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RADIATION BEYOND FOUR SPACE-TIME DIMENSIONS

A. D. Mironov*" and A. Yu. Morozov*

We present a set of formulas describing classical radiation of a rank-s tensor field from an accelerated
pointlike source in a flat space-time of an arbitrary even dimension d. These formulas allow straightfor-
wardly and algorithmically evaluating the total intensity and radiated momentum for any s and d by hand
or using a computer. The practical application of the obtained results is limited for s > 1 because the
energy-momentum tensor for the pointlike source is not conserved. This usually means that contributions
to the radiation from tensions of the forces causing the acceleration of the radiation source cannot be

neglected.
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Radiation processes were traditionally considered subjects of direct physical application and were
therefore only deeply investigated in at most d=4 space-time dimensions [1]. Even for d = 2 and d = 3,
where there are obvious applications to sound waves in media, for example, the theory remains poorly
represented in the literature. Only recently, after string-inspired multidimensional models [2] attracted
increasing attention [3], some papers on multidimensional radiation began to appear [4]-[8]. Of course,
they are still too few to cover the field exhaustively, as for the literature on four-dimensional radiation. In
this paper, we take a step that we think is necessary for studying physical effects systematically. We present
general formulas describing classical radiation for an arbitrary dimension d and for an arbitrary rank s of the
radiated fields. This should help to clarify the physical and mathematical structures underlying radiation
in higher dimensions. In particular, the radiation damping force in higher dimensions can be immediately
obtained from our results, for example, by the method in [4].

To find the radiation intensity, the following chain of calculations must be performed.

Step 1. Solve the wave equation for a pointlike source of the rank-s field, moving along a world line
(1),

DAL e (z) = fum s u,,sd(d)(x — z(7)) dr, (1)

and select the contribution that decreases most slowly at large distances. For even d, it is given by a simple
formula for the retarded Liénard—Wiechert potential:

d—4)/2
Arad _ 1 o ( )/ Upy = U
H1eps (Ru) " Ru
(2)
rad 1 (-2 Upy = U
OuALS 1 =Ry (@ 37) ~ hu
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where u, = 0,z, is the d-velocity of the source (u? = 1) evaluated at the radiation instant ¢’ = 2°(r)
determined by the condition R? = 0, where R, is the d-vector with the components R* = x — z#(7). Here,
7 is the proper time of the source. In particular,

or R,
dxh (Ru) 3)

We also introduce the notation n* = (1,—7) = R*/R, where R is the length of the spatial part of R¥,
R = /(R%")? (in contrast to R*, n* is not a d-vector, and we define it in the laboratory frame).
It is convenient to rewrite (2) in condensed notation,

1 /1 _\7's !
Aradzw<ﬁa‘r> T R‘i Zaqs

p
Ouhraa = Tt (029 A

q=0

where U = (nu), S = uy, ---uy,, and p = (d — 2)/2, and to find AP from the recurrence relations
1
APt — E(@Ag + A ). (5)

Step 2. Check the transversality. In the leading order in 1/R when derivatives of R can be neglected,

1 (d—2)/2
s Arad _
A e = <® 8T) Uppy = Upg_y (6)

does not vanish for s > 2, and this is not cured by subtracting traces. The physical reason for the
nontransversality is the neglect of radiation from tensions of the forces that cause the source acceleration:
only taking all the tensions into account makes the radiation problem well defined for s > 2. For s > 2, the
formulas in this paper provide only part of the total answer.

Step 3. Develop the energy-momentum tensor in the wave zone. It is equal to

" 1 (d—2)/2 Uy -+ 2 R, (< 2
R e e e R DI L "

Certain linear combinations of such stress tensors arise in applications, for instance, for the scalar waves

T;Sicalar) _ _T;S?/) (8)

This is because only the spatial components of all nonzero spin fields have any physical meaning (e.g., survive

in physical gauges), thus yielding the overall minus sign of the kinetic part of the energy—momentum tensor

compared with the scalar fields. For gravitational waves, we have

plerav) _ p@) _ Lo )
iz e 24 2 7

Similar redefinitions are also needed for higher spins s > 2. The results for such linear transformations can

be easily obtained using the formulas for Tﬁf,).
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Step 4. Evaluate the radiated momentum flux through the sphere of radius R. It is equal to
APy, = — 7{ {T"n,; dz°} ds, (10)

where dS is an infinitesimal element of this sphere (i.e., the integration is over the sphere). Thus (using
dz® = U dr = (nu) dr), we finally obtain

oP ,
—dj's =— 7{ THn; RY2U dQy— =
p ’ "
= Z (07 (upy « - -y, )OL (uhr -+ - uts)) /n“UA’q),Af;// dQq_o(n) =
ql,q//:O
(d—4)/2
= Y (@) P (k). (11)
k=0

where df);_o is the solid angle in the d—1 space and P,Edls) are functions of various scalar products
(0Lu,0mu”) with [ +m < d — 4 — k. In particular, the radiated energy loss is (dt’ = u® dr = v dr)

dpg s 1 (@82 d|s =(1—v?)"Y2=const dls
=5 2 @B T P (k). (12)
k=0

We once again emphasize that because of effects like (6) and (8), (9), this quantity represents only part
of the total answer for s > 2. Moreover, it can even be negative(!): for example, for fields with an
asymptotically large rank s, the leading contribution to the radiated momentum dPl’jIS/ dr behaves as
—(su?)¥?71 ~ (=1)%? with 4? < 0 taken into account. For s = 0, the negativeness is corrected by
changing the overall sign (see (8)), but for s > 3, the procedure must be more sophisticated.

Contractions Ig, = u” dPU’l“S /dr are also sometimes considered [6], but they do not have any direct
physical meaning unless deiﬁS /dT ~ u,,, as happens for d = 4. In this case, Iy, = dPgIS /dt’.

Step 5. Calculate angular integrals over isotropic (lightlike) unit vectors n* in (11) (although n* is
not a d-vector, these integrals are Lorentz invariant because (11) is Lorentz invariant),

nﬂl e nl"m
[ 0] ~ Praur ), 13)

These integrals are expressed in terms of the trace-eliminating projection operator Pry (because n? = 0 and
contraction of any pair of pu-indices in the left-hand side of (13) should give zero):

. 1
spin s = 2:  Prg(uyu,) = uuu, — an#,,,
. 1
Spin s = 3: Prd(uul uuzuu?,) = Upy UpyUpg — m(nmm Upg + NuipszUps + nuzu?,uul)?
. 1 .
Spin s = 4: Pra(tp, U, Uy Uy ) = Wy Uy Uy Uy — m(nmuzuuzum + 5 permutations) +

1
+ m (77u1u2 Nuapa T Moy pea Mz s T Moy pra Mz s )s
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For arbitrary m, we have

W (dt2m— 4 2k)

Pra(up, - -up,,) = kZ:O (=1) (d+2m — 4l

C3, permutations

X Upy Uy oy, (num—2k+1um—2k+2 o M1 pm T ) +o

(2k—1)!! permutations

([m/2] means the integer part of a number m/2). It is convenient to rewrite this projection operator in
terms of the generating function: after contraction with m copies of a d-vector x, we obtain

[m/2]
m m (d42m —4 —2k)! i
Pry((zu)™) = kz (—1)*(2k — 1)!!0%( dtom= 4)”) (zu)™ 2R (22)k =
=0
[m/2] (1] m—2k(..2\k
B (—1)" (d+2m —4 = 2k)!! m!(zu) (x*) (14)
= (d+2m—4)N 2k (m — 2k)!
To determine the normalization factor, we must know the sum of the coefficients in series (14),
[m/2]
d+2m—4—2k)!
= —Dkcm 2k —1 !!( =
calm) = 3 (=1)*Cih(2k — DS
_ (d+2[m/2]—3)!!(d+2(m—[m/2])—4)!!' (15)

(d—3)1I(d + 2m — 41l

Rewritten in terms of the generating function with the normalization factor restored, angular inte-
gral (13) is

(nu)dtm=2 - Cd(;j Prq((uz)™) =

9d/2,(d—2)/2

/ (nx)™dQq—2(n) S,

= [+ 2m/2 -3~
[m/2] .
i (d+2m—4-2j5)! m! m—2j 2v
8 ;0(_1) [+ 2m — 2fm/2] — a0 27j1m — 2y ) @) (16)

It remains to replace the vector x with tz¢ + Z,(cd:_OQ)/ 2

ar0Fu and select the coefficient of the relevant
combination of ¢ and ag. We note that this calculation uses the generation function, which provides an
additional combinatorial coefficient that must be taken into account explicitly. For example, to obtain the
correct coefficients of the term 9¥1u - - - 9%»u with different values of ky, . . ., ky,, the generating function must

be divided by 7.

The final results can be equivalently expressed both in terms of the scalar products U;; = oLii, oma”
and in terms of the Frenet curvatures x,, and their derivatives 85 Km. Hence, we have the last step.
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Step 6. Express U;; in terms of the Frenet curvatures [9] parameterizing the moving orthonormal
basis associated with the world line z#(7). It is formed from d-vectors N, y=0,...,d — 1,

NW N = g (17)

with N© = ¢ (i.e., N,SO) = u,,) and other vectors given by the recurrence relations
— — L —
O, N = —ku+1N(“+l) + Z 5WN(”)'
v=1

Differentiating the orthonormality condition with respect to 7, we obtain
(0, NWYN®) 1 N (5. Ny = 0.

It hence follows that for v < p,

—

Buv = (@N(”))N(V) = _N(M)(arﬁ(u)) = Koy 1™
and
o, N® — —/€N+1]\7(“+1) + kMN“_l. (18)

The parameters k&, (they are not d-vectors!) depend on the shape of the world line z#(7) in the infinitesimal
vicinity of its point and are called Frenet curvatures.

We summarize. All the indicated steps are easily performed using MAPLE or Mathematica.! In
the appendix, we obtain explicit formulas for the radiated d-momentum d’PC’Z‘S and also somewhat simpler

formulas for Po(dls), the radiated intensity at a constant v (k3 = v?k%/(y? — 1) = const, k; = 0, i > 2;
see (12)) and for the contractions Iy, = u* dPC’;IS/dT [6] for the “realistic” values d = 4,6,8,10 and an

arbitrary rank s. First, we list results for d = 4, 6,8, where the formulas are relatively simple and their
general structure can be understood. The much more involved formulas in the most interesting case d = 10
are placed in a separate section.

Appendix

Formulas for d’Pgls for d = 4,6,8.

APy, 4125

il n
dr 3
dp* 1 2
di‘s = 72 {39 — (25— 3)2] Wl 4 81%(1 — 5s)ii2ut +
1672 1672
o o ik
+ 35 (2 —7s)(ui)a* + 108 (7s — 4)yu=u*,

dPg), 167% (7s3 135 , 838 6 32r /. 101 41
o - i+ = —s

oYY O e i o RS
5 +—s5-5 3 + 355 63>(uu) +

10 14° 735
1673 (s> 59 20\ .5., S8 25 11\ .o, .-
B9 20N o gy (0 28 1LY oo
T3 ( 5 T35° 63)““ + 7r<15 7+189)“ (i)

LA program for the calculations can be found, for example, at http://thesaurus.itep.ru/project/0703mm/intens9.zip.
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AT ey
35 <s 27) (wit)u.

Formulas for Pédls) for d = 4,6,8.

125 — 4

R — e,

6ls 28 32 8n*
PO( l9) _ _ 2 (452 -5 + 1_5)4,511 + 1—5(53 — 1)kiK3,
s 167

PP = 1(?5 (7s — 1)(kiK3K3 + KikR3) +

+ i (495 — 54952 + 1004s — 216)x5 — 167> s s+ 543 2
315 ! 5 315 )1

Formulas for Iy, for d = 4,6, 8.

12s — 4
I4|s = 3 W/i%,

124 32 872 .
Igjs = —m° (452 TR + ﬁ)/ﬁ% + E(5S — 1)(k] + K1K3),

I _ 167° 49 5 167, 406 276 4 _
8s = 05 |\ 6 2 3 11 )™

172 1
— (2132 —97s + %) Kik2 — (7752 — 1805 + %)m%k% +
+2(75% — 9s + )Yy + (7s — 1) {Kik3k3 + (k1K3 — 1)® + (262f1 + K1ka)® .

Results for the most interesting case d = 10.

dr 315 9 33 99 3

dP}os At 6466 236237 1609666 9800
10s {37175 (1934 _ $3 4+ s2 _ s+ )ufs _

7 9 33 77 129

167 (5 61, 8316 11690\ ..,
35 7% " 207 ° " 1287

64nt [ 4 1037 , 32653 4865\ ., .
35 (S TSt e T g ) -

3274 200 , 2147 6230
_ 2T <s3 o2y >u2(ua)2 +
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We note that in the expressions for the radiated momentum, the coefficients of terms of the degree
k in U;; are polynomials of the degree k in the rank s. The relative simplicity of the coefficients of these
polynomials implies that they may have a general formula for an arbitrary dimension d. But we once
again emphasize that using these expressions for higher ranks is limited because contributions from other
energy—momentum tensors must be taken into account. Moreover, to separate the contribution of the given
spin s from the expression for the rank s, proper combinations of energy—momentum tensors for lower rank
fields must be added. This can be done straightforwardly using the formulas obtained here.
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