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DESCRIPTION OF WEAKLY PERIODIC GIBBS MEASURES FOR

THE ISING MODEL ON A CAYLEY TREE

U. A. Rozikov∗ and M. M. Rakhmatullaev†

We introduce the concept of a weakly periodic Gibbs measure. For the Ising model, we describe a set of

such measures corresponding to normal subgroups of indices two and four in the group representation of a

Cayley tree. In particular, we prove that for a Cayley tree of order four, there exist critical values Tc < Tcr

of the temperature T > 0 such that there exist five weakly periodic Gibbs measures for 0 < T < Tc or

T > Tcr, three weakly periodic Gibbs measures for T = Tc, and one weakly periodic Gibbs measure for

Tc < T ≤ Tcr.
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1. Introduction

One of the main problems of the Ising model Hamiltonian is to describe all limiting Gibbs measures
corresponding to this Hamiltonian. It is well known that for the Ising model, such measures form a nonempty
convex compact subset in the set of all probability measures. The problem of completely describing the
elements of this set is far from being completely solved. Some translation-invariant (see, e.g., [1]–[3]),
periodic [4], [5], and continuum sets of nonperiodic [1], [6] Gibbs measures for the Ising model on a Cayley
tree have already been described.

Periodic Gibbs measures for certain models with a finite interaction radius were described in [4], [5],
[7]–[11], where translation-invariant and periodic measures (of period two) were mainly considered. In this
paper, we introduce a more general concept of a periodic Gibbs measure and verify that such measures
exist for the Ising model.

This paper is organized as follows. We give the necessary definitions and the problem statement in
Sec. 2. We describe weakly periodic measures in Sec. 3. In Sec. 3.1, we study weakly periodic measures
corresponding to normal subgroups of index two, and in Sec. 3.2, we consider one normal subgroup of index
four whose choice ensures the minimum number of unknowns in the corresponding system of equations. In
Sec. 4, we discuss the obtained results and formulate several problems that remain open.

2. Definitions and the problem statement

Let τk = (V, L), k ≥ 1, be a Cayley tree of order k, i.e., an infinite tree with exactly k+1 edges issuing
from each vertex. Here, V is the set of its vertices, and L is the set of edges τk. It is well known that
τk can be represented as a free product Gk of k+1 cyclic groups of the second order with the generators
a1, a2, . . . , ak+1.
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For an arbitrary point x0 ∈ V , we set Wn = {x ∈ V | d(x0, x) = n}, Vn =
⋃n

m=0 Wm, and Ln =
{〈x, y〉 ∈ L | x, y ∈ Vn}, where d(x, y) is the distance between x and y on the Cayley tree, i.e., the number
of edges in the path connecting x to y.

Let Φ = {−1, 1}, and let σ be a configuration on V , i.e., σ = {σ(x) ∈ Φ: x ∈ V }, Ω = ΦV . Let A ⊂ V .
We let ΩA denote the space of configurations defined on the set A and taking values in Φ.

We consider the Hamiltonian for the Ising model

H(σ) = −J
∑

〈x,y〉∈L

σ(x)σ(y), (1)

where J ∈ R and 〈x, y〉 are nearest neighbors. Let hx ∈ R and x ∈ V . For each n, we define the measure
µn on ΩVn , assuming

µn(σn) = Z−1
n exp

{

−βH(σn) +
∑

x∈Wn

hxσ(x)
}

, (2)

where β = T−1 is the inverse temperature, T > 0, σn = {σ(x), x ∈ Vn} ∈ ΩVn , Z−1
n is the normalization

factor, and
H(σn) = −J

∑

〈x,y〉∈Ln

σ(x)σ(y).

The compatibility conditions for a sequence of measures µn(σn), n ≥ 1, are given by the equality

∑

σ(n)

µn(σn−1, σ
(n)) = µn−1(σn−1), σ(n) = {σ(x), x ∈ Wn}. (3)

Let µn, n ≥ 1, be a sequence of measures on ΩVn having compatibility property (3). According to the
Kolmogorov theorem, there then exists a unique limiting measure µ on ΩV = Ω (called the limiting Gibbs
measure) such that µ(σn) = µn(σn) for each n = 1, 2, . . . . It is well known that measures (2) satisfy (3) if
and only if the set of quantities h = {hx, x ∈ Gk} is such that

hx =
∑

y∈S(x)

f(hy, θ), (4)

where S(x) is the set of “direct descendants” of a point x ∈ V and f(x, θ) = arctanh(θ tanh x), θ = tanh(Jβ)
(see [1]–[3]).

Definition 1. A set of quantities h = {hx, x ∈ Gk} is said to be Ĝk periodic if hxy = hx for any
x ∈ Gk and y ∈ Ĝk (here, Ĝk is a normal subgroup of index r ≥ 1).

In this paper, we give a more general definition of the periodic Gibbs measure. For x ∈ Gk, we set
x↓ = {y ∈ Gk : 〈x, y〉} \ S(x). Let Gk/Ĝk = {H1, . . . , Hr} be a quotient group.

Definition 2. A set of quantities h = {hx, x ∈ Gk} is said to be Ĝk weakly periodic if hx = hij for
x ∈ Hi and x↓ ∈ Hj for any x ∈ Gk.

We note that the weakly periodic set of h coincides with an ordinary periodic one (see Definition 1) if
the quantity hx is independent of x↓.

Definition 3. A measure µ is said to be Ĝk (weakly) periodic if it corresponds to the Ĝk-(weakly)
periodic set of h. The Gk-periodic measure is said to be translation invariant.

The aim of our paper is to describe the set of weakly periodic Gibbs measures for the Ising model.
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3. Weakly periodic measures

The level of difficulty in describing weakly periodic Gibbs measures is related to the structure and
index of the normal subgroup relative to which the periodicity condition is imposed. The authors of [12]
proved that in the group Gk, there is no normal subgroup of odd index different from one. Therefore, we
consider normal subgroups of even indices. In this paper, we restrict ourself to the cases of indices two and
four.

3.1. The case of index two. We describe Gk-weakly periodic Gibbs measures for any normal
subgroup Gk of index two. We note that any normal subgroup of index two of the group Gk has the form
HA =

{
x ∈ Gk :

∑
i∈A wx(ai) is an even number

}
, where ∅ �= A ⊆ Nk = {1, 2, . . . , k +1} and wx(ai) is the

number of letters ai in a word x ∈ Gk [4].
Let A ⊂ Nk and HA be the corresponding normal subgroup of index two. We note that in the case

|A| = k + 1 (|A| is the cardinality of the set A), i.e., in the case A = Nk, weak periodicity coincides
with ordinary periodicity. Therefore, we consider A ⊂ Nk such that A �= Nk. Then, in view of (4), the
HA-weakly periodic set of h has the form

hx =






h1, x ∈ HA, x↓ ∈ HA

h2, x ∈ HA, x↓ ∈ Gk\HA

h3, x ∈ Gk\HA, x↓ ∈ HA

h4, x ∈ Gk\HA, x↓ ∈ Gk\HA,

(5)

where the hi, i = 1, 4, satisfy the system of equations

h1 = |A|f(h3, θ) + (k − |A|)f(h1, θ),

h2 = (|A| − 1)f(h3, θ) + (k + 1 − |A|)f(h1, θ),

h3 = (|A| − 1)f(h2, θ) + (k + 1 − |A|)f(h4, θ),

h4 = |A|f(h2, θ) + (k − |A|)f(h4, θ).

(6)

We consider the map W : R
4 → R

4, defined as W (h) = h′ if

h′
1 = |A|f(h3, θ) + (k − |A|)f(h1, θ),

h′
2 = (|A| − 1)f(h3, θ) + (k + 1 − |A|)f(h1, θ),

h′
3 = (|A| − 1)f(h2, θ) + (k + 1 − |A|)f(h4, θ),

h′
4 = |A|f(h2, θ) + (k − |A|)f(h4, θ).

(7)

We note that system (6) is equivalent to the equation h = W (h). The map W has the invariant sets

I1 = {h ∈ R
4 : h1 = h2 = h3 = h4}, I2 = {h ∈ R

4 : h1 = h4, h2 = h3},

I3 = {h ∈ R
4 : h1 = −h4, h2 = −h3}.

Let α = (1 − θ)/(1 + θ).
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Theorem 1. The following assertions hold:

1. For the Ising model, all HA-weakly periodic Gibbs measures on I1 and I2 are translation invariant.

2. For |A| = k and θ > 0, all HA-weakly periodic Gibbs measures are translation invariant.

3. For |A| = 1 and k = 4, there exists a critical value αcr (≈ 0.152) such that there exist five HA-weakly

periodic Gibbs measures µ0, µ±
1 , and µ±

2 for 0 < α < αcr, three HA-weakly periodic Gibbs measures

µ0 and µ±
1 for α = αcr, and only one HA-weakly periodic Gibbs measure µ0 for α > αcr,.

4. For |A| = 1, k > 5, and θ− < θ < θ+, θ± =
(
k − 1 ±

√
k2 − 6k + 1

)
/2k, there exist three HA-weakly

periodic Gibbs measures µ0 and µ± on I3.

Proof. 1. It suffices to show that system of equations (6) has only one root of the form h1 = h2 =
h3 = h4. The proof is obvious for the invariant set I1. We prove this assertion for the invariant set I2.

Using the fact that

f(h, θ) = arctanh(θ tanh h) =
1
2

log
(1 + θ)e2h + (1 − θ)
(1 − θ)e2h + (1 + θ)

and introducing the notation zi = e2hi , i = 1, 4, we obtain the following system of equations instead of (6):

z1 − z2 = A1(z3 − z1),

z1 − z3 = A2(z1 − z4) + B2(z3 − z4) + C2(z3 − z2),

z1 − z4 = A3(z1 − z4) + B3(z3 − z2),

z2 − z3 = A4(z3 − z2) + B4(z1 − z4),

z2 − z4 = A5(z3 − z2) + B5(z1 − z2) + C5(z1 − z4),

z3 − z4 = A6(z4 − z2),

(8)

where Ai = (1 − α2)Ãi(z1, z2, z3, z4), Bi = (1 − α2)B̃i(z1, z2, z3, z4), Ci = (1 − α2)C̃i(z1, z2, z3, z4), and Ãi,
B̃i, and C̃i are positive for all i = 1, 6.

On the invariant set I2, we have h2 = h3. As a result, for α < 1, the equality z1 − z2 = A1(z3 − z1)
implies z1 = z2.

In the antiferromagnetic case, i.e., for α > 1, we obtain Ai, Bi, Ci < 0 for all i = 1, 6. For the invariant
set I2, the equality h2 = h3 holds. From (8), we have z2−z1 = −A1(z3−z1), whence z1 = z2. Consequently,
for any α > 0, we have z1 = z2, whence z1 = z2 = z3 = z4 on I2.

2. In the case |A| = k, we obtain

h2 = (k − 1)f(h3, θ) + f
(
kf(h3, θ), θ

)
,

h3 = (k − 1)f(h2, θ) + f
(
kf(h2, θ), θ

) (9)

from (6). We now prove that system (9) has only solutions of the form h2 = h3. We consider the case
h2 > h3. From (9), we then obtain

h2 − h3 = (k − 1)
(
f(h3, θ) − f(h2, θ)

)
+ f

(
kf(h3, θ), θ

)
− f

(
kf(h2, θ), θ

)
. (10)
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It is easy to verify that the function f is strictly increasing. Consequently, equality (10) cannot hold, because
its left-hand side contains a positive quantity and its right-hand side contains a negative one. Equation (10)
also does not hold in the case h2 < h3. Therefore, h2 = h3, which gives translation-invariant solutions of
system (6).

3. The proof of the third assertion in the theorem follows from Lemma 3 in Sec. 3.2. In this case, it is
necessary to analyze the solutions of the equation

h = 3f(h, θ) − f
(
4f(h, θ), θ

)
,

which is obtained by restricting the operator W to I3.

4. For |A| = 1 and k > 5, we obtain

h1 = g(h1, θ, k) (11)

from (6), where g(x) = g(x, θ, k) = −f
(
kf(x, θ), θ

)
+ (k − 1)f(x, θ), x ∈ R. We note that g(0) = 0 and g

is an odd bounded function. It follows from these properties that if g′(0) > 1, then Eq. (11) has at least
three solutions. It is easy to verify that the inequality g′(0) > 1 is equivalent to θ− < θ < θ+. In this case,
Eq. (6) has three solutions

(
±h∗

1,±kf(h∗
1, θ),∓kf(h∗

1, θ),∓h∗
1

)
, (0, 0, 0, 0).

Remark 1. The measures µ± and µ±
i , i = 1, 2, are HA weakly periodic, and this provides new Gibbs

measures for the Ising model. All the other measures constructed in the theorem are translation invariant.

Remark 2. If A ⊂ Nk is such that |A| �= 1 or |A| �= k, then it is difficult to obtain a solution of system
of equations (6) outside the invariant sets I1 and I2. Even for the invariant set I3, system (6) is a system
with two unknowns, which is difficult to solve.

3.2. The case of index four. Let H{a1} = {x ∈ Gk : wx(a1) is an even number}, G
(2)
k = {x ∈ Gk : |x|

is an even number}, and G
(4)
k = H{a1} ∩ G

(2)
k be the corresponding normal subgroup of index four.

Remark 3. Among all normal subgroups of index four, our chosen normal subgroup G
(4)
k is convenient

because we obtain a system of equations with eight unknowns from system (4) in this case, while the number
of unknowns can reach 16 for an arbitrary normal subgroup of index four.

We consider a quotient group Gk/G
(4)
k = {H0, H1, H2, H3}, where

H0 = {x ∈ Gk : wx(a1) is an even number, |x| is an even number},

H1 = {x ∈ Gk : wx(a1) is an odd number, |x| is an even number},

H2 = {x ∈ Gk : wx(a1) is an even number, |x| is an odd number},

H3 = {x ∈ Gk : wx(a1) is an odd number, |x| is an odd number}.
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In view of (4), the G
(4)
k -weakly periodic set of h then has the form

hx =






h1, x ∈ H3, x↓ ∈ H1

h2, x ∈ H1, x↓ ∈ H3

h3, x ∈ H3, x↓ ∈ H0

h4, x ∈ H0, x↓ ∈ H3

h5, x ∈ H1, x↓ ∈ H2

h6, x ∈ H2, x↓ ∈ H1

h7, x ∈ H2, x↓ ∈ H0

h8, x ∈ H0, x↓ ∈ H2,

(12)

where the hi, i = 1, 8, satisfy the system of equations

h1 = (k − 1)f(h2, θ) + f(h4, θ),

h2 = (k − 1)f(h1, θ) + f(h6, θ),

h3 = kf(h2, θ),

h4 = kf(h7, θ),

h5 = kf(h1, θ),

h6 = kf(h8, θ),

h7 = (k − 1)f(h8, θ) + f(h5, θ),

h8 = (k − 1)f(h3, θ) + f(h7, θ).

(13)

This system can be rewritten as h = W (h), where the map W : R
4 → R

4 is defined as W (h) = h′ if

h′
1 = (k − 1)f(h2, θ) + f

(
kf(h7, θ), θ

)
,

h′
2 = (k − 1)f(h1, θ) + f

(
kf(h8, θ), θ

)
,

h′
7 = (k − 1)f(h8, θ) + f

(
kf(h1, θ), θ

)
,

h′
8 = (k − 1)f(h7, θ) + f

(
kf(h2, θ), θ

)
.

(14)

It is easy to prove the following lemma.

Lemma 1. The map W has the invariant sets

I1 = {h ∈ R
4 : h1 = h2 = h7 = h8}, I2 = {h ∈ R

4 : h1 = h2, h7 = h8},

I3 = {h ∈ R
4 : h1 = −h2, h7 = −h8}, I4 = {h ∈ R

4 : h1 = h2 = −h7 = −h8},

I5 = {h ∈ R
4 : h1 = h7, h2 = h8}, I6 = {h ∈ R

4 : h1 = −h7, h2 = −h8},

I7 = {h ∈ R
4 : h1 = h7 = −h2 = −h8}, I8 = {h ∈ R

4 : h1 = h8, h2 = h7},

I9 = {h ∈ R
4 : h1 = −h8, h2 = −h7}, I10 = {h ∈ R

4 : h1 = h8 = −h2 = −h7}.
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We note that restricting the operator W to I1 yields translation-invariant measures studied previously.
It is easy to verify that under certain additional conditions imposed on the variables, by restricting

the operator W to the other sets Ii, i = 2, . . . , 10, we can reduce the system of equations W (h) = h to
equations for a single unknown having one of the forms

x = −(k − 1)f(x, θ) + f
(
kf(x, θ), θ

)
, (15)

x = (k − 1)f(x, θ) − f
(
kf(x, θ), θ

)
. (16)

Equation (15) reduces to the equation

(u2 − 1)P2k−2(u) = 0, (17)

where u = (z + α)/(αz + 1) and P2k−2(u) is a symmetric polynomial of degree 2k − 2. It is well known
that setting u + 1/u = ξ, we can decrease the degree of the equation P2k−2(u) = 0 twofold, i.e., reduce this
equation to the equation Pk−1(ξ) = 0, where Pk−1(ξ) is a nonsymmetric polynomial of degree k − 1 in the
general case. But for k ≥ 6, the equation Pk−1(ξ) = 0 cannot be solved in radicals.

We consider the case k = 4, where Eq. (17) has the form

(u2 − 1)
(
u6 − αu5 + u4 + (1 − α)u3 + u2 − αu + 1

)
= 0. (18)

Lemma 2. Equation (18) has three solutions u0 = 1, u1 = u∗, and u2 = 1/u∗ for α > α′
cr = 5/3 and

the unique solution u0 = 1 for 0 < α ≤ 5/3.

Proof. For Eq. (18), u = 1 is a solution. We assume that u �= 1. Setting ξ = u + 1/u > 2, we obtain
the equation

ξ3 − αξ2 − 2ξ + α + 1 = 0.

A detailed analysis of this equation shows that this lemma holds.

Similarly, for k = 4, we have

α2(u8 − 1) − αu(u6 − 1) + u3(u2 − 1) = 0 (19)

from Eq. (16).

Lemma 3. There exists a critical value αcr (≈ 0.152) such that Eq. (19) has

1. five solutions u0 = 1, u1 = u
(1)
∗ , u2 = 1/u

(1)
∗ , u3 = u

(2)
∗ , and u4 = 1/u

(2)
∗ for 0 < α < αcr,

2. three solutions u0 = 1, u1 = u
(1)
∗ , and u2 = 1/u

(1)
∗ for α = αcr, and

3. the unique solution u0 = 1 for α > αcr.

Proof. For any α > 0, u = 1 is a solution of Eq. (19). Dividing Eq. (19) by u2 − 1 and introducing
the notation ξ = u + 1/u, we reduce Eq. (19) to the equation

ϕ(ξ) = α2ξ3 − αξ2 − 2α2ξ + α + 1 = 0.

The assertions in the lemma follow from the easily verified properties of the function ϕ(ξ).
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Solving the equation ϕ′(ξ) = 0, we obtain ξ = ξ∗ =
(
1 +

√
1 + 6α2

)
/3α. The values αcr can be found

from the equation ϕ(ξ∗) = 0, i.e., from the equation

f(α) = 9α2 + 27α − 2 − 2
(√

6α2 + 1
)3 = 0, 0 < α <

2
5
.

We note that f increases in the interval (0, 2/5). Because f(0) = −4 and f(2/5) > 0, the existence and
uniqueness of a value αcr such that f(αcr) = 0 follow from the monotonicity of f . A computer calculation
shows that αcr ≈ 0.152.

Combining Lemmas 2 and 3, we obtain the following theorem.

Theorem 2. For k = 4, there exist critical values αcr ≈ 0.152 and α′
cr = 5/3 such that

1. for 0 < α < αcr, there exist five weakly periodic Gibbs measures µ0, µ̃±
1 , and µ̃±

2 , which correspond

to the solutions of system of equations (13),

hx = 0, ±h(i)
x =






±h
(i)
∗ , x ∈ H3, x↓ ∈ H1

±h
(i)
∗ , x ∈ H1, x↓ ∈ H3

±4f(h(i)
∗ , θ), x ∈ H3, x↓ ∈ H0

∓4f(h(i)
∗ , θ), x ∈ H0, x↓ ∈ H3

±4f(h(i)
∗ , θ), x ∈ H1, x↓ ∈ H2

∓4f(h(i)
∗ , θ), x ∈ H2, x↓ ∈ H1

∓h
(i)
∗ , x ∈ H2, x↓ ∈ H0

∓h
(i)
∗ , x ∈ H0, x↓ ∈ H2,

h
(i)
∗ =

1
2

log
α − u

(i)
∗

1 − αu
(i)
∗

, i = 1, 2;

2. for α = αcr, there exist three weakly periodic Gibbs measures µ0 and µ̃±
1 ;

3. for αcr < α ≤ α′
cr, there exists one Gibbs measure µ0, which corresponds to hx = 0; and

4. for α > α′
cr, there exist five weakly periodic Gibbs measures µ0, µ±

∗,1, and µ±
∗,2, which correspond to

solutions of the form

hx = 0, ±h̄(1)
x =






±h̄
(1)
∗ , x ∈ H3, x↓ ∈ H1

∓h̄
(1)
∗ , x ∈ H1, x↓ ∈ H3

∓4f(h̄(1)
∗ , θ), x ∈ H3, x↓ ∈ H0

±4f(h̄(1)
∗ , θ), x ∈ H0, x↓ ∈ H3

±4f(h̄(1)
∗ , θ), x ∈ H1, x↓ ∈ H2

∓4f(h̄(1)
∗ , θ), x ∈ H2, x↓ ∈ H1

±h̄
(1)
∗ , x ∈ H2, x↓ ∈ H0

∓h̄
(1)
∗ , x ∈ H0, x↓ ∈ H2
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on the invariant set I7 and to solutions of the form

±h̄(1)
x =






±h̄
(1)
∗ , x ∈ H3, x↓ ∈ H1

∓h̄
(1)
∗ , x ∈ H1, x↓ ∈ H3

∓4f(h̄(1)
∗ , θ), x ∈ H3, x↓ ∈ H0

∓4f(h̄(1)
∗ , θ), x ∈ H0, x↓ ∈ H3

±4f(h̄(1)
∗ , θ), x ∈ H1, x↓ ∈ H2

±4f(h̄(1)
∗ , θ), x ∈ H2, x↓ ∈ H1

∓h̄
(1)
∗ , x ∈ H2, x↓ ∈ H0

±h̄
(1)
∗ , x ∈ H0, x↓ ∈ H2

on the invariant set I10.

Remark 4. A computer analysis shows that the equation g(x, θ, k) = −f
(
kf(x, θ); θ

)
+(k−1)f(x, θ) =

x has a unique solution x = 0 for k = 1, 2, 3; if k ≥ 4, then there exist values of the parameter α such that
this equation has five solutions. More precisely, a computer analysis shows that assertion 2 in Theorem 1
and the results in Theorem 2 hold for all k ≥ 4, i.e., there exist at most five HA-weakly periodic Gibbs
measures regardless of the value of k (k ≥ 4).

Remark 5. The measures µ̃∓
i , i = 1, 2, coincide with H{a1}-weakly periodic measures in Theorem 1

in the case A = {a1}. The measures µ∓
∗,i, i = 1, 2, are G

(4)
k weakly periodic, but they do not coincide with

the HA-weakly periodic measures constructed in Theorem 1.

Remark 6. The new Gibbs measures described in Theorems 1 and 2 allow describing a continuum
set of nonperiodic Gibbs measures that differ from the well-known ones.

4. Discussion: Open problems

The results in this paper disclose a new fact for the Ising model. It is well known that there exist
at most three periodic Gibbs measures (not translation invariant) for models with a finite interaction
radius [4], [5], [7], [10]. In our case, the number of weakly periodic measures turns out to be five.

The functions h
(i)
x determined in assertion 1 in Theorem 2 differ significantly from the functions h̄

(1)
x

determined in assertion 4 in this theorem. The weak (H-weak) periodicity of the function hx means that the
value of hx depends only on the classes to which x and x↓ belong. Such a dependence was first demonstrated
in [3], but weakly periodic solutions were not described there.

We now formulate some problems whose solution turns out to be sufficiently difficult, and they require
consideration in the future.

1. Do other invariant sets of operators given by equalities (7) and (14) exist?

2. Do fixed points outside invariant sets exist?

3. How can Remark 4 after Theorem 2 be proved?

4. How can weakly periodic Gibbs measures for normal subgroups of an index greater than four be
described?

5. How can such measures be described for other models, for example, for the Potts model or the SOS
model?
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