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WEAKLY PERIODIC GROUND STATES AND GIBBS MEASURES

FOR THE ISING MODEL WITH COMPETING INTERACTIONS ON

THE CAYLEY TREE

U. A. Rozikov∗ and M. M. Rakhmatullaev†

We introduce the notion of a weakly periodic configuration. For the Ising model with competing interac-

tions, we describe the set of all weakly periodic ground states corresponding to normal divisors of indices

2 and 4 of the group representation of the Cayley tree. In addition, we study new Gibbs measures for the

Ising model.
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1. Introduction

It is known that the phase diagram of Gibbs measures for a Hamiltonian is close to the phase diagram
of isolated (stable) ground states of this Hamiltonian. At low temperatures, a periodic ground state corre-
sponds to a periodic Gibbs measure [1], [2]. The notion of a weakly periodic Gibbs measure was introduced
in [3], and the set of such measures for the Ising model was described there. The problem of describing
weakly periodic ground states therefore arises.

Here, we introduce the notion of a weakly periodic ground state and describe the sets of such states
for the Ising model with competing interactions (see Hamiltonian (2) below). This model was studied at
the physical level in [4], where the phase diagram of states of the system was given for specific values of the
parameters. The problem of describing translation-invariant Gibbs measures was solved in [5]. The results
in [6] permit explicitly describing the region of the parameters of model (2) where periodic Gibbs measures
exist. All periodic ground states and a set of nonperiodic ground states for model (2) were described in [7],
and the contour method was used there to prove that at sufficiently low temperatures, there exist two Gibbs
measures corresponding to translation-invariant boundary conditions. Here, we describe weakly periodic
ground states and the Gibbs measures for model (2).

This paper is organized as follows. In Sec. 2, we present necessary definitions, the statement of the
problem, and the required knowledge in [7]. In Sec. 3, we describe weakly periodic ground states. Each
weakly periodic configuration corresponds to a quadratic matrix B. We reduce the problem of describing
weakly periodic ground states to the problem of solving a system of linear equations for the elements of B. In
Sec. 3.1, we study weakly periodic ground states corresponding to arbitrary normal divisors of index 2, and
in Sec. 3.2, we consider a family of normal divisors of index 4 and describe the corresponding ground states.
In Sec. 4, we present new weakly periodic Gibbs measures for the Ising model, significantly improving the
result in [3]. In Sec. 5, we discuss the obtained results.
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2. Preliminaries

2.1. Cayley tree. Let τk = (V, L), k ≥ 1, be the Cayley tree of order k, i.e., an infinite tree such
that exactly k+1 edges issue from each of its vertices, where V is the set of vertices and L is the set of
edges of τk. It is known that τk can be represented as Gk, i.e., as a free product of k+1 cyclic second-order
groups with generators a1, a2, . . . , ak+1. Therefore, Gk can be considered instead of V . For an arbitrary
point x0 ∈ Gk, we set

Wn = {x ∈ Gk : d(x0, x) = n}, Vn =
n⋃

m=0

Wm, Ln = {〈x, y〉 ∈ L : x, y ∈ Vn}, (1)

where d(x, y) is the distance between x and y on the Cayley tree, i.e., the number of edges in the path
connecting x to y.

Let S(x) be the set of direct descendants of a point x: if x ∈ Wn, then S(x) = {y ∈ Wn+1 : d(x, y) = 1}.
We note that for any x ∈ Gk, the set {y ∈ Gk : d(x, y) = 1} \ S(x) has a unique element; we let x↓ denote
it.

2.2. Configuration space. Let Φ = {−1, 1}, and let σ ∈ Ω = ΦV be a configuration, i.e., σ =
{σ(x) ∈ Φ: x ∈ V }. Let A ⊂ V . We let ΩA denote the space of configurations defined on the set A and
taking values in Φ.

We assume that a group of spatial transitions acts on Ω. We define an Fk-periodic configuration as
a configuration σ(x) that is invariant under a subgroup Fk ⊂ Gk of finite index, i.e., σ(yx) = σ(x) for all
x ∈ Gk and y ∈ Fk. For a given periodic configuration, the index of the subgroup is called the period of

the configuration, and a configuration invariant under all transitions is said to be translation invariant.

Let Gk/Fk = {H1, . . . , Hr} be the quotient group, where Fk is a normal divisor of an index r ≥ 1. A
configuration σ(x) is said to be Fk-weakly periodic if σ(x) = aij for all x↓ ∈ Hi and x ∈ Hj , where aij ∈ Φ,
i, j = 1, . . . , r.

2.3. Model with competing interactions. We present necessary definitions and results in [7]. We
consider the Hamiltonian of the Ising model with competing interactions

H(σ) = J1

∑

〈x,y〉
σ(x)σ(y) + J2

∑

x,y∈V : d(x,y)=2

σ(x)σ(y), (2)

where J1, J2 ∈ R and σ ∈ Ω. We set

H(σ, ϕ) = J1

∑

〈x,y〉
(σ(x)σ(y) − ϕ(x)ϕ(y)) + J2

∑

x,y∈V : d(x,y)=2

(σ(x)σ(y) − ϕ(x)ϕ(y)), (3)

where J = (J1, J2) ∈ R
2.

Let M be the set of unit balls in V and σb be the restriction of a configuration σ to a ball b ∈ M . The
energy of the configuration σb is defined as

U(σb) ≡ U(σb, J) =
1
2
J1

∑

〈x,y〉, x,y∈b

σ(x)σ(y) + J2

∑

x,y∈b : d(x,y)=2

σ(x)σ(y), (4)

where J = (J1, J2) ∈ R
2. Configurations σb and σ′

b′ belong to the same class (are equivalent, σ′
b′ ∼ σb) if

U(σb) = U(σ′
b′).

We let |A| denote the number of elements of a set A.
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Lemma [7]. 1. We have U(σb) ∈ {U0, U1, . . . , Uk+1} for all σb, where

Ui =
(

k + 1
2

− i

)
J1 +

[
k(k + 1)

2
+ 2i(i − k − 1)

]
J2, i = 0, 1, . . . , k + 1. (5)

2. Let Ci = Ωi ∪ Ω−
i , i = 0, . . . , k + 1, where

Ωi = {σb : σb(cb) = +1, |{x ∈ b \ {cb} : σb(x) = −1}| = i},

Ω−
i = {−σb = {−σb(x), x ∈ b} : σb ∈ Ωi},

and cb is the center of the ball b. Then U(σb) = Ui for all σb ∈ Ci.

Definition. A configuration ϕ is called a ground state of the Hamiltonian H if

U(ϕb) = min{U0, U1, . . . , Uk+1} for all b ∈ M. (6)

Let Ui(J) = U(σb, J) for σb ∈ Ci, i = 0, 1, . . . , k + 1. For a fixed m = 0, 1, . . . , k + 1, we set

Am = {J ∈ R
2 : Um(J) = min{U0(J), U1(J), . . . , Uk+1(J)}}. (7)

It is easy to verify that

A0 = {J ∈ R
2 : J1 ≤ 0, J1 + 2kJ2 ≤ 0},

Am = {J ∈ R
2 : J2 ≥ 0, 2(2m − k − 2)J2 ≤ J1 ≤ 2(2m− k)J2}, m = 1, 2, . . . , k,

Ak+1 = {J ∈ R
2 : J1 ≥ 0, J1 − 2kJ2 ≥ 0},

and R
2 =

⋃k+1
i=0 Ai. For any Ai and Aj , i 
= j, we have

Ai ∩ Aj =






{J : J1 = 2(2i − k)J2, J2 ≥ 0}, j = i + 1, i = 0, 1, . . . , k,

(0, 0), 1 < |i − j| < k + 1,

{J : J1 = 0, J2 ≤ 0}, |i − j| = k + 1.

(8)

Let

B = A0 ∩ Ak+1, Bi = Ai ∩ Ai+1, i = 0, . . . , k,

Ã0 = A0 \ (B ∪ B0), Ãk+1 = Ak+1 \ (B ∪ Bk),

Ãi = Ai \ (Bi−1 ∪ Bi), i = 1, . . . , k.

We let GS(H) denote the set of all ground states of the Hamiltonian H (see (3)). We introduce the
notation σ̄ = −σ = {−σ(x), x ∈ V } for σ = {σ(x), x ∈ V } ∈ Ω.

Theorem 1 [7]. The following assertions hold:

1. If J = (0, 0), then GS(H) = Ω.
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2. If J ∈ Ãi, i = 0, . . . , k + 1, then GS(H) = {σ(i), σ̄(i)}.

3. If J ∈ Bi \ {(0, 0)}, i = 0, . . . , k, then GS(H) = {σ(i), σ̄(i), σ(i+1), σ̄(i+1)} ∪ Si, where Si contains at

least countably many nonperiodic ground states.

4. If J ∈ B \ {(0, 0)}, then GS(H) = {σ(0), σ̄(0), σ(k+1), σ̄(k+1)}, where σ(i) and σ̄(i), i = 0, . . . , k + 1,

are periodic ground states such that σ
(i)
b , σ̄

(i)
b ∈ Ci for all b ∈ M , i.e., σ(0) and σ̄(0) are translation

invariant, and σ(i) and σ̄(i), i = 1, . . . , k + 1, are periodic states with the period 2.

We note that the weakly periodic ground states (which do not coincide with periodic ground states)
belong to the set Si. Our main goal here is to describe the set of weakly periodic ground states explicitly.

3. Weakly periodic ground states

Let H be an arbitrary normal divisor of a finite index r ≥ 2, and let Gk/H = {H1, . . . , Hr} be the
quotient group. We set

I = I(H) = {(i, j) ∈ {1, . . . , r}2 : ∃x ∈ Hi, ∃y ∈ Hj such that d(x, y) = 1},

Ii = Ii(H) = {j ∈ {1, . . . , r} : (i, j) ∈ I}.

We associate each H-weakly periodic configuration σ, i.e.,

σ(x) = aij , x↓ ∈ Hi, x ∈ Hj , (i, j) ∈ I, (9)

with a quadratic matrix B = B(σ) = {bij}r
i,j=1 with the elements

bij =





aij , (i, j) ∈ I,

0, (i, j) /∈ I.

Let S1(x) be the set of all nearest neighbors of a point x, and let

qj(x) = |S1(x) ∩ Hj |, j = 1, . . . , r, Q(x) = (q1(x), . . . , qr(x)).

We note that for any x ∈ Gk, there exists a permutation πx of the coordinates of the vector Q(e) such that

πxQ(e) = Q(x). (10)

The following theorem imposes conditions on the elements of the matrix B(σ) under which σ is a ground
state.

Theorem 2. 1. An H-weakly periodic configuration σ is H-periodic if and only if the matrix B(σ)
consists of equal rows.

2. An H-weakly periodic configuration σ is a ground state of the Hamiltonian H if and only if there

exists j ∈ {0, . . . , k} such that J1 = 2(2j − k)J2, J2 ≥ 0, and

apm − anm +
r∑

s=1

qs(x)ans = (k − 2j ± 1)amn, (11)

where x ∈ Hn, m ∈ Ip, and n ∈ Im.
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Proof. 1. Assertion 1 follows from (9) and the definition of B.
2. The condition J1 = 2(2j − k)J2, J2 ≥ 0, follows from assertion 3 in Theorem 1 and from (8).

We note that for J1 = 2(2j − k)J2, the configuration σ is a ground state if there exists j ∈ {0, . . . , k}
such that σb ∈ Cj ∪ Cj+1 for all b ∈ M . This means that for any x and for σ(x) = 1 or σ(x) = −1, the
configuration σS1(x) contains either j or j+1 or either k+1−j or k−j elements −1. The sum of all values
of σ(y), y ∈ S1(x), is therefore (k − 2j ± 1)σ(x), which implies the statement in the theorem.

Remark 1. System (11) consists of linear equations, and it is necessary to find aij ∈ {−1, 1}. The
best method for finding such solutions is to consider all possible versions aij ∈ {−1, 1}, j ∈ Ii (the number
of versions does not exceed 2|I|) and to check which of them satisfies system (11) for some j ∈ {0, . . . , k}.
Here, we solve system (11) for normal divisors of indices 2 and 4.

3.1. Case of index 2. Let HA = {x ∈ Gk :
∑

j∈A wj(x) is an even number}, A ⊂ {1, 2, . . . , k + 1},
where wj(x) is the number of letters aj in the word x. It is clear that HA is a normal divisor of index 2.
Let Gk/HA = {H1, H2} be the quotient group, where H1 = HA and H2 = Gk \ HA. Then the HA-weakly
periodic configuration has the form

ϕ(x) = ±






a11, x↓ ∈ H1, x ∈ H1,

a12, x↓ ∈ H1, x ∈ H2,

a21, x↓ ∈ H2, x ∈ H1,

a22, x↓ ∈ H2, x ∈ H2.

(12)

Let |A| = i. Then system (11) has the form

a11 + (k − i)a11 + ia12 = (k − 2j ± 1)a11,

a21 + (k − i)a11 + ia12 = (k − 2j ± 1)a11,

a12 + (k − i + 1)a11 + (i − 1)a12 = (k − 2j ± 1)a21,

a22 + (k − i + 1)a11 + (i − 1)a12 = (k − 2j ± 1)a21,

a11 + (k − i)a21 + ia22 = (k − 2j ± 1)a12,

a21 + (k − i)a21 + ia22 = (k − 2j ± 1)a12

a12 + (k − i + 1)a21 + (i − 1)a22 = (k − 2j ± 1)a22,

a22 + (k − i + 1)a21 + (i − 1)a11 = (k − 2j ± 1)a22,

(13)

where i ∈ {0, . . . , k + 1} and j ∈ {0, . . . , k}.
We note that the vector (a11, a12, a21, a22) ∈ {(±1,±1,±1,±1)} takes 16 values. Substituting the

coordinates of these vectors in system (13), we obtain the following theorem.

Theorem 3. Let |A| = i.

1. If i 
= (k + 1)/2, then each HA-weakly periodic ground state is HA-periodic or translation invariant,

i.e., corresponds to one of the vectors ±(1, 1, 1, 1) and ±(−1, 1,−1, 1).
2. For i = (k + 1)/2 and J1 = 2J2, J2 ≥ 0, there exist two HA-weakly periodic (nonperiodic) ground

states corresponding to the vectors ±(1,−1,−1, 1).
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3.2. Case of index 4. Let HA = {x ∈ Gk :
∑

j∈A wj(x) is an even number}, A ⊂ {1, 2, . . . , k + 1},
and G

(2)
k = {x ∈ Gk : |x| is an even number}, where |x| is the length of the word x. Then G

(4)
k = HA ∩G

(2)
k

is a normal divisor of index 4. Let Gk/G
(4)
k = {H1, H2, H3, H4} be the quotient group.

We note that I(G(4)
k ) = {(1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2)}, and any G

(4)
k -weakly peri-

odic configuration therefore has the form

ϕ(x) = aij if x↓ ∈ Hi, x ∈ Hj , (i, j) ∈ I(G(4)
k ).

Each weakly periodic configuration is thus associated with an eight-dimensional vector (aij , (i, j) ∈ I). In
this case, it is easy to verify the following assertion.

Theorem 4. Let |A| = i.

1. If i 
= (k + 1)/2, then each G
(4)
k -weakly periodic ground state is periodic and translation invariant.

2. If i = (k+1)/2 and J1 = 2J2, J2 ≥ 0, then there are four G
(4)
k -weakly periodic (nonperiodic) ground

states ±ϕ′ and ±ϕ′′ corresponding to ±(1, 1,−1,−1,−1,−1, 1, 1) and ±(−1, 1, 1,−1,−1, 1,−1, 1):

±ϕ′(x) = ±






+1, x↓ ∈ H2, x ∈ H4,

+1, x↓ ∈ H4, x ∈ H2,

−1, x↓ ∈ H1, x ∈ H4,

−1, x↓ ∈ H4, x ∈ H1,

−1, x↓ ∈ H3, x ∈ H2,

−1, x↓ ∈ H2, x ∈ H3,

+1, x↓ ∈ H1, x ∈ H3,

+1, x↓ ∈ H3, x ∈ H1,

± ϕ′′(x) = ±






−1, x↓ ∈ H2, x ∈ H4,

+1, x↓ ∈ H4, x ∈ H2,

+1, x↓ ∈ H1, x ∈ H4,

−1, x↓ ∈ H4, x ∈ H1,

−1, x↓ ∈ H3, x ∈ H2,

+1, x↓ ∈ H2, x ∈ H3,

−1, x↓ ∈ H1, x ∈ H3,

+1, x↓ ∈ H3, x ∈ H1.

Corollary 1. If k is an even number, then each weakly periodic ground state is periodic.

It follows from (5) and (8) that Theorems 3 and 4 imply the following assertion.

Corollary 2. For the ground states constructed in Theorems 3 and 4, the energy of these configura-

tions in any ball of radius 1 is given by −(k + 1)J2/2, J2 ≥ 0.

Remark 2. We note that the matrices of the configurations constructed in Theorem 3 are symmetric
or skew-symmetric. The matrix B(ϕ′) is also symmetric, and the matrix B(ϕ′′) is skew-symmetric.

The following conjecture therefore seems to hold.

Conjecture 1. Let an H-weakly periodic configuration ϕ be a ground state for Hamiltonian (2). Then

the matrix B(ϕ) is either symmetric or skew-symmetric.

The following example shows that it does not follow from the symmetry or skew-symmetry of the
matrix B(ϕ) that ϕ is a ground state.
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Example. We consider

ϕ0(x) =






+1, x↓ ∈ H2, x ∈ H4,

+1, x↓ ∈ H4, x ∈ H2,

+1, x↓ ∈ H1, x ∈ H4,

+1, x↓ ∈ H4, x ∈ H1,

+1, x↓ ∈ H3, x ∈ H2,

+1, x↓ ∈ H2, x ∈ H3,

−1, x↓ ∈ H1, x ∈ H3,

−1, x↓ ∈ H3, x ∈ H1,

B(ϕ0) =





0 0 −1 1

0 0 1 1

−1 1 0 0

1 1 0 0




.

The matrix B(ϕ0) is symmetric, but it is easy to verify that ϕ0 is not a ground state.

Theorems 3 and 4 also imply the following conjecture.

Conjecture 2. Let H be an arbitrary normal divisor of finite index. An H-weakly periodic config-

uration ϕ is a ground state of Hamiltonian (2) if and only if ϕ ∈ C(k+1)/2 ∪ C(k+1)/2+1 and J1 = 2J2,

J2 ≥ 0.

4. New weakly periodic Gibbs measures

We describe new weakly periodic Gibbs measures for the Ising model (i.e., model (2) with J2 = 0).
The results in this section supplement the results in [3].

The problem of describing weakly periodic Gibbs measures in several special cases was reduced in [3]
to the problem of describing solutions of the equation

±x = −(k − 1)f(x, θ) + f(kf(x, θ), θ), (14)

where f(x, θ) = arctanh(θ tanh x) and θ = tanh(Jβ). Lemma 1 in [3] can also be used to obtain the
equations

±x = (k − 1)f(x, θ) + f(kf(x, θ), θ). (15)

Because f(x,−θ) = −f(x, θ), Eqs. (15) can be reduced to Eqs. (14) by the change θ = −θ. The solutions
of Eqs. (15) are therefore obtained from the solutions of (14) by replacing θ with −θ.

Theorem 2 in [3] can therefore be supplemented with new solutions, and we obtain the following
theorem.

Theorem 5. Let α = (1− θ)/(1 + θ). For k = 4, there exist critical values αcr(≈ 0.152) and αc = 3/5
such that

1. there exist seven weakly periodic Gibbs measures for α ∈ [0, αcr) ∪ (α−1
cr , +∞),

2. there exist five weakly periodic Gibbs measures for α = αcr, α
−1
cr ,

3. there exist three weakly periodic Gibbs measures for α ∈ (αcr, αc) ∪ (α−1
c , α−1

cr ), and

4. there exists one weakly periodic Gibbs measure for α ∈ [αc, α
−1
c ].
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Remark 3. 1. In all cases in Theorem 5, one of the weakly periodic measures is translation invariant,
which corresponds to the solution x = 0 of Eqs. (14) and (15). All the other measures are H{1}∩G

(2)
4 -weakly

periodic.
2. From αc = (1 − θc)/(1 + θc) = 3/5, we obtain the critical value θc of the phase transition for the

Ising model, i.e., |θc| = 1/k for k = 4 (see, e.g., [8]).
3. Five Gibbs measures among the seven in assertion 1 in Theorem 5 correspond to the stable solutions

of Eqs. (14) and (15). The well-known methods (see, e.g., [8]–[10]) can therefore be used to prove that at
least five of them are extreme (indecomposable).

The following conjecture is formulated based on computer calculations and Theorem 5.

Conjecture 3. 1. For the Ising model on the Cayley tree of order k ≥ 4, the statements in Theorem 5

hold for the critical values αcr = αcr(k) and αc = (k − 1)/(k + 1).
2. The estimate αcr = (1− θcr)/(1 + θcr) < (

√
k − 1)/(

√
k + 1) holds for αcr, i.e., |θcr| < |θSG

c | = 1/
√

k,

where θSG
c is the critical value for the spin glass model and the second critical value for the Ising model,

below which the measure corresponding to x = 0 is an extreme measure (see [11], [12]).

5. Discussion

There are two approaches used to describe the Gibbs measures on the Cayley tree. The first approach,
based on the theory of Markov random fields, permits describing the set of special Gibbs measures (called
Markov chains in [8] and [13], entrance laws in [14] and [15], boundary laws in [9], and splitting Gibbs
measures in [16]). The second approach, based on the contour method, gives Gibbs measures corresponding
to some boundary conditions (ground states) [7], [17]. The relation between the measures constructed using
these two approaches is not clear in the general case. Such a relation for the Ising model was described
in [10].

Our results here show that the weakly periodic ground states for model (2) exist only for J1 = 2J2.
Therefore, for J2 = 0, i.e., for the usual Ising model (for J1 
= 0), there do not exist weakly periodic ground
states. It is therefore not clear what boundary configurations are associated with the weakly periodic
measures described in Theorem 5.

The problem of describing weakly periodic Gibbs measures for model (2) (for J2 
= 0) is rather compli-
cated. The point is that to solve this problem, it is necessary to solve the system of functional equations (4)
given in [6] in the class of weakly periodic functions, which is a very complicated problem. On the other
hand, the results in Sec. 3 can be useful for describing the weakly periodic Gibbs measures of model (2)
(J2 
= 0) by the contour method.
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