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THE 2×2 MATRIX SCHLESINGER SYSTEM AND THE

BELAVIN–POLYAKOV–ZAMOLODCHIKOV SYSTEM

D. P. Novikov∗

We show that the Belavin–Polyakov–Zamolodchikov equation of the minimal model of conformal field

theory with the central charge c = 1 for the Virasoro algebra is contained in a system of linear equations

that generates the Schlesinger system with 2×2 matrices. This generalizes Suleimanov’s result on the

Painlevé equations. We consider the properties of the solutions, which are expressible in terms of the

Riemann theta function.

Keywords: Belavin–Polyakov–Zamolodchikov equation, Schlesinger system, Painlevé equation, Garnier
system

1. Systems of linear equations accompanying the Painlevé and
Schlesinger equations

The Schlesinger system [1] for the matrices Ai = Ai(t1, . . . , tm)

∂Aj

∂ti
=

[Ai, Aj ]
ti − tj

, i �= j,

∂Ai

∂ti
= −

∑

j �=i

[Ai, Aj ]
ti − tj

,

(1)

where i, j = 1, m (the second group of equations can be replaced with the condition that the matrix
A1 + · · ·+Am = A∞ is constant in t1, . . . , tm), was discovered as the compatibility condition for the system

Ψx = AΨ, A =
m∑

i=1

Ai

x − ti
,

Ψti = − Ai

x − ti
Ψ.

(2)

All algebraic integrals of motion of system (1) are known. They are the traces trAk
i , k = 1, 2, . . . (equiv-

alently, the characteristic polynomials of the matrices Ai). A closed form ω =
∑

Hi dti was found in
[2],

Hi =
1
2

res
x=ti

(Tr A2) ≡
m∑

j �=i

tr(AjAi)
ti − tj

,

and the τ -function (log τ)ti = Hi was also determined.
Here, we consider only one aspect of the problem of the complete integrability of system (1) in terms

of special functions. Namely, in the case of 2×2 matrices Ai, we seek a second-order linear equation for
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the function Φ = τΨ, all of whose coefficients are rational functions of x, t1, . . . , tm. We also consider the
question of using linear superpositions of its solutions to integrate Eqs. (2) and (1).

We henceforth assume that Ai are 2×2 matrices and that

trAi = 0, detAi = −∆i, detA∞ = −∆∞.

We note the relation ∆i = δ2
i /4 with the difference δi of the eigenvalues of Ai. Because

detA = −
∑

i

[
Hi

x − ti
+

∆i

(x − ti)2

]
,

it follows from system (2) that

Ψxx = (A2 + Ax)Ψ =
∑

i

[
Hi

x − ti
+

∆i

(x − ti)2
− Ai

(x − ti)2

]
Ψ,

∑

i

1
x − ti

Ψti = Ψxx −
∑

i

[
∆i

(x − ti)2
+

Hi

x − ti

]
Ψ.

For Φ = τΨ, this implies that
∑

i

1
x − ti

Φti = Φxx −
∑

i

∆i

(x − ti)2
Φ. (3)

Moreover, ∑

i

(x − ti)Ψti = −A∞Ψ, Ψx +
∑

i

Ψti = 0.

Using the relations ∑

i

Hi = 0,
∑

i

(tiHi + ∆i) = ∆∞,

which follow from the expansion detA ∼ −∆∞x−2 as x → ∞, we obtain the equations

∑

i

(x − ti)Φti =
(∑

i

∆i − ∆∞ − A∞

)
Φ,

∑

i

Φti = −Φx. (4)

The coefficients of system (3), (4) are rational functions of x and ti and are uniquely determined by fixing
the values ∆i and A∞ of the algebraic integrals of system (1). We use a substitution Φ → gΦ with a matrix
g independent of x and ti to transform the matrix A∞ into the Jordan normal form

A∞ =

(
0 0

1 0

)
, A∞ =

1
2

(
k∞ 0

0 −k∞

)
.

The first component of the vector Φ = (ϕ, ψ)T then satisfies the relations

∑

i

1
x − ti

ϕti = ϕxx −
∑

i

∆i

(x − ti)2
ϕ,

∑

i

(x − ti)ϕti = ρϕ,
∑

i

ϕti = −ϕx,

where ρ =
∑

i ∆i − ∆∞ − k∞/2.
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Equations (3) have appeared in various papers. In constructing the “minimal” models of two-dimen-
sional quantum field theory with the conformal symmetry group, Belavin, Polyakov, and Zamolodchikov in
particular obtained the equation (see formula (5.17) in [3])

∑

i

1
x − ti

Φti = κΦxx −
∑

i

∆i

(x − ti)2
Φ,

where the central charge of the Virasoro algebra is c = −6κ + 13− 6κ
−1. Equation (3) corresponds to the

value c = 1. Additional conditions (4) also appear in [3], [4].
In [5], [6], the Schlesinger systems for matrices of arbitrary size were obtained from the Knizhnik–

Zamolodchikov equations in the semiclassical limit. A similar turning from the equations in [3], [4] to the
Painlevé VI equation as κ → 0 was reported in [7]. The relation between the equations in [3] and [8] by
means of an integral transformation together with a coordinate change introduced in [9] was considered
in [10].

We obtained the results described before becoming aware of [11]–[13], where equations of parabolic type
that are part of the Lax representation of the Painlevé I–VI equations were obtained. For comparison, we
give an equivalent form of the Fuchs system [14], eliminating f from which gives the Painlevé VI equation
for u. Introducing the variables

t =
t3 − t1
t2 − t1

, z =
x − t1
t2 − t1

, f = z−δ1/2(z − 1)−δ2/2(z − t)−δ3/2ϕ

reduces system (3), (4) with three variables ti to the single equation

t(t − 1)
z(z − 1)(z − t)

ft = fzz +
(

1 + δ1

z
+

1 + δ2

z − 1
+

δ3

z − t

)
fz +

ρ′

z(z − 1)
f,

and the first equation in system (2) becomes

fzz +
(

1 + δ1

z
+

1 + δ2

z − 1
+

1 + δ3

z − t
− 1

z − u

)
fz +

ρ′z2 + Pz + Q

z(z − 1)(z − t)(z − u)
f = 0.

The absence of the variable u in the first equation allows simplifying the proof of Theorem 2 in [15].
Equation (3) was found similarly, by eliminating the variables Ai from system (2) based on the theory in [16].
We note the thematic similarity between the change of variables and integral transformations [17], [18] for
Eqs. (3) and (2). For example, the parameter shift (δ1, δ2, δ3, k∞) → (δ1, δ2 − 1, δ3− 1, k∞) can be obtained
by applying the Schlesinger transformation to f or by several changes of variables and integral Euler
transformations. Comparing the results f1 = f2 gives an integro-differential equation for the function f .

2. Hyperelliptic theta functions and solutions of the
Belavin–Polyakov–Zamolodchikov equation

We use the theory of Abelian functions [19]–[22]. On a hyperelliptic curve Γ of genus g

µ2 = R(x) = (x − t0)(x − t1) · · · (x − t2g)

(we can take t0 = 0 and t2g = 1 without restricting the generality), we choose a Weierstrass canonical basis
of cycles: the cycle ai goes around the cut t2i−2, t2i−1 on the upper sheet, and the cycle bi goes from this
cut to the cut from t2g to ∞ on the upper and lower sheets. For clarity, the points t0, . . . , t2g are arranged
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in increasing order from 0 to 1 in the real case. The cycle basis aj , bj determines the integrals of the first
kind v and the period matrix B:

vi(x) =
∫ x

∞

(ci1γ
g−1 + · · · + cig)dγ√

R(γ)
,

∮

aj

dvi = δij ,

∮

bj

dvi = Bij .

We introduce theta functions with characteristics

Θ[p, q](z; B) =
∞∑

n1=−∞
· · ·

∞∑

ng=−∞
eπi〈n+p,(n+p)B+2(z+q)〉, Θ = Θ[0, 0].

We substitute any constants p and q and the quantities z = v(x)+m1B+m2, where [m1, m2] is a half-integral
characteristic such that Θ(z; B) �≡ 0. Following [16], [23], we construct a pair of functions multivalued in x:

f(x) =
Θ[p, q](z; B)

Θ(z; B)
, f−(x) =

Θ[−p,−q](z; B)
Θ(z; B)

.

The monodromy transformations for the functions f and f− are independent of ti, which can be verified
using the properties of the integrals v(x) and the theta function. The functions f and f− are interchanged
as x goes around ∞. As x goes around the cycles aj and bj , we correspondingly have

zi → zi + δij , f → e2πipj f, f− → e−2πipj f−,

zi → zi + Bij , f → e−2πiqj f, f− → e2πiqj f−.

Henceforth, we limit ourself to the case (t0 = 0, t2g = 1)

f(x) =
Θ[p, q](v(x) − v(t0) − v(t2g); B)

Θ(v(x) − v(t0) − v(t2g); B)
. (5)

We set J = {2, . . . , 2g − 2} if g > 1 and J = ∅ if g = 1. According to the Riemann vanishing theorem [19],
function (5) either is identically zero or has exactly g zeroes (x, µ) = (Ui,

√
R(Ui) ), i = 1, g, and exactly g

poles x = ∞ and x = ti, i ∈ J . Then log f(x) is an integral of the third kind:

log
f(x)
f(1)

=
1
2

∫ x

1

[ g∑

i=1

(√
R(Ui) +

√
R(γ)

(γ − Ui)
√

R(γ)
+

Piγ
i−1

√
R(γ)

)
−

∑

J

1
γ − ti

]
dγ. (6)

Using this expression for log f , we can write the isomonodromy deformation equations for f , the Garnier
system [24], [25], a scalar version of system (2). The equation

fxx +
[∑

i∈I

1/2
x − ti

+
∑

i∈J

3/2
x − ti

−
2g−1∑

i=1

1
x − ui

]
fx =

2g−1∑

i=1

(
βi

x − ui
+

αi

x − ti

)
f

x(x − 1)
, (7)

where I = {0, 2g}∪ {1, 3, . . . , 2g − 1}, corresponds to the deformed equation Ψx = AΨ. In our study of the
Garnier system, we limit ourself to deducing and studying the properties of the analogues of relations (3)
and (4).

Theorem. Functions (5) (t0 = 0, t2g = 1) satisfy the equation

2g−1∑

i=1

ti(ti − 1)
x(x − 1)(x − ti)

fti = fxx +
1
2

[ g∑

i=0

1
x − t2i

−
g∑

i=1

1
x − t2i−1

]
fx. (8)
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We prove the theorem in Appendix A.

We discuss the possibility of using linear superpositions of solutions of Eq. (8) to construct solutions
of Fuchs-type equations (7). Averaging family (5) over the parameters q gives

∫ 1

0

· · ·
∫ 1

0

Θ[0, q](z; B)
Θ(z; B)

e−2πi〈n,q〉dq =
eπi〈n,nB+2z〉

Θ(z; B)
. (9)

The functions of family (9) with integer n are branches of the function Θ−1(z; B) obtained when x traverses
the cycles b1, . . . , bg n1, . . . , ng times.

The Riemann function Θ(z; B), z = v(x) − v(0) − v(1), can be considered the generating function of
families (9) and (5) and Eqs. (7) whose monodromy group has an Abelian commutant (the transformations
f and f− with 2g parameters p and q are given above). All other cases of Eqs. (7), including those that
are interesting because of the uniformization problem for hyperelliptic curves, are apparently not covered
by linear combinations of functions (9) with complex n for reasons given in Appendix B.

Presumably, a “noncommutative” family of functions consisting of the solutions of Eq. (8) satisfying
Eq. (7) with an arbitrary monodromy group (there are 4g−2 parameters) generates all solutions of Eq. (8)
by linear superposition. Possibly, it suffices to consider monodromy groups with a particular relation
between the generators: M2i−1 = M−1

2i−2, i = 1, g, M∞ = M−1
2g (here there are 2g−1 parameters in the

Riemann–Hilbert problem on the union of nonintersecting intervals). This is analogous to how we used
only a part of the characteristics [0, q] instead of all [p, q] in constructing (9) from family (5).

The problem of constructing “noncommutative” analogues for family (9) and Θ−1(z; B) is presumably
related to constructing “conformal blocks” in the theory in [3]. We note a similarity between the τ -function
of the Schlesinger system and the “conformal blocks” F of the minimal model with the central charge c = 1:

τ =
Θ[p, q](0; B)
r(t)Θ(0; B)

, F =
eπi〈n,nB〉

r(t)Θ(0; B)
,

where r(t) is an algebraic factor. The function τ was constructed in [16]. The expression for F in the
elliptic case g = 1 was calculated in [26] using an infinite-dimensional integral; the hyperelliptic case was
considered in [27], [28].

Appendix A

A.1. Elliptic case (7) has been investigated many times in connection with the Painlevé VI equation
in the Picard and Hitchin cases (see, e.g., [16], [23]). Here, we discuss solutions (5) and (9) of Eq. (8) for
g = 1. It turns out that they correspond to the fundamental solutions θ[p, q](z, τ) and eπi(n2τ+2nz) of the
heat equation. The argument τ is standard notation; it replaces B in formula (5) here and should not be
confused with the τ -function. In what follows, the normalized elliptic integrals are given in the form

z =
1

2K

∫ x

∞

dγ

2
√

R(γ)
, τ =

1
K

∫ 0

∞

dγ

2
√

R(γ)
, K =

∫ 1

∞

dγ

2
√

R(γ)
,

R(x) = x(x − 1)(x − t). We use the Jacobi notation: the theta function has the indices 1, 2, 3, and 4
corresponding to the characteristics [1/2, 1/2], [1/2, 0], [0, 0], and [0, 1/2]; the theta constants θi(0, τ) are
denoted by θi.

Refining the statement of the theorem, we show that the replacement f = θ−1
1 (z, τ)ψ transforms the

equation
t(t − 1)

x(x − 1)(x − t)
ft = fxx +

1
2

(
1
x

+
1

x − 1
− 1

x − t

)
fx (10)
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into the heat equation 4πiψτ = ψzz. We use the definitions of z and τ and the equations

4πi
∂θ1(z, τ)

∂τ
=

∂2θ1(z, τ)
∂z2

,
dτ

dt
=

iπ

4K2t(t − 1)
,

∂z

∂x
=

1
4K

√
R(x)

.

We verify that substituting θ−1
1 (z, τ) for the function f in (10) gives the equation

∂ log θ1(z, τ)
∂z

=
∫ x

1

−K(γ − t) + 2t(t − 1)Kt√
γ(γ − 1)(γ − t)

dγ,

which becomes an identity after simplification. Differentiating it with respect to z gives the relation

∂2 log θ1(z, τ)
∂z2

= −4K2x + 4K2t + 8t(t − 1)KKt,

which is transformed into an identity of two expressions for an elliptic function if we write the right-hand
side in terms of z and τ using the inversion formulas [29]–[31]

x =
θ2
2

θ2
3

θ2
4(z, τ)

θ2
1(z, τ)

, t =
θ4
2

θ4
3

, K =
π

2
θ2
3.

We note that changing the variable from z to x gives an equation for the function f = θ−1
1 (z, τ):

fxx

f
− f2

x

f2
+

1
2

(
1
x

+
1

x − 1
+

1
x − t

)
fx

f
=

x − t − 2t(t − 1)KtK
−1

4x(x − 1)(x − t)
,

whose compatibility with (10) can be verified directly. We can finish the argument with a complete change
of variables, but it is easier to use the following argument. As x traverses the b cycle n times (around
the pair of points 0, ∞ or 1, t), the function θ−1

1 (z, τ) is multiplied by ψn = eπi(n2τ+2nz). Because the
coefficients in Eq. (10) are rational with respect to x and t, the functions θ−1

1 (z, τ)ψn are its solutions.
Therefore, the replacement f = θ−1

1 (z, τ)ψ transforms (10) into an equation satisfied by the family ψn with
integer n.

A.2. We prove the theorem in Sec. 2 using an analogue of the heat equation,

4πi
∂ψ

∂Bjj
=

∂2ψ

∂z2
j

, 2πi
∂ψ

∂Bjk
=

∂2ψ

∂zj∂zk
, j, k = 1, g. (11)

The lemmas given below are based on the following propositions from the theory of hyperelliptic curves.
The first proposition is equivalent to Lemma 4.1 in [16]:

2g∑

i=0

1
x − ti

∂Bjk

∂ti
= 4πi

∂vj

∂x

∂vk

∂x
, j, k = 1, g. (12)

According to the second proposition, the normalized integrals of the first kind vj(x), defined in Sec. 2, are
expressed in terms of the periods of the integral of the third kind Ix

γ :

∫ x,+

x,−
dvj =

1
2πi

(∮

bj

dIx
γ −

g∑

k=1

Bjk

∮

ak

dIx
γ

)
, dIx

γ =

√
R(x)

γ − x

dγ√
R(γ)

. (13)

This identity can be verified by comparing the two sides and the integral along the boundary of the Riemann
surface cut along all cycles [19], [32]

1
2πi

∮

∂Γ′
vj(γ)dIx

γ

or by using the bilinear period relations from Abel’s work [33]. Yet another method for calculating is given
in the section on the hyperelliptic Riemann constants vector (the Christoffel method) in [20].
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Lemma 1. The vector z = v(x) − v(t0) − v(t2g) satisfies the equation

2g∑

i=0

1
x − ti

∂z

∂ti
=

∂2z

∂x2
− F

∂z

∂x
, F =

R′(x)
2R(x)

+
g∑

k=1

∂vk

∂x

[∮

ak

dIx
γ + 4πiµk

]
,

where the numbers µk are the coefficients of the period decomposition of the half-period

vj(t0) + vj(t2g) =
∑

k

µkBkj + νj .

Proof. We find the derivatives of the integrals vj from (13) using relations that hold for any cycle:

∂

∂ti

∮
dIx

γ = −1
2

√
R(x)

x − ti

∮
dγ

(γ − ti)
√

R(γ)
,

∂

∂x

∮
dIx

γ =
1
2

2g∑

i=0

√
R(x)

x − ti

∮
dγ

(γ − ti)
√

R(γ)
.

After substituting the derivatives of vj in the considered equation and using identities (12), we obtain the
final form of the proposition.

Lemma 2. Let z and F be the same as in Lemma 1. Then all solutions ψ(z, B) of system (11) are

solutions of the equation
2g∑

i=0

1
x − ti

ψti = ψxx − Fψx. (14)

Proof. The required equation follows from the expressions for the derivatives ψti , ψx, and ψxx in
terms of the derivatives of ψ with respect to Bjk and zj with formulas (12) and (11) and Lemma 1 taken
into account.

Lemma 3. Functions (5), (9) satisfy the equation

2g∑

i=0

1
x − ti

fti = fxx +
1
2

[ ∑

i∈J

1
x − ti

−
∑

i∈I

1
x − ti

]
fx,

where the sets I and J are the same as in Eq. (7).

Proof. According to Lemma 2, the functions

ψ = Θ[p, q](z; B), ψ = eπi〈n,nB+2z〉

satisfy Eq. (14). Substituting ψ = f ·Θ(z; B) in (14) and taking into account that the solution ψ = Θ(z; B)
corresponds to f = 1, we obtain an equation for f of the form

2g∑

i=0

1
x − ti

fti = fxx − F1fx.
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To find the function F1, we use the expression for some nonconstant solutions f of family (5) in terms of
x and ti, which follow from solving the Jacobi inversion problem. The needed formulas are given in [22]
(Theorem 5.3(3) in Chap. 3a; also see [19]–[21]):

∏
i∈J

√
ti − tk

∏i�=k
i∈I

√
ti − tk

(x − tk) =
Θ2[ηk](z; B)

Θ2(z; B)
, k ∈ I,

where z = v(x) − v(t0) − v(t2g) and the characteristic ηk corresponds to the period v(tk).
Lemma 3 directly implies the theorem formulated in Sec. 2 because functions (5) are homogeneous by

definition:
2g∑

i=0

(x − ti)fti = 0,

2g∑

i=0

fti + fx = 0.

The systems of equations satisfied by theta functions with an argument equal to a sum of integrals of
the first kind can be related to Eq. (3). We give the corresponding propositions in Appendix C.

Appendix B

We consider Eqs. (7) and (8) in the case g = 2. We set t0 = 0 and t2g = 1, replace t1 → εt1, t2 → t2ε
−1,

and t3 → 1 − εt3, and take the limit ε → 0 in (7) and (8):

fxx +
[

1
x

+
1

x − 1
−

3∑

i=1

1
x − ui

]
fx =

( 3∑

i=1

βi

x − ui
+ k1 +

k2x + k3

x(x − 1)

)
f

x(x − 1)
, (15)

−t1ft1

x2(x − 1)
− t2ft2

x(x − 1)
+

t3ft3

x(x − 1)2
= fxx. (16)

Equation (15) is integrable in hypergeometric functions; the corresponding isomonodromy deformation
system is Liouville integrable. Any solution of (15) is a linear combination of four solutions of (16) of the
form

fn,m,l = tn
2−n

1 tm
2−m

3 t−l2+l
2 P (n, m, l; x),

where P (n, m, l; x) satisfies the relation

Pxx =
(
−n(n − 1)
x2(x − 1)

+
l(l − 1)
x(x − 1)

+
m(m − 1)
x(x − 1)2

)
P.

In the limit ε → 0, functions (5) give particular solutions of (16). For example, taking the limit ε → 0
of functions (5) (multiplied beforehand by an appropriate quantity depending on ε) with half-integer [p, q]
gives the solutions

0, 1, (t−1
1 t2)1/4x1/2, (t−1

3 t2)1/4(x − 1)1/2, (t1t3)−1/4[x(x − 1)]1/2, x, x − 1.

It is clear that it is difficult to find the limit as ε → 0 of functions (6) for arbitrary [p, q] (there are many
divergent quantities); we obtain an expression of the form

log f =
1
2

∫ [
±U1(U1 − 1) + x(x − 1)

x(x − 1)(x − U1)
+

±U2(U2 − 1) + x(x − 1)
x(x − 1)(x − U2)

+
V2x + V1

x(x − 1)

]
dx,

i.e., depending on the sign and up to multiplication by a function of t,

f = xn(x − 1)m, f = xn(x − 1)m(x − U), f = xn(x − 1)m(x − U1)(x − U2),
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where U = U1 or U = U2. The limits as ε → 0 of functions (5) are presumably linear combinations of three
solutions of (16) of the form

fn,m = tn
2−n

1 tm
2−m

3 t
−(n+m)2+n+m
2 xn(x − 1)m.

The functions of the family fn,m satisfy the equation

{
ac ∂x +

(
1
x

+
1

x − 1
− ∂x

)
(a + b + c)2

4
− a + b + c

2

(
a

x
+

c

x − 1

)}
f = 0, (17)

where a = t1∂t1 , b = t2∂t2 , and c = t3∂t3 . Therefore, the closure of the linear envelope of the family fn,m

does not contain all solutions of (16).
The assumption that the closure of the linear envelope of family (9) for g = 2 contains all solutions

of Eq. (8) or solutions of Eq. (7) whose monodromy group has a non-Abelian commutant contradicts the
obvious fact that the corresponding functions fn,m,l and solutions of (15) do not satisfy (17).

The existence of Eq. (17) for the limit form of functions (5) presumably means that functions (5)
satisfy a third- or fourth-order linear equation with coefficients independent of p and q, which does not
follow from (8). To derive this linear equation, we must replace the variables in system (11):

4πi
∂ψ

∂B11
=

∂2ψ

∂z2
1

, 2πi
∂ψ

∂B12
=

∂2ψ

∂z1∂z2
, 4πi

∂ψ

∂B22
=

∂2ψ

∂z2
2

.

Appendix C

C.1. From system (2), we derive equations for the matrix M = τΨ−1(y)Ψ(x):

∑

i

Mti + Mx + My = 0,
∑

i

tiMti + xMx + yMy =
(

∆∞ −
∑

i

∆i

)
M,

∑

i

(
1

x − ti
+

1
y − x

)
Mti = Mxx −

∑

i

∆i

(x − ti)2
M,

∑

i

(
1

y − ti
+

1
x − y

)
Mti = Myy −

∑

i

∆i

(y − ti)2
M.

C.2. In the case with three variables ti, we eliminate t1 and t2 from the equations for M . We set
t1 = 0, t2 = 1, and t3 = t. Then the function Y = (x − y)−1M is a solution of the equations

t(t − 1)Yt

x(x − 1)(x − t)
+

y(y − 1)Yy

x(x − 1)(x − y)
= Yxx +

(
1
x

+
1

x − 1
+

1
x − y

)
Yx −

−
(

∆0

x2
+

∆1

(x − 1)2
+

∆3

(x − t)2
+

∆∞ − 1 − ∆1 − ∆2 − ∆3

x(x − 1)

)
Y,

[x(x − 1)(x − t)Yx]x −
(

(∆∞ − 1)x + ∆1
t

x
+ ∆2

1 − t

x − 1
+ ∆3

t(t − 1)
x − t

)
Y =

= [y(y − 1)(y − t)Yy ]y −
(

(∆∞ − 1)y + ∆1
t

y
+ ∆2

1 − t

y − 1
+ ∆3

t(t − 1)
y − t

)
Y.

The variables are separated in the last equation. The substitution

z =
xy

t
, v =

(x − t)(y − t)
t(x − 1)(y − 1)

, Y =
L

z − 1
,
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is also known to separate the variables in the same equation and to eliminate t:

(z − 1)2
[
(zLz)z − ∆∞z − ∆1

z(z − 1)
L

]
= (v − 1)2

[
(vLv)v − ∆2v − ∆3

v(v − 1)
L

]
.

The appearance of hyperelliptic functions here in connection with the Lamé and Heun equations was
discussed in Sec. 15.5.3 in [30] and in [34], [35].

C.3. The Painlevé I equation u′′ = 6u2 + t follows from the system

Ψx =

(
u′ 2(x − u)

2(x2 + ux + u2) + t −u′

)
Ψ, Ψt =

(
0 1

x + 2u 0

)
Ψ.

Writing this system in terms of the components τΨ = (ψ, ψ1)T, where the τ -function is defined standardly,
(log τ)′ = u′2/2 − 2u3 − tu, we obtain the equation [11]

2ψt = ψxx − (4x3 + 2tx)ψ.

The function Y = (x − y)−1τΨ(y)−1Ψ(x) satisfies the equation

4Yt = Yxx + Yyy + 2(x − y)−1(Yx − Yy) − (4x3 + 2tx + 4y3 + 2ty)Y,

Yxx − Yyy = [4(x3 − y3) + 2t(x − y)]Y.

Changing the variables as v = x + y and z = (x − y)2 + 2t allows eliminating t from the second equation:

2Yt = Yvv + 4(z − 2t)Yzz + 2Yz − (v2 + 3z − 4t)
vY

2
, 8Yzv = (3v2 + z)Y.

Applying the Laplace transformation

f =
∫

e−kzY dz,

we obtain the relation

fk = −8kfv + 3v2f,

2ft = fvv + (32k3 − 12kv)fv + (4v3 + 2tv − 8k2t − 12k2v2 − 6k)f.

The first equation is exactly solvable,

f = F (ζ)e128k5/5−16vk3+3v2k, ζ = 4k2 − v,

and the second equation implies 2Ft = Fζζ − (4ζ3 + 2tζ)F , encountered above.

C.4. The derivatives fxixj of the function f = Θ−1(v(x1) + · · · + v(xg) + K; B), where the vector of
Riemann constants with the initial point ∞ is equal to the sum of the integrals to the points t2i,

K = −v(t0) − v(t2) − · · · − v(t2g),

can be expressed linearly in terms of fx1 , . . . , fxg , and fti with algebraic coefficients. A part of these
equations forms the Belavin–Polyakov–Zamolodchikov system [10] with the central charge c = 1:

2g∑

i=0

1
xj − ti

fti = fxjxj −
1
2

2g∑

i=0

1
xj − ti

fxj +
∑

k �=j

fxj − fxk

xj − xk
, j = 1, g,

which follows from lemmas similar to the ones in Appendix A and from a solution of the Jacobi inversion
problem expressed by the formulas [19]–[22]

√
(−1)i+1

R′(ti)

g∏

j=1

(xj − ti) =
Θ2[ηi](z; B)

Θ2(z; B)
, i = 0, 2g.
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