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THE NUMBER OF BOUND STATES OF A ONE-PARTICLE

HAMILTONIAN ON A THREE-DIMENSIONAL LATTICE

S. N. Lakaev∗ and I. N. Bozorov†

We consider the Hamiltonian ĥµλ, µ, λ ≥ 0, describing the motion of one quantum particle on a three-

dimensional lattice in an external field. We investigate the number of eigenvalues and their arrangement

depending on the value of the interaction energy for µ ≥ 0 and λ ≥ 0.
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1. Introduction

The importance of threshold virtual levels for Hamiltonians of two-particle systems and their role in
determining the number of bound states for Hamiltonians of systems of three quantum particles moving
in the Euclidean space was first indicated by Efimov in [1], [2]. In [3], [4], the notion of virtual levels was
introduced mathematically rigorously and was used to prove that the number of three-particle bound states
is infinite (the Efimov effect).

In [5], the role of virtual levels was studied for three-particle Hamiltonians restricted to certain sub-
spaces satisfying symmetry conditions. In particular, it was proved that the number of bound states for
Hamiltonians of systems of three identical particles (fermions) is finite. In [6], [7], virtual levels of discrete
two-particle Schrödinger operators h(k), k ∈ T

3, on the lattice Z
3 in the case k = 0 ∈ T

3 and their role
in determining the number of three-particle bound states for discrete three-particle Schrödinger operators
H(K), K ∈ T

3, associated with Hamiltonians of systems of three arbitrary identical particles on the lattice
Z

3 were investigated.
In [8], [9], the spectral properties were studied for one-particle Hamiltonians h describing the motion of

one quantum particle in a potential field v̂ and of two-particle discrete Schrödinger operators h(k), k ∈ T
ν ,

associated with Hamiltonians of systems of two arbitrary identical particles on a lattice that interact via
short-range pair potentials. In [10], the existence of bound states for some values of the quasimomentum
of two particles was investigated for a certain class of Gibbs-field transfer matrices. In [8], for a wide class
of discrete two-particle Schrödinger operators h(k),k ∈ T

d (d ≥ 3), it was found that if the two-particle
operator h(0) has a virtual level or an eigenvalue on the threshold z = εmin(0) of the essential spectrum,
then the operator h(k) has an eigenvalue below the threshold of the essential spectrum for all k �= 0.

Here, we consider the Hamiltonian ĥµλ, µ, λ ≥ 0, describing the motion of one quantum particle on a
three-dimensional lattice in an external field. We completely investigate the dependence of the number of
eigenvalues of this operator on the interaction energy for µ ≥ 0 and λ ≥ 0. We show that all eigenvalues
arise either from a threshold virtual level (resonance) or from threshold eigenvalues under a variation of
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the interaction energy. We also describe the sets of parameter values µ, λ ≥ 0 for which the Hamiltonian
hµλ has a virtual level, an eigenvalue, or both a virtual level and an eigenvalue. The set of values of the
interaction energy is described (curves and a point) for which the threshold z = 0 is (a) a regular point
of the continuous spectrum, (b) a virtual level or a two-fold eigenvalue, or (c) both a virtual level and an
eigenvalue of hµλ.

We exactly describe the interaction-energy range where the Hamiltonian hµλ either has no eigenvalues
or has one, two, three, or four eigenvalues lying below the lower threshold. Moreover, we prove that the
first negative eigenvalue of the Hamiltonian hµλ arises only from a threshold virtual level (resonance) under
a variation of the interaction energy. This result for the continuous two-particle Schrödinger operator was
revealed by Newton (see p. 1353 in [11]) and proved by Tamura (see Lemma 1.1 in [4]) using a result by
Simon [12].

We note that the discrete two-particle Schrödinger operator h(0) is unitarily equivalent to the one-
particle Hamiltonian h and studying the spectral properties of one-particle operators therefore plays a
special role in the spectral theory of many-particle operators on the lattice Z

d, d = 1, 2, . . . .

2. Coordinate representation for the one-particle Hamiltonian

Let �2(Z3) be the Hilbert space of square summable functions on the three-dimensional integer lattice
Z

3. In the coordinate representation, the free Hamiltonian of one quantum particle moving on the lattice
Z

3 is associated with a bounded self-adjoint operator acting in the space �2(Z3) according to the formula

(ĥ0ϕ̂)(x) =
∑

s∈Z3

ε̂(x − s)ϕ̂(s), ϕ̂ ∈ �2(Z3),

where the function ε̂ is defined on the lattice Z
3 by the relations

ε̂(s) =






3 for |s| = 0,

−1/2 for |s| = 1,

0 for |s| > 1,

s = (s(1), s(2), s(3)) ∈ Z
3, |s| = |s(1)| + |s(2)| + |s(3)|.

In the coordinate representation, the (total) one-particle Hamiltonian in a potential field v̂µλ is defined
as a bounded perturbation of the free Hamiltonian ĥ0,

ĥµλ = ĥ0 − v̂µλ,

where v̂µλ is the operator of multiplication by a function v̂µλ in �2(Z3), i.e.,

(v̂µλϕ̂)(x) = v̂µλ(x)ϕ̂(x), ϕ̂ ∈ �2(Z3).

The function v̂µλ is defined on Z
3 as

v̂µλ(s) =






µ for |s| = 0,

λ/2 for |s| = 1,

0 for |s| > 1,

where the numbers µ ≥ 0 and λ ≥ 0 are not simultaneously zero. The operator ĥµλ is a bounded self-adjoint
operator in the Hilbert space �2(Z3).

Let �2
e(Z

3) ⊂ �2(Z3) be the subspace of even functions on Z
3. We note that the Hilbert space �2

e(Z
3) is

invariant under the action of the operator ĥµλ. In what follows, the restriction ĥµλ|�2e(Z3) of ĥµλ to �2
e(Z3)

is also denoted by ĥµλ.
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3. Momentum representation for the one-particle Hamiltonian

Let T
3 ≡ (−π; π]3 be a three-dimensional torus, i.e., a three-dimensional cube whose opposite faces are

identified. We note that the operations of addition and multiplication by a real number for the elements of
the set T

3 ⊂ R
3 are understood as operations modulo (2πZ)3 in R

3.
Let L2(T3) be the Hilbert space of square integrable functions on T

3, let L2
e(T

3) ⊂ L2(T3) be the
subspace of even functions, and let

F : �2(Z3) → L2(T3), (F f̂)(p) = (2π)−3/2
∑

s∈Z3

f̂(s)ei(p,s),

be the standard Fourier transformation. We note that F
(
�2
e(Z3)

)
⊂ L2

e(T3). We let Fe denote the restriction
of F to �2

e(Z
3). It can be easily verified that Fe

(
�2
e(Z

3)
)

= L2
e(T

3).
The Hamiltonian hµλ = FeĥµλF−1

e (see [8]) in the momentum representation is a bounded self-adjoint
operator in the Hilbert space L2

e(T
3). It acts according to the formula

hµλ = h0 − vµλ,

where h0 is the operator of multiplication by a function ε,

(h0f)(p) = ε(p)f(p), ε(p) =
3∑

i=1

(1 − cos p(i)), f ∈ L2
e(T

3), p = (p(1), p(2), p(3)) ∈ T
3,

and vµλ is a nonnegative integral operator of rank r ≤ 4,

(vµλf)(p) =
1

(2π)3

∫

T3

(

µ + λ

3∑

i=1

cos p(i) cos t(i)
)

f(t) dt, f ∈ L2
e(T

3).

4. Continuous spectrum and a virtual level

The perturbed operator vµλ is an integral operator of rank r ≤ 4, and by the Weyl theorem (see [13]),
the continuous spectrum σcont(hµλ) of the operator hµλ is therefore independent of the parameters µ, λ ≥ 0
and coincides with the spectrum σ(h0) of h0. Hence, the equality

σcont(hµλ) = σ(h0) = [0, 6]

holds.
We consider the orthonormalized system in the space L2

e(T
3)

α0 =
1

(2π)3/2
, αi(p) =

√
2

(2π)3/2
cos p(i), i = 1, 2, 3.

The operator vµλ is representable in the form

vµλf = µα0(f, α0) +
λ

2

3∑

i=1

(f, αi)αi,

where ( · , · ) is the inner product in L2
e(T

3).
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It follows from the nonnegativity of the operator vµλ ≥ 0 that the square root v
1/2
µλ ≥ 0 exists. The

operator v
1/2
µλ acts in L2

e(T
3) according to the formula

(v1/2
µλ f)(p) =

1
(2π)3/2

∫

T3
v
1/2
µλ (p − q)f(q) dq,

where
v
1/2
µλ (p) =

1
(2π)3/2

∑

s∈Z3

v̂
1/2
µλ (s)ei(p,s).

Here, v̂
1/2
µλ is the square root of the positive function v̂µλ.

Let C be the complex plane, and let r0(z), z ∈ C \ [0, 6], be the resolvent of h0.
Because the function ε(q) = ε(q(1), q(2), q(3)) =

∑3
i=1(1 − cos q(i)) is symmetric under permutations of

q(i) and q(j), i, j = 1, 2, 3, the integrals

∫

T3

cos q(i) dq

ε(q) − z
,

∫

T3

cos2 q(i) dq

ε(q) − z
,

∫

T3

cos q(i) cos q(j) dq

ε(q) − z

are independent of i, j = 1, 2, 3, i �= j. We set

a(z) = (α0, r0(z)α0) =
1

(2π)3

∫

T3

dq

ε(q) − z
,

b(z) = (α0, r0(z)αi) =
√

2
(2π)3

∫

T3

cos q(i) dq

ε(q) − z
,

c(z) = (αi, r0(z)αi) =
2

(2π)3

∫

T3

cos2 q(i) dq

ε(q) − z
,

d(z) = (αi, r0(z)αj) =
2

(2π)3

∫

T3

cos q(i) cos q(j) dq

ε(q) − z
,

(4.1)

where i, j = 1, 2, 3, i �= j, and z < 0.
For any fixed µ, λ ≥ 0 and z ∈ C\ [0, 6], we define a finite-dimensional (rank r ≤ 4) Birman—Schwinger

integral operator Gµλ(z) acting in the space L2
e(T3) according to the formula Gµλ(z) = v

1/2
µλ r0(z)v1/2

µλ . We
represent Gµλ(z) in the form

Gµλ(z)f =
(

µa(z)(f, α0) +

√
µλ

2
b(z)

3∑

i=1

(f, αi)
)

α0 +

+
3∑

i=1

[√
µλ

2
b(z)(f, α0) +

λ

2
c(z)(f, αi) +

λ

2
d(z)

3∑

i�=j=1

(f, αj)
]

αi. (4.2)

Because the function ε has a nondegenerate minimum at q = 0 and ε(0) = minq∈T3 ε(q), we have the
finite limits

lim
z→0−

a(z) =
1

(2π)3

∫

T3

dq

ε(q)
, lim

z→0−
b(z) =

√
2

(2π)3

∫

T3

cos q(i) dq

ε(q)
,

lim
z→0−

c(z) =
2

(2π)3

∫

T3

cos2 q(i) dq

ε(q)
, lim

z→0−
d(z) =

2
(2π)3

∫

T3

cos q(i) cos q(j) dq

ε(q)
.
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Therefore, although the resolvent r0(z) does not exist at z = 0, the bounded self-adjoint operator Gµλ(0)
is defined as

Gµλ(0)f =
(

µa(0)(f, α0) +

√
µλ

2
b(0)

3∑

i=1

(f, αi)
)

α0 +

+
3∑

i=1

[√
µλ

2
b(0)(f, α0) +

λ

2
c(0)(f, αi) +

λ

2
d(0)

3∑

i�=j=1

(f, αj)
]

αi.

Remark 1. Clearly, the operator hµλ has an eigenvalue z ≤ 0, i.e., Ker(hµλ−zI) �= 0 if and only if the
compact operator Gµλ(z) in L2

e(T
3) has an eigenvalue equal to 1 and there is a function ψ ∈ Ker(Gµλ(z)−I)

such that

f( · ) =
(v1/2

µλ ψ)( · )
ε( · ) − z

∈ L2
e(T

3).

In this case, f ∈ Ker(hµλ − zI). Moreover, if z < 0, then

dimKer(hµλ − zI) = dimKer(Gµλ(z) − I), (4.3)

Ker(hµλ − zI) =
{

f : f( · ) =
(v1/2

µλ ψ)( · )
ε( · ) − z

, ψ ∈ Ker(Gµλ(z) − I)
}

.

In the case of the threshold eigenvalue z = 0, relation (4.3) must be replaced with the inequality

dimKer(hµλ) ≤ dimKer(Gµλ(0) − I).

Definition 1. The threshold z = 0 of the continuous spectrum σcont(hµλ) is called a singular point

of the continuous spectrum (SPCS) of the operator hµλ if the number 1 is an eigenvalue of the operator
Gµλ(0). And if 1 is not an eigenvalue of Gµλ(0), then z = 0 is called a regular point of the continuous

spectrum (RPCS) of hµλ.

Definition 2. The operator hµλ is said to have a virtual level (on the left threshold of the continuous
spectrum) if the number 1 is a (simple or multiple) eigenvalue of the operator Gµλ(0) and if at least one
(up to a constant) of the corresponding eigenfunctions ψ satisfies the condition

v
1/2
µλ ψ

ε
∈ L1

e(T
3) \ L2

e(T
3).

This means that

1 ≤ dim Ker(Gµλ(0) − I) ≥ dimKer(hµλ) + 1.

Remark 2. Our definition of a virtual level is equivalent to the definition of a virtual level for the
two-particle Schrödinger operator in the Euclidean space and on a lattice.

Remark 3. By definition, the virtual level z = 0 is an SPCS of the operator hµλ. An SPCS can be
an eigenvalue of hµλ (see assertions B1 and B3 in the theorem below). Moreover, it can simultaneously be
a virtual level and an eigenvalue of hµλ (see assertion B2 in the theorem).
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5. Statement of the main results

For any fixed values of the parameters µ, λ ≥ 0, the determinant of the operator hµλ−zI is understood
as the Fredholm determinant of the operator I − Gµλ(z),

∆(µ, λ; z) := det(hµλ − zI) := det
(
I − Gµλ(z)

)
. (5.1)

Clearly, ∆(µ, λ; · ) is an analytic function in the domain C \ [0, 6] for all µ, λ ≥ 0.

Lemma 1. For all µ, λ ≥ 0 and z ∈ C \ [0, 6], the representations

∆(µ, λ; z) = ∆(1)(µ, λ; z)
(
∆(22)(λ; z)

)2
, (5.2)

∆(µ, 0; z) = 1 − µa(z), ∆(0, λ; z) = ∆(21)(λ; z)
(
∆(22)(λ; z)

)2 (5.3)

hold, where

∆(1)(µ, λ; z) = ∆(µ, 0; z)∆(21)(λ; z) − 3µλ

2
b2(z), (5.4)

∆(21)(λ; z) = 1 − λ

2
(
c(z) + 2d(z)

)
, ∆(22)(λ; z) = 1 − λ

2
(
c(z) − d(z)

)
. (5.5)

Let µ0 =
(
a(0)

)−1, λ0
1 =

(
3
√

2 b(0)/2
)−1, and λ0

2 = 2
(
c(0) − d(0)

)−1. We note that λ0
2 > λ0

1 (see
Corollary 1 below).

For every µ > µ0 and λ > λ0
1, the operators hµ0 and h0λ have the respective negative eigenval-

ues ζ1(µ) and ζ2(λ) (see Proposition 3 below). We set ζmin(µ, λ) = min{ζ1(µ), ζ2(λ)} and ζmax(µ, λ) =
max{ζ1(µ), ζ2(λ)}. Let (see Fig. 1)

G0 =
{

(µ, λ) ∈ R
2
+ : ∆(1)(µ, λ) = 1 − µa(0) −

√
2

2
λ(3 − µ)b(0) > 0, 0 < µ < µ0, 0 < λ < λ0

1

}

,

G
(0)
11 = {(µ, λ) ∈ R

2
+ : ∆(1)(µ, λ) = 0, 0 < µ < µ0, 0 < λ < λ0

1},

G1 = {(µ, λ) ∈ R
2
+ : ∆(1)(µ, λ) < 0},

G
(0)
12 =

{

(µ, λ) ∈ R
2
+ : ∆(1)(µ, λ) = 0, µ > 3, λ >

√
2a(0)
b(0)

}

,

G2 = {(µ, λ) ∈ R
2
+ : ∆(1)(µ, λ) > 0, µ > µ0, λ > λ0

1}.

The following theorem provides a complete presentation of the existence and the number of virtual
levels or negative eigenvalues for all µ, λ ≥ 0.

Theorem. The following assertions hold:

A1. Let 0 < λ ≤ λ0
1 and (µ, λ) ∈ G0. Then the operator hµλ has no eigenvalues in the interval (−∞, 0),

and the point z = 0 is an RPCS of the operator hµλ.

A2. Let 0 < λ ≤ λ0
1 and (µ, λ) ∈ G

(0)
11 . Then z = 0 is a virtual level of hµλ, and this operator has no

eigenvalues in the interval (−∞, 0).
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Fig. 1

A3. Let 0 < λ < λ0
2 and (µ, λ) ∈ G1. Then the operator hµλ has a single eigenvalue z(1)(µ, λ) < 0. In this

case, the inequality z(1)(µ, λ) < ζmin(µ, λ) holds, and z = 0 is an RPCS of hµλ.

B1. Let λ0
1 < λ < λ0

2 and (µ, λ) ∈ G
(0)
12 . Then z = 0 is a virtual level of hµλ. Moreover, this operator has

a single eigenvalue z(1)(µ, λ) < 0.

B2. Let λ0
1 < λ < λ0

2 and (µ, λ) ∈ G2. Then the operator hµλ has two eigenvalues z(1)(µ, λ) < 0 and

z(4)(µ, λ) < 0. In this case, the inequalities

z(1)(µ, λ) < ζmin(µ, λ) ≤ ζmax(µ, λ) < z(4)(µ, λ)

hold, and z = 0 is an RPCS of the operator hµλ.

C1. Let λ = λ0
2 and (µ, λ) ∈ G1. Then the operator hµλ has a single eigenvalue z(1)(µ, λ) < 0, and zero is

a two-fold eigenvalue of this operator.

C2. Let λ = λ0
2 and (µ, λ) ∈ G

(0)
12 . Then z = 0 is a virtual level and a two-fold eigenvalue of the operator

hµλ. Moreover, this operator has a single eigenvalue z(1)(µ, λ) < 0.

C3. Let λ = λ0
2 and (µ, λ) ∈ G2. Then z = 0 is a two-fold eigenvalue of hµλ. Moreover, the operator hµλ

has two eigenvalues z(1)(µ, λ) < 0 and z(4)(µ, λ) < 0. In this case, the inequalities

z(1)(µ, λ) < ζmin(µ, λ) ≤ ζmax(µ, λ) < z(4)(µ, λ)

hold.

D1. Let λ > λ0
2 and (µ, λ) ∈ G1. Then the operator hµλ has three eigenvalues (counting multiplicities)

z(1)(µ, λ) < 0 and z(2)(λ) = z(3)(λ) < 0. In this case, z(1)(µ, λ) < z(2)(λ) = z(3)(λ), and z = 0 is an

RPCS of hµλ.
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D2. Let λ > λ0
2 and (µ, λ) ∈ G

(0)
12 . Then z = 0 is a virtual level of the operator hµλ. Moreover, the

operator hµλ has three eigenvalues (counting multiplicities) z(1)(µ, λ) < 0 and z(2)(λ) = z(3)(λ) < 0.

In this case, z(1)(µ, λ) < z(2)(λ) = z(3)(λ).

D3. Let λ > λ0
2 and (µ, λ) ∈ G2. Then the operator hµλ has four eigenvalues (counting multiplicities)

z(1)(µ, λ) < 0, z(2)(λ) = z(3)(λ) < 0, and z(4)(µ, λ) < 0. In this case, z(1)(µ, λ) < z(2)(λ) = z(3)(λ),
z(1)(µ, λ) < z(4)(µ, λ), and z = 0 is an RPCS of hµλ.

Remark 4. It is said in assertion A2 in the theorem that the threshold z = 0 is a virtual level of hµλ

for some µ, λ ≥ 0. It is said in assertion C1 that the threshold z = 0 is a two-fold eigenvalue. It is said in
assertion C2 that z = 0 is simultaneously a virtual level and an eigenvalue.

Remark 5. Assertions A2 and A3 in the theorem mean that the first negative eigenvalue of hµλ is
generated only by a threshold virtual level under a variation of µ, λ ≥ 0. It is said in assertions B1 and B2
that the second negative eigenvalue of hµλ is also generated by a threshold virtual level. Assertions C3
and D1 say that the negative eigenvalues of hµλ are generated by the multiple threshold eigenvalue z = 0
under a variation of µ, λ ≥ 0. Assertions C2, D2, and D3 say that the negative eigenvalues of hµλ are
generated by both a threshold virtual level and the threshold values and eigenvalues z = 0.

Remark 6. Moreover, it is said in the theorem that the range of the parameters µ, λ ≥ 0 where the
threshold z = 0 is either a virtual level or an eigenvalue is some curve. The range of the parameters µ, λ ≥ 0
where the threshold z = 0 is a virtual level and an eigenvalue of the operator hµλ is a single point.

Remark 7. A similar theorem describes the dependence of the number of eigenvalues and their ar-
rangement on the parameters µ and λ for all µ, λ ∈ R. In this case, the eigenvalues of hµλ are located both
to the left and to the right of the continuous spectrum. In the case µ, λ ≤ 0, the eigenvalues of hµλ are
only to the right of the continuous spectrum.

6. The proofs of the main results

The remainder of the paper is devoted to the proof of the theorem.
We let L4 ⊂ L2

e(T3) denote the four-dimensional subspace spanned by the vectors 1 and cos p(i),
i = 1, 2, 3. We note that the operator vµλ maps the Hilbert space L2

e(T
3) to the subspace L4.

Proof of Lemma 1. As follows from (4.2), the operator Gµλ(z) maps the whole space L2
e(T

3) to the
subspace L4 invariant under the action of Gµλ(z). Therefore, the restriction Gµλ(z)|L4 of Gµλ(z) to L4 is
represented in the matrix form

Gµλ(z)|L4 =
















µa(z)
λ√
2
b(z)

λ√
2
b(z)

λ√
2
b(z)

µ√
2
b(z)

λ

2
c(z)

λ

2
d(z)

λ

2
d(z)

µ√
2
b(z)

λ

2
d(z)

λ

2
c(z)

λ

2
d(z)

µ√
2
b(z)

λ

2
d(z)

λ

2
d(z)

λ

2
c(z)
















.
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It hence follows that the Fredholm determinant of the operator
(
I − Gµλ(z)

)
|L4 has the form

det
((

I − Gµλ(z)
)∣
∣
L4

)
= ∆(µ, λ; z) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 − µa(z) − λ√
2
b(z) − λ√

2
b(z) − λ√

2
b(z)

− µ√
2
b(z) 1 − λ

2
c(z) −λ

2
d(z) −λ

2
d(z)

− µ√
2
b(z) −λ

2
d(z) 1 − λ

2
c(z) −λ

2
d(z)

− µ√
2
b(z) −λ

2
d(z) −λ

2
d(z) 1 − λ

2
c(z)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where I is the identity operator in L4. Calculating this determinant, we obtain representation (5.2).

The relation between the eigenvalues of the self-adjoint operator hµλ and the zeros of the Fredholm
determinant ∆(µ, λ; z) is established by the following lemma (see [14]).

Lemma 2. For any µ, λ ≥ 0, a number z ∈ C \ [0, 6] is an m-fold eigenvalue of the operator hµλ if and

only if it is an m-fold zero of the function ∆(µ, λ; z) = 0.

Proposition 1. 1. The functions a, b, c, and d are analytic in C \ [0, 6], positive, and monotonically

increasing in the interval (−∞, 0), and the inequality c(z) > d(z) holds for z ∈ (−∞, 0).
2. The asymptotic expansions

a(z) = a(0) −
√

2
4π

√
−z + O(−z), z → 0−,

b(z) = b(0) − 1
2π

√
−z + O(−z), z → 0−,

c(z) = c(0) −
√

2
2π

√
−z + O(−z), z → 0−,

d(z) = d(0) −
√

2
2π

√
−z + O(−z), z → 0−,

(6.1)

hold for a, b, c, and d.

Proof. 1. The positivity of the functions a and c defined in (4.1) follows straightforwardly from the
nonnegativity of the integrands and from the monotonicity of the Lebesgue integral.

We represent b and d in the forms

b(z) =
√

2
(2π)3

∫ π

−π

∫ π

−π

[ ∫ π

−π

cos q(1)

A − cos q(1)
dq(1)

]

dq(2) dq(3),

d(z) =
2

(2π)3

∫ π

−π

[ ∫ π

−π

∫ π

−π

cos q(1) cos q(2) dq(1)dq(2)

B − (cos q(1) + cos q(2))

]

dq(3),

where A = 3 − cos q(2) − cos q(3) − z > 0 and B = 3 − cos q(3) − z > 0. Representing the integrals in
the square brackets as sums of integrals over the closed intervals [−π, 0] and [0, π], changing the variables
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q(1) := q(1) − π and q(2) := q(2) − π, and using the identity cos(x − π) = − cosx, we obtain

∫ π

−π

cos q(1) dq(1)

A − cos q(1)
=

∫ π

0

2 cos2 q(1) dq(1)

A2 − cos2 q(1)
> 0,

∫ π

−π

∫ π

−π

cos q(1) cos q(2) dq(1) dq(2)

B − (cos q(1) + cos q(2))
=

=
∫ π

0

∫ π

0

8B cos2 q(1) cos2 q(2) dq(1) dq(2)

[B2 − (cos q(1) + cos q(2))2][B2 − (cos q(1) − cos q(2))2]
> 0.

The positivity of b and d follows from the nonnegativity of the integrand and the monotonicity of the
Lebesgue integral.

The relation c(z) > d(z) is implied by the Cauchy–Bounjakowsky inequality,

d(z) =
2

(2π)3

∫

T3

cos q(1) cos q(2) dq

ε(q) − z
=

2
(2π)3

∫

T3

cos q(1)

√
ε(q) − z

cos q(2)

√
ε(q) − z

dq <

<
2

(2π)3

(∫

T3

cos2 q(1) dq

ε(q) − z

)1/2(∫

T3

cos2 q(2) dq

ε(q) − z

)1/2

= c(z).

The derivatives of the functions a, b, c, and d are positive, and these functions are therefore monoton-
ically increasing in the interval (−∞, 0).

The proof of assertion 2 is similar to the proof of Lemma 3.5 in [15].

The assertions in Proposition 1 imply the following corollary.

Corollary 1. The functions c− d and c + 2d are positive and monotonically increasing in the interval

(−∞, 0), and the relations (asymptotic expansions)

∆(22)(λ; z) = ∆(22)(λ; 0) + O(−z), z → 0−, (6.2)

∆(1)(µ, λ; z) = 1 − µa(0) −
√

2
2

λ(3 − µ)b(0) +

+
√

2
4π

[µ + 3λ − µλ]
√
−z + O(−z), z → 0−, (6.3)

hold for all µ, λ ≥ 0.

Proof. The positivity of c and d and the inequality c(z) > d(z) imply the positivity of c − d and
c + 2d in the interval (−∞, 0). Because the derivatives of c− d and c + 2d are positive, these functions are
monotonically increasing in (−∞, 0).

Formulas (5.5) and (6.1) give (6.2), and (5.4) and (6.1) imply

∆(1)(µ, λ; z) =
(
1 − µa(0)

)
(

1 − λ

2
(
c(0) + 2d(0)

)
)

− 3µλ

2
b2(0) +

+
√

2
4π

[

(µ + 3λ) −
(

3a(0) − 3
√

2 b(0) +
1
2
(
c(0) + 2d(0)

)
)

µλ

]√
−z +

+ O(−z), z → 0 − . (6.4)
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Expressions (4.1) and (6.1) imply the relations

a(0) −
√

2
2

b(0) =
1

(2π)3

∫

T3

1 − cos q(i) dq

ε(q)
=

=
1
3

1
(2π)3

∫

T3

∑3
i=1(1 − cos q(i)) dq

ε(q)
=

1
3
, (6.5)

c(0) + 2d(0) =
2

(2π)3

∫

T3

cos2 q(1) + 2 cos q(1) cos q(2) dq

ε(q)
=

=
2

(2π)3

∫

T3

cos2 q(1) + cos q(1) cos q(2) + cos q(1) cos q(3) dq

ε(q)
=

= − 2
(2π)3

∫

T3

cos q(1)(3 − cos q(1) − cos q(2) − cos q(3) − 3) dq

ε(q)
=

= − 2
(2π)3

∫

T3
cos q(1) dq + 3

2
(2π)3

∫

T3

cos q(1) dq

ε(q)
= 3

√
2 b(0). (6.6)

Using (6.4)–(6.6), we derive (6.3).

We note that by Lemma 2 and representation (5.2), investigating the zeros of ∆(µ, λ; · ) reduces to
investigating the zeros of ∆(1)(µ, λ; · ) and ∆(22)(λ; · ).

Proposition 2. 1. Let 0 < λ < λ0
2. Then ∆(22)(λ; · ) has no zeros in (−∞, 0].

2. Let λ = λ0
2. Then z = 0 is the only zero of ∆(22)(λ; · ) in (−∞, 0].

3. Let λ > λ0
2. Then ∆(22)(λ; · ) has a single zero z(2)(λ) < 0.

Proof. 1. By Proposition 1, the function ∆(22)(λ; · ) with a fixed λ > 0 is continuous and decreases
monotonically on the interval (−∞, 0]. Moreover, the relations

lim
z→−∞

∆(22)(λ; z) = 1, lim
z→0−

∆(22)(λ; z) = ∆(22)(λ; 0) = 1 − λ

λ0
2

hold. Consequently, ∆(22)(λ; 0) > 0 for 0 < λ < λ0
2. It follows that

∆(22)(λ; z) ≥ ∆(22)(λ; 0) > 0

for all z ≤ 0.
2. Let λ = λ0

2. Then the relations

lim
z→0−

∆(22)(λ; z) = ∆(22)(λ; 0) = 1 − λ

λ0
2

= 0,

∆(22)(λ; z) > ∆(22)(λ; 0) = 0

hold for all z < 0.
3. Let λ > λ0

2. The function ∆(22)(λ; · ) is continuous and monotonically decreasing on the interval
(−∞, 0], and the relations

lim
z→0−

∆(22)(λ; z) = ∆(22)(λ; 0) = 1 − λ

λ0
2

< 0

hold. Therefore, there is a single number z(2)(λ) < 0 such that

∆(22)
(
λ; z(2)(λ)

)
= 0.
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Proposition 3. 1. If 0 < µ < µ0 or 0 < λ < λ0
1, then ∆(µ, 0; · ) or ∆(21)(λ; · ) respectively has no

zeros on (−∞, 0].
2. If µ = µ0 or λ = λ0

1, then z = 0 is the only zero respectively of ∆(µ, 0; · ) or ∆(21)(λ; · ) on (−∞, 0].
3. If µ > µ0 or λ > λ0

1, then ∆(µ, 0; · ) or ∆(21)(λ; · ) respectively has the only zero ζ1(µ) < 0 or

ζ2(λ) < 0, i.e.,

∆
(
µ, 0; ζ1(µ)

)
= 0 or ∆(21)

(
λ; ζ2(λ)

)
= 0. (6.7)

The proof of Proposition 3 is similar to that of Proposition 2.

Lemma 3. The operator hµλ has at most four eigenvalues (counting multiplicities) to the left of the

point z = 0.

Proof. Let z0 ∈ (−∞, 0). The range of the operator Gµλ(z0) is the subspace L4, and its dimension
does not exceed four. Therefore, Gµλ(z0) has at most four eigenvalues (counting multiplicities) in the
interval (1, +∞). By the Birman—Schwinger principle, the number of eigenvalues of hµλ to the left of the
point z < 0 coincides with the number of eigenvalues of Gµλ(z) to the right of the point 1 (see [16], [17]).

Corollary 2. For all µ, λ ≥ 0, the function ∆(1)(µ, λ; · ) has at most two zeros in the interval (−∞, 0].

Proof. It follows from the assertions in Lemmas 2 and 3 that for any fixed µ, λ ≥ 0, the number of zeros
of the function ∆(µ, λ; · ) on the interval (−∞, 0] does not exceed four, and relation (5.5) and Proposition 2
imply that ∆(22)(λ; · ) can have a single zero on (−∞, 0]. It follows from (5.2), (5.4), and (5.5) that
∆(1)(µ, λ; · ) can have two zeros on the interval (−∞, 0].

Proposition 4. 1. Let (µ, λ) ∈ G0. Then the function ∆(1)(µ, λ; · ) has no zeros on the interval

(−∞, 0].
2. Let (µ, λ) ∈ G

(0)
11 . Then z = 0 is the only zero of ∆(1)(µ, λ; · ) on (−∞, 0].

3. Let (µ, λ) ∈ G1. Then the function ∆(1)(µ, λ; · ) has a single zero z(1)(µ, λ) < 0. In this case, we

have z(1)(µ, λ) < ζmin(µ, λ).
4. Let (µ, λ) ∈ G

(0)
12 . Then ∆(1)(µ, λ; · ) has only two zeros z = 0 and z = z(1)(µ, λ) < 0.

5. Let (µ, λ) ∈ G2. Then ∆(1)(µ, λ; · ) has only two zeros z(1)(µ, λ) < 0 and z(4)(µ, λ) < 0. In this

case, the inequalities

z(1)(µ, λ) < ζmin(µ, λ) ≤ ζmax(µ, λ) < z(4)(µ, λ)

hold.

Proof. 1. Let z ≤ 0. The functions ∆(µ, 0; · ) and ∆(21)(λ; · ) decrease monotonically on (−∞, 0], and
the inequalities

∆(µ, 0; z) ≥ ∆(µ, 0; 0) > 0, ∆(21)(λ; z) ≥ ∆(21)(λ; 0) > 0, and b(z) ≤ b(0)

hold by Proposition 3. Hence, in view of (5.4) and also by condition 1 in the proposition, we obtain

∆(1)(µ, λ; z) ≥ ∆(µ, 0; 0)∆(21)(λ; 0) − 3µλ

2
b2(0) = ∆(1)(µ, λ; 0) > 0.

Consequently, ∆(1)(µ, λ; · ) has no zeros on the interval (−∞, 0].
2. It follows from (6.3) and by condition 2 that the equality

lim
z→0−

∆(1)(µ, λ; z) = ∆(1)(µ, λ; 0) = 0
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holds. By the proof of assertion 1, we have

∆(1)(µ, λ; z) > ∆(1)(µ, λ; 0) = 0 for z ∈ (−∞, 0).

Therefore, ∆(1)(µ, λ; · ) has no zeros on (−∞, 0).
3. Let z ≤ 0. The functions ∆(µ, 0; · ) and ∆(21)(λ; · ) decrease monotonically on (−∞, 0], and therefore

∆(µ, 0; z) > ∆
(
µ, 0; ζ1(µ)

)
= 0, ∆(21)(λ; z) > ∆(21)

(
λ; ζ2(λ)

)
= 0

for all z < ζmin(µ, λ). Hence, by Proposition 1, it follows that the inequality

∂∆(1)(µ, λ; z)
∂z

= −µa′(z)∆(21)(λ; z) − λ

2
(
c′(z) + 2d′(z)

)
∆(µ, 0; z) − 3µλb(z)b′(z) < 0

holds for all z < ζmin(µ, λ). This means that ∆(1)(µ, λ; · ) decreases monotonically on
(
−∞, ζmin(µ, λ)

)
.

Formulas (5.3), (5.5), and (6.7) imply the relations

∆(1)
(
µ, λ; ζmin(µ, λ)

)
= −3µλ

2
b2

(
ζmin(µ, λ)

)
< 0,

∆(1)
(
µ, λ; ζmax(µ, λ)

)
= −3µλ

2
b2

(
ζmax(µ, λ)

)
< 0.

(6.8)

Relations (5.3)–(5.5) and (4.1) imply the equality

lim
z→−∞

∆(1)(µ, λ; z) = 1.

Therefore, there is a unique number z(1)(µ, λ) < ζmin(µ, λ) < 0 such that

∆(1)
(
µ, λ; z(1)(µ, λ)

)
= 0.

To prove assertion 3, we show that the function ∆(1)(µ, λ; · ) has no zeros on the closed interval
[ζmin(µ, λ), 0], namely,

∆(1)(µ, λ; z) < 0 for z ∈ [ζmin(µ, λ), 0]. (6.9)

We assume the contrary, i.e., let the inequality ∆(1)(µ, λ; ζ) ≥ 0 hold for some ζ ∈ [ζmin(µ, λ), 0]. Then,
by the analyticity of the function ∆(1)(µ, λ; · ) and in view of inequality (6.8), the function ∆(1)(µ, λ; · )
must have at least two zeros (counting multiplicities) on the closed interval [ζmin(µ, λ), 0], and the function
∆(1)(µ, λ; · ) must have at least three zeros on the interval (−∞, 0] by (5.4), which contradicts the assertion
in Corollary 2.

By Corollary 2, it follows from inequality (6.9) that ∆(1)(µ, λ; · ) has no zeros on [ζmin(µ, λ), 0], which
proves assertion 3 in the proposition.

4. By analogy with the proof of assertion 2 and by condition 4 in the proposition, we have

lim
z→0−

∆(1)(µ, λ; z) = ∆(1)(µ, λ; 0) = 0.

The function ∆(1)(µ, λ; · ) has the only zero z(1)(µ, λ) < ζmin(µ, λ) on (−∞, 0).
5. As already proved above, the function ∆(1)(µ, λ; · ) has a single zero on the interval

(
−∞, ζmin(µ, λ)

)

(see the proof of assertion 3). By the condition in assertion 5, we have

lim
z→0−

∆(1)(µ, λ; z) > 0.

Hence, in view of (6.7), arguing as above, we conclude that the function ∆(1)(µ, λ; · ) has the only zero
z(4)(µ, λ) on the interval (ζmax(µ, λ), 0]. (It would contradict Corollary 2 if it had more than one zero.)
Therefore, z(1)(µ, λ) and z(4)(µ, λ) are zeros of ∆(1)(µ, λ; · ) on (−∞, 0], which proves assertion 5.
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The next lemma is important for proving the existence of virtual levels for the operator hµλ.

Lemma 4. The eigenfunctions f1, f2, f3, and f4 of the operator hµλ that correspond to the eigenvalues

z(1), z(2), z(3), and z(4) (z(2) = z(3)) have the forms

f1(p) =

(√
µ α0 +

√
λ/2 k(z(1))

∑3
i=1 αi(p)

)
C

ε(p) − z(1)
, (6.10)

f2(p) =

(
α1(p) − α2(p)

)
C

ε(p) − z(2)
, f3(p) =

(
α2(p) − α3(p)

)
C

ε(p) − z(2)
, (6.11)

f4(p) =

(√
µ α0 +

√
λ/2 k(z(4))

∑3
i=1 αi(p)

)
C

ε(p) − z(4)
, (6.12)

where C = const �= 0 and k(z) = ∆(µ, 0; z)/
(
3
√

µλ/2 b(z)
)
.

Proof. By the Birman—Schwinger principle, the operator hµλ, µ, λ ≥ 0, has an eigenvalue if and only
if the homogeneous equation

Gµλ(z)ψ = ψ, i.e.,
(
I − Gµλ(z)

)∣
∣
L4

ψ = 0, ψ = (ψ0, ψ1, ψ2, ψ3) ∈ C
4, (6.13)

has a nonzero solution, where ψi = (ψ, αi), i = 0, 1, 2, 3. This equation is equivalent to the system of
homogeneous linear equations

∆(µ, 0; z)ψ0 −
√

µλ

2
b(z)ψ1 −

√
µλ

2
b(z)ψ2 −

√
µλ

2
b(z)ψ3 = 0,

−
√

µλ

2
b(z)ψ0 +

(

1 − λ

2
c(z)

)

ψ1 −
λ

2
d(z)ψ2 −

λ

2
d(z)ψ3 = 0,

−
√

µλ

2
b(z)ψ0 −

λ

2
d(z)ψ1 +

(

1 − λ

2
c(z)

)

ψ2 −
λ

2
d(z)ψ3 = 0,

−
√

µλ

2
b(z)ψ0 −

λ

2
d(z)ψ1 −

λ

2
d(z)ψ2 +

(

1 − λ

2
c(z)

)

ψ3 = 0.

(6.14)

Consequently, system (6.14) has a nonzero solution for µ, λ ≥ 0 if and only if the system of equations

∆(µ, 0; z)ψ0 −
√

µλ

2
b(z)ψ1 −

√
µλ

2
b(z)ψ2 −

√
µλ

2
b(z)ψ3 = 0,

−
√

µλ

2
b(z)ψ0 +

(

1 − λ

2
c(z)

)

ψ1 −
λ

2
d(z)ψ2 −

λ

2
d(z)ψ3 = 0,

∆(22)(λ; z)ψ1 − ∆(22)(λ; z)ψ2 = 0, ∆(22)(λ; z)ψ2 − ∆(22)(λ; z)ψ3 = 0

(6.15)

has a nonzero solution.
Let λ ≥ λ0

2. Then (see assertions 2 and 3 in Proposition 2) the function ∆(22)(λ; · ) has the only zero
z = z(2)(λ) on the interval (−∞, 0], i.e., ∆(22)

(
λ; z(2)(λ)

)
= 0, and we have ∆(1)

(
µ, λ; z(2)(λ)

)
�= 0 by

Proposition 4. Therefore, (6.15) is equivalent to the system of equations

∆
(
µ, 0; z(2)(λ)

)
ψ0 −

√
µλ

2
b
(
z(2)(λ)

)
ψ1 −

√
µλ

2
b
(
z(2)(λ)

)
ψ2 −

√
µλ

2
b
(
z(2)(λ)

)
ψ3 = 0,

−
√

µλ

2
b
(
z(2)(λ)

)
ψ0 −

λ

2
d
(
z(2)(λ)

)
ψ1 −

λ

2
d
(
z(2)(λ)

)
ψ2 −

λ

2
d
(
z(2)(λ)

)
ψ3 = 0.

(6.16)
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Because d
(
z(2)(λ)

)
> 0, system (6.16) is equivalent to the equation

(

∆
(
µ, 0; z(2)(λ)

)
+ µ

b2
(
z(2)(λ)

)

d
(
z(2)(λ)

)

)

ψ0 = 0

for all µ, λ ≥ 0.
Taking

∆
(
µ, 0; z(2)(λ)

)
+ µ

b2
(
z(2)(λ)

)

d
(
z(2)(λ)

) �= 0

into account (see assertion 1 in Proposition 1 and Proposition 4), we conclude that ψ0 = 0 for

µ �=
d
(
z(2)(λ)

)

a
(
z(2)(λ)

)
d
(
z(2)(λ)

)
− b2

(
z(2)(λ)

) .

Therefore, the first equation in (6.14) gives

−
√

µλ

2
b
(
z(2)(λ)

)
(ψ1 + ψ2 + ψ3) = 0.

Assertion 1 in Proposition 1 implies that b
(
z(2)(λ)

)
> 0. Therefore,

ψ1 + ψ2 + ψ3 = 0, i.e., ψ1 = −(ψ2 + ψ3) for all ψ2, ψ3 ∈ C. (6.17)

By (4.2) and (6.17) and with the notation ψi = (ψ, αi), i = 0, 1, 2, 3, the general solution of Eq. (6.13)
becomes

ψ(p) =
3∑

i=1

ψiαi(p) =
(
α2(p) − α1(p)

)
ψ2 +

(
α3(p) − α1(p)

)
ψ3. (6.18)

Let ψ3 = 0. Then (6.17) gives ψ1 = −ψ2, and (6.18) implies that

ψ2(p) =
(
α1(p) − α2(p)

)
C, C = const �= 0. (6.19)

Let ψ1 = 0. Arguing similarly, we obtain

ψ3(p) =
(
α2(p) − α3(p)

)
C, C = const �= 0. (6.20)

If 0 < λ < λ0
2 and (µ, λ) ∈ G

(0)
11 ∪ G1 or (µ, λ) ∈ G

(0)
12 ∪ G2, then (see assertions 2–5 in Proposition 4)

the function ∆(1)(µ, λ; · ) has the respective zeros z = z(1)(µ, λ) ≤ 0 or z = z(1)(µ, λ) < 0 and z =
z(4)(µ, λ) ≤ 0 on the interval (−∞, 0], i.e, ∆(1)

(
µ, λ; z(1)(µ, λ)

)
= ∆(1)

(
µ, λ; z(4)(µ, λ)

)
= 0. By assertion 1

in Proposition 2, we have ∆(22)
(
λ; z(1)(µ, λ)

)
> 0 or ∆(22)

(
λ; z(4)(µ, λ)

)
> 0. It follows from (6.15) that

ψ1 = ψ2 = ψ3 =
∆(µ, 0; z)

3
√

µλ/2 b(z)
ψ0.

Arguing as in the case λ ≥ λ0
2, we verify that the eigenfunctions of Gµλ(z) corresponding to the

eigenvalue 1 have the forms

ψ1(p) =
(

α0 + k(z(1))
3∑

i=1

αi(p)
)

C, C = const �= 0, (6.21)
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for z = z(1)(µ, λ) and

ψ4(p) =
(

α0 + k(z(4))
3∑

i=1

αi(p)
)

C, C = const �= 0, k(z) =
∆(µ, 0; z)

3
√

µλ/2b(z)
, (6.22)

for z = z(4)(µ, λ).
According to Remark 1, the eigenfunction of hµλ corresponding to an eigenvalue z ∈ C \ [0, 6] has the

form

f(p) =
(v1/2

µλ ψ)(p)
ε(p) − z

, p ∈ T
3.

Hence, by (6.21) and the relations

(α0, 1) =
1
α0

, (αi, 1) = 0, (αi, αj) =






1 for i = j,

0 for i �= j,

we obtain (6.10).
Relations (6.11) and (6.12) are verified similarly.

Remark 8. It follows from (6.5), (6.6), and (6.10)–(6.12) for z = 0 that

f1(0) = f4(0) =
3 − µ

3
√

µ b(0)ε(0)
C �= 0, C �= 0,

f2(0) = f3(0) = 0.

(6.23)

Proof of the theorem. A1. Let z ≤ 0. Then by condition A1 in the theorem and according to
assertions 1 in Propositions 2 and 4, the inequalities ∆(1)(µ, λ; z) > 0 and ∆(22)(λ; z) > 0 hold. Hence, in
view of (5.2), we obtain ∆(µ, λ; z) > 0. By Lemma 2, the operator hµλ has no eigenvalues in the interval
(−∞, 0), and the point z = 0 is an RPCS of the operator hµλ.

A2. Let z = 0. It follows from assertion 2 in Proposition 4 that ∆(1)(µ, λ; 0) = 0, and by (6.23),
solution (6.10) of the equation hµλf = 0 satisfies the condition

f1(0) =
3 − µ

3
√

µ b(0)ε(0)
C �= 0, C �= 0.

Therefore, f1 ∈ L1
e(T

3) \ L2
e(T

3). From assertion 1 in Proposition 2, we conclude that ∆(22)(λ; z) > 0, and
by Lemma 2, it follows from (5.2) that the operator hµλ has no eigenvalues in the interval (−∞, 0).

A3. Let z ≤ 0. According to assertion 3 in Proposition 4, there is a unique number z(1)(µ, λ) <

ζmin(µ, λ) < 0 such that ∆(1)
(
µ, λ; z(1)(µ, λ)

)
= 0, and assertion 1 in Proposition 2 implies that ∆(22)(λ; z) >

0. By Lemma 2, it follows from representation (5.2) that the operator hµλ has the only eigenvalue
z(1)(µ, λ) < ζmin(µ, λ) < 0.

The other assertions in the theorem are proved similarly to the proof of A1–A3.
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