Iy,..., I} of the set I, which includes only partitions of the
stable (2h; +n; —2 > 0) type with I; # @, and the correlation function
, Lk
S I wi ), (C.2)

{I1,.... 1k} J=1

which moreover admits two- pomt correlation functions Wé ) in the sums, 2h; +n; — 2 > 0, with [; 7é .

The 5ymmetr1c1ty of all Ws(h )( I) with s+ 2h' < n+ 2h obviously implies the symmetricity of W,(Lh)( I).

g o (0%
It is obvious that W,(L +)1 (To,T1,--.,Ty) is symmetric in x1, T2, ..., Ty, and it therefore suffices to show

that (for n > 1)

Qg Q1 h) ;a1 Qo

W£T1($07$17 ‘]) - Wfrs,-i,-)l (mla Zo, J) = 07

where J = {Z3,...,2n}.

—_~

The proof is by recursion on —y = 2h — 2 +n. We assume that all W( " and W,Eh/) with 2h' +k —2 <
2h + n are symmetric. We have

R « « ]- « —
W,E}i_)l(xg,xi, J)=_". 74 dacK(xg,x)Wx_gl)(x,x,xl, J)+
21 Jep, >y
1 « «
| / / dw dy K (3, 2) B, 2)K (2, y) WD (9,.0). (C3)
e Cp, >Cp,
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We first consider the product of functions K BK in the second term. Recalling that

B(&, %) =0, <aw - QZZSDK(%L@

and integrating by parts, we obtain

1 « « 1 (07 «
) KGEGOBE K@) = - K@K 0K @) +
271 Cp, >y 271 Cp, >y
1 % 1 @0 o1 wl(‘/'r)
+ . dz K, (zo,z)K (z1,2)2 K(z,y) —
i KK 22 | Key)
]. « «
- 7{ dx K (zo, 2) K. (z1,2) K. (2,y) +
2711 Cp, >y
1% a0 31 1/)’($) /
) dx K (xg, ) K (x1,x)2 K, (x,y).
210 Jep, sy U(x)

The first and last terms in the right-hand side are already symmetric under the replacement zy < x1,
and we disregard them. Integrating by parts in the third term in the right-hand side, we obtain one
more symmetric term with K (20, z)K (21, 2)K"” (z,y) (which we can also disregard) plus the term with
K(20,x)K (21, 2) K’ (z,y). Combining the result with the second term, we obtain

¥ (x)
()

1
211

¢ de;(%g,w)K(%i,w)(3m+2 )K@:,y):
Cp, >y

1

_ 7 &0 «aq 1
- ﬁwy dw KL (55, 2) K (3, 2) (:,; Lt ZB: hg(x)cﬁ(y)) ,

where the integrand is the same in all sectors of x, and only the residue at = y (with the minus sign)
hence contributes in the second term in (C.3), which then becomes

1 @ «a h—1
i b W E DK E WD ) (C4)
Dy
For the first term in (C.3), we use the induction assumption, writing it in the form

1 dx Qo <31
dy K K X
oni B s, A EER )

% (2B(,)*612 + 4B, ) Wi (g, ) + WS (2.2,9,9, 7)),
where the prime indicates that no propagators of the B(xz,y) type enter the expression, and no singularity
occurs in the corresponding terms under interchanging the order of contour integration over x and y. The
last term is again obviously symmetric under the replacement xg < x1.
The skew-symmetric part in the middle term is one-half the residue coming from the double pole
—1/(z — y)? in the expression for B(z,y) (it again comes with the minus sign by virtue of the choice of
contour ordering), and we therefore obtain

1 « [0 p—
- j{ dy 2 (36, y) K (31, )W (y, 9, J)' + symmetric term,
T CDy
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which exactly cancels the term in (C.4) in all cases except only the case h = 1, n = 2, where we use the

fact that B(x,y) = —1/(z —y)? + W;O) (x,y) as x — y, and therefore

2B(z,y)? = 2(x —y) ™ — 4(x — y)_QWéO) (x,y) + regular part.
The most singular first term results in the integrand K'’K, which is sector-independent and therefore
vanishes, and the second term produces

1 [0 [0}
i 74 dy 2K;(x8, y) K (1, y)WéO) (y,y) + symmetric term,
™ CDy

which cancels the last remaining term in (C.4). The theorem is proved.
Appendix D: Calculating 8°F,/0t} in the Gaussian case

In this appendix, we calculate the singular part of the third derivative of Fy and integrate the answer,
which allows obtaining the singular part of the free energy Fo. Although we calculate only the Gaussian
model case explicitly, based on it, we can propose the singular part of the free energy for the model with a
general potential.

2 we have four sectors of solutions with the

In the Gaussian model case with the potential V(z) = z
asymptotic directions £oo and +ico. As the basic solutions, we take 14 (z) and ¥_(x) that decrease at the
corresponding imaginary infinities +i00 and —ioco. The real axis then plays the role of the ,Z—cycle7 and the
imaginary axis is the g—cycle.

We are interested in evaluating the singular part of the third-order derivative 93F,/0t3. We first clarify
the origin of this singularity. Obviously, local singularities at finite ¢y appear when the solutions 4 and
612 /2h

1_ coincide, which happens when ¢+ = ¢, = H,(iz) , where H,, are the Hermite polynomials and

W23 (2) = 2*Pn (@) + (20 + 1)hthn (2).

From Corollary 6.1, we have

O Fo 1 ©)
= W . D.1
o) = (omip o 1020 W o, 2) (b1
a1 2 3

Because Wéo) (21,22,23) = fCD d¢ K(%i, S)B(%S, 5)3(%5, ¢) and no singularities appear when integrating over

zo and z3, we find that by Theorem 4.8, each integral gives just vo(¢) with a = + and

+ 13
() =Co o) [ oo (D.2)

+ico

with the normalization constant Cy such that

“+oo _ +
/ defvo(€) — ()] = 1.

— 00

+ —_
We note that even in the case where ¥y = ¥_, the functions vg(&) and vo(&) differ because of different
“+100

lower integration limits, their difference is just (Co@[f2(§)) dp?(p), and the normalization constant

Co at iy = =1y is

—100

= ( _:0 wgf@)_lg:;m Aol )> E (B-3)
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The remaining integral over z; in (D.1) develops a singularity as ¢+ — ,, because the function K (zil, §)
develops a logarithmic cut on the B-cycle, and using explicit form (4.1) for the K-kernel (K = K in this
simplest case), we obtain

33}"0 Fice q dz 2 wi(P) , "
ot Z/ci QM/ hpd(z / dp p_éJ’O(f)a (D.4)

+ico +ico

where the contour Cgi runs between +oo and Foo encircling the point p. The singularity appears as p (and
correspondingly z) tends to —ioo for 14 and to +ico for 1_. This singular part comes from the residue at
& = p, and we find that the expression in (D.4) is

Fioco 1 d z +
Z/ : / dp 3 (p)va (P) + regular part,
hi(z

and using explicit expressions (D.2) and (D.3) for vy, we obtain the singular part of the third derivative

83.7:0/8t8
) 3]: Fioco 1 2
e < 3t00> Z / h %: / V2 (p |:/:i:zoo s wi(sﬂ .

where the singularity occurs at the upper integration limit for z and p as ¢y,¥_ — . The term in
the square brackets is nonsingular in this limit, and we can therefore replace it with its limit value, which
exactly cancels the corresponding term in the normalization constant Cy (see (D.3)). The integrals over z
and p can be separated, and we obtain the final expression

. 33%) 1 UW’ dz ]2[ T dy ]‘2
sing. = . D.5
= (o 2onlly w2 U e (B:5)
We now calculate tg as ¥4, ¥_ — 1,,. Choosing 1_( f T odeyT? 1 (&) and taking into account

that the number of poles of solutions outside the A—cycle is n, we obtaln

fo= itk /:o d(i 8 - ﬁ;) =i /:o o ie) "

= —hn+h [ :o < [ ; wgilfg) * /0 wgf@)_lwg@)'

The first integral in the expression in parentheses diverges as ¢y — 1,,. Letting A denote this integral, we

to gz 0 ge 17! Y
= — A . .
foly, oy, = —hnt+h /,oo 3 (2) [/m @bi(f)} O™ (D-6)

Comparing this expression with (D.5), we obtain

obtain

03 Fo 1
ing. = Z D.
sSimg < 8t8 ) h(n + to/h)2a ne +,05 ( 7)
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i.e., this derivative has double poles with the coefficient 1/k at all points tg = —hn, n = 0,1,.... A function
that exhibits such a behavior is obviously the function I'; we hence find that up to an entire function,

sing. (a;t];) ~ ;i[log r)” (ig)
sing.(Fo) ~ h? [/ logF} (iﬁ;) (D.8)

Turning to the asymptotic behavior of [ dx logI'(z) at large positive x, we observe that the leading term is

and in turn

(22 /2) log x, which is exactly what we might expect from matrix-model-like arguments: we must be able to
apply the semiclassical approximation at large positive ¢o/h, and we have the leading asymptotic behavior
of the Gaussian matrix model in this regime, i.e., sing.(Fo) ~ (t3/2)logto up to polynomial terms (of a
degree not exceeding two).

We can therefore propose the following conjecture.

Conjecture. The singular part of Fy for any potential Vg1 (x) has the form

3] ()

i=1
where €; are the filling fractions on the cycles A;.
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