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FRACTIONAL GENERALIZATION OF THE QUANTUM

MARKOVIAN MASTER EQUATION

V. E. Tarasov∗

We propose a generalization of the quantum Markovian equation for observables. In this generalized

equation, we use superoperators that are fractional powers of completely dissipative superoperators. We

prove that the suggested superoperators are infinitesimal generators of completely positive semigroups and

describe the properties of this semigroup. We solve the proposed fractional quantum Markovian equation

for the harmonic oscillator with linear friction. A fractional power of the Markovian superoperator can be

considered a parameter describing a measure of “screening” of the environment of the quantum system:

the environmental influence on the system is absent for α = 0, the environment completely influences the

system for α = 1, and we have a powerlike environmental influence for 0 < α < 1.

Keywords: fractional power of an operator, non-Hamiltonian quantum system, quantum Markovian
equation, completely positive semigroup

1. Introduction

Fractional calculus appeared in 1695, when Leibniz described the derivative of order α = 1/2 [1]–
[3]. Derivatives and integrals of noninteger order were studied by Leibniz, Liouville, Grunwald, Letnikov,
and Riemann. Many books have now been written about fractional calculus and fractional differential
equations [1], [2], [4]–[8]. Derivatives and integrals of noninteger order and fractional integro-differential
equations have found many applications in recent studies in physics (see, e.g., [9]–[12] and [13]–[16]).

In quantum mechanics, observables are given by self-adjoint operators. The dynamical description of
a quantum system is given by superoperators. A superoperator is a map that assigns one operator some
other operator.

The motion of a system is naturally described in terms of the infinitesimal change of the system. The
equation for a quantum observable is called the Heisenberg equation. For Hamiltonian quantum systems,
the infinitesimal superoperator is defined by some form of derivation. A derivation is a linear map L that
satisfies the Leibnitz rule L(AB) = (LA)B + A(LB) for any operators A and B. A fractional derivative
can be defined as the fractional power of the derivative (see, e.g., [17]). It is known that the infinitesimal
generator L = 1/(i�)[H, · ], which is used for Hamiltonian systems, is a derivative of quantum observables.
In [18], we regarded a fractional power Lα of the derivation operator L = 1/(i�)[H, · ] as a fractional
derivative on a set of observables. As a result, we obtained a fractional generalization of the Heisenberg
equation, which allows generalizing the notion of Hamiltonian quantum systems. We note that a fractional
generalization of classical Hamiltonian systems was suggested in [19] (also see [20]). In the general case,
quantum systems are non-Hamiltonian, and L is not a derivation operator. For a wide class of quantum
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systems, the infinitesimal generator L is completely dissipative [21]–[24]. Therefore, it is interesting to
consider a fractional generalization of the equation of motion for non-Hamiltonian quantum systems using
a fractional power of a completely dissipative superoperator.

The most general change of state of a non-Hamiltonian quantum system is a quantum operation [25]–
[31]. A quantum operation for a quantum system can be described starting from a unitary evolution of some
closed Hamiltonian system if the quantum system is a part of the closed system [32], [33]. But situations can
arise where it is difficult or impossible to find a Hamiltonian system that includes the given quantum system.
As a result, the theory of non-Hamiltonian quantum systems can be considered a fundamental generaliza-
tion of the quantum mechanics of Hamiltonian systems [21]–[24]. The quantum operations that describe
the dynamics of non-Hamiltonian systems can be regarded as real completely positive trace-preserving su-
peroperators on some operator space. These superoperators form a completely positive semigroup. The
infinitesimal generator of this semigroup is completely dissipative. The problem of non-Hamiltonian dy-
namics is to obtain an explicit form for the infinitesimal generator, which is in turn connected with the
problem of determining the most general explicit form of this superoperator. This problem was investigated
in [34]–[36]. Here, we consider superoperators that are fractional powers of completely dissipative super-
operators. We prove that the suggested superoperators are infinitesimal generators of completely positive
semigroups. The quantum Markovian equations with a completely dissipative superoperator are the most
general form of the Markovian equation describing the nonunitary evolution of a density operator that is
trace preserving and completely positive. We consider a fractional generalization of the quantum Marko-
vian equation, which is solved for the harmonic oscillator with friction. We can assume that other solutions
and properties described in [37]–[45] can also be considered for fractional generalizations of the quantum
Markovian equation and the Gorini–Kossakowski–Sudarshan equation [34], [35].

A fractional power of infinitesimal generator can be considered a parameter describing a measure of
“screening” of the environment. Using the interaction representation of the quantum Markovian equation,
we consider a fractional power α of the non-Hamiltonian part of the infinitesimal generator. We obtain
the Heisenberg equation for Hamiltonian systems in the limit as α → 0. In the case α = 1, we have the
usual quantum Markovian equation. As a result, we can distinguish the following cases: (1) absence of the
environmental influence (α = 0), (2) complete environmental influence (α = 1), and (3) powerlike screening
of the environmental influence (0 < α < 1). The physical interpretation of the fractional quantum Marko-
vian equation can be connected with an existence of a powerlike “screening” of the environmental influence.
Quantum computations by quantum operations with mixed states (see, e.g., [30]) can be controlled by this
parameter. We assume that there exist stationary states of open quantum systems [37], [40], [45]–[49] that
depend on the fractional parameter. We note that it is possible to consider quantum dynamics with a low
fractal dimension by a generalization of the method proposed in [50] (also see [51], [52]).

In Sec. 2, we briefly review superoperators on an operator Hilbert space and quantum operations and
introduce the notation. In Sec. 3, we consider the fractional power of a superoperator. In Sec. 4, we suggest
a fractional generalization of the quantum Markovian equation. In Sec. 5, we describe the properties of
the fractional semigroup. In Secs. 6 and 7, we solve the fractional equations for the quantum harmonic
oscillator with and without friction.

2. Superoperator and quantum operations

Quantum theories essentially consist of two structures: a kinematic structure describing the initial
states and observables of the system and a dynamical structure describing the change of these states and
observables with time. In quantum mechanics, the states and observables can be given by operators. The
dynamical description of the quantum system is given by a superoperator, which is a map from a set of
operators into itself.
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Let M be an operator space. We let M∗ denote the space dual to M. Hence, M∗ is the set of all
linear functionals on M. The classic denotations for an element of M are |B) and B. The symbols (A|
and ω denote the elements of M∗. By the Riesz–Frechet theorem, any linear continuous functional ω on
an operator Hilbert space M has the form ω(B) = (A|B) for all B ∈ M, where |A) is an element in M.
Therefore, the element A can be considered not only an element |A) of M but also an element (A| of the
dual space M∗. The symbol (A|B) for a value of the functional (A| on the operator |B) is the graphic
combination of the symbols (A| and |B).

Definition 1. A linear superoperator is a map L from an operator space M into itself such that the
relation

L(aA + bB) = aL(A) + bL(B)

is satisfied for all A, B ∈ D(L) ⊂ M, where D(L) is the domain of L and a, b ∈ C.

A superoperator L assigns each operator A ∈ D(L) the operator L(A).

Definition 2. Let L be a superoperator on M. An adjoint superoperator of L is a superoperator
Λ = L̄ on M∗ such that

(Λ(A)|B) = (A|L(B)) (1)

for all B ∈ D(L) ⊂ M and A ∈ D(Λ) ⊂ M∗.

Let M be an operator Hilbert space and L be a superoperator on M. Then (A|B) = Tr[A†B], and
Eq. (1) becomes

Tr
[(

Λ(A)
)†

B
]

= Tr
[
A†L(B)

]
.

If M is an operator Hilbert space, then by the Riesz–Frechet theorem, M and M∗ are isomorphic,
and we can define the self-adjoint superoperators.

Definition 3. A self-adjoint superoperator is a superoperator L on a Hilbert operator space M such
that (L(A)|B) = (A|L(B)) for all A, B ∈ D(L) ⊂ M and D(L) = D(L̄).

Let M be a normed operator space. The superoperator L is said to be bounded if ‖L(A)‖M ≤ c‖A‖M
for some constant c and all A ∈ M. The value

‖L‖ = sup
A �=0

‖L(A)‖M
‖A‖M

is called the norm of the superoperator L. If M is a normed space and L is a bounded superoperator, then
‖L̄‖ = ‖L‖.

In quantum theory, the class of real superoperators is the most important.

Definition 4. Let M be an operator space and A† be an adjoint operator of A ∈ M. A real super-
operator is a superoperator L on M such that

[L(A)]† = L(A†)

for all A ∈ D(L) ⊂ M and A† ∈ D(L).

If L is a real superoperator, then Λ = L̄ is real. If L is a real superoperator and A is a self-adjoint
operator A† = A ∈ D(L), then the operator B = L(A) is self-adjoint. Then superoperators from a set
of quantum observables M into itself should be real. All possible dynamics of quantum systems must be
described by a set of real superoperators.
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Definition 5. A nonnegative superoperator is a map L from M into M such that L(A2) ≥ 0 for all
A2 = A†A ∈ D(L) ⊂ M. A positive superoperator is a map L from M into itself such that L is nonnegative
and L(A) = 0 if and only if A = 0.

Let M denote an operator algebra. A left superoperator corresponding to A ∈ M is a superoperator
LA on M such that LA(C) = AC for all C ∈ M. We can think of LA as meaning left multiplication by A.
A right superoperator corresponding to A ∈ M is a superoperator RA on M such that RA(C) = CA for
all C ∈ M.

The most general state change of a quantum system is called a quantum operation [25]–[30]. A quantum
operation is described by a superoperator Ê that is a map on a set of density operators. If ρ is a density
operator, then Ê(ρ) should also be a density operator. Any density operator ρt = ρ(t) is a self-adjoint
(ρ†t = ρt), positive (ρt > 0) operator with unit trace (Tr ρt = 1). Therefore, for a superoperator Ê to be a
quantum operation, the following conditions must be satisfied:

1. The superoperator Ê is a real superoperator, i.e., (Ê(A))† = Ê(A†) for all A. The real superoperator
Ê maps the self-adjoint operator ρ to the self-adjoint operator Ê(ρ): (Ê(ρ))† = Ê(ρ).

2. The superoperator Ê is a positive superoperator, i.e., Ê maps positive operators to positive operators:
Ê(A2) > 0 for all A �= 0 or Ê(ρ) ≥ 0.

3. The superoperator Ê is a trace-preserving map, i.e., (I|Ê |ρ) = (Ê†(I)|ρ) = 1 or Ê†(I) = I.

Moreover, we assume that the superoperator Ê is not only positive but also completely positive [53]. The
superoperator Ê is a completely positive map from an operator space M into itself if

n∑

k=1

n∑

l=1

B†
kÊ(A†

kAl)Bl ≥ 0

for all operators Ak, Bk ∈ M and any integer n.
Let the superoperator Ê be a convex linear map on the set of density operators, i.e.,

Ê
( ∑

s

λsρs

)
=

∑

s

λsÊ(ρs),

where 0 < λs < 1 for all s and
∑

s λs = 1. Any convex linear map of density operators can be uniquely ex-
tended to a linear map on self-adjoint operators. We note that any linear completely positive superoperator
can be represented by

Ê =
m∑

k=1

L̂Ak
R̂A†

k
, Ê(ρ) =

m∑

k=1

AkρA†
k.

If this superoperator is trace-preserving, then

m∑

k=1

A†
kAk = I.

Because all processes occur in time, it is natural to consider quantum operations Ê(t, t0) that depend
on time. Let the linear superoperators Ê(t, t0) form a completely positive quantum semigroup [54] such
that

d

dt
Ê(t, t0) = Λ̂tÊ(t, t0), (2)
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where Λ̂t is an infinitesimal generator of the semigroup [24], [36], [54]. The evolution of a density operator
ρ is described by

Ê(t, t0)ρ(t0) = ρ(t).

We consider quantum operations Ê(t, t0) with an infinitesimal generator Λ̂ such that the adjoint superop-
erator L is completely dissipative, i.e.,

L(AkAl) − L(Ak)Al − AkL(Al) ≥ 0

for all A1, . . . , An ∈ D(L) such that AkAl ∈ D(L). The superoperator L describes the dynamics of observ-
ables of a non-Hamiltonian quantum system. The completely dissipative superoperators are infinitesimal
generators of completely positive semigroups {Φt | t > 0} that are adjoint to {Êt | t > 0}, where Êt = Ê(t, 0).

3. Fractional power of a superoperator

Let L be a closed linear superoperator with an everywhere dense domain D(L) and a resolvent R(z,L)
on the negative semiaxis and satisfy the condition

‖R(−z,L)‖ ≤ M

z
, z > 0, M > 0. (3)

We note that
R(−z,L) = (zLI + L)−1.

The superoperator

Lα =
sin πα

π

∫ ∞

0

dz zα−1R(−z,L)L (4)

is defined on D(L) for 0 < α < 1 and is called a fractional power of the superoperator L [55], [56]. We
note that the superoperator Lα allows a closure. If a closed superoperator L satisfies condition (3), then
LαLβ = Lα+β for α > 0, β > 0, and α + β < 1.

Let L be a closed generating superoperator of the semigroup {Φt | t ≥ 0}. Then the fractional power
Lα of L is given by

Lα =
1

Γ(−α)

∫ ∞

0

dz z−α−1(Φz − LI),

which is called the Balakrishnan formula.
The resolvent for the superoperator Lα can be found by the equation

R(−z,Lα) = (zLI + Lα)−1 =

=
sin πα

π

∫ ∞

0

dx
xα

z2 + 2zxα cosπα + x2α
R(−x,L),

called Kato’s formula. It follows from this formula that the inequality

‖R(−z,Lα)‖ ≤ M

z
, z > 0,

is satisfied with the constant M in inequality (3) for the superoperator L. It follows from the inequality

‖zR(−z,L)‖ = ‖z(zLI + L)−1‖ ≤ M

183



for all z > 0 that the superoperator z(zLI + L)−1 is uniformly bounded in every sector of the complex
plane given by the relation | arg z| ≤ φ for φ not greater than some number π − ψ, 0 < ψ < π. Then the
superoperator zR(−z,Lα) is uniformly bounded in every sector of the complex plane such that | arg z| ≤ φ

for φ < π − αψ.
Let L be a closed generating superoperator of the semigroup {Φt | t ≥ 0}. Then the superoperators

Φ(α)
t =

∫ ∞

0

ds fα(t, s)Φs, t > 0, (5)

form a semigroup such that Lα is an infinitesimal generator of Φ(α)
t . Equation (5) is called the Bochner–

Phillips formula.
In (5), we use the function

fα(t, s) =
1

2πi

∫ a+i∞

a−i∞
dz esz−tzα

, (6)

where a, t > 0, s ≥ 0, and 0 < α < 1. The branch of zα is chosen such that Re zα > 0 for Re z > 0. This
branch is a one-valued function in the z plane cut along the negative real axis. This integral obviously
converges by virtue of the factor e−tzα

. The function fα(t, s) has the following properties:

1. For all s > 0, the function fα(t, s) is nonnegative: fα(t, s) ≥ 0.

2. We have the identity ∫ ∞

0

ds fα(t, s) = 1.

3. For t > 0 and x > 0, ∫ ∞

0

ds e−sxfα(t, s) = e−txα

.

4. Passing from the integration contour in (6) to the contour consisting of the two rays re−iθ and re+iθ,
where r ∈ (0,∞) and π/2 ≤ θ ≤ π, we obtain

fα(t, s) =
1
π

∫ ∞

0

dr exp
[
sr cos θ − trα cosαθ

]
sin(sr sin θ − trα sinαθ + θ). (7)

5. If α = 1/2, then θ = π and

f1/2(t, s) =
1
π

∫ ∞

0

dr e−sr sin t
√

r =
t

2
√

πs3/2
e−t2/(4s),

which is a corollary of (7).

4. Fractional quantum Markovian equation

The motion of a system is naturally described in terms of the infinitesimal change. This change can
be described by an infinitesimal generator. One problem of the non-Hamiltonian dynamics is to obtain an
explicit form of the infinitesimal generator. For this, it is necessary to find the most general explicit form
of this superoperator. The problem was investigated in [34]–[36] for completely dissipative superoperators.
Lindblad showed that there exists a one-to-one correspondence between the completely positive norm-
continuous semigroups and completely dissipative generating superoperators [36]. Lindblad’s structural
theorem gives the most general form of a completely dissipative superoperator.
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Theorem 1. A generating superoperator LV of a completely positive unity-preserving semigroup

{Φt = e−tLV | t ≥ 0} on an operator space M can be represented in the form

−LV (A) = − 1
i�

[H, A] +
1
2�

∞∑

k=1

(V †
k [A, Vk] + [V †

k , A]Vk), (8)

where H, Vk,
∑

k V †
k , V †

k Vk ∈ M.

We note that the form of LV is not uniquely fixed by (8). Indeed, formula (8) preserves its form under
the changes

Vk → Vk + akI, H → H +
1

2i�

∞∑

k=1

(a∗
kVk − akV †

k ),

where ak are arbitrary complex numbers.
Using At = Φt(A), where Φt = e−tLV , we obtain the equation

d

dt
At = − 1

i�
[H, At] +

1
2�

∞∑

k=1

(V †
k [At, Vk] + [V †

k , At]Vk), (9)

where LV is defined by (8). This is called the quantum Markovian equation for the observable A.
The Lindblad theorem gives an explicit form of the equations of motion if the following restrictions are

satisfied (here ΛV is adjoint to LV ):

1. LV and ΛV are bounded superoperators and

2. LV and ΛV are completely dissipative superoperators.

Davies extended the Lindblad result to a class of quantum dynamical semigroups with unbounded generating
superoperators [57].

We consider quantum Markovian equation (9) for an observable At. We rewrite this equation in the
form

d

dt
At = −LV (At), (10)

where LV denotes the Markovian superoperator

LV = L−
H +

i

2

∞∑

k=1

(LV †
k
L−

Vk
− L−

V †
k

RVk
). (11)

Here, we use the superoperators of left multiplication LV and right multiplication RV determined by the
relations LV (A) = V A and RV (A) = AV . The superoperator L−

H is a left Lie multiplication by A such
that

L−
H(A) =

1
i�

[H, A]. (12)

If all operators Vk are equal to zero, then LV = L−
H , and Eqs. (10) and (11) give the Heisenberg equations

for a Hamiltonian system. In the general case, the quantum system is non-Hamiltonian [24].
We obtain a fractional generalization of the quantum Markovian equation. For this, we define a

fractional power for the Markovian superoperator LV in the form

−(LV )α =
sin πα

π

∫ ∞

0

dz zα−1R(−z,LV )LV , 0 < α < 1. (13)
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The superoperator (LV )α is called a fractional power of the Markovian superoperator. We note that
(LV )α(LV )β = (LV )α+β for α, β > 0 and α + β < 1. As a result, we obtain the equation

d

dt
At = −(LV )α(At), (14)

where t, H/�, and Vk/
√

� are dimensionless variables. We call this is the fractional quantum Markovian

equation.

If Vk = 0, then (14) gives the fractional Heisenberg equation [18] of the form

d

dt
At = −(L−

H)α(At). (15)

The superoperator (L−
H)α is a fractional power of left Lie superoperator (12). We note that this equation

cannot be represented in the form

d

dt
At = −L−

Hnew
(At) =

i

�
[Hnew, At]

with some operator Hnew. Therefore, quantum systems described by (15) are not Hamiltonian systems.
These systems are called the fractional Hamiltonian quantum systems (FHQS). Usual Hamiltonian quantum
systems can be considered a special case of FHQS. We note that a fractional generalization of classical
Hamiltonian systems was suggested in [19], [20].

Using the operators

AU (t) = U(t)AtU
†(t), Wk(t) = U(t)VkU †(t),

where U(t) = e1/(i�)H , we can write the quantum Markovian equation in the form

d

dt
AU (t) = −L̃W (AU (t)). (16)

The superoperator

L̃W =
i

2

∞∑

k=1

(LW †
k
L−

Wk
− L−

W †
k

RWk
) (17)

describes the non-Hamiltonian part of the evolution. Equation (16) is the quantum Markovian equation in
the interaction representation. The fractional generalization of this equation is

d

dt
AU (t) = −(L̃W )α(AU (t)). (18)

Equation (18) is the fractional quantum Markovian equation in the interaction representation. The pa-
rameter α can be considered a measure of the influence of the environment. For α = 1, we have quantum
Markovian equation (16). In the limit as α → 0, we obtain the Heisenberg equation for the quantum observ-
able At of a Hamiltonian system. As a result, we can consider the physical interpretation of equations with
a fractional power of the Markovian superoperator an influence of the environment. The following cases
can be considered in quantum theory: (1) absence of the environmental influence (α = 0), (2) complete
environmental influence (α = 1), and (3) powerlike screening of the environmental influence (0 < α < 1).
The physical interpretation of fractional equation (18) can be connected with an existence of a powerlike
screening of the environmental influence on the system.
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5. Fractional semigroup

If we consider the Cauchy problem for Eq. (10) with the initial condition given at the time t = 0 by
A0, then its solution can be written in the form At = ΦtA0. The one-parameter superoperators Φt, t ≥ 0,
have the properties

ΦtΦs = Φt+s, t, s > 0, Φ0 = LI .

As a result, the superoperators Φt form a semigroup, and the superoperatorLV is a generating superoperator
of the semigroup {Φt | t ≥ 0}.

We consider the Cauchy problem for fractional quantum Markovian equation (14) with the initial
condition given by A0. Then its solution can be represented in the form

At(α) = Φ(α)
t A0,

where the superoperators Φ(α)
t , t > 0, form a semigroup, which we call the fractional semigroup. The

superoperator −(LV )α is a generating superoperator of the semigroup {Φ(α)
t | t ≥ 0}. We consider some

properties of the fractional semigroup {Φ(α)
t | t > 0}.

The superoperators Φ(α)
t can be constructed in terms of Φt by Bochner–Phillips formula (5), where

fα(t, s) is defined in (6). If At is a solution of quantum Markovian equation (10), then formula (5) gives
the solution

At(α) =
∫ ∞

0

ds fα(t, s)As, t > 0,

of fractional quantum Markovian equation (14).
A linear superoperator Φ(α)

t is completely positive if

∑

i,j

BiΦ
(α)
t (A†

iAj)Bj ≥ 0

for any Ai, Bi ∈ M. The following theorem states that the fractional semigroup is completely positive.

Theorem 2. If {Φt | t > 0} is a completely positive semigroup of superoperator Φt on M, then the

fractional superoperators Φ(α)
t form a completely positive semigroup {Φ(α)

t | t > 0}.

Proof. Bochner–Phillips formula (5) gives

∑

i,j

BiΦ
(α)
t (A†

i Aj)Bj =
∫ ∞

0

ds fα(t, s)
∑

i,j

BiΦs(A
†
iAj)Bj

for t > 0. Using ∑

i,j

BiΦs(A
†
i Aj)Bj ≥ 0, fα(t, s) ≥ 0, s > 0,

we obtain ∑

i,j

BiΦ
(α)
t (A†

iAj)Bj ≥ 0.

Corollary. If Φt, t > 0, is a nonnegative one-parameter superoperator, i.e., Φt(A) ≥ 0 for A ≥ 0, then

the superoperator Φ(α)
t is nonnegative, i.e., Φ(α)

t (A) ≥ 0 for A ≥ 0.
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Using the Bochner–Phillips formula and the property fα(t, s) ≥ 0, s > 0, we can easily prove that
the superoperator Φ(α)

t is nonnegative if Φt, t > 0, is a nonnegative one-parameter superoperator. This
corollary can also be proved using B1 = I, A1 = A, and Ai = Bi = 0, i = 2, 3, . . . , in the proof of the
theorem.

In quantum theory, the class of real superoperators is the most important. Let A† ∈ M∗ be adjoint to
A ∈ M. A real superoperator is a superoperator Φt on M such that (ΦtA)† = Φt(A†) for all A ∈ D(Φt) ⊂
M. A quantum observable is a self-adjoint operator. If Φt is a real superoperator and A is a self-adjoint
operator, A† = A, then the operator At = ΦtA is self-adjoint, i.e., (ΦtA)† = ΦtA. Let M be a set of
quantum observables. Then superoperators on M into M must be real because quantum dynamics, i.e.,
temporal evolutions of quantum observables, must be described by real superoperators.

Theorem 3. If Φt is a real superoperator, then the superoperator Φ(α)
t is also real.

Proof. The Bochner–Phillips formula gives

(Φ(α)
t A)† =

∫ ∞

0

ds f∗
α(t, s)(ΦsA)†, t > 0.

Using (7), we can easily see that f∗
α(t, s) = fα(t, s) is a real-valued function. Then (ΦtA)† = ΦtA

† leads to
(Φ(α)

t A)† = Φ(α)
t (A†) for all A ∈ D(Φ(α)

t ) ⊂ M.

If Φt is a superoperator on a Hilbert operator space M, then an adjoint superoperator of Φt is a
superoperator Êt on M∗ such that

(
Êt(A)

∣
∣B

)
=

(
A

∣
∣Φt(B)

)
(19)

for all B ∈ D(Φt) ⊂ M and A ∈ M∗. Using the Bochner–Phillips formula, we obtain the following theorem.

Theorem 4. If Êt is an adjoint superoperator of Φt, then the superoperator

Ê (α)
t =

∫ ∞

0

ds fα(t, s)Ês, t > 0,

is an adjoint superoperator of Φ(α)
t .

Proof. Let Êt be adjoint to Φt, i.e., Eq. (19) is satisfied. Then

(Ê (α)
t A|B) =

∫ ∞

0

ds fα(t, s)(ÊsA|B) =
∫ ∞

0

ds fα(t, s)(A|ΦsB) = (A|Φ(α)
t B).

It is known that Êt is a real superoperator if Φt is real. Analogously, if Φ(α)
t is a real superoperator,

then Ê (α)
t is real.

Let {Êt | t > 0} be a completely positive semigroup such that the density operator ρt = Êtρ0 is
described by

d

dt
ρt = −Λ̂V ρt, (20)

where Λ̂V is adjoint to the Markovian superoperator LV . The superoperator Λ̂V can be represented in the
form

Λ̂V ρt = − 1
i�

[H, ρt] +
1
�

∞∑

k=1

(VkρtV
†
k − (ρtV

†
k Vk + V †

k Vkρt)).
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We note that Eq. (20) with Vk = 0 gives the von Neumann equation

d

dt
ρt =

1
i�

[H, ρt].

The semigroup {Ê (α)
t | t > 0} describes the evolution of the density operator ρt(α) = Ê (α)

t ρ0 by the
fractional equation

d

dt
ρt(α) = −(Λ̂V )αρt(α).

This is the fractional quantum Markovian equation for the density operator. For Vk = 0, this equation
gives

d

dt
ρt = −(−L−

H)αρt,

which can be called the fractional von Neumann equation.

6. Fractional equation for the harmonic oscillator

We consider a quantum harmonic oscillator such that

H =
1

2m
P 2 +

mω2

2
Q2, Vk = 0, (21)

where t and P are dimensionless variables. Then Eq. (14) (also see (15)) describes a harmonic oscillator.
For A = Q and A = P , Eq. (14) for α = 1 gives

d

dt
Qt =

1
m

Pt,
d

dt
Pt = −mω2Qt.

The well-known solutions of these equations are

Qt = Q0 cosωt +
1

mω
P0 sin ωt, Pt = P0 cosωt − mωQ0 sin ωt. (22)

Using these solutions and the Bochner–Phillips formula, we can obtain solutions of the fractional equations

d

dt
Qt = −(L−

H)αQt,
d

dt
Pt = −(L−

H)αPt, (23)

where H is given by (21). The solutions of fractional equations (23) have the forms

Qt(α) = Φ(α)
t Q0 =

∫ ∞

0

ds fα(t, s)Qs, Pt(α) = Φ(α)
t P0 =

∫ ∞

0

ds fα(t, s)Ps. (24)

Substituting (22) in (24) gives the equations [18]

Qt = Q0Cα(t) +
1

mω
P0Sα(t), Pt = P0Cα(t) − mωQ0Sα(t), (25)

where

Cα(t) =
∫ ∞

0

ds fα(t, s) cos ωs, Sα(t) =
∫ ∞

0

ds fα(t, s) sin ωs.
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Equations (25) describe solutions of fractional equations (23) for the quantum harmonic oscillator. For
α = 1/2, we have

C1/2(t) =
t

2
√

π

∫ ∞

0

ds
cosωs

s3/2
e−t2/(4s),

S1/2(t) =
t

2
√

π

∫ ∞

0

ds
sin ωs

s3/2
e−t2/(4s).

These functions can be represented in terms of the Macdonald function (see Sec. 2.5.37.1 in [58]), which is
also called the modified Bessel function of the third kind.

It is easy to obtain the expectations

〈Qt〉 = x0Cα(t) +
1

mω
p0Sα(t), 〈Pt〉 = p0Cα(t) − mωx0Sα(t)

and the dispersions

Dt(Q) =
a2

2
C2

α(t) +
�

2

2a2m2ω2
S2

α(t), Dt(P ) =
�

2

2a2
C2

α(t) +
a2m2ω2

2
S2

α(t).

Here, we use the coordinate representation and the pure state

Ψ(x) = 〈x|Ψ〉 =
1

√
a
√

π
exp

[
− (x − x0)2

2a
+

i

�
p0x

]
. (26)

The expectation and dispersion are defined as usual.

7. Fractional quantum Markovian equation for the oscillator with
friction

We consider the fractional quantum Markovian equation with Vk �= 0. The basic assumption is that the
general form of a bounded completely dissipative superoperator given by the quantum Markovian equation
also holds for an unbounded completely dissipative superoperator LV . Another condition imposed on the
operators H and Vk is that they are functions of the operators Q and P such that the obtained model is
exactly solvable [37], [38] (also see [39], [40]). We assume that Vk = Vk(Q, P ) are first-degree polynomials
in Q and P and that H = H(Q, P ) is a second-degree polynomial in Q and P . These assumptions are
analogous to those used in classical dynamics when friction forces proportional to the velocity are considered.
Then H and Vk are given in the forms

H =
1

2m
P 2 +

mω2

2
Q2 +

µ

2
(PQ + QP ), Vk = akP + bkQ, (27)

where ak and bk, k = 1, 2, are complex numbers. It is easy to obtain

LV Q =
1
m

P + µQ − λQ, LV P = −mω2Q − µP − λP,

where

λ = Im
( 2∑

k=1

akb∗k

)
= − Im

( 2∑

k=1

a∗
kbk

)
.

Using the matrices

A =

(
Q

P

)

, M =



 µ − λ
1
m

−mω2 −µ − λ



 ,
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we write the quantum Markovian equation for At as

d

dt
At = MAt, (28)

where LV At = MAt. The solution of (28) is

At = ΦtA0 =
∞∑

n=0

tn

n!
Ln

V A0 =
∞∑

n=0

tn

n!
MnA0.

The matrix M can be represented in the form M = N−1FN , where F is a diagonal matrix. Let ν be a
complex parameter such that ν2 = µ2 − ω2. Then we have

N =

(
mω2 µ + ν

mω2 µ − ν

)

, N−1 =
1

2mω2ν

(
−(µ − ν) µ + ν

mω2 −mω2

)

,

F =

(
−(λ + ν) 0

0 −(λ − ν)

)

.

Taking

Φt =
∞∑

n=0

tn

n!
Mn = N−1

( ∞∑

n=0

tn

n!
Fn

)
N

into account, we obtain the superoperator Φt in the form

Φt = etM = N−1etF N = e−λt






cosh νt +
µ

ν
sinh νt

1
µν

sinh νt

−mω2

ν
sinh νt cosh νt − µ

ν
sinh νt




 .

As a result, we obtain

Qt = e−λt

[
cosh νt +

µ

ν
sinh νt

]
Q0 +

1
mν

e−λt sinh(νt)P0,

Pt = −mω2

ν
e−λt sinh(νt)Q0 + e−λt

[
cosh νt − µ

ν
sinh νt

]
P0.

(29)

The fractional quantum Markovian equations for Qt and Pt are

d

dt
Qt = −(LV )αQt,

d

dt
Qt = −(LV )αQt, (30)

where t and Vk/
√

� are dimensionless variables. The solutions of these fractional equations are given by
the Bochner–Phillips formula,

Qt(α) = Φ(α)
t Q0 =

∫ ∞

0

ds fα(t, s)Qs, t > 0,

Pt(α) = Φ(α)
t P0 =

∫ ∞

0

ds fα(t, s)Ps, t > 0,

(31)
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where Qs and Ps are given by (29) and the function fα(t, s) is defined in (6). Substituting (29) in (31) gives

Qt(α) =
[
Chα(t) +

µ

ν
Shα(t)

]
Q0 +

1
mν

Chα(t)P0,

Pt(α) = −mω2

ν
Shα(t)Q0 +

[
Chα(t) − µ

ν
Shα(t)

]
P0,

(32)

where

Chα(t) =
∫ ∞

0

ds fα(t, s)e−λs cosh νs,

Shα(t) =
∫ ∞

0

ds fα(t, s)e−λs sinh νs.

For α = 1/2, we have

Ch1/2(t) =
t

2
√

π

∫ ∞

0

ds
cosh νs

s3/2
e−t2/(4s)−λs,

Sh1/2(t) =
t

2
√

π

∫ ∞

0

ds
sinh νs

s3/2
e−t2/(4s)−λs.

These functions can be represented in terms of the Macdonald function (see Sec. 2.4.17.2 in [58]) such that

Ch1/2(t) =
t

2
√

π
[V (t, λ,−ν) + V (t, λ, ν)],

Sh1/2(t) =
t

2
√

π
[V (t, λ,−ν) − V (t, λ, ν)],

where we use the notation

V (t, λ, ν) =
(

t2 + 4ν

4λ

)1/4

K−1/2

(
2

√
λ(t2 + 4ν)

4

)
,

where Re t2 > Re ν, Re λ > 0, and Kα(z) is the Macdonald function [1], [2].
As a result, Eqs. (32) define a solution of the fractional quantum Markovian equation for the harmonic

oscillator with friction.

8. Conclusion

Quantum dynamics can be described by superoperators. A map assigning each operator exactly one
operator is called a superoperator. It is natural to describe motion in terms of the infinitesimal change
of a system. The equation of motion for a quantum observable is called the Heisenberg equation. For
Hamiltonian quantum systems, the infinitesimal superoperator is some form of derivation. A linear map
L satisfying the Leibnitz rule L(AB) = (LA)B + A(LB) for all operators A and B is called a derivation.
It is known that the infinitesimal generator L = 1/(i�)[H, · ], which is used for Hamiltonian systems, is a
derivative of quantum observables. We can regard a fractional power Lα of the derivative L = 1/(i�)[H, · ] as
a fractional derivative on a set of quantum observables [18]. As a result, we obtain a fractional generalization
of the Heisenberg equation [18], which allows generalizing the notion of Hamiltonian quantum systems. In
the general case, quantum systems are non-Hamiltonian, and L is not a derivation. For a wide class of
quantum systems, the infinitesimal generator L is completely dissipative [21]–[24].
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Here, we considered a fractional generalization of the equation of motion for non-Hamiltonian quantum
systems using a fractional power of a completely dissipative superoperator. We suggested a generalization of
the quantum Markovian equation for quantum observables. In this equation, we used a superoperator that
is a fractional power of a completely dissipative superoperator. We proved that the suggested superoperator
is an infinitesimal generator of a completely positive semigroup and described properties of this semigroup.
We solved the proposed fractional quantum Markovian equation exactly for the harmonic oscillator with
linear friction. A fractional power α of the quantum Markovian superoperator can be considered a parameter
describing a measure of “screening” of the environment. We can separate the cases where α = 0, absence
of the environmental influence; where α = 1, complete environmental influence; and where 0 < α < 1, a
powerlike environmental influence. A one-parameter description of a screening of the coupling between the
quantum system and the environment is thus a physical interpretation of a fractional power of the quantum
Markovian superoperator.

We note that the quantum Markovian equation describes a coupling between a quantum system and an
environment (see [32]). Another physical interpretation of a fractional power of the infinitesimal generator
is connected with Bochner–Phillips formula (5) as follows. Using the properties

∫ ∞

0

fα(t, s) = 1, fα(t, s) ≥ 0, s > 0,

we can assume that fα(t, s) is the density of a probability distribution. Then Bochner–Phillips formula (5)
can be considered a smoothing of the evolution Φt with respect to the time s > 0. This smoothing can be
considered a screening of the environment of the quantum system.

The function fα(t, s) can be represented as the Levy distribution using a reparametrization. We
note that Levy distributions are solutions of fractional equations (see, e.g., [13], [59]–[61]) that describe
anomalous diffusion. It is known that quantum Markovian equations are used to describe the Brownian
motion of quantum systems [37]. Perhaps, the fractional generalization of quantum Markovian equations
can be used to describe anomalous processes and random walks [13]–[16] in quantum systems.
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