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TOPOLOGICAL EXPANSION OF THE β-ENSEMBLE MODEL AND

QUANTUM ALGEBRAIC GEOMETRY IN THE SECTORWISE

APPROACH

L. O. Chekhov,∗ B. Eynard,† and O. Marchal†

We construct the solution of the loop equations of the β-ensemble model in a form analogous to the solution

in the case of the Hermitian matrices β = 1. The solution for β = 1 is expressed in terms of the algebraic

spectral curve given by y2 = U(x). The spectral curve for arbitrary β converts into the Schrödinger

equation
�
(�∂)2 − U(x)

�
ψ(x) = 0, where � ∝

�√
β − 1/

√
β
�
/N . The basic ingredients of the method

based on the algebraic solution retain their meaning, but we use an alternative approach to construct a

solution of the loop equations in which the resolvents are given separately in each sector. Although this

approach turns out to be more involved technically, it allows consistently defining the B-cycle structure

for constructing the quantum algebraic curve (a D-module of the form y2 − U(x), where [y, x] = �) and

explicitly writing the correlation functions and the corresponding symplectic invariants Fh or the terms of

the free energy in an 1/N2-expansion at arbitrary �. The set of “flat” coordinates includes the potential

times tk and the occupation numbers �εα. We define and investigate the properties of the A- and B-cycles,

forms of the first, second, and third kinds, and the Riemann bilinear identities. These identities allow

finding the singular part of F0, which depends only on �εα.

Keywords: Schrödinger equation, Bergman kernel, correlation function, Riemann identity, flat coordi-
nates, Riccati equation
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†Institute de Physique Théorique, Centre des Etudes Atomiques, Gif-sur-Yvette, France.

This paper was written at the request of the Editorial Board.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i

Matematicheskaya Fizika, Vol. 166, No. 2, pp. 163–215, February, 2011. Original article submitted August 18, 2010;

revised September 13, 2010.

0040-5779/11/1662-0141

c©

141



3.3. First-kind functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.4. Riemann matrix of periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4. Recursion kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.1. The recursion kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.2. Third-kind differential: The kernel G(

α
x,

β
z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.3. The Bergman kernel B(
α
x,

β
z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.4. Meromorphic forms and the Riemann bilinear identity . . . . . . . . . . . . . . . . . . . . . . 160
5. Correlation functions: Diagram representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.1. The definition and the properties of correlation functions . . . . . . . . . . . . . . . . . . . . 161
5.2. Diagram representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6. Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.1. Variation of the resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2. Variations with respect to “flat” coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2.1. Variations with respect to the filling fractions . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.2. Variation with respect to t0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2.3. Variations with respect to tk: The two-point correlation function . . . . . . . . . . 165

6.3. Variation of higher correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7. Classical and quantum geometry: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8. Application: Matrix models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.1. Correlation functions and loop equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2. Variation with respect to � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9. The free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.1. The operator ̂H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.2. The derivative � ∂/∂� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.2.1. The cases r = 0, I = ∅ and r = h, I = J . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.2.2. The case r = 0, I = {x1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.2.3. The case r = h, I = J \ {xn} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.3. Examples of applying � ∂/∂� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.3.1. Reconstructing W

(0)
n (J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.3.2. Acting on W
(0)

2 (x1, x2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3.3. Acting on F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3.4. Acting on W

(1)
1 (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.4. The term Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Appendix A: Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Appendix B: The symmetricity of W

(0)
3 string models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Appendix C: Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Appendix D: Calculating ∂3F0/∂t30 in the Gaussian case . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

1. Introduction

In contemporary mathematical physics, the notion of quantum surfaces is rather often encountered,
appearing in many different guises. Having no intention to describe all problems in which quantization
of the space–time coordinates themselves occurs (which pertains mainly to string or brane models), we
nevertheless stress that the main feature of most, if not all, of these models is that the consideration is
commonly restricted to the simple geometry of the sphere or torus. The observables in these theories are not
the coordinates themselves, which cease to commute with each other and satisfy some postulated quantum
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algebras, but objects related to representations of these algebras, because only these objects admit a classical
interpretation. We here propose a new approach for describing these so-called “quantum surfaces,” namely,
we begin with solutions of the standard one-dimensional Schrödinger equation with a polynomial potential
and construct a higher-genus quantum surface (which is an analogue of a classical hyperelliptic Riemann
surface) for which we can define analogues of all the main notions of algebraic geometry.

This paper is an “alternative version” of our paper where we introduced the notion of quantum algebraic
geometry [1]. In both versions, the origin of quantum algebraic geometry is the same: the Schrödinger
equation

(

(�∂)2 − U(x)
)

ψ(x) = 0. The principal difference is that we here define all quantities starting
from the one-point resolvents differently in different sectors, i.e., these resolvents are constructed based on
different solutions of the Schrödinger equation in different Stokes sectors of the complex plane. This allows
rigorously defining the integrations over A- and B-cycles and also presenting a self-consistent procedure for
constructing the correlation functions and symplectic invariants.

The correlation functions W
(h)
n (x1, . . . , xn) and the symplectic invariants Fh for any planar algebraic

curve given by a polynomial equation

E(x, y) =
∑

i,j

Ei,jx
iyj = 0

were defined in [2], [3]. The invariants Fh(E) are described in terms of algebraic geometry based on the
Riemann surface of the equation E(x, y) = 0. On the matrix model side, these invariants are terms of the
1/N2-expansion (the genus expansion) of the free energy calculated in [4] for the one-matrix model and
in [5] for the two-matrix model.

We introduce the notion of a “quantum curve” for which E(x, y) is a noncommutative polynomial of x

and y:
E(x, y) =

∑

i,j

Ei,jx
iyj, [y, x] = �.

The notion of a quantum curve is also known as D-modules, i.e., a quotient of the space of functions by
Ker E(x, y), where y = �∂/∂x.

Our construction is based on functions ψ(x) satisfying E(x, �∂x)ψ(x) = 0, and we show that all the
basic notions of algebraic geometry can be consistently defined within this construction. Although some
objects, branch points for example, lose their explicit meaning, we can define cycles, forms, Bergman kernels,
period matrices and the corresponding Abel maps and also other objects consistently. It is nevertheless
quite surprising that almost all relations of classical algebraic geometry, for instance, the Riemann bilinear
identity, the modified Rauch variational formula, and the topological recurrence relations defining the
correlation functions and symplectic invariants, retain their significance for � �= 0.

The symplectic invariants Fh were first introduced for the solution of loop equations arising in the
1-Hermitian random matrix model [2], [4]. They were later generalized to other Hermitian multimatrix
models [5], [6].

The models corresponding to the quantum surface are the β-ensembles classified by the exponent β.
The three Wigner ensembles (see [7] with the change β → β/2) correspond to β = 1 (Hermitian matrix
case), β = 1/2 (real symmetric matrix case), and β = 2 (real self-dual quaternion matrix case), but we can
easily define a β-ensemble eigenvalue model for any real value of β as the N -fold integral of the form

∫

dλ1 · · · dλN |Δ(λ)|2βe−N
√

β
�N

j=1 V (λj),

where Δ is the Vandermonde determinant.
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The solution in [2] was generalized in [8] to the β-ensemble models, but the solution was given as a
double half-infinite sum for β = O(1) at large N ,

F =
∞
∑

h,k=0

N2−2h−k

(

√

β − 1√
β

)k

Fh,k.

The coefficients Fh,k in this series were computed in [8].
Here as in [1], we assume that � = (

√
β−1/

√
β )/N , and we therefore perform an (infinite) resummation

in the above formula; the free-energy expansion then takes the standard form

F =
∞
∑

h=0

N2−2hFh(�).

The coefficients Fh,k in [8] can be recovered by computing the semiclassical small �-expansion of Fh(�).
We demonstrate that Fh(�) is the natural generalization of the symplectic invariants in [3] for a “quantum
spectral curve” E(x, y) with [y, x] = �.

We also define analogues of the multipoint resolvents

Wn(x1, . . . , xn) = N−n

〈 N
∑

j=1

(x1 − λj)−1 · · ·
N

∑

j=1

(xn − λj)−1

〉

conn

,

where the angle brackets denote averaging with the weight |Δ(λ)|2βe−N
√

β
�N

j=1 V (λj) and the subscript
“conn” means that we select the connected part of the correlator. These resolvents themselves admit the
1/N2-expansion in the form

Wn(x1, . . . , xn) =
∞
∑

h=0

N2−2h−nW (h)
n (x1, . . . , xn).

Here, we calculate all the terms W
(h)
n using the modified diagram technique.

The main tool used to study the β-eigenvalue model is the loop equation method. We obtain loop
equations from the invariance of an integral under a special change of variables. Loop equations for the
β-eigenvalue model were obtained in [9], [10], and we solve them here order by order of the perturbation
theory in 1/N2 with a fixed �.

Models of the indicated type recently received a new impulse for development from the Alday, Gaiotto,
and Tachikawa (AGT) conjecture [11] relating Nekrasov’s instanton function [12] to conformal blocks of the
Liouville theory. These conformal blocks can in turn be described by a matrixlike model (see [13], [14]).
The relation to the Nekrasov parameters ε1,2 is explicit: ε1ε2 ∼ 1/N2 and ε1/ε2 ∼ β. Therefore, using
the approach developed here, we can construct nonperturbative solutions of Nekrasov’s formulas in ε1/ε2.
Here, we investigate only the case of polynomial potentials; the generalization to the realistic logarithmic
potentials appearing in the AGT conjecture will be the subject of a subsequent publication.

This paper has the following structure. We collect the generalities on the Stokes phenomenon pertaining
to solutions of the Schrödinger equation in Sec. 2. We describe our quantum Riemann surface in Sec. 3, where
we introduce A- and B-cycles, filling fractions ε̃i, and the first-kind functions (analogues of holomorphic and
Krichever–Whitham meromorphic differentials) and also the system of flat coordinates and the Riemann
period matrix. In Sec. 4, we introduce the recursion kernels and the second- and third-kind (bi)differentials.
In Sec. 5, we go beyond the leading approximation in 1/N2 and construct correlation functions of all orders
using a Feynman-like diagram technique. We reveal the origin of our recursive procedure in Sec. 6, where
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we develop the variations with respect to the set of flat coordinates in detail. A summary of the results
is contained in Sec. 7. In the next two sections (completely new compared with [1]), we investigate the
link to the β-ensemble models (Sec. 8) and construct the free-energy terms based on this analysis (Sec. 9).
In Appendixes A–C, we prove the three main theorems in Sec. 5 concerning properties of the correlation
functions, and Appendix D contains a new formula expressing F0 in terms of the filling fractions ε̃i. In
matrix models, the singular term has the structure (ε̃ 2

i /2) log ε̃i. In the quantum geometry, this term turns
out to be proportional to the integral of log Γ(ε̃i), which is the first actual example of calculations in the
case of quantum Riemann surfaces.

2. Schrödinger equation and resolvents

2.1. Solutions of the Schrödinger equation. We begin with the Schrödinger equation

�
2ψ′′(x) = U(x)ψ(x), (2.1)

where U(x) is a polynomial of even degree 2d for which we define the polynomial “potential” V (x) of degree
d + 1 by

V ′(x) = 2(
√

U)+ =
d

∑

k=0

tk+1x
k, (2.2)

where ( · )+ denotes the positive part of the Laurent series. In the matrix model language (see Sec. 8),
t1, . . . , td+1 are called the times associated with the potential V (x). We also define the polynomial of
degree d − 1

P (x) =
(V ′)2(x)

4
− U(x) − �

V ′′(x)
2

. (2.3)

Finally, we introduce

t0 = lim
x→∞

xP (x)
V ′(x)

, (2.4)

which is the normalized total number of eigenvalues (particles) or the temperature. The remaining coeffi-
cients of P are fixed by introducing the “filling fractions” εi below.

2.1.1. Stokes sectors. A function ψ(x) that is a solution of the Schrödinger equation exhibits the
Stokes phenomenon: although ψ(x) is an entire function, its asymptotic behavior is discontinuous near ∞,
where it has an essential singularity. Let θ0 = Arg(td+1) be the argument of the leading coefficient of the
potential V (x). We define the Stokes rays

Lk =
{

x : Arg(x) = − θ0

d + 1
+ π

k + 1/2
d + 1

}

,

along which Re V (x) vanishes asymptotically, together with the corresponding Stokes sectors

Sk =
{

x : Arg(x) ∈
]

− θ0

d + 1
+ π

k − 1/2
d + 1

, − θ0

d + 1
+ π

k + 1/2
d + 1

[}

,

i.e., Sk is the sector between Lk−1 and Lk.
We note that asymptotically, Re V (x) > 0 in even sectors and Re V (x) < 0 in odd sectors.
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Fig. 1. Example of the Stokes sector partition and structure of zeros for the Schrödinger equation

solution ψ(x) that decreases in the light-colored sector and increases in all other sectors (the degree

of the potential V (x) is four).

2.1.2. The Stokes phenomenon: Decreasing solution. Investigations of the Schrödinger equa-
tion show that ψ(x) is an entire function with the large-x expansion in each sector Sk

ψ(x) ∼
Sk

e±V (x)/2�xCk

(

Ak +
Bk

x
+ . . .

)

, (2.5)

where the sign ± can change in the passage from one sector to another as can the numbers Ak, Bk, Ck, . . .

(and in the general case, all the coefficients of the series in 1/xj at infinity).1 In each sector Sk, there
exists a unique solution that decreases exponentially along each asymptotic direction inside the sector.
We now separate solutions in the even and odd sectors and consider the set {ψα(x)} of solutions each of
which decreases in the corresponding even sector. We thus introduce a sectorwise system of solutions of
the Schrödinger equation.

The Stokes theorem is a useful result, stating that if the asymptotic value of ψ(x) is exponentially
small in some sector, then the same asymptotic series expansion (2.5) holds in the two adjacent sectors
(and ψ(x) therefore increases exponentially in those two sectors).

In the general position case, (i.e., for a potential U(x) of general form), the solution ψα(x) decreases
only in the sector Sα and is exponentially large in all other sectors (see Fig. 1). But if the Schrödinger
potential U(x) is special, then there may exist several sectors where ψα(x) is exponentially small (which
means that ψα1(x) = ψα2(x) for some α1 �= α2).

In what follows, we mainly consider the general position case and therefore assume all the functions
ψα are different unless otherwise stated.

The case studied in [15] is the most degenerate case, where the same solution ψ is exponentially small
in d+1 sectors.

2.1.3. Zeros of ψ. Every ψα(x) is an entire function with an essential singularity at ∞ and with
isolated zeros s

(α)
i . The number of these zeros can be finite or infinite. In the latter case, zeros can

accumulate only near ∞ and only along the Stokes rays Lj bordering the sectors (see Fig. 1). This zero
accumulation along the ray Lj occurs if and only if ψα(x) is exponentially large on both sides of the ray.
Therefore, no accumulation of zeros of the function ψα(x) occurs along the lines that border the α sector,

1The corresponding series is asymptotic and hence cannot be continued analytically to other sectors.
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and this function can therefore have only a finite number of zeros inside the “larger” sector when we join
the α sector with the adjacent parts of the two neighboring sectors.

If U(x) is general, then each ψα(x) has an infinite number of zeros, the zeros accumulate at ∞ along
all rays Lj with j �= α, α − 1. An important property of any solution ψα is that

Res
s
(α)
i

1
ψ2

α(x)
= 0. (2.6)

In [1], we define the genus of the Schrödinger equation to be related to the number of rays of zero
accumulation of a selected function ψ0. But this definition depends on the scheme, and we can in principle
obtain different genera for the same function U(x). The clear understanding of this is still lacking; a possible
explanation is that we actually deal with different sections of an ambient infinite-genus quantum surface.

2.1.4. Sheets. In sector Sα, we have the asymptotic expansion

ψα(x) ∼ e−�V (x)/2xt0/�

(

Aα +
Bα

x
+ . . .

)

,

and the function ψα has the same asymptotic expansion in the two adjacent sectors. We consider an α sheet
of the quantum Riemann surface to be the union of these three sectors with a possible analytic continuation
into a bounded domain of the complex plane. We consider only the sheets enumerated by even α and, in
contrast to [1], consider them on an equal footing: they are all equivalent in the approach developed here.
Sheets obviously overlap; we must introduce boundaries (cuts) between them.

2.2. Resolvent. The first ingredient of our strategy is to define a resolvent similar to the one in
matrix models. We define the resolvent sectorwise: for x ∈ Sα,

ω(
α
x) = �

ψ′
α(x)

ψα(x)
+

V ′(x)
2

, (2.7)

where a quantity defined sectorwise is indicated by setting the sector index above the variable as for the
argument of the resolvent. It follows from this definition that ω(x) has simple poles at zeros of ψα in the
corresponding sector. The boundaries between sectors overlap, but we fix them more explicitly in what
follows (see the picture of the partition of the complex plane by A-cycles). A straightforward computation
then gives

ω(
α
x) ∼ t0

x
+ O

(

1
x2

)

, x → ∞α,∞α±1,

i.e., the resolvent in each sheet has the asymptotic properties of a standard matrix-model resolvent.
The main property of ω(

α
x) is that it satisfies the Riccati equation. We have

V ′(x)ω(
α
x) − ω2(

α
x) − �ω′(

α
x) =

(V ′)2(x)
4

− �
2 ψ′′

α(x)
ψα(x)

− �
V ′′(x)

2
=

=
(V ′)2(x)

4
− U(x) − �

V ′′(x)
2

= P (x), (2.8)

where P (x) is a polynomial of degree d − 1 in x, and this polynomial is the same for all sheets of the
quantum Riemann surface introduced below.

3. Quantum Riemann surface

In this section, we define the notions of A- and B-cycles and the first-kind differentials dual to them.
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Fig. 2. The original integration contour CD.

Fig. 3. Example of pushing the contour CD from infinities to the set of �A-cycles.

3.1. The integration contour CD and the set of A- and B-cycles. In papers on matrix models
(at an early stage before coming to residues at the branch points), we have the special integration contour
CD that encircles all the singularities of resolvents, not considering all other possible singular points. The
analogue of such a contour in our case is the union of d+1 contours, one per sheet, that pairwise coincide in
far asymptotic domains of odd Stokes sectors and separate all the zeros of the function ψα from the infinity
∞α (which is always possible because we have a finite number of zeros in each sheet). We have

∮

CD

dx f(x) ≡
∑

α

∫ ∞α+1

∞α−1

dx f(
α
x) (3.1)

for any function f(
α
x) that has no asymptotic zero accumulation along the boundary rays of the sector Sα

(see Fig. 2). Here and hereafter, we assume that f(
α
x) may depend on a finite number of derivatives of

ψα(x); the symbol f(
α
x) then indicates that we substitute the solution ψα(x) as an argument.

We now deform the integration contour CD pushing it through the “middle” part of the complex plane
and taking the residues at the zeros s

(α)
i of the corresponding functions ψα as shown in Fig. 3. On the

way, we might break some contours, representing them as the unions of newly introduced contours all of
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which are stretched between different asymptotic directions. As a result, we obtain a system of exactly
2d contours in which (not considering the residues at zeros s

(α)
i ) all the contours are pairwise identified

and represent edges of d “cuts.” As a result, we obtain a complete system of d cuts ˜Ai, i = 1, . . . , d, that
separate all the odd-numbered infinities2 and determine the corresponding sheets of the quantum Riemann
surface. If the functions ψα(x) coincide for some sheets, then we can identify these sheets. We note that
we definitely have an arbitrariness in constructing this system of cuts; we can also arbitrarily assign the
residues inside the sheet to belong to one of several contours bounding this sheet.

We call the cut separating two sheets a cycle ˜Aα, and it is characterized by four indices: α+ and α−

are indices of the sheets separated by this cut (they are even numbered in our classification); α̃+ and α̃−
are indices of infinities that are asymptotic for this cut (they are odd numbered).

Into correspondence with each complete set { ˜Aα}d
α=1 of ˜A-cycles, we uniquely assign the set { ˜Bα}d

α=1

of ˜B-cycles that go pairwise between the even-numbered infinities (α+ and α−) such that the intersection
index ˜Aα ◦ ˜Bβ = δα,β.

Definition 3.1. We define the integrals over the cycles ˜Aα and the conjugate cycle ˜Bα as (see Fig. 4)
∮

�Aα

dx f(x) def=
∫ ∞

�α+

∞
�α−

dx
(

f(
α+
x ) − f(

α−
x )

)

+
∑

Res
s
(α±)
i (α)

f(
α±
x ), (3.2)

∮

�Bα

dx f(x) def=
∫ ∞α+

∞α−

dx
(

f(
α+
x ) − f(

α−
x )

)

, (3.3)

where the residues in the first expression are taken at those zeros of ψα± that are assigned to the corre-
sponding contour.

Because the prescription for the sheet assignment follows from definitions (3.2) and (3.3) of the cycle
integrals, we omit the sheet labels in the corresponding integrands in what follows.

Remark 3.1. The assignment of residues in the α sheet to the contours bounding this sheet is arbi-
trary; we therefore have a (discrete) ambiguity in definition (3.2) of the ˜A-cycle integrals. But the notion
of the integral over CD is well defined and is independent of the choice of the ˜A-cycles. Obviously,

∮

CD

dx f(x) =
d

∑

i=1

∮

�Ai

dx f(x).

We now introduce the “genuine” A- and B-cycles, which are direct analogues of the set of A- and
B-cycles on a standard Riemann surface. For this, we select one among the ˜A-cycles, for example, the cycle
˜Ad and the conjugate cycle ˜Bd. We then identify Ai = ˜Ai and Bi = ˜Bi − ˜Bd, i = 1, . . . , d − 1, in the sense
of Definition 3.1, i.e.,

∮

Ai

dx f(x) def=
∮

�Ai

dx f(x),

∮

Bi

dx f(x) def=
∮

�Bi

dx f(x) −
∮

�Bd

dx f(x), i = 1, . . . , d − 1,

(3.4)

and we call the number g = d − 1 of independent A- and B-cycles the genus of the quantum Riemann
surface.

The newly introduced A- and B-cycles again satisfy the standard intersection formula Aα ∩Bβ = δα,β,
and most of our construction features depend only on the homology class of the paths Aα and Bα at the
asymptotic infinities, but in the intermediate considerations, it is useful to choose a representative, the
intersection point Pα, Aα ∩ Bα = {Pα}.

2In what follows, we identify an infinity “point” with the corresponding number with the related asymptotic direction.
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Fig. 4. The pattern of �A-cycles (dashed lines) and �B-cycles (dotted lines) for the example in Fig. 3.

3.2. Filling fractions. In random matrix models, the notion of filling fractions is just the A-cycle
integrals of the resolvent. If the A-cycles are chosen to be in the physical sheet (which is possible, for
example, in the hyperelliptic case), then the discontinuity of the resolvent along the corresponding cuts
determines the eigenvalue density, and the A-cycle integrals determine the portions of eigenvalues lying on
the corresponding interval of the eigenvalue distribution. They are therefore called the filling fractions.

In the case of the quantum surface, we define the “filling fractions” ε̃α as

ε̃α =
1

2iπ

∮

�Aα

dxω(x) def=
∫ ∞

�α+

∞
�α−

dx
(

ω(
α+
x ) − ω(

α−
x )

)

, α = 1, . . . , d. (3.5)

We note that this definition depends on where we place the contours and (in the case where a sheet is
bounded by more than one ˜A-cycle) we also have a freedom to assign residues inside the sheet to different
˜A-cycles. Therefore, the filling fractions are defined up to integers times �.

For the difference in the right-hand side of (3.5), we have

ω(
α+
x ) − ω(

α−
x ) =

wα+,α+

ψα+(x)ψα− (x)
,

where wα+,α+ = ψ′
α+

ψα− − ψ′
α−ψα+ is the Wronskian of the two solutions. Therefore, this difference

decreases exponentially in sectors where both the solutions ψα+ and ψα− increase, and we can identify the
asymptotic domains of the A-cycle integrals with “branch points.”

We have
∑d

α=1 ε̃α = t0, which follows from the simple fact that summing the integrals over ˜A-cycles
is equivalent to integrating over CD. This also means that we should take only d − 1 = g of the variables
ε̃1, . . . , ε̃d as independent variables if we regard t0 as an independent variable, and we naturally choose these
g variables εα to be the filling fractions corresponding to the cycles Aα of the quantum Riemann surface.

Remark 3.2. In the case g = −1 in [1], the only filling fraction is ε̃d = t0, and it is given by the
(finite) sum of residues of the function ω at the zeros si,

ε̃d = t0 =
∑

i

Res
si

ω = � #{si},

and t0 is hence discrete in this case. For g ≥ 0, the variables ε̃α, α = 1, . . . , g, and t0 can take arbitrary,
not necessarily integer, values.
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3.3. First-kind functions. After defining the cycles, the next important step is to define the first-,
second-, and third-kind differentials. We begin by defining the first-kind differentials.

Let hk, k = 1, . . . , d − 1, be a basis in the complex vector space of polynomials of degree ≤ d − 2. We
introduce the functions

vk(
α
x) =

1
�ψ2

α(x)

∫ x

∞α

dx′ hk(x′)ψ2
α(x′). (3.6)

We use the same polynomial hk(x′) for all sheets of the Riemann surface.
We note that because every ψα(x) is a solution of the Schrödinger equation, vk(

α
x) has double poles

with zero residues at the s
(α)
j (at the zeros of ψα) and behaves as O(1/x2) in the sector Sα and inside all the

sectors where ψα is exponentially large (if the polynomial hk(x′) has a degree less than d − 2). Therefore,
the integrals

Ik,α =
∮

Aα

dx vk(x), α = 1, . . . , g, k = 1, . . . , d − 1,

are well defined in the general case. If the matrix Ik,α with k = 1, . . . , d − 1 has the full rank (which we
assume in what follows), then we can choose the canonically normalized basis of hk such that

Ik,α = δk,α. (3.7)

The functions vk(x), k = 1, . . . , g are therefore natural analogues of canonically normalized holomorphic
forms (first-kind differentials). We now extend this notion to the meromorphic (Whitham–Krichever)
differentials [16]. For this, we consider the following basis hk, k = 1, 2, . . . , in the space of polynomials of
arbitrary order. The first d−1 elements of this basis are the original polynomials hk, each of which has a
degree not exceeding d − 2. Each polynomial hk with k > d − 1 has exactly the degree k − 1 and must be
chosen on the following grounds. We define the functions vk(

α
x) with k > d− 1 exactly as in (3.6). Now let

hk be a polynomial of arbitrary (fixed) degree k − 1. The coefficients of hk, k ≥ d − 1, are uniquely fixed
by the normalization conditions:

the residue condition ∮

CD

dx

xl
vk(x) = δl,k−d, l = 0, 1, . . . , k ≥ d − 1, (3.8)

and the normalizing condition
∮

Aα

dx vk(x) = 0, α = 1, . . . , d − 1, k ≥ d. (3.9)

Remark 3.3. Although the functions vk(
α
x) generally increase as xk−d as x → ∞, integral (3.8) and

also normalizing condition (3.9) are well defined for any finite l and k because the difference vk(
α+
x )−vk(

α−
x )

is exponentially small as x → ∞α̃± for any k and we can integrate it along CD weighted by any polynomially
increasing function. Integral (3.8) is therefore a natural analogue of the residue at infinity of order l + 1.

3.4. Riemann matrix of periods. An interesting quantity in standard algebraic geometry is the
Riemann matrix of periods provided by integrals of the holomorphic differentials over B-cycles. An analo-
gous “quantum” Riemann period matrix τi,j , i, j = 1, . . . , g is

τα,i
def=

∮

Bα

dx vi(x).

We note that this definition makes sense because vi(x), i = 1, . . . , g, behaves as O(1/x2) in the sectors
that are asymptotic for the B-cycles. Because the residues of vi(

α
x) vanish at all zeros s

(α)
j , these integrals

depend only on the homology class of B-cycles.
Like for the classical Riemann matrix of periods, we have the following property.
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Fig. 5. The path of integration with respect to the variable x′ in the expression for the recursion

kernel K(
α
x, y).

Theorem 3.1. The period matrix τ is symmetric: τi,j = τj,i.

This result follows from Theorem 4.8 below because
∮

Bβ

dx

∮

Bα

dz B(x, z) = 2iπ

∮

Bβ

dx vα(x) = 2iπτβ,α,

after which we can apply the equality B(
α
x,

β
z) = B(

β
z,

α
x) (see Theorem 4.9 on the symmetry of the Bergman

kernel).

4. Recursion kernels

One of the key geometric objects in [3] and [15] is the “recursion kernel” K(x, z). It was used to
construct a solution of loop equations in the context of matrix models [5]. We use its analogue K(x, z)
below to construct the third- and second-kind differentials.

4.1. The recursion kernel. We first define the kernel

̂K(
α
x, z) =

1
�ψ2

α(x)

∫ x

∞α

dx′

x′ − z
ψ2

α(x′), (4.1)

and for each α = 1, . . . , g, we define

�Cα(z) =
∮

Aα

dx ̂K(x, z) ≡
∫ ∞

�α+

∞
�α−

dx
(

K(
α+
x , z) − K(

α−
x , z)

)

. (4.2)

In these expressions, we must also specify the integration contours with respect to the variable x′ from the
infinities ∞α± to the point x on the cycle Aα. We assume that these contours go first from the corresponding
infinity along the part of the adjoint cycle Bα that lies in the sheet α± until it reaches the intersection point
Pα; after this point, we integrate along the cycle Aα towards the final point x (see Fig. 5).

To find the domain of the function ̂K(
α
x, z), we slightly deform the integration contours over edges of

the ˜A-cycles as shown in Fig. 6; then for the variable z lying in the domain that is “inner” with respect
to integrations from infinities for all the functions ψγ± , i.e., for the domain that is separated from all the
infinities ∞γ± by the drawn apart edges of the ˜A-cycles, the kernel ̂K(

α
x, z) is well defined (and it develops

logarithmic cuts if we push the variable z through the boundary of the sheet Sα).
We now need to describe the analytic properties of the introduced functions. For a fixed x, the kernel

̂K(
α
x, z) is defined for z in the crosshatched domain in Fig. 6.

Taking an integration path between ∞α and x, we find that ̂K(
α
x, z) is defined for z outside this path.

Across the path ]∞α, x], ̂K(
α
x, z) has a discontinuity with respect to z:

δz
̂K(

α
x, z) =

2iπ

�

ψ2
α(z)

ψ2
α(x)

.
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Fig. 6. The domain of variable z (crosshatched) in (4.1) (we slightly deform the �A-cycle integrals).

A similar statement is true for Cα(z): when z crosses the line of the cycle Aβ , we have

δzCβ(z) =
2iπψ2

β±
(z)

�

∫ ∞
�β±

z

dx′′

ψ2
β±

(x′′)
. (4.3)

We now define the recursion kernel K(
α
x, z), which is the main ingredient in our construction.

Definition 4.1. The recursion kernel K(
α
x, z) is

K(
α
x, z) = ̂K(

α
x, z) −

d−1
∑

j=1

vj(
α
x)Cj(z).

It is defined for z in the crosshatched domain in Fig. 6.

Theorem 4.1. The kernel K has the following properties:
For a fixed z, K(

α
x, z) ∼ O(x−2) as x → ∞ in all sectors (if the function ψα(x) increases in all the

sectors except Sα).
The normalization condition is

∮

Aj

dxK(x, z) = 0, j = 1, . . . , d − 1. (4.4)

At the zeros s
(α)
j of ψα, K(

α
x, z) has double poles with zero residues.

Proof. The first statement follows from the asymptotic behavior of vk(
α
x) given by (3.6) and the kernel

̂K(
α
x, z), ̂K(

α
x, z) ∼ O(x−d). The second statement follows from the definition of the kernel K, and the third

statement follows from (2.6).

Theorem 4.2. We have K(
α
x, z) ∼

z→∞
O(z−d) in all sectors at infinity. More precisely, we have

K(
α
x, z) ∼ −

∞
∑

k=d−1

Kk(
α
x)

zk+1
,
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where

Kk(
α
x) = ̂Kk(

α
x) −

g
∑

j=1

vj(
α
x)

∮

Aj

dx′
̂Kk(x′), (4.5)

̂Kk(
α
x) =

1
�ψ2

α(x)

∫ x

∞α

dx′(x′)kψ2
α(x′), (4.6)

Proof. We can expand ̂K(
α
x, z) in a series as

̂K(
α
x, z) ∼ −

∞
∑

k=0

̂Kk(
α
x)

zk+1
,

where ̂Kk(
α
x) is defined in (4.6), and (4.5) is therefore satisfied for Kk(

α
x). For k ≤ d − 2, (x′)k can be

represented as a linear combination of polynomials hj(x′),

(x′)k =
d−1
∑

β=1

bk,βhβ(x′),

and from the normalizing condition, we immediately obtain
∮

Aα

dx′
̂Kk(x′) = bk,α,

and therefore Kk(x) = 0 for k ≤ d − 2, which implies that K(x, z) = O(z−d). The theorem is proved.

4.2. Third-kind differential: The kernel G(
α
x,

β
z). We now define the second important kernel,

which is an analogue of the third-kind differential. The kernel G(
α
x,

β
z) is

G(
α
x,

β
z) = −�ψ2

β(z) ∂z
K(

α
x, z)

ψ2
β(z)

= 2�
ψ′

β(z)
ψβ(z)

K(
α
x, z) − � ∂zK(

α
x, z). (4.7)

Integrating by parts gives

G(
α
x,

β
z) = − 1

x − z
+

2
ψ2

α(x)

∫ x

∞α

dx′

x′ − z
ψ2

α(x′)
(

ψ′
α(x′)

ψα(x′)
−

ψ′
β(z)

ψβ(z)

)

−

− �

d−1
∑

j=1

vj(
α
x)ψ2

β(z) ∂z
Cj(z)
ψ2

β(z)
.

In what follows, we are often in a situation where we take two integration contours CDx and CDz and must
interchange the order of integration (or the order in which these two contours intersect the B-cycles). It is
then obvious from the definition of the A-cycles that we must interchange the variables x and z within the

same sector, and we therefore need permutation relations for G(
α
x,

β
z) with α = β. As x → z, we then find

that G(
α
x,

α
z) ∼ 1/(z−x), i.e., there is a simple pole with the unit residue at z = x. Because the combination

1
x′ − z

(

ψ′
α(x′)

ψα(x′)
− ψ′

α(z)
ψα(z)

)

is regular at x′ = z, interchanging the order of integration over CDx and CDz then just gives the residue at
z = x; no logarithmic cut occurs.
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Theorem 4.3. The function G(
α
x,

β
z) is analytic in x with a simple pole at x = z with the residue −1

for α = β, with double poles at the s
(α)
j (zeros of ψα(x)) with zero residues, and possibly with an essential

singularity at ∞.

The function G(
α
x,

β
z) is analytic in z with a simple pole at z = x with the residue +1 for α = β, with

simple poles at z = s
(β)
j , and with a discontinuity across Aγ-cycles with γ = 1, . . . , g (this discontinuity has

opposite signs depending on which line of the cycle Aγ , γ+ or γ−, we cross; no discontinuity occurs when

crossing the last cycle ˜Ad):

δzG(
α
x,

β±
z ) = ∓2iπvβ(

α
x).

We also have ∮

Aα

dxG(x,
β
z) = 0.

Proof. All the discontinuities of K(
α
x, z) except those arising in expression (4.3) for Cj(z) are pro-

portional to ψ2
α(z) and vanish in G(x, z) given by (4.7). The discontinuity of Cj(z) gives ∓2πi, and the

discontinuity of G(
α
x,

β
z) is therefore δzG(

α
x,

β±
z ) = ∓2iπvβ(

α
x).

Because K(
α
x, z) is regular at z = s

(β)
j , it is clear that G(

α
x,

β
z) has simple poles at z = s

(β)
j with the

residue −2�K(x, s
(β)
j ).

In the variable x, K(
α
x, z) has double poles at x = s

(α)
j with zero residues, and this property also holds

for G(
α
x,

β
z).

The property that the A-integral vanishes follows immediately from (4.4). The theorem is proved.

Theorem 4.4. As x → ∞α for any α, we have the asymptotic behavior G(
α
x,

β
z) = O(1/x2). At large

z in the sector Sγ , we have

lim
z→∞γ

G(
α
x,

β
z) = G(

α
x,∞β) = ηγ,βtd+1Kd−1(

α
x), (4.8)

where ηγ,β = ±1 depending on the asymptotic behavior of ψβ ∼ e±V/2� in the sheet Sγ .

Proof. The large-x behavior G(
α
x,

β
z) follows from Theorem 4.1. The large-z behavior is given by

Theorem 4.2, i.e., G(
α
x,

β
z) ∼ ±V ′(z)K(

α
x, z) ∼ ±td+1Kd−1(

α
x). The sign depends on the behavior of the

solution in this sector.

4.3. The Bergman kernel B(
α
x,

β
z). In classical algebraic geometry, the Bergman kernel is the

fundamental second-kind bidifferential; it is the derivative of a third-kind differential. Using the same
definition as in [15], we set

B(
α
x,

β
z) = −1

2
∂zG(

α
x,

β
z).

We call the kernel B the “quantum” Bergman kernel.

Theorem 4.5. The quantum Bergman kernel B(
α
x,

β
z) is an analytic function of x. For α = β, it has

a double pole at x = z in both the variables x and z with a zero residue, has double poles in x and in

z at the respective zeros s
(α)
j and s

(β)
j with zero residues, and possibly has an essential singularity at ∞.

Differentiation eliminates the discontinuity in the kernel G across A-cycles, and B(
α
x,

β
z) is hence defined

analytically in the whole complex plane.
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Proof. These properties follow from those of G(
α
x,

β
z) in Theorem 4.3. In particular, the only discon-

tinuity of G(
α
x,

β
z) is along the A-cycles and is independent of z. Therefore, B(

α
x,

β
z) is continuous there.

Theorem 4.6. We have the asymptotic behaviors B(
α
x,

β
z) = O(1/x2) as x → ∞ in all sectors and

B(
α
x,

β
z) = O(1/z2) as z → ∞ in all sectors.

Proof. Such behavior of the kernel follows from the large-x and large-z behaviors of G(
α
x,

β
z).

Theorem 4.7. The kernel B satisfies the loop equations

(

2
ψ′

α(x)
ψα(x)

+ ∂x

)(

B(
α
x,

β
z) − 1

2(x − z)2

)

+ ∂z

ψ′
α(x)/ψα(x) − ψ′

β(z)/ψβ(z)
x − z

= P
(0)
2 (x,

β
z), (4.9)

where P
(0)
2 (x,

β
z) is a polynomial in x of a degree not exceeding d − 2, and

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)(

B(
α
x,

β
z) − 1

2(x − z)2

)

+ ∂x

ψ′
α(x)/ψα(x) − ψ′

β(z)/ψβ(z)
x − z

= ˜P
(0)
2 (

α
x, z), (4.10)

where ˜P
(0)
2 (

α
x, z) is a polynomial in z of a degree not exceeding d − 2.

Proof. We begin by proving the first loop equation for B(
α
x,

β
z). Let

̂B(
α
x,

β
z) =

1
2
∂z

(

2
ψ′

β(z)
ψβ(z)

− ∂z

)

̂K(
α
x, z),

i.e., we have

B(
α
x,

β
z) = ̂B(

α
x,

β
z) −

d−1
∑

j=1

vj(
α
x)

∮

Aj

dx′′
̂B(x′′,

β
z).

Because hj(x) =
(

2ψ′
α(x)/ψα(x) + ∂x

)

vj(
α
x) is itself a polynomial of degree not exceeding d − 2, it suffices

to prove Eq. (4.9) for ̂B(
α
x,

β
z). We have

(

2
ψ′

α(x)
ψα(x)

+ ∂x

)

̂B(
α
x,

β
z) =

1
2
∂z

(

2
ψ′

β(z)
ψβ(z)

− ∂z

)

1
x − z

=

= − 1
(x − z)3

+ ∂z

ψ′
β(z)

ψβ(z)(x − z)

and therefore

(

2
ψ′

α(x)
ψα(x)

+ ∂x

)(

̂B(
α
x,

β
z) − 1

2(x − z)2

)

+ ∂z

ψ′
α(x)/ψα(x) − ψ′

β(z)/ψβ(z)
x − z

= 0.

This proves Eq. (4.9) with

P
(0)
2 (x,

β
z) = −

g
∑

j=1

hj(x)
∮

Aj

dx′′
̂B(x′′,

β
z).
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We now prove the second loop equation for B(
α
x,

β
z). We have

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

̂B(
α
x,

β
z) =

1
2

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

∂z

(

2
ψ′

β(z)
ψβ(z)

− ∂z

)

̂K(
α
x, z),

where the differential operator in the right-hand side is

̂U(z) = −1
2
∂3

z +
2
�2

U(z)∂z +
1
�2

U ′(z) (4.11)

and is therefore independent of the solution ψβ(z) with which we started. This operator is just the Gelfand–
Dikii operator [17]. We then obtain

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

̂B(
α
x,

β
z) =

1
ψ2

α(x)

∫ x

∞α

dx′ ψ2
α(x′)

(

− 3
(x′ − z)4

+
2U(z)

(x′ − z)2
+

U ′(z)
x′ − z

)

.

Integrating the first term by parts three times, introducing Yα(x) = ψ′
α(x)/ψα(x) (and taking into account

that Y ′
α + Y 2

α = U), we obtain

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

̂B(
α
x,

β
z) =

1
(x − z)3

− ∂

∂x

Yα(x)
x − z

+

+
1

ψ2
α(x)

∫ x

∞α

dxψ2
α(x′)

(

2
U(z) − U(x′)

(x′ − z)2
+

U ′(z) + U ′(x′)
x′ − z

)

.

This implies that

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)(

̂B(
α
x,

β
z) − 1

2(x − z)2

)

+
∂

∂x

Yα(x) − Yβ(z)
x − z

=

=
1

ψ2
α(x)

∫ x

∞α

dx′ ψ2
α(x′)

(

2
U(z) − U(x′)

(x′ − z)2
+

U ′(z) + U ′(x′)
x′ − z

)

. (4.12)

The obtained expression is obviously a polynomial in z. The expression in parentheses in the right-hand
side of (4.12) is a skew-symmetric polynomial in x′ and z of a degree not exceeding 2d−2. Moreover, all the
terms with (x′)k with k ≤ d−2 become linear combinations of vj(

α
x) after integration and vanish identically

when we apply the projection to the subspace of zero A-cycle integrals. Therefore, the minimum power of
x′ that contributes to the answer is (x′)d−1. But there is no term (x′)d−1zd−1 in the parentheses because
it would contradict the skew-symmetricity. The first nonzero term that might contribute is proportional
to (x′)d−1zd−2, which obviously means that the obtained polynomial ˜P

(0)
2 (

α
x, z) has a degree not exceeding

d − 2 in z.

Theorem 4.8. For each α = 1, . . . , g, we have

∮

Ai

dxB(x,
β
z) = 0,

∮

Aj

dz B(
α
x, z) = 0, (4.13)

and ∮

Bj

dz B(
α
x, z) = 2iπvj(

α
x). (4.14)
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Proof. The vanishing of A-cycle integrals in the x variable is by construction. For the z variable, we
have

∮

Aβ

dz B(
α
x, z) =

∫ ∞
�β+

∞
�β−

dz
(

B(
α
x,

β+
z ) − B(

α
x,

β−
z )

)

=

= −1
2
(

G(
α
x,

β+∞�β+
) − G(

α
x,

β−∞�β+
) − G(

α
x,

β+∞�β−
) + G(

α
x,

β−∞�β−
)
)

,

and the asymptotic conditions for the function G in all four cases in the right-hand side of the equality are
the same. From Theorem 4.4, we therefore conclude that the result is zero.

We now turn to the integral over a cycle ˜Bβ:

∮

�Bβ

dy B(
α
x, y) = discontinuity of G(

α
x, y) at ˜Aβ −

− 1
2
(

G(
α
x,

β+∞β+) − G(
α
x,

β−∞β+) − G(
α
x,

β+∞β−) + G(
α
x,

β−∞β−)
)

=

= 2πi(1 − δβ,d)vβ(
α
x) + 2Kd−1(

α
x),

where we again use the asymptotic conditions in Theorem 4.4. This formula implies that if we integrate
Bj for j = 1, . . . , d − 1, which is the difference of integrals over the cycles ˜Bj and ˜Bd, then we obtain
formula (4.14). The theorem is proved.

The main property of the Bergman kernel is given in the following theorem.

Theorem 4.9. The kernel B(
α
x,

β
z) is symmetric, B(

α
x,

β
z) = B(

β
z,

α
x).

Proof. The proof uses the fact that B(
α
x,

β
z) satisfies the loop equation in the two variables. We have

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)(

2
ψ′

α(x)
ψα(x)

+ ∂x

)(

B(
α
x,

β
z) − 1

2(x − z)2

)

=

=
(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)(

P
(0)
2 (x,

β
z) − ∂z

ψ′
α(x)/ψα(x) − ψ′

β(z)/ψβ(z)
x − z

)

=

=
(

2
ψ′

α(x)
ψα(x)

+ ∂x

)(

˜P
(0)
2 (

α
x, z)− ∂x

ψ′
α(x)/ψα(x) − ψ′

β(z)/ψβ(z)
x − z

)

.

We then obtain

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

P
(0)
2 (x,

β
z) −

(

2
ψ′

α(x)
ψα(x)

+ ∂x

)

˜P
(0)
2 (

α
x, z) =

=
(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

∂z

ψ′
α(x)/ψα(x) − ψ′

β(z)/ψβ(z)
x − z

−

−
(

2
ψ′

α(x)
ψα(x)

+ ∂x

)

∂x

ψ′
α(x)/ψα(x) − ψ′

β(z)/ψβ(z)
x − z

=

= 2
U(x) − U(z)

(x − z)2
− U ′(x) + U ′(z)

x − z
,
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and hence

(x − z)2
(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

P
(0)
2 (x,

β
z) + 2U(z) + (x − z)U ′(z) =

= (x − z)2
(

2
ψ′

α(x)
ψα(x)

+ ∂x

)

˜P
(0)
2 (

α
x, z) + 2U(x) + (z − x)U ′(x) def= R(x, z). (4.15)

Here, the left-hand side is a polynomial in x, and the right-hand side is in turn a polynomial in z. Therefore,
R(x, z) is a polynomial in both variables of a degree not exceeding d in each variable. Moreover, we must
have R(x, x) = 2U(x). Therefore, we must have

R(x, z) =
1
�2

(

1
2
V ′(x)V ′(z) − �

V ′(x) − V ′(z)
x − z

− P (x) − P (z)
)

+ (x − z)2 ˜R(x, z),

where ˜R(x, z) is a polynomial in both variables of a degree not exceeding d−2 in each variable. Substituting
this polynomial in (4.15) and using the symmetry under x ↔ z, we obtain

(

2
ψ′

β(z)
ψβ(z)

+ ∂z

)

(

P
(0)
2 (x,

β
z) − ˜P

(0)
2 (

β
z, x)

)

= ˜R(x, z) − ˜R(z, x). (4.16)

We can then decompose the right-hand side in the basis hi(x)hj(z),

˜R(x, z) − ˜R(z, x) =
d−1
∑

i,j=1

( ˜Ri,j − ˜Rj,i)hi(x)hj(z).

Applying the integral operator

f(z) �→ 1
ψ2

β(z)

∫ z

∞β

dz′ ψ2
β(z′)f(z′) (4.17)

to differential equation (4.16), we obtain

P
(0)
2 (x,

β
z) − ˜P

(0)
2 (

α
z, x) =

d−1
∑

i,j=1

( ˜Ri,j − ˜Rj,i)hi(x) vj(
β
z) + A1(x),

where A1(x) is some integration constant.
Using loop equations (4.7) we then subtract and obtain

(

2
ψ′

α(x)
ψ(x)

+ ∂x

)

(

B(
α
x,

β
z) − B(

β
z,

α
x)

)

= P
(0)
2 (x,

β
z) − ˜P

(0)
2 (

β
z, x),

and applying integral operator (4.17) with respect to the variable x in the sheet Sα, we obtain

B(
α
x,

β
z) − B(

β
z,

α
x) =

d−1
∑

i,j=1

( ˜Ri,j − ˜Rj,i)vi(
α
x)vj(

β
z) + A(x) + ˜A(z),

where A(x) and ˜A(z) the integration constants.
Further, the large-x and large-z behavior of B implies that A(x) = ˜A(z) = 0, and therefore

B(
α
x,

β
z) − B(

β
z,

α
x) =

∑

i,j

( ˜Ri,j − ˜Rj,i)vi(
α
x)vj(

β
z). (4.18)

Now using Theorem 4.8 for all i and j,
∮

Ai

dxB(x,
β
z) =

∮

Aj

dz B(
α
x, z) = 0,

we obtain ˜Ri,j = ˜Rj,i for all i and j, which completes the proof of the symmetricity of the Bergman kernel.
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We therefore see that our “quantum Bergman kernel” has all the features of the standard Bergman
kernel associated with a Riemann surface: it is symmetric, has no discontinuities, and has the double pole
with zero residue at coinciding arguments (which in our case corresponds to coinciding arguments on the
same sheet Sk). Using all these kernels, we can then generalize the recursive procedure in [2], [5], [15] and
define the correlation functions (see the next section).

4.4. Meromorphic forms and the Riemann bilinear identity. A meromorphic form R(
α
x) is

defined as
R(

α
x) =

1
�ψ2

α(x)

∫ x

∞α

dx′ r(x′)ψ2
α(x′), (4.19)

where r(x) is a rational function of x that behaves as at most O(xd−2) at large x and whose poles ri are
such that

Res
ri

ψ2
α(x) r(x) = 0.

The holomorphic forms vj(
α
x) and the kernels G(

α
x,

β
z) and B(

α
x,

β
z) are meromorphic forms of x.

A meromorphic form R(
α
x) defined by (4.19) has poles at x = ri, the poles of r(x). The degree of these

poles is one less than that of r(x). The form R(
α
x) has double poles with zero residues at the s

(α)
i and

behaves as O(x−2) in all sectors (also having an accumulation of poles along the rays Li of accumulations
of zeros of ψα). We note that the integrals

∮

Aα
dxR(x) are well defined.

We prove the following theorem (Riemann bilinear identity).

Theorem 4.10. For z in the sector Sα (outside the crosshatched domain in Fig. 6), we have the

representation formula for the meromorphic form R(
α
z)

R(
α
z) = −

∑

β

∑

ri∈Sβ

Res
yβ=ri

G(
α
z,

β
y)R(

β
y) −

−
∑

β

∑

s
(β)
k ∈Sβ

Res
yβ=s

(β)
k

G(
α
z,

β
y)R(

β
y) +

g
∑

j=1

vj(
α
z)

∮

Aj

dy R(y). (4.20)

Proof. We begin with the integral of G(
α
z, y)R(y) over CD (Fig. 2)

∫

CD

dy G(
α
z, y)R(y) =

∑

β

∫ ∞β+1

∞β−1

dy G(
α
z,

β
y)R(

β
y).

This integral is identically zero because of the asymptotic conditions G(
α
z,

β
y) → 1/y as y → ∞β and

R(
β
y) ∼ 1/y2 as y → ∞β and because no accumulation of zeros occurs for the function R(

β
y) on the

boundaries between the sectors Sβ and Sβ±1. We can then push the integration contours through the
complex plane towards the ˜A-cycles as in Fig. 3. The residues at the points ri and s

(β)
k give the two double

summations in (4.20). The residue at the point x = y in the sector Sα gives the left-hand side because it
follows from Theorem 4.3 that G(

α
z,

α
y) = 1/(z − y) + regular terms. It remains to consider the integrals

along the ˜A-cycles. For this, we note that our integrations over y are outer with respect to the integrations
over the variable x along A-cycles in formula (4.2) for the factors Cj , and when we push the integration

over y through that over x, we have the discontinuity of G(
α
z,

β±
y ), which is equal to 2πivj

(α
z
)

. No such
discontinuity occurs for the cycle ˜Ad. All these discontinuities are independent of y, and the contour integral
of the product hence factors for each cycle Aj and gives the last term in (4.20).
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To evaluate the remaining integrals inside the crosshatched domain in Fig. 6, we recall that G(
α
x,

β
y) =

ψ2
β(y)∂y

(

K(
α
x, y)/ψ2

β(y)
)

. Integrating by parts, we then obtain

∫ ∞
�β+

∞
�β−

dz
(

G(
α
x,

β+
z )R(

β+
z ) − G(

α
x,

β−
z )R(

β−
z )

)

=

= −
∫ ∞

�β+

∞
�β−

dz
(

K(
α
x, z)r(z) − K(

α
x, z)r(z)

)

= 0,

and these contributions vanish for all the cycles Aβ . The theorem is proved.

5. Correlation functions: Diagram representation

In this section, we define the sectorwise versions of the quantum correlation functions considered in [1]
(deformations of “classical” correlation functions introduced in [2], [3], [5]). Our definitions follow from
(non-Hermitian) eigenvalue models (see Sec. 8), but they are also applicable in the general setting of an
arbitrary Schrödinger equation.

5.1. The definition and the properties of correlation functions. We define the functions
W

(h)
n (

α1
x1, . . . ,

αn
xn), called the n-point correlation functions of “genus” h by the recurrence relations

W
(0)
1 (

α
x) = ω(

α
x), W

(0)
2 (

α1
x1,

α2
x2) = B(

α1
x1,

α2
x2), (5.1)

W
(h)
n+1(

α0
x0, J) =

∮

CDx

dxK(
α0
x0, x)

(

W
(h−1)

n+2 (x, x, J) +

+
h

∑

r=0

∑′

I⊂J

W
(r)
|I|+1(x, I)W (h−r)

n−|I|+1(x, J \ I)
)

, (5.2)

where J = {x1, . . . , xn} and the symbol
∑ ∑ ′ means that we exclude the terms r = 0, I = ∅; r = 0,

I = {xi}; r = h, I = J \ {xi}; and r = h, I = J . Here, the integration over the contour CDx is defined
in (3.1), and

W
(h)

n (
α1
x1, . . . ,

αn
xn) = W (h)

n (
α1
x1, . . . ,

αn
xn) − δn,2δh,0δα1,α2

2(x1 − x2)2
. (5.3)

The point x0 in these expressions is outside the integration contour CDx for x, and all the xi are outside
the A-cycles of the projection integrals.

The main property of the introduced correlation functions is that these quantities solve the loop
equations in the 1/N2-expansion. We also prove the following properties.

Theorem 5.1. Each function W
(h)
n (

α1
x1, . . . ,

αn
xn) with 2 − 2h − n < 0 is analytic in all its arguments

with poles only as xi → s
(αi)
j . It vanishes at least as O(1/x2

i ) as xi → ∞αi and has no discontinuities across

A-cycles. Consequently, we have the equality

∫

CDx

dxW
(h)
n+1(x, J) = t0δn,0δh,0. (5.4)

Proof. We proceed by recursion on 2h + n. The analyticity is obvious. The theorem is already
proved for W

(0)
2 . We suppose that it holds for 2g + n and prove it for W

(h)
n+1(x0, x1, . . . , xn). To prove
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the asymptotic behavior, we note that Definition 4.1 implies, first, that the term
∫

CDy
dy ̂K(

α
x, y)U (h)

n (y, J),
where we introduce the notation

U (h)
n (

α
x, J) = W

(h−1)

n+2 (
α
x,

α
x, J) +

h
∑

r=0

∑′

I⊂J

W
(r)

|I|+1(
α
x, I)W

(h−r)

n−|I|+1(
α
x, J \ I) (5.5)

for brevity, is of the order of ψ−2
α (x)

∫ x

∞α
dx′ ψ2

α(x′)/(x′)2 ∼ x−d−2, and the leading contribution hence

comes from the terms proportional to vj(
α
x) ∼ x−2, which completes the proof of the theorem.

We also have the following simple lemma, which follows from equality (5.4) and from the normalization
conditions for the kernel K(

α
x, y).

Lemma 5.1. For all (n, h) �= (0, 0), we have

∮

�Aα

dxW
(h)
n+1(x, J) = 0.

We now formulate the first of our main theorems.

Theorem 5.2. For 2 − 2h − n < 0, W
(h)
n satisfies the loop equation. This means that the function

P
(h)
n+1(x;

α1
x1, . . . ,

αn
xn) = �

(

2
ψ′

α(x)
ψα(x)

+ ∂x

)

W
(h)

n+1(
α
x,

α1
x1, . . . ,

αn
xn) +

+
h

∑

r=0

∑′

I⊂J

W
(r)

|I|+1(
α
x, I)W

(h−r)

n−|I|+1(
α
x, J \ I) + W

(h−1)

n+2 (
α
x,

α
x, J) +

+
∑

j

∂xj

(

W
(h)

n (
α
x, J \ {xj})δα,αj − W

(h)

n (
αj

xj , J \ {xj})
x − xj

)

(5.6)

is a polynomial in the variable x of a degree not exceeding d − 2 and is independent of the choice of the

sector Sα.

The proof is in Appendix A.

Theorem 5.3. Each W
(h)
n is a symmetric function of all its arguments.

The special case W
(0)
3 is proved in Appendix B, and the theorem is proved in Appendix C.

Theorem 5.4. For 2 − 2h − n < 0, W
(h)
n (

α1
x1, . . . ,

αn
xn) is homogeneous of degree 2 − 2h − n,

(

�
∂

∂�
+

d+1
∑

j=1

tj
∂

∂tj
+

g
∑

i=1

εi
∂

∂εi
+ t0

∂

∂t0

)

W (h)
n (

α1
x1, . . . ,

αn
xn) =

= (2 − 2h − n)W (h)
n (

α1
x1, . . . ,

αn
xn).

Proof. Under a change tk → λtk, � → λ�, εi → λεi, and t0 → λt0, the Schrödinger equation remains
unchanged, and ψ is therefore unchanged. The kernel K is changed to K/λ, and nothing else is changed.
By the recurrence relation, W

(h)
n is then multiplied by λ2−2h−n.
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5.2. Diagram representation. The diagram representation for the correlation functions structurally
coincides with the one for the correlation functions in one- and two-matrix models [2], [4], [5]. We introduce
the three kinds of propagators

x y

K(
α
x, y)

x y

G(
α
x,

β
y)

x y

B(
α
x,

β
y)

and assume the partial ordering from “infinity” to “A-cycles” to be from left to right in graphical expressions.
We represent the terms W

(h)
n (J) as graphs with three-valent vertices. We assign its own variable ξ to each

inner vertex and assume that the integration over this variable is along the contour CD. The order of
integration depends on which vertex is closer to the “A-cycles”: we begin by integrating at the innermost
vertex. We also have n outer legs (one-valent vertices) corresponding to the points

αi
xi, i = 1, . . . , n. They

are assumed to be outside all the inner integrations. For example, the term W
(0)
3 (x1, x2, x3) then has the

form
x1

x2

x3

,

and recurrence relation (5.2) becomes

.

We now formulate the diagram technique for constructing the functions W
(h)
n (J) for n > 0 and 2g −

2 + n > 0. It is formally the same as the one in [2], [5]. In the given order, all diagrams contribute with
the corresponding automorphism multipliers constructed according to the following rules:

The diagram for W
(h)
n (J) contains exactly n external legs and h loops.

We segregate one variable, for example, x1, and take all the maximum connected rooted subtrees
starting at the vertex x1 and not going to any other external leg.

We associate the directed propagators K(x, y) with all the edges of the rooted subtree; the direction
is always from the root to branches.

All other propagators that comprise exactly h inner propagators and n−1 remaining external legs are
B(x, y) if the vertices x and y are distinct and B(x, x) for the loop composed of a single propagator.

Each rooted tree establishes a partial ordering on the set of three-valent vertices of the diagram; we
allow the inner propagators B(x, y) to connect only comparable vertices (a vertex is comparable to
itself).
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6. Deformations

In this section, we consider the variations of correlation functions W
(h)
n under infinitesimal variations

of the Schrödinger potential U(x) or �. Infinitesimal variations of the resolvent ω(x) can be decomposed in
the basis of “meromorphic forms” vk(

α
x), k = 1, . . . . We set these forms to be dual to special cycles with

the duality kernel being the Bergman kernel. It turns out that the classical � = 0 formulas retain their
form for � �= 0.

6.1. Variation of the resolvent. We consider an infinitesimal polynomial variation U → U + δU ,
� → � + δ�. Because U = (V ′)2/4 − �V ′′/2 − P , we have

δU =
V ′

2
δV ′ − �

2
δV ′′ − δ�

2
δV ′′ − δP.

We can also consider variations of V ′(z) with respect to the higher times tk, k = 1, . . . ,

δV ′(x) =
∑

k=1

δtk xk−1.

Then for k ≤ d+1, the polynomial δP has a degree not exceeding d− 1, and for k > d+1, δP has a degree
not exceeding k − 2.

Computing δ
(

ψ′
α(x)/ψα(x)

)

, we obtain

δ

(

ψ′
α(x)

ψα(x)

)

=
1

�2ψ2
α(x)

∫ x

∞α

dx′ ψ2
α(x′)

(

δU(x′) − 2
δ�

�
U(x′)

)

, (6.1)

and for ω(
α
x) = V ′(x)/2 + �ψ′

α(x)/ψα(x), we have

δω(
α
x) =

δV ′(x)
2

+ δ�
ψ′

α(x)
ψα(x)

+
1

�ψ2
α(x)

∫ x

∞α

dx′ ψ2
α(x′)

(

δU(x′) − 2
δ�

�
U(x′)

)

. (6.2)

6.2. Variations with respect to “flat” coordinates. We choose a system of “flat” coordinates
ε1, . . . , εd−1, t0, t1, . . . on the genus-(d−1) manifold.

6.2.1. Variations with respect to the filling fractions. For the filling fraction δεα, we have
δV ′ = 0 and hence δU(x) = −δP (x), where deg δP ≤ d− 2. We can therefore decompose it in the basis hα:

δP (x) =
∑

α′

cα′hα′ .

From (6.2), we hence have δω(x) = −
∑

α′ cα′vα′(x) dx, and because 2iπεα′ =
∮

Aα′
ω, we obtain

2iπδα,α′ =
∮

Aα′

δω = −
∑

α′′

∮

Aα′

dx cα′′vα′′ (x) = −cα′ .

Therefore, δU(x)/δεα = 2iπhα(x) and

δεαω(
β
x) = 2iπvα(

β
x) dx =

∮

Bα

dz B(
β
x, z).

The flat coordinate εα is dual to the holomorphic form vα, which is in turn dual to the cycle Bα:

εα =
1

2iπ

∮

Aα

ω, δεαω = 2iπvα(x) dx =
∮

Bα

dz B(z).
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6.2.2. Variation with respect to t0. We have δU(x) = −δP (x) = −td+1 xd−1 + Q(x), where
deg Q ≤ d − 2. Using Eq. (6.2), we obtain

δω(
α
x) =

1
ψ2

α(x)

∫ x

∞α

dx′ (−td+1(x′)d−1 + Q(x′)
)

ψ2
α(x′),

and the polynomial Q must be chosen such that
∮

Ai
δω = 0. We therefore have

δω(
α
x) = −td+1Kd−1(

α
x) =

= −td+1

(

̂Kd−1(
α
x) −

d−1
∑

β=1

vβ(
α
x)

∮

Aβ

dx′
̂Kd−1(x′)

)

= vd(
α
x),

where
̂Kk(

α
x) =

1
ψ2

α(x)

∫ x

∞α

dx′ (x′)kψ2
α(x′)

and Kk(
α
x) is the kth term in the large-z expansion of

K(
α
x, z) = −

∞
∑

k=0

Kk(
α
x, z)

zk+1

in Theorem 4.2. From Theorem 4.4, we have G(x,∞α) = ηαtd+1Kd−1(
α
x). It hence follows that

δt0ω(
α
x) =

1
2
(

G(
α
x,∞d̃+

) − G(
α
x,∞d̃−

)
)

=
∫ ∞d̃+

∞d̃−

dz B(
α
x, z).

The integral in this expression is taken over the last cycle ˜Bd.
The flat coordinate t0 is then dual to the third-kind meromorphic form −2G(

α
x,∞), which is in turn

dual to the cycle [∞d̃−
,∞d̃+

]:

t0 =
∮

CD

dz ω(z), δt0ω(
α
x) =

∫ ∞d̃+

∞d̃−

dz B(
α
x, z).

6.2.3. Variations with respect to tk: The two-point correlation function. Because

tk =
∮

CD

dz

zk
�
ψ′(z)
ψ(z)

, k = 0, 1, . . . ,

the conditions ∂tk/∂tr = δk,r and ∂tk/∂εβ = 0 imply

∮

CD

dz

zk

∂

∂tr

(

�
ψ′(z)
ψ(z)

)

= δk,r,

∮

Aβ

dz
∂

∂tr

(

�
ψ′(z)
ψ(z)

)

= 0,

and from general variational form (6.1), we conclude that (cf. (3.8) and (3.9))

∂

∂tr

(

�
ψ′

α(x)
ψα(x)

)

= vd+r(
α
x).

We formulate the following lemma.
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Lemma 6.1. We have the equalities

vd+r(
α
x) =

1
2iπ

∮

CD>x

dz
zr

r
B(

α
x, z), r = 1, 2, . . . , (6.3)

where CD > x means that the contour CD separates x from all infinities ∞β , β = 1, 2, . . . .

Proof. That the expression in (6.3) has the desired structure follows from the explicit form of the
kernel B. We need only verify the normalization conditions. It is obvious that the A-cycle integrals vanish.
It remains to prove the equality

δd,l =
1

2iπ

∮

CD

dx

xl
vd+r(x) =

1
(2iπ)2

∮

CD>x

dz

∮

CD

dx

xl

zr

r
B(z, x).

Interchanging the order of integration contours and taking into account that x−lB(z, x) ∼ x−l−2 as x → ∞,
we conclude that the only nonzero contribution comes from the double pole at x = z, and consequently

1
2iπ

∮

CD

dx

xl

(

∂

∂z

zr

r

)∣

∣

∣

∣

z=x

=
1

2iπ

∮

CD

dxxr−l−1 = δr,l.

We now define the loop insertion operator

∂

∂V (y)
=

∞
∑

r=1

ry−r−1 ∂

∂tr
,

applying which to �ψ′/ψ, we obtain

∂

∂V (y)

(

�
ψ′

α(x)
ψα(x)

)

=
∞
∑

r=1

y−r−1

∮

y>CD

dz B(
α
x, z)zr,

and because
∮

CD
dz B(

α
x, z) = 0, we add the term with r = 0 into the sum, obtaining

∮

y>CD

dz

y − z
B(

α
x, z)

in the right-hand side. We note that the point y lies between some infinity, ∞β for example, and the
integration contour CD. Pulling the contour of integration through the point y to infinity, we obtain zero

because of the asymptotic conditions for B(
α
x,

β
z). The only nonzero contribution therefore comes from the

residue at y = z, which finally gives

∂

∂V (y)

(

�
ψ′

α(x)
ψα(x)

)

= −1
2
B(

α
x,

β
y). (6.4)

Correspondingly, because ∂V ′(x)/∂V (y) = 1/(y − x)2, we obtain

W
(0)
2 (

α
x,

β
y) :=

∂

∂V (y)
ω(

α
x) = −1

2
B(

α
x,

β
y) +

1
2(y − x)2

for the two-point correlation function W
(0)
2 (x, y).
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6.3. Variation of higher correlation functions. We note that for all the above variations with
respect to the flat coordinates, we have a cycle δω∗ and a (sector-independent) function Λ∗

δω such that

δω(
α
x) =

∫

δω∗
dz B(

α
x, z)Λ∗

δω(z).

The following theorem allows computing infinitesimal variations of any W
(h)
n under a variation of the

Schrödinger equation.

Theorem 6.1. Under an infinitesimal deformation U → U + δU , we have

δW (h)
n (

α1
x1, . . . ,

αn
xn) =

∫

δω∗
dx′ W

(h)
n+1(

α1
x1, . . . ,

αn
xn)Λ∗(x′),

where (δω∗, Λ∗
δω) is the cycle dual to the deformation of the resolvent ω → ω + δω.

Proof. We prove this theorem by induction. We begin with the loop equation for W
(h)
n (

α
x, J):

(

2�
ψ′

α(x)
ψα(x)

+ �∂x

)

W (h)
n (

α
x; J) + U (h)

n (
α
x,

α
x; J) = P (h)

n (x, J). (6.5)

Taking a variation δ with respect to an arbitrary flat coordinate, we obtain
(

2�
ψ′

α(x)
ψα(x)

+ �∂x

)

δW (h)
n (

α
x, J) +

(

2δ�
ψ′

α(x)
ψα(x)

)

W (h)
n (

α
x, J) + δU (h)

n (
α
x,

α
x; J) = δP (h)

n (x, J),

where δP
(h)
n (x, J) is a polynomial in x of a degree not exceeding d − 2. Here, both

δU (h)
n (

α
x,

α
x; J), 2δ�

ψ′
α(x)

ψα(x)
=

∫

δω∗
dx′ 2B(

α
x, x′)Λ∗(x′)

can be expressed by the induction assumption in the dual-cycle-integration form. Moreover,

δU (h)
n (

α
x,

α
x; J) =

∫

δω∗
dx′ U

(h)
n+1(

α
x,

α
x; J, x′)Λ∗(x′) −

∫

δω∗
dx′ 2B(

α
x, x′)Λ∗(x′) · W (h)

n (
α
x, J) (6.6)

because no term containing the two-point correlation function W
(0)
2 (

α
x, x′) appears in δU

(h)
n (

α
x,

α
x; J).

Using the loop equation of form (6.5) relating W
(h)
n+1(

α
x; J, x′) and U

(h)
n+1(

α
x,

α
x; J, x′), we observe that the

second term in the right-hand side of (6.6) cancels the contribution of 2δ�ψ′
α(x)/ψα(x), and we obtain

(

2�
ψ′

α(x)
ψα(x)

+ �∂x

)(∫

ω∗
dx′ W

(h)
n+1(

α
x, J, x′)Λ∗(x′) − δW (h)

n (
α
x, J)

)

=

= δP (h)
n (x, J) −

∫

ω∗
dx′ P

(h)
n+1(x, J, x′)Λ∗(x′) =

d−1
∑

i=1

αi(J)hi(x),

where the right-hand side is a polynomial in x of a degree not exceeding d− 2 expressed in the basis of the
polynomials hi(x). Using (6.2), we obtain

∫

ω∗
dx′ W

(h)
n+1(

α
x, J, x′)Λ∗(x′) − δW (h)

n (
α
x, J) =

d−1
∑

i=1

αi(J)vi(x),

but because both W
(h)
n (x, J) and W

(h)
n+1(x, J, x′) have vanishing A-cycle integrals, it follows that αi = 0,

i.e.,

δW (h)
n (

α
x, J) =

∫

ω∗
dx′ W

(h)
n+1(

α
x, J, x′)Λ∗(x′).

The theorem is proved.
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Corollary 6.1. For all n ≥ 0 and h ≥ 0,

∂W
(h)
n (J)
∂εα

=
∮

Bα

dx′ W
(h)
n+1(J, x′).

7. Classical and quantum geometry: Summary

In the following table, we summarize the comparison between items in classical algebraic geometry and
their quantum counterparts.

classical quantum

geometry (� = 0) geometry

planar curve E(x, y) =
�

i,j Ei,jx
iyj , E(x, y) =

�
i,j Ei,jx

iyj ,[y, x] = �,

E(x, y) = 0 E(x,�∂x)ψ = 0

hyperelliptic

planar curve

y2 = U(x),

deg U = 2d

�
2ψ′′ = Uψ,

[y, x] = �

potential V ′(x) = 2
��

U(x)
�
+

resolvent ω(x) =
V ′(x)

2
+ y ω(

α
x) =

V ′(x)

2
+

�ψ′
α(x)

ψα(x)

physical sheet(s) y∼
∞
−V ′(x)

2
, ω ∼ t0

x

combined sectors where

�ψ′

ψ
∼
∞
−V ′(x)

2
, ω ∼ t0

x

branch points
simple zeros of U(x),

U(ai) = 0, U ′(ai) �= 0,

i = 1, . . . , 2d + 2

rays Li of accumulations of zeros of ψ,

i = 1, . . . , 2d + 2

double points double zeros of U(x), rays without accumulations

U(�ai) = 0, U ′(�ai) = 0 of zeros of ψ

genus g = −1 degenerate surface ψeV/2� is polynomial

Aα-cycles surround pairs of surround pairs of rays

α = 1, . . . , g branch points of accumulating zeros

extra Ad-cycle surrounds last pair of surrounds last pair of rays

branch points of accumulating zeros

B-cycles Ai ∩ Bj = δi,j

holomorphic forms,

first-kind differentials

vi(x) = − hi(x)

2
�

U(x)
, vi(

α
x) =

1

�ψ2
α(x)

� x

∞α

dx′ ψ2
α(x′)hi(x

′),

hi are polynomials, deg hi ≤ d − 2,

normalized:

�
Aα

dx vi(x) = δα,i, α = 1, . . . , d − 1

period matrix τi,j =

�
Bj

dz vi(z), i, j = 1, . . . , g, τi,j = τj,i

filling fractions 2iπεα =

�
Aα

dx ω(x), α = 1, . . . , g, εd = t0 −
g	

α=1

εα

third-kind form G(x, z) ∼
x→z

1

z − x
,

G(
α
x,

β
z) =

�
2ω(

β
z) − V ′(z) − �∂z

�
K(

α
x, z)
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classical quantum

geometry (� = 0) geometry

recursion kernel

K(
α
x, z) = �K(

α
x, z) −

	
i

vi(
α
x)Ci(z),

Ci(z) =

�
Ai

dx′ �K(x′, z),

�K(x, z) =
1

z − x

1

2
�

U(x)
�K(

α
x, z) =

1

�ψ2
α(x)

� x

∞α

dx′

x′ − z
ψ2

α(x′)

Bergman kernel,

second-kind differential

B(
α
x,

β
z) = −∂zG(

α
x,

β
z)

2
,

B(
α
x,

α
z) ∼ 1

2(x − z)2

symmetry B(
α
x,

β
z) = B(

β
z,

α
x)

bilinear Riemann

identity

�
Ai

dx B(x,
β
z) = 0,

�
Bi

dx B(x,
β
z) = 2iπvi(

β
z)

meromorphic forms R(x) dx =
r(x) dx

2
�

U(x)
, R(

α
x) =

1

�ψ2
α(x)

� x

∞α

dx′ r(x′)ψ2
α(x′),

r(x) is rational with poles ri, r(x) = O(xd−2),

Res
ri

r(x)ψ2(x) = 0

W
(h)
n+1(

α
x, J) =

	
i

1

2iπ

�
Ci

dz K(
α
x, z)

�
W

(h−1)
n+2 (z, z, J) +

higher correlators +
	′

s+s′=h, I∪I′=J

W
(s)

1+|I|(z, I)W
(s′)
1+|I′|(z, I ′)

�
,

Ci surrounds
	

i

1

2iπ

�
Ci

· · · =

�
CD

· · ·

the branch point Li

symmetry W
(h)
n (x1, . . . , xn) = W

(h)
n (xσ(1), . . . , xσ(n)), σ ∈ Sn

variations

and dual cycles

U(x) → U(x) + δU(x),

δU∗ : δω(
α
x) =

�
δU∗

dx′B(
α
x, x′)ΛδU (x′)

δV ′ =
�

δtkxk−1 δtkω(
α
x) =

�
CD

dx′ (x
′)k

k
B(

α
x, x′)

variation δt0 δt0ω(
α
x) =

� ∞
d̃+

∞
d̃−

dx′B(
α
x, x′)

variation δεi δεiω(
α
x) =

�
Bi

dx′ B(
α
x, x′)

variations of higher cor-

relators

δW (h)
n (x1, . . . , xn) =

�
δU∗

dx′ W
(h)
n+1(x1, . . . , xn, x′)ΛδU (x′)

8. Application: Matrix models

The main reason for the interest in W
(h)
n is that they satisfy the loop equations for the random β-

eigenvalue ensembles. We can therefore identify them with the correlation functions (resolvents) of these
ensembles.
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We consider a (possibly formal) matrix integral

Z =
∫

EN,β

dM e−(N
√

β/t0) tr V (M),

where V (x) is some polynomial, EN,1 = HN is the set of Hermitian matrices of size N , EN,1/2 is the set of
real symmetric matrices of size N , and EN,2 is the set of quaternion self-dual matrices of size N (see [7]).

Alternatively, we can integrate over the angular part and obtain an integral only over eigenvalues [7]:

Z =
∫

dλ1 · · · dλN |Δ(λ)|2β
N
∏

i=1

e−(N
√

β/t0)V (λi), (8.1)

where Δ(λ) =
∏

i<j(λj − λi) is the Vandermonde determinant.

We generalize the matrix model to arbitrary values of β taking integral (8.1) as a definition of the
β-model integral. For this, we take

� =
t0
N

(

√

β − 1√
β

)

.

We note that � = 0 corresponds to the Hermitian case β = 1, and � → −� corresponds to β → 1/β.

8.1. Correlation functions and loop equations. We define the connected correlation functions
(the resolvents)

Wk(x1, . . . , xk) = βk/2

〈

∑

i1,...,ik

1
x1 − λi1

· · · 1
xk − λik

〉

conn

and

W0 = F = logZ.

When considering variations in the potential V (x), we again assume that these resolvents satisfy the asymp-
totic conditions sectorwise, which means that they are also defined sectorwise. And we assume (this is
automatically true if we consider formal matrix integrals) that there is a large-N expansion of the type
(where we assume � = O(1))

Wk(
α1
x1, . . . ,

αk
xk) =

∞
∑

h=0

(

N

t0

)2−2h−k

W
(h)
k (

α1
x1, . . . ,

αk
xk), (8.2)

W0 = F =
∞
∑

h=0

(

N

t0

)2−2h

W
(h)
0 ≡

∞
∑

h=0

(

N

t0

)2−2h

Fh. (8.3)

The loop equations are obtained by integrating by parts, for example, the identity

0 =
∑

i

∫

dλ1 · · ·dλN
∂

∂λi

(

1
x − λi

|Δ(λ)|2β
∏

j

e−(N
√

β/t0)V (λj)

)

(8.4)

170



gives

0 =
∑

i

〈

1
(x − λi)2

+ 2β
∑

j 	=i

1
x − λi

1
λi − λj

− N
√

β

t0

V ′(λi)
x − λi

〉

=

=
∑

i

〈

1
(x − λi)2

+ β
∑

j 	=i

1
x − λi

1
x − λj

− N
√

β

t0

V ′(λi)
x − λi

〉

=

=
∑

i

〈

1 − β

(x − λi)2
+ β

∑

j

1
x − λi

1
x − λj

− N
√

β

t0

V ′(λi)
x − λi

〉

=

=
β − 1√

β
W ′

1(x) + β

(

1
β

W 2
1 (x) +

1
β

W2(x, x)
)

−

− N
√

β

t0

(

1√
β

V ′(x)W1(x) −
∑

i

〈

V ′(x) − V ′(λi)
x − λi

〉)

.

We define the polynomial

P1(x) =
√

β
∑

i

〈

V ′(x) − V ′(λi)
x − λi

〉

= (V ′W1)+.

We then have the loop equation in [8]

W 2
1 (x) + �

N

t0
W ′

1(x) + W2(x, x) =
N

t0

(

V ′(x)W1(x) − P1(x)
)

.

Using expansion (8.2), we obtain the Riccati equation

W
(0)
1 (x)2 + �∂xW

(0)
1 (x) = V ′(x)W (0)

1 (x) − P
(0)
1 (x),

satisfied by ω(x) = W
(0)
1 (x). The correlation functions of β-eigenvalue models therefore satisfy the topo-

logical recursion formulated in Sec. 5.1.

8.2. Variation with respect to �. In this subsection, we use the analogy with the β-eigenvalue
ensemble to suggest the possible form of the last remaining building block of our construction, which is
the variation with respect to �, the exponent of the Vandermonde determinant in (8.1). Up to irrelevant
multipliers, we can consider �∂/∂� instead of β∂/∂β, for which we have

β
∂

∂β
logZ ∼ 2β

Z

∫

dλ1 · · · dλN Δ(λ)2β log |Δ(λ)|
N
∏

i=1

e−(N
√

β/t0)V (λi), (8.5)

and the logarithm of the Vandermonde determinant thus appears.
It seems impossible to construct expression (8.5) only from W1(

α
x), but we can use the two-point

correlation function W2(
α
x,

γ
y) instead. Adopting a β-model-inspired definition of W2(

α
x,

β
y) as a two-resolvent

correlation function (not necessarily connected),

W2(x, y) =
1
Z

∫

dλ1 · · · dλN

N
∑

i=1

1
x − λi

N
∑

j=1

1
y − λj

|Δ(λ)|�Ne−(N
√

β/t0)V (λ),
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Fig. 7. The origin of the integration contour CD in the matrix-model concept. The inner dots are λi

and the outer dots are λi + δγ , γ = 0, 2, 4, 6; thin arrowed lines are the logarithmic cuts.

we then introduce the regularization (both IR and UV, if speaking in physical terms). At this point, we
also split all the eigenvalues λi into clusters, each of which corresponds to some sector Sγ . For each term
1/(y − λi), we then integrate over y from Λγ to x + δγ along the straight lines all of which are parallel.
The regularization parameters depend only on the sector number γ, and the limit of removed regularization
corresponds to Λγ → ∞γ and δγ → 0. We then obtain

2β

Z

∫ x+δγ

Λγ

dξ W2(
α
x,

γ

ξ) ∼

∼
∫

dλ1 · · · dλN Δ(λ)2β
N

∑

i=1

1
x − λi

∑

γ

εγ
∑

jγ=1

∫ x+δγ

Λγ

dξ

ξ − λjγ

N
∏

i=1

e−(N
√

β/t0)V (λi) =

=
∫

dλ1 · · · dλN Δ(λ)2β
N

∑

i=1

1
x − λi

×

×
∑

γ

εγ
∑

jγ=1

(

log |x + δγ − λjγ | − log |Λγ | + O

(

1
Λγ

)) N
∏

i=1

e−(N
√

β/t0)V (λi). (8.6)

We now want to integrate over x to obtain expression (8.5). Obviously, we must choose the integration
contour in a rather specific way: we want it to encircle all the poles in x = λi in the variable x leaving
all the logarithmic cuts from ∞γ to λi + δγ in the corresponding sector outside (see Fig. 7). Given such a
contour, we can then integrate over x by residues at the points λi (we recall that in the eigenvalue model
pattern, we do not yet have boundaries between sectors inside the complex plane; they appear because
of the collective effect of taking the λ poles into account by virtue of sectorwise regularization chosen).
Evaluating the integral over x in (8.6) by the sum of residues at λi, we obtain

2β

Z

∫

dλ1 · · · dλN Δ(λ)2β

( N
∑

i=1

∑

γ

εγ
∑

jγ=1

log |λi + δγ − λjγ | −

− N
∑

γ

εγ log |Λγ | + O

(

1
Λγ

)) N
∏

i=1

e−(N
√

β/t0)V (λi) =
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=
2β

Z

∫

dλ1 · · · dλN Δ(λ)2β

∣

∣

∣

∣

log
∏

i	=j

(λi − λj + δγ)
∣

∣

∣

∣

−

− 2βN
∑

γ

εγ log |Λγ | + 2β
∑

γ

εγ log |δγ |,

where the first term in the right-hand side gives the sought integral (8.5) as δγ → 0 and the last two terms
diverge in the limit of removed regularization. But these two terms depend only on the filling fractions and
therefore contribute to only the potential-independent part of F0, and we can remove them by the proper
normalization.

9. The free energy

We use the variations and Theorem 5.4 to define the Fh.

9.1. The operator ̂H. Theorem 5.4 gives

(2 − 2h − n − �∂�)W (h)
n =

(

t0∂t0 +
d+1
∑

k=1

tk∂tk
+

g
∑

i=1

εi∂εi

)

W (h)
n .

In Sec. 6, we expressed the derivatives of W
(h)
n as integrals of W

(h)
n+1 up to the action of �∂/∂�,

(2 − 2h − n − �∂�)W (h)
n = ̂H.W

(h)
n+1 = ̂H.

∂

∂V
W (h)

n ,

where ̂H is the linear operator acting as

̂H.f(x) = t0

∮

�Bd

dx f(x) +
d+1
∑

j=1

∫

CD

dx
tjx

j

j
f(x) +

g
∑

i=1

εi

∮

Bi

dx f(x).

We set W
(h)
0 = Fh for n = 0 and h ≥ 2. The free energy Fh for h ≥ 2 is the functions for which

(2 − 2h − �∂�)Fh = ̂H.W
(h)
1 .

9.2. The derivative � ∂/∂�. The matrix-model considerations in the preceding section imply that
constructing the derivative in � of the correlation function W

(h)
n (J) would involve resolvents of the order

n + 2. In other words,

�
∂

∂�
W (h)

n (J) =
∫

CDξ

(∫ ξ

∞
dξ′ W

(h−1)
n+2 (ξ̄′, ξ, J) +

+
h

∑

r=0

∑

I⊆J

∫ ξ

∞
dξ′ W

(r)
|I|+1(ξ̄

′, I) · W (h−r)
n−|I|+1(ξ, J \ I)

)

, (9.1)

where ξ̄ must be taken to be an “innermost” variable in the sense that taking
∫ ξ

dξ′ B(ξ′, y) = G(ξ, y) into
account, we everywhere replace

−→

ξ ξ′
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and

−→

ξ ξ′

without adding additional factors.

We note that the sum in (9.1) ranges all cases, not necessarily stable ones, and we therefore begin by
studying nonstable contributions to stable cases (2h−2+n > 0). We note that all these contributions then
come from the second term in (9.1).

9.2.1. The cases r = 0, I = ∅ and r = h, I = J. We consider the situation where n ≥ 1. We
can then fix x1 to be the root of all the subtrees composed from the K-propagators, and ξ can then be the
variable of any of the external B-legs. The contribution to W

(h)
n (J) then includes all the insertions

η

ξ
 ξ
W

(0)
1

+
η

ξ
W

(0)
1

,
η

ξ
 ξ
W

(0)
1

+
η

ξ
W

(0)
1

.

We consider the first diagram; the second is analogous to the first. Changing the integration order over ξ

and η in the second diagram gives

η

ξ∫ ξ
W

(0)
1

+
η

ξ
W

(0)
1

−
η

ψ′/ψ

.

Here, the sum of the first two terms contains the integral of the total derivative of
∫ ξ

dξ′ W
(0)
1 (ξ′) ·G(η, ξ),

and because

G(η, ξ) ∼ O(ξ−1),
∫ ξ

dξ′ W
(0)
1 (ξ′) ∼

∫ ξ dξ′

ξ′
t0 ∼ t0 log |ξ|,

this contribution vanishes. Only the third contribution coming from the residue at ξ = η survives, and this
contribution is just minus the action of the ̂H operator on the external leg B(η, ξ). Hence,

η

ξ
̂H.

−
η

ψ′/ψ

= 0.

Therefore, the total contribution of the two cases r = 0, I = ∅ and r = h, I = J exactly cancels the action

of the ̂H operator.

9.2.2. The case r = 0, I = {x1}. We begin with the identity

∫

x>CDξ
>y

dξ G(
α
x, ξ)K(ξ, y) = −K(

α
x, y) (9.2)
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(we recall that inequalities of the type x > CDξ
> y indicate the mutual positions of points and integration

contours). Indeed, writing G(
α
x,

γ

ξ) = ψ2
γ(ξ)∂ξ(K(

α
x, ξ)/ψ2

γ(ξ)) and integrating by parts, we obtain

∑

γ

K(
α
x, ξ)K(

γ

ξ, y)
∣

∣

∣

∣

∞
�γ+

∞
�γ−

−
∫

x>CDξ
>y

dξ K(
α
x, ξ)

[

1
ξ − y

+
∑

j

hj(ξ)Cj(y)
]

.

The substitution obviously gives zero, and only the residue at ξ = y contributes in the second term, thus
producing (9.2). An obvious corollary is the second convolution formula

∫

x>CDξ
>y

dξ G(
α
x, ξ)B(ξ,

β
y) = −B(

α
x,

β
y). (9.3)

In the case r = 0, I = {x1}, we have the diagram

x1

ξ
W

(h)
n (ξ, J \ {x1}) = −W

(h)
n (J).

9.2.3. The case r = h, I = J \ {xn}. Here, we need another identity,

∫

x,y>CDξ

dξ G(
α
x, ξ)B(ξ,

β
y) = 0. (9.4)

To obtain it, we represent the functions G and B in terms of the kernel K, i.e., we have

∫

x,y>CDξ

dξ G(
α
x, ξ

)

B(ξ,
β
y) =

=
∫

x,y>CDξ

dξ

(

∂ξ − 2
ψ′

γ(ξ)
ψγ(ξ)

)

K(
α
x, ξ) ∂ξ

(

∂ξ − 2
ψ′

γ(ξ)
ψγ(ξ)

)

K(
β
y, ξ) =

= K(
α
x, ξ)B(

β
y,

γ

ξ)
∣

∣

∣

∣

∞+

∞−

−
∫

x,y>CDξ

dξ K
(α
x, ξ

)

(

∂ξ + 2
ψ′

γ(ξ)
ψγ(ξ)

)

∂ξ

(

∂ξ − 2
ψ′

γ(ξ)
ψγ(ξ)

)

K(
β
y, ξ).

Here, the substitution gives zero, and the third-order differential operator acting on the kernel K(
β
y, ξ) is

again Gelfand–Dikii operator (4.11), which is independent of the sector γ. The integrand is also obviously
regular at all zeros of the ψ functions, and the total integration over ˜A-cycles therefore just gives zero.

Therefore, the contribution of the case r = h, I = J \ {xn} is zero, and the total contribution of all
the unstable cases together with the action of the operator ̂H just gives the original contribution W

(h)
n (J)

taken with the opposite sign.

9.3. Examples of applying � ∂/∂�.

9.3.1. Reconstructing W (0)
n (J). We now use formula (9.1) to reconstruct the correlation function

W
(0)
n (J). In the zero-genus case, we need only take the contributions of nonconnected subdiagrams (the

second term in (9.1)) into account. We choose the root of the first subdiagram,
∫ ξ

∞ dξ′ W
(r)
|I|+1(ξ̄

′, I), at
x1; the point ξ̄ is then the end of some other (nonrooted) leg G(η, ξ̄) of the first diagram. For the second
diagram, we choose the root at the end ξ of the leg with the corresponding propagator K(ξ, ρ). As a result
of integrating over ξ, using (9.2), we find that these two diagrams are sewed along the propagator K(η, ρ),
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thus producing a connected diagram with the maximum subtree of propagators K rooted at the external
point x1. We can now ask how many times the given diagram can be obtained as a composition of two
diagrams in formula (9.1). We obtain this diagram by first breaking it into two parts by cutting some of
the internal arrowed lines (also including the external line K(x1, κ) if we take the nonstable contributions
into account) and then sewing again along the same line. Obviously, we obtain this diagram as many times
as the total number of arrowed lines (with the minus sign from (9.2)), i.e., 2− n for W

(0)
n (J). Hence, using

definition (9.1) for the action of � ∂/∂�, we obtain

(

�
∂

∂�
+ ̂H.

∂

∂V

)

W (0)
n (J) = (2 − n)W (0)

n (J),

which is a particular case of formula (9.1).

9.3.2. Acting on W
(0)

2 (x1, x2). Here, we consider the action on a nonstable correlation function

W
(0)

2 (x1, x2) = B(
α1
x1,

α2
x2) −

δα1,α2

(x1 − x2)2
.

Excluding the terms that compensate the action of ̂H , we find that the action of � ∂/∂� gives

∫

x1>CDξ
>x2

dξ G(
α1
x1, ξ)

(

B(ξ,
α2
x2) −

1
(ξ − x2)2

)

−
∫

x1,x2>CDξ

dξ

x1 − ξ
B(

α2
x2, ξ) + (x1 ↔ x2) =

= −2B(
α1
x1,

α2
x2) + B(

α1
x1,

α2
x2) + B(

α2
x2,

α1
x1) = 0,

which again is in accordance with formula (9.1) (the expression (x1 ↔ x2) in the left-hand side denotes
terms obtained by interchanging x1 and x2 in the integrals).

9.3.3. Acting on F1. We expect that applying formula (9.1) in the case of F1 gives zero, perhaps
up to some irrelevant regularizing factors. Nonstable terms do not contribute; the only contribution comes
from the first term in (9.1), which gives

(

�
∂

∂�
+ ̂H.

∂

∂V

)

F1 =
∫

CDξ

dξ

(

G(ξ, ξ̄) − 1
ξ − ξ̄

)

=

=
∫

CDξ

dξ

(∫ ξ+δα

∞α

dξ′
∂

∂ξ

ψ2
α(ξ′)/ψ2

α(ξ) − 1
ξ′ − ξ

+

+
∑

j

∫ ξ+δα

∞α

dξ′ hj(ξ′)ψ2
α(ξ′)

(

Cj(ξ)
ψ2

α(ξ)

)′)

.

Integrating by parts in the second term, we obtain
∫

CDξ

dξ hj(ξ)Cj(ξ) up to terms of the order O(δα), and

the integrand turns out to be independent of the sector and nonsingular at zeros of ψα and therefore gives
zero when integrated. In the first term, integrating the term with 1/(ξ − ξ′)2 by parts in the variable ξ′

and taking into account that

lim
ξ′→ξ

1
ξ′ − ξ

(

ψ2
α(ξ′)

ψ2
α(ξ)

)

= 2
ψ′

α(ξ)
ψα(ξ)

,
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we obtain

∫

CDξ

dξ

(

−2
ψ′

α(ξ)
ψα(ξ)

+
∫ x+δα

∞α

dξ′
2ψ′

α(ξ′)ψα(ξ′)/ψ2
α(ξ) − 2ψ′

α(ξ)ψ2
α(ξ′)/ψ3

α(ξ)
ξ′ − ξ

)

=

=
∫

CDξ

dξ

(

−2
ψ′

α(ξ)
ψα(ξ)

+
∫ x+δα

∞α

dξ′
(

2
ξ′ − ξ

ψ′
α(ξ′)ψα(ξ′)

ψ2
α(ξ)

+
ψ2

α(ξ′)
ξ′ − ξ

(

1
ψ2

α(ξ)

)′))

=

=
∫

CDξ

dξ

(

−2
ψ′

α(ξ)
ψα(ξ)

+
∫ x+δα

∞α

dξ′
(

2
ξ′ − ξ

ψ′
α(ξ′)ψα(ξ′)

ψ2
α(ξ)

− ψ2
α(ξ′)

ψ2
α(ξ)

1
(ξ′ − ξ)2

))

=

=
∫

CDξ

dξ

(

−2
ψ′

α(ξ)
ψα(ξ)

+
∫ x+δα

∞α

dξ′
(

2
ξ′ − ξ

ψ′
α(ξ′)ψα(ξ′)

ψ2
α(ξ)

+
ψ2

α(ξ′)
ψ2

α(ξ)
d

1
ξ′ − ξ

))

=

=
∫

CDξ

dξ

(

−2
ψ′

α(ξ)
ψα(ξ)

+
∫ x+δα

∞α

dξ′
(

1
ξ′ − ξ

∂

∂ξ′
ψ2

α(ξ′)
ψ2

α(ξ)
+

ψ2
α(ξ′)

ψ2
α(ξ)

d
1

ξ′ − ξ

))

=

=
∫

CDξ

dξ

(

−2
ψ′

α(ξ)
ψα(ξ)

+
1

ξ′ − ξ

ψ2
α(ξ′)

ψ2
α(ξ)

∣

∣

∣

∣

x+δα

∞α

)

=
∫

CDξ

dξ

(

1
δα

+ O(δα)
)

.

The result is hence a constant, which diverges in the limit of removed regularization but is otherwise
independent of all the variables (the same phenomenon occurs when calculating the corresponding action
of the ̂H operator on F1 in the standard matrix models [4], [8]).

9.3.4. Acting on W
(1)
1 (x). In the case of W

(1)
1 (x), we have two possible contributions: the one

from nonstable graphs gives W
(1)
1 (x) with the (desired) factor −1, and the other would come from the first

term in (9.1) originating from the W
(0)
3 term, i.e.,

∫

CDξ

dξ

∫

CDη

dη K(
α
x, η)G(η, ξ̄)B(η, ξ),

where the contour of integration over η goes between the points ξ̄ and ξ. We set integrals of this type to
be zero, which provides the last required prescription for the diagram technique describing the free energy
terms Fh.

9.4. The term Fh. For the stable cases (h �= 0, 1), we can now formulate the diagram technique for
the term Fh. We need the diagrams describing the stable terms W

(r)
1 (ξ̄) and W

(h−r)
1 (ξ) with 1 ≤ r ≤ h− 1

and W
(h−1)
2 (ξ, ξ̄):

(2h − 2)Fh = W
(h−1)
2

•
•
ρ

η −
h−1
∑

r=1
W

(r)
1

•
ρ

W
(h−r)
1

•
η

∫ ξ

.

Here, the sum in the first term ranges all the diagrams contributing to W
(h−1)
2 that have distinct vertices

to which the external legs are attached; we then amputate both these legs and join the vertices η and ρ (the
vertex ρ is always the first three-valent vertex in the rooted tree) by the propagator K(η, ρ). The integration
over ξ is already taken into account, and we thus obtain an extra minus sign. We cannot integrate that

177



easily in the second term, where the integration over ξ is such that ρ > CDξ
> η and the symbol

∫ ξ indicates
that we must insert the integration

∫

ρ>CDξ
>η

dξ

∫ ξ+δα

∞α

dξ′ K(
α

ξ′, ρ)K(
α

ξ, η)

between the integrations over the variables ρ and η.

10. Conclusion

We have defined a quantum version of algebraic geometry notions, which allows solving the loop
equations in the case of an arbitrary β-ensemble.

The notion of branch points becomes “blurred.” A branch point is no longer a point but an asymptotic
accumulation line along which we integrate instead of taking the residue at the branch point.

Another surprising property pertains to the cohomology theory, which makes sense only if the cycle
integral of any form depends only on the homology class of the cycle, i.e., we need all forms to have zero
residues at the zeros si. This “no-monodromy” condition is automatically satisfied for our forms coming
from the Schrödinger equation, and it is equivalent to the set of Bethe ansatz equations satisfied by si,
similar to what occurs in the Gaudin model [18].

In contrast to [1], there is no explicit dependence here on the chosen sector. But even the total number
of A-cycles and the rank of the period matrix may vary depending on the choice of cuts in the complex
plane. This might be because we do not have an actual finite-genus (classical) Riemann surface. Analytic
continuation may never result in sewing the corresponding solutions of the Schrödinger equation, and we
therefore deal with different (finite-genus) sections of an ambient infinite-genus surface. Then the genus is
indeed no longer deterministic.

Using the sectorwise approach, we can define the symplectic invariants. In Appendix D, we present
the first nontrivial calculation of this sort: the dependence of the leading term on the filling fractions.

Here, we restricted ourself to the case of hyperelliptic curves, i.e., second-order differential equations,
which corresponds to the one-matrix model. The first straightforward generalization is to include the
logarithmic potentials in the consideration, which would produce the Nekrasov functions nonperturbatively
in the parameter ε2/ε1. A more challenging problem is to generalize this approach to linear differential
equations of any order, which would correspond to a two-matrix β-ensemble model. In this case, we can
also presumably define the notions of sheets, branch points, forms, and correlation functions. We also expect
the preservation of the Bethe ansatz property ensuring a no-monodromy condition claiming that all cycle
integrals depend only on the homology classes of cycles. The difference between the hyperelliptic case and
the general case is comparable to the difference between the patterns in [2] and [5], i.e., the definition of the
kernel K must be more involved and less explicit, but we postpone this discussion for further publications.

It would also be interesting to see whether the quantities Fh have a symplectic invariance or, more
precisely, a “canonical invariance,” i.e., whether they are invariant under any change (x, y) → (x̃, ỹ ) such
that [ỹ, x̃ ] = [y, x] = �.

Appendix A: Proof of Theorem 5.2

We now prove Theorem 5.2, that all W
(h)
n satisfy the loop equation, i.e.,

P
(h)
n+1(x;

α1
x1, . . . ,

αn
xn) = �

(

2
ψ′

α(x)
ψα(x)

+ ∂x

)

W
(h)

n+1(
α
x,

α1
x1, . . . ,

αn
xn) +
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+
h

∑

r=0

∑′

I⊂J

W
(r)

|I|+1(
α
x, I)W

(h−r)

n−|I|+1(
α
x, J \ I) + W

(h−1)

n+2 (
α
x,

α
x, J) +

+
∑

j

∂xj

(

W
(h)

n (
α
x, J \ {xj})δα,αj − W

(h)

n (
αj

x j , J \ {xj})
x − xj

)

is a polynomial in x of a degree not exceeding d − 2. From the definition, we have (with U from (5.5))

W
(h)
n+1(

α
x, J) =

1
2iπ

∮

C
dz K(

α
x, z)

(

U
(g−1)
n+2 (z, z, J) +

∑

j

B(
αj

xj , z)W (h)
n (z, J \ {xj})

)

.

Acting with �
(

2ψ′
α(x)/ψα(x) + ∂x

)

on K(
α
x, z) gives

1
x − z

+
g

∑

j=1

hj(x)Cj(z),

and the second part is obviously a polynomial satisfying the assertions in the theorem. Pulling the contour
of integration over z to infinity (with x originally outside the integration contour) and taking into account
that the integral at infinity vanishes because of the asymptotic conditions, we find that only the residue at
z = x and the residue at z = xj in the second term in the parentheses contribute. The integration result is

U
(g−1)
n+2 (

α
x,

α
x, J) +

∑

j

B(
αj

xj ,
α
x)W (h)

n (
α
x, J \ {xj}) +

∑

j

∂

∂xj

W
(h)
n (J)

x − xj
,

and taking (5.3) into account, we obtain the assertions in the theorem.

Appendix B: The symmetricity of W
(0)
3

Theorem B.1. The three-point function W
(0)
3 is symmetric.

Proof. Introducing Yα = −2�ψ′
α/ψα, from the definition, we obtain

W
(0)
3 (

α0
x0,

α1
x1,

α2
x2) =

1
iπ

∮

CD

dxK(
α0
x0, x)B(

α1
x1, x)B(

α2
x2, x) =

1
4iπ

∮

CD

dxK0G
′
1G

′
2 =

=
1

4iπ

∮

CD

dxK0

(

(�K ′′
1 + Y K ′

1 + Y ′K1)(�K ′′
2 + Y K ′

2 + Y ′K2)
)

=

=
1

4iπ

∮

CD

dxK0

(

�
2K ′′

1 K ′′
2 + �Y (K ′

1K
′′
2 + K ′′

1 K ′
2) + �Y ′(K ′′

1 K2 + K ′′
2 K1) +

+ Y 2K ′
1K

′
2 + Y Y ′(K1K

′
2 + K ′

1K2) + (Y ′)2K1K2

)

,

where we introduce the shorthand notation Ki = K(xi, x) and Gi = G(xi, x), all the derivatives are with
respect to x, and we omit the sector indices.

The combinations K0K1K2f(x), where f(x) is sector-independent (f = 1, U, U ′, . . . ), vanish after
integration with respect to x because each Ki is also sector-independent with respect to x. We can then
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use the Riccati equation Y 2
α = 2�Y ′

α + 4U to replace Y 2
α with 2�Y ′

α and YαY ′
α with �Y ′′

α , which gives

W
(0)
3 (x0, x1, x2) =

1
4iπ

∮

CD

dxK0

(

�Y (K ′
1K

′′
2 + K ′′

1 K ′
2) + �Y ′(K ′′

1 K2 + K ′′
2 K1) +

+ 2�Y ′K ′
1K

′
2 + �Y ′′(K1K

′
2 + K ′

1K2) + (Y ′)2K1K2

)

=

=
1

4iπ

∮

CD

dxK0

(

�Y (K ′
1K

′
2)

′ + �Y ′(K1K2)′′ + �Y ′′(K1K2)′ + (Y ′)2K1K2

)

=

=
1

4iπ

∮

CD

dx (Y ′)2K0K1K2 + �
(

Y ′′K0(K1K2)′ − (Y K0)′K ′
1K

′
2 − (Y ′K0)′(K1K2)′

)

=

=
1

4iπ

∮

CD

dx (Y ′)2K0K1K2 − �
(

(Y K0)′K ′
1K

′
2 + Y ′K ′

0(K1K2)′
)

=

=
1

4iπ

∮

CD

dx (Y ′)2K0K1K2 − �Y K ′
0K

′
1K

′
2 − �Y ′(K0K

′
1K

′
2 + K ′

0K1K
′
2 + K ′

0K
′
1K2).

This expression is explicitly symmetric in x0, x1, and x2. The theorem is proved.

Appendix C: Proof of Theorem 5.3

We prove that each W
(h)
n is a symmetric function of all its arguments. The special case of W

(0)
3

was proved in Appendix B. The symmetricity of the two-point correlation function W
(0)

2 was proved in
Theorem 4.9.

For technical reason, it is easier to proceed with the proof for nonconnected correlation functions. We
introduce two types of them: the correlation function

̂
W

(h)
n (I) =

∑

{I1,...,Ik}

k
∏

j=1

W (hj)
nj

(Ij), (C.1)

where the summation ranges all partitions {I1, . . . , Ik} of the set I, which includes only partitions of the
stable (2hj + nj − 2 > 0) type with Ij �= ∅, and the correlation function

˜
W

(h)
n (I) =

∑′

{I1,...,Ik}

k
∏

j=1

W (hj)
nj

(Ij), (C.2)

which moreover admits two-point correlation functions W
(0)

2 in the sums, 2hj + nj − 2 ≥ 0, with Ij �= ∅.

The symmetricity of all ̂
W

(h′)
s (I) with s+2h′ ≤ n+2h obviously implies the symmetricity of ˜

W
(h)
n (I).

It is obvious that ̂
W

(h)
n+1(

α0
x0,

α1
x1, . . . ,

αn
xn) is symmetric in x1, x2, . . . , xn, and it therefore suffices to show

that (for n ≥ 1)
̂
W

(h)
n+1(

α0
x0,

α1
x1, J) − ̂

W
(h)
n+1(

α1
x1,

α0
x0, J) = 0,

where J = {α2
x2, . . . ,

αn
xn}.

The proof is by recursion on −χ = 2h− 2 + n. We assume that all ̂
W

(h′)
k and ˜

W
(h′)
k with 2h′ + k− 2 ≤

2h + n are symmetric. We have

̂
W

(h)
n+1(

α0
x0,

α1
x1, J) =

1
2πi

∮

CDx>y

dxK
(α0
x0, x

) ˜
W

(h−1)
n+2 (x, x, x1, J) +

+
1
πi

∫∫

CDx>CDy

dx dy K
(α0
x0, x

)

B(
α1
x1, x)K(x, y) ˜

W
(h−1)
n+1 (y, J)

)

. (C.3)
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We first consider the product of functions KBK in the second term. Recalling that

B(
α1
x1,

β
x) = ∂x

(

∂x − 2
ψ′

β(x)
ψβ(x)

)

K
(α1
x1, x

)

and integrating by parts, we obtain

1
2πi

∮

CDx>y

dxK(
α0
x0, x)B(

α1
x1, x)K(x, y) = − 1

2πi

∮

CDx>y

dxK ′
x(

α0
x0, x)K ′

x(
α1
x1, x)K(x, y) +

+
1

2πi

∮

CDx>y

dxK ′
x(

α0
x0, x)K(

α1
x1, x)2

ψ′(x)
ψ(x)

K(x, y) −

− 1
2πi

∮

CDx>y

dxK(
α0
x0, x)K ′

x(
α1
x1, x)K ′

x(x, y) +

+
1

2πi

∮

CDx>y

dxK(
α0
x0, x)K(

α1
x1, x)2

ψ′(x)
ψ(x)

K ′
x(x, y).

The first and last terms in the right-hand side are already symmetric under the replacement x0 ↔ x1,
and we disregard them. Integrating by parts in the third term in the right-hand side, we obtain one
more symmetric term with K(

α0
x0, x)K(

α1
x1, x)K ′′

xx(x, y) (which we can also disregard) plus the term with
K ′

x(
α0
x0, x)K(

α1
x1, x)K ′

x(x, y). Combining the result with the second term, we obtain

1
2πi

∮

CDx>y

dxK ′
x(

α0
x0, x)K(

α1
x1, x)

(

∂x + 2
ψ′(x)
ψ(x)

)

K(x, y) =

=
1

2πi

∮

CDx>y

dxK ′
x(

α0
x0, x)K(

α1
x1, x)

(

1
x − y

+
∑

β

hβ(x)Cβ(y)
)

,

where the integrand is the same in all sectors of x, and only the residue at x = y (with the minus sign)
hence contributes in the second term in (C.3), which then becomes

− 1
2πi

∮

CDy

dy 2K ′
y(

α0
x0, y)K(

α1
x1, y) ˜

W
(h−1)
n+1 (y, y, J). (C.4)

For the first term in (C.3), we use the induction assumption, writing it in the form

1
2πi

∮

CDx>y

dx

2πi

∮

CDy

dy K(
α0
x0, x)K(

α1
x1, y) ×

×
(

2B(x, y)2δ1,2 + 4B(x, y) ˜
W

(h−1)
n+1 (x, y, J)′ + ˜

W
(h−2)
n+3 (x, x, y, y, J)′

)

,

where the prime indicates that no propagators of the B(x, y) type enter the expression, and no singularity
occurs in the corresponding terms under interchanging the order of contour integration over x and y. The
last term is again obviously symmetric under the replacement x0 ↔ x1.

The skew-symmetric part in the middle term is one-half the residue coming from the double pole
−1/(x − y)2 in the expression for B(x, y) (it again comes with the minus sign by virtue of the choice of
contour ordering), and we therefore obtain

1
2πi

∮

CDy

dy 2K ′
y(

α0
x0, y)K(

α1
x1, y) ˜

W
(h−1)
n+1 (y, y, J)′ + symmetric term,
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which exactly cancels the term in (C.4) in all cases except only the case h = 1, n = 2, where we use the
fact that B(x, y) = −1/(x − y)2 + W

(0)

2 (x, y) as x → y, and therefore

2B(x, y)2 = 2(x − y)−4 − 4(x − y)−2W
(0)

2 (x, y) + regular part.

The most singular first term results in the integrand K ′′′K, which is sector-independent and therefore
vanishes, and the second term produces

1
2πi

∮

CDy

dy 2K ′
y(

α0
x0, y)K(

α1
x1, y)W

(0)

2 (y, y) + symmetric term,

which cancels the last remaining term in (C.4). The theorem is proved.

Appendix D: Calculating ∂3F0/∂t30 in the Gaussian case

In this appendix, we calculate the singular part of the third derivative of F0 and integrate the answer,
which allows obtaining the singular part of the free energy F0. Although we calculate only the Gaussian
model case explicitly, based on it, we can propose the singular part of the free energy for the model with a
general potential.

In the Gaussian model case with the potential V (x) = x2, we have four sectors of solutions with the
asymptotic directions ±∞ and ±i∞. As the basic solutions, we take ψ+(x) and ψ−(x) that decrease at the
corresponding imaginary infinities +i∞ and −i∞. The real axis then plays the role of the ˜A-cycle, and the
imaginary axis is the ˜B-cycle.

We are interested in evaluating the singular part of the third-order derivative ∂3F0/∂t30. We first clarify
the origin of this singularity. Obviously, local singularities at finite t0 appear when the solutions ψ+ and
ψ− coincide, which happens when ψ± = ψn = Hn(ix)ex2/2�, where Hn are the Hermite polynomials and

�
2∂2

xψn(x) = x2ψn(x) + (2n + 1)�ψn(x).

From Corollary 6.1, we have

∂3F0

∂t30
=

1
(2πi)3

∮

B

∮

B

∮

B
dz1 dz2 dz3 W

(0)
3 (z1, z2, z3). (D.1)

Because W
(0)
3 (

α1
z1,

α2
z2,

α3
z3) =

∮

CD
dξ K(

α1
z1, ξ)B(

α2
z2, ξ)B(

α3
z3, ξ) and no singularities appear when integrating over

z2 and z3, we find that by Theorem 4.8, each integral gives just v0(
α

ξ) with α = ± and

v0

(±
ξ
)

= C0
1

ψ2
±(ξ)

∫ ξ

±i∞
dρ ψ2

±(ρ) (D.2)

with the normalization constant C0 such that

∫ +∞

−∞
dξ[v0(

−
ξ) − v0(

+

ξ)] = 1.

We note that even in the case where ψ+ = ψ−, the functions v0(
+

ξ) and v0(
−
ξ) differ because of different

lower integration limits, their difference is just
(

C0ψ
−2(ξ)

) ∫ +i∞
−i∞ dρ ψ2(ρ), and the normalization constant

C0 at ψ+ = ψ− = ψn is

C0 =
(∫ +∞

−∞

dξ

ψ2
n(ξ)

)−1(∫ +i∞

−i∞
dρ ψ2

n(ρ)
)−1

. (D.3)
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The remaining integral over z1 in (D.1) develops a singularity as ψ± → ψn because the function K(
±
z1, ξ)

develops a logarithmic cut on the ˜B-cycle, and using explicit form (4.1) for the K-kernel (K = ̂K in this
simplest case), we obtain

∂3F0

∂t30
=

∑

±

∫

C±
ξ

dξ

2πi

∫ ∓i∞

±i∞

1
�

dz

ψ2
±(z)

∫ z

±i∞
dρ

ψ2
±(ρ)

ρ − ξ
v2
0

(±
ξ
)

, (D.4)

where the contour C±
ξ runs between ±∞ and ∓∞ encircling the point ρ. The singularity appears as ρ (and

correspondingly z) tends to −i∞ for ψ+ and to +i∞ for ψ−. This singular part comes from the residue at
ξ = ρ, and we find that the expression in (D.4) is

∑

±

∫ ∓i∞

0

1
�

dz

ψ2
±(z)

∫ z

0

dρ ψ2
±(ρ)v2

0(
±
ρ) + regular part,

and using explicit expressions (D.2) and (D.3) for v0, we obtain the singular part of the third derivative
∂3F0/∂t30

sing.
(

∂3F0

∂t30

)

=
∑

±

∫ ∓i∞

0

1
�

dz

ψ2
±(z)

∫ z

0

dρ

ψ2
±(ρ)

[∫ ρ

±i∞
ds ψ2

±(s)
]2

C2
0 ,

where the singularity occurs at the upper integration limit for z and ρ as ψ+, ψ− → ψn. The term in
the square brackets is nonsingular in this limit, and we can therefore replace it with its limit value, which
exactly cancels the corresponding term in the normalization constant C0 (see (D.3)). The integrals over z

and ρ can be separated, and we obtain the final expression

sing.
(

∂3F0

∂t30

)

=
∑

±

1
2�

[∫ ∓i∞

0

dz

ψ2
±(z)

]2[∫ +∞

−∞

dx

ψ2
±(x)

]−2

. (D.5)

We now calculate t0 as ψ+, ψ− → ψn. Choosing ψ−(x) = ψ+(x)
∫ x

−∞ dξ ψ−2
+ (ξ) and taking into account

that the number of poles of solutions outside the ˜A-cycle is n, we obtain

t0 = −�n + �

∫ +∞

−∞
dz

(

ψ′
−(z)

ψ−(z)
− ψ′

+(z)
ψ+(z)

)

= −�n + �

∫ +∞

−∞

dz

ψ+(z)ψ−(z)
=

= −�n + �

∫ +∞

−∞

(∫ 0

−i∞

dξ

ψ2
+(ξ)

+
∫ z

0

dξ

ψ2
+(ξ)

)−1
dz

ψ2
+(z)

.

The first integral in the expression in parentheses diverges as ψ+ → ψn. Letting Λ denote this integral, we
obtain

t0
∣

∣

ψ+→ψn
= −�n + �

∫ +∞

−∞

dz

ψ2
+(z)

[∫ 0

−i∞

dξ

ψ2
+(ξ)

]−1

+ O(Λ−2). (D.6)

Comparing this expression with (D.5), we obtain

sing.
(

∂3F0

∂t30

)

=
1

�(n + t0/�)2
, n ∈ Z+,0, (D.7)
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i.e., this derivative has double poles with the coefficient 1/� at all points t0 = −�n, n = 0, 1, . . . . A function
that exhibits such a behavior is obviously the function Γ; we hence find that up to an entire function,

sing.
(

∂3F0

∂t30

)

� 1
�
[log Γ]′′

(

t0
�

)

and in turn

sing.(F0) � �
2

[∫

log Γ
](

t0
�

)

. (D.8)

Turning to the asymptotic behavior of
∫

dx log Γ(x) at large positive x, we observe that the leading term is
(x2/2) logx, which is exactly what we might expect from matrix-model-like arguments: we must be able to
apply the semiclassical approximation at large positive t0/�, and we have the leading asymptotic behavior
of the Gaussian matrix model in this regime, i.e., sing.(F0) � (t20/2) log t0 up to polynomial terms (of a
degree not exceeding two).

We can therefore propose the following conjecture.

Conjecture. The singular part of F0 for any potential Vd+1(x) has the form

�
2

d
∑

i=1

1
2

[∫

log Γ
](

ε̃i

�

)

,

where ε̃i are the filling fractions on the cycles ˜Ai.
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