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COMMUTATOR IDENTITIES ON ASSOCIATIVE ALGEBRAS AND

THE INTEGRABILITY OF NONLINEAR EVOLUTION EQUATIONS

A. K. Pogrebkov∗

We show that commutator identities on associative algebras generate solutions of the linearized versions of

integrable equations. In addition, we introduce a special dressing procedure in a class of integral operators

that allows deriving both the nonlinear integrable equation itself and its Lax pair from such a commutator

identity. The problem of constructing new integrable nonlinear evolution equations thus reduces to the

problem of constructing commutator identities on associative algebras.
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1. Introduction

In [1], we mentioned that any two arbitrary elements A and B of an arbitrary associative algebra satisfy
the commutator identity

[
A3, [A, B]

]
− 3

4
[
A2, [A2, B]

]
− 1

4
[
A,

[
A,

[
A, [A, B]

]]]
= 0. (1.1)

Defining the adjoint action of a power of an element A on the associative algebra as

adn B = [An, B], (1.2)

we can rewrite identity (1.1) as a relation between these adjoint actions:

ad3 ad1 −
3
4
(ad2)2 −

1
4
(ad1)4 = 0. (1.3)

Identity (1.1), being a trivial consequence of the associativity property, readily proves that the function

B(t1, t2, t3) = et1A+t2A2+t3A3
Be−t1A−t2A2−t3A3

(1.4)

satisfies the linearized Kadomtsev–Petviashvili (KP) equation [2] in the variables tj , i.e.,

∂2B(t)
∂t1∂t3

− 3
4

∂2B(t)
∂t22

− 1
4

∂4B(t)
∂t41

= 0, (1.5)

more exactly, the KPII equation. It was noted in [1] that analogous identities also exist for the higher
powers. Indeed, it is easy to see that the equalities

[
An,

[
A, . . . , [A,

︸ ︷︷ ︸
n−2

B] . . .
]

=

=
1
2n

n∑

m=1

n!
(
1 − (−1)m

)

m! (n − m)!
[
A2, . . . ,

[
A2,

︸ ︷︷ ︸
n−m

[
A, . . . , A,

︸ ︷︷ ︸
2(m−1)

B
]
. . .

]
, n ≥ 2, (1.6)
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are satisfied identically, and we thus obtain the higher linearized equations of the KP hierarchy,

∂n−1B(t)
∂tn−2

1 ∂tn
=

1
2n

n∑

m=1

n!
(
1 − (−1)m

)

m! (n − m)!
∂n+m−2B(t)

∂t
2(m−1)
1 ∂tn−m

2

, (1.7)

where now
B(t1, t2, tn) = et1A+t2A2+tnAn

Be−t1A−t2A2−tnAn

. (1.8)

It is obvious by construction that all these flows are in involution.
In terms of definition (1.2), identities (1.1) and (1.6) show that the adjoint action of An (more exactly,

adn(ad1)n−2) is given in terms of the adjoint actions of the lowest powers, ad1 and ad2, which, in this sense,
generate the commutative algebra of adn, n = 1, 2, . . . . Relation (1.1), corresponding to the case n = 3
in (1.6), is the lowest in this hierarchy. Indeed, in the case n = 2, we obtain ad2 = ad2, and in the case
n = 1 (first commuting (1.6) with A), we obtain ad1 = ad1. We also mention that all the identities are
homogeneous in A and B and are linear in B.

Equality (1.4) was derived in [1] in the framework of the resolvent approach (see [3]–[7]) as a repre-
sentation describing the time evolution of (operator) scattering data. It is easy to see that any integrable
equation, more exactly, any equation solvable by the inverse scattering method, can be reduced to some
commutator identity using the procedure described in [1]. Different examples of such commutator identities
and linearized versions of the corresponding integrable equations are given in Sec. 2. But our main aim here
is to demonstrate that a special version of the dressing procedure developed in [1], [3]–[10] allows solving
the inverse problem: to derive both the nonlinear integrable evolution equation and its Lax pair from a
given commutator identity. This construction is performed in Sec. 3, where we give an explicit realization
of the elements A and B as integral operators.

2. Examples of commutator identities on associative algebras

Again let A and B be arbitrary elements of an associative algebra, and let the element A be invertible.
A direct calculation then shows that the identity

[
A2,

[
A2, [A−1, B]

]]
−

[
A,

[
A,

[
A,

[
A, [A−1, B]

]]]]
+ 4

[
A,

[
A, [A, B]

]]
= 0 (2.1)

holds. Now introducing the time dependence, for example, as

B(t1, t2, t3) = et1A−1+t2A+t3A2
Be−t1A−1−t2A−t3A2

, (2.2)

we find that this function B(t) satisfies the differential equation

∂3B(t)
∂t23 ∂t1

− ∂5B(t)
∂t42 ∂t1

+ 4
∂3B(t)

∂t33
= 0, (2.3)

which is a linearized version of the Boiti–Leon–Pempinelli (BLP) equation [8] (also see [9], [10]).
Identity (2.1) also belongs to its hierarchy, which is infinite in both directions in this case. The generic

identity of this hierarchy is quite complicated, and we omit it here, only mentioning that the identities for
the odd powers are simpler than those for the even powers, for example,

[
A3, [A−1, B]

]
−

[
A,

[
A,

[
A, [A−1, B]

]]]
+ 3

[
A, [A, B]

]
= 0. (2.4)

Setting
B(t1, t2, t3) = et1A−1+t2A+t3A3

Be−t1A−1−t2A−t3A3
(2.5)
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in analogy with (2.2), we then find that by (2.4), this function satisfies the differential equation

∂2B(t)
∂t3 ∂t1

− ∂4B(t)
∂t32 ∂t1

+ 3
∂2B(t)

∂t22
= 0, (2.6)

which is a linearized version of the nonlinear equation proposed in [10]. In this case, the commutative
algebra of commuting flows given by adn is generated by the two adjoint elements ad1 and ad−1. To obtain
identities that, for example, give the commutator with the square in terms of the commutator with the first
power, we need at least three elements (A, B1, and B2) of an associative algebra. We set

B =

(
0 B1

B2 0

)

(2.7)

and introduce projection operators

I1 =

(
1 0

0 0

)

, I2 =

(
0 0

0 1

)

. (2.8)

It is then easy to verify that we have the identities

σ3

[
(AI1)2, B

]
=

[
AI1, [AI1, B]

]
, (2.9)

σ3

[
(AI2)2, B

]
= −

[
AI2, [AI2, B]

]
, (2.10)

where σ3 = I1 − I2 is the standard Pauli matrix. Moreover, if A is invertible, then

[
AIj , [A−1Ij , B]

]
= B, j = 1, 2. (2.11)

Now introducing

Bj(t) = eIj(t1A+t2A2)Be−Ij(t1A+t2A2), (2.12)

B′
j(t) = eIj(t1A+t−1A−1)Be−Ij(t1A+t−1A−1), (2.13)

we see that these functions satisfy the differential equations

σ3∂t2Bj(t) = (−1)j+1∂2
t1Bj(t), (2.14)

∂t1∂t−1B
′
j(t) = B′

j(t), (2.15)

i.e., linearized versions of the nonlinear Schrödinger and sine-Gordon equations.
It is obvious that relations (2.9) and (2.10) are the lowest members of the corresponding hierarchies of

commuting flows, for example,

σn
3 [AnI1, B] =

[
AI1, . . . [AI1

︸ ︷︷ ︸
n

, B] . . .
]
, n = 1, 2, . . . . (2.16)

Relations (2.9) and (2.10) can be used to construct more complicated identities. Let h be a constant
block-diagonal matrix,

h = diag{h1, h2} ≡ h1I1 + h2I2, (2.17)
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and let B be given by (2.7). From (2.9) and (2.10), we then derive the matrix commutator identities

σ3[hA2, B] = h1

[
AI1, [AI1, B]

]
− h2

[
AI2, [AI2, B]

]
, (2.18)

[A3, B] + 3
[
A,

[
AI1, [AI2, B]

]]
−

[
A,

[
A, [A, B]

]]
= 0, (2.19)

where
A = AI1 + AI2. (2.20)

Hence, if we introduce

B(t1, t2, t3) = et1AI1+t2AI2+t3hA2
Be−t1AI1−t2AI2−t3hA2

, (2.21)

B′(t1, t2, t3) = et1AI1+t2AI2+t3A3
Be−t1AI1−t2AI2−t3A3

, (2.22)

then by (2.18), we have

σ3
∂B(t)
∂t3

= h1
∂2B(t)

∂t21
− h2

∂2B(t)
∂t22

, (2.23)

which is a linearized version of the Davey–Stewartson (DS) equations [11]. By (2.19), we have

∂B′(t)
∂t3

− ∂3B′(t)
∂t31

− ∂3B′(t)
∂t32

= 0, (2.24)

i.e., a linearized version of the Veselov–Novikov (VN) equation [12].

3. Reconstruction of nonlinear integrable equations and Lax pairs

3.1. Space of operators. We showed that the commutator identities on associative algebras consid-
ered above generate solutions of linearized versions of integrable equations. We also mentioned that these
(operator) linearized equations appear naturally in the framework of the resolvent approach to the inverse
scattering transform as equations on the (operator) scattering data (see [1] for (1.1)). In this section, we
introduce a kind of dressing procedure that allows reconstructing the corresponding nonlinear equation
itself and its Lax pair for a given commutator identity. For this, we should present some elements of the
resolvent approach (see [3]–[7]).

We work in the space of linear integral operators F (q), G(q), etc., with the corresponding kernels
F (x, x′; q), G(x, x′; q), etc., where x = (x1, x2), x′ = (x′

1, x
′
2), q = (q1, q2), and all xj , x′

j , and qj are real
variables. We assume that all these kernels belong to the space of distributions S

′ with respect to all their
six real variables. Hence, there exists the “shifted” Fourier transformation

F (p;q) =
1

(2π)2

∫
dx

∫
dx′ ei(p+q�)x−iq�x′

F (x, x′;q�), (3.1)

F (x, x′;q�) =
1

(2π)2

∫
dp

∫
dq� e−i(p+q�)x+iq�x′

F (p;q), (3.2)

where p and q = q� + iq� are respectively real and complex two-dimensional vectors. The vector q = q�

plays the role of a parameter and is not affected by the composition of such operators

(FG)(x, x′; q) =
∫

dy F (x, y; q)G(y, x′; q), (3.3)
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defined for pairs of operators for which the integral in the r.h.s. exists in the sense of distributions. In the
(p;q) space, this composition takes the form

(FG)(p;q) =
∫

dp′ F (p − p′;q + p′)G(p′;q). (3.4)

Differential operators form a special subclass of this class of operators. With each differential operator
L(x, ∂x) with the kernel

L(x, x′) = L(x, ∂x)δ(x1 − x′
1)δ(x2 − x′

2), (3.5)

we associate the operator L(q) (we call it the extension of L) with the kernel

L(x, x′; q) = e−q(x−x′)L(x, x′) ≡ L(x, ∂x + q)δ(x − x′), (3.6)

where qx = q1x1 + q2x2. The kernel L(p;q) of the extended differential operator (as defined in (3.1))
depends on the variables q polynomially. In particular, if Dj(q), j = 1, 2, denotes the extension of the
differential operator i∂xj , i.e.,

Dj(x, x′; q) = i(∂xj + qj)δ(x − x′), (3.7)

then the kernel of this operator in the (p,q) space is

Dj(p;q) = qjδ(p). (3.8)

The polynomial dependence of kernels of differential operators in the (p,q) space on the variables q
suggests introducing the operation of ∂̄-differentiation with respect to these variables:

(∂̄jF )(p;q) =
∂F (p;q)

∂q̄j
, j = 1, 2. (3.9)

In the class of operators under consideration, the differential operators are then selected by the condition

∂̄jL = 0, j = 1, 2. (3.10)

We note that in the case of a differential operator with constant coefficients, by (3.6), we have

L(p;q) = l(q)δ(p), (3.11)

where l(q) is a polynomial function of its arguments. For the commutator of the differential operator L

with an arbitrary operator F of the considered class, by (3.4), we then obtain

[L, F ](p;q) =
(
l(p + q) − l(q)

)
F (p;q), (3.12)

which also holds if l(q) in (3.11) is a meromorphic function.
We here skip additional conditions that allow defining inverse operators uniquely (if they exist) and

only mention for future use that the operator inverse to Dj is defined as (cf. (3.8))

D−1
j (p;q) =

δ(p)
qj

, (3.13)

and its kernel in the x space can be found from (3.2). This construction is used in Sec. 3.3 in the case
where the real variables x, x′, and q are one-dimensional. The corresponding simplifications of the above
formulas are obvious, and we omit them here.
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3.2. (2+1)-dimensional integrable equations. We now realize elements of the associative algebra
as operators A(q), B(q), etc., in the sense of the definitions in Sec. 3.1, and we impose specific conditions
on this realization that allow deriving the Lax pairs and nonlinear integrable equations. The examples
given in Secs. 1 and 2 show that the number of generating elements of the commutator identities is equal
to the number of space variables of the associated linear differential equations. Correspondingly, we choose
the kernels A(x, x′; q) and B(x, x′; q) to be dependent on vectors x and x′ of the same dimension as the
number of generating elements. In this section, we consider identities (1.1), (1.6), (2.1), (2.4), (2.18) (in
the case h1h2 �= 0), and (2.19), i.e., those identities that are generated by two adjoint actions of powers of
A (or its matrix functions as in (2.18) and (2.19)). Hence, the real vectors x and x′ (and then also q) are
two-dimensional here. In what follows, we assume the following conditions.

Condition 1. The time dependence is introduced using one of relations (1.4), (1.8), (2.2), (2.6), (2.21),
or (2.22), and this gives operators B(t, q) with kernels B(x, x′; t, q) belonging to the same space of operators.

Taking into account that the time variables corresponding to two generators of these identities are
denoted by t1 and t2, we next impose the following condition.

Condition 2. The time dependence of B(t, q) on the variables t1 and t2 reduces to a shift of the space
variables of the kernel, i.e.,

B(x, x′; t1, t2, q) = B(x1 + t1, x2 + t2, x
′
1 + t1, x

′
2 + t2; q), (3.14)

where the dependence on the other variables tm is omitted.

In terms of the (p,q) kernels defined by (3.1), this means that

B(p; t,q) = e−it1p1−it2p2B(p;q). (3.15)

In the differential form, we have

∂tj B(t, x, x′; q) = (∂xj + ∂x′
j
)B(t, x′x′; q), (3.16)

∂tj B(t, p;q) = −ipjB(t, p;q), j = 1, 2, (3.17)

which by (3.7) or (3.8) and (3.12) can be written as

i∂tj B(t, q) =
[
Dj(q), B(t, q)

]
. (3.18)

To explain Condition 2, we note that in the study in [1] in terms of the inverse scattering transform of
the algebraic schemes developed in [13]–[15], relation (3.14) was derived as the evolution equation of the
operator scattering data.

Condition 3. If the dependence of the kernel A(p;q) on the q variables reduces to only one linear
combination of q1 and q2 with constant coefficients, then the q dependence of the kernel B(p;q) is the
same.

Formally, this condition means that the operator B is a function of the space variables and the operator
A. Below, we consider consequences of these conditions in the operator realization of the commutator
identities listed in Secs. 1 and 2.
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3.2.1. The KPII equation. We illustrate the procedure for reconstructing the Lax pair and non-
linear equation using identity (1.1) as an example. By (1.4), we obtain

∂B(t)
∂t1

=
[
A, B(t)

]
,

∂B(t)
∂t2

=
[
A2, B(t)

]
. (3.19)

The first equality here and (3.18) show that we must set

A(p;q) = −iq1δ(p), i.e., A = −iD1. (3.20)

It now follows from the second equality in (3.19) that because of (3.12) and (3.17), the kernel of the operator
B(q) in the (p,q) space satisfies

[
ip2 + (p1 + q1)2 − q2

1

]
B(p;q) = 0. (3.21)

Taking (3.12) into account, we can write this as the equality

[
L0(q), B(q)

]
= 0, (3.22)

where we introduce the operator L0 with the kernel

L0(p;q) = (iq2 + q2
1)δ(p). (3.23)

Taking definitions (3.8) into account, we can write this operator as

L0 = iD2 + D2
1. (3.24)

By (3.5)–(3.7), this operator is an extension of the operator

L0 = −∂x2 − ∂2
x1

, (3.25)

which is the differential part (the part corresponding to a zero potential) of the Lax operator associated
with the KPII equation (see [16], [17]):

L = −∂x2 − ∂2
x1

− u(x). (3.26)

Condition 3 means that the kernel B(p;q) is independent of q2, and by (3.21), it therefore has the
form

B(p; t,q) = δ
(
ip2 + p1(p1 + 2q1)

)
b(p, t) (3.27)

(we here skip consideration of more complicated solutions of (3.21) that are given by ∂/∂q̄1 derivatives
of (3.27)), where we use the notation for the δ-function of a complex argument, δ(z) = δ(z�)δ(z�). In (3.27),
the function b(p, t) is

b(p, t1, t2, t3) = exp
(
−ip1t1 − ip2t2 + it3

p4
1 − 3p2

2

4p1

)
b(p), (3.28)

where the dependence on t1, t2, and t3 is given by (2.2) and b(p) is independent of t (and q).
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We now introduce the operator ν with the kernel ν(p;q) depending on the same linear combination of
q1 and q2 that was mentioned in Condition 3. In this case, because of (3.20) and (3.27), this means that
ν(p;q) = ν(p;q1) and

∂̄1ν = νB (3.29)

(see (3.9)). To define the operator ν uniquely, we normalize it to be the unity operator at the singularity
point of the kernel L0(p;q) with respect to q1. By (3.20), this here means that

ν(p;q1) = δ(p) + O(q−1
1 ), q1 → ∞. (3.30)

Because of (3.10), it then follows from (3.22) that [L0, ν] satisfies

∂̄1[L0, ν] = [L0, ν]B, (3.31)

i.e., the same Eq. (3.29). By (3.12) and (3.30), the kernel [L0, ν](p;q1) has some constant asymptotic
behavior (with respect to q1) at infinity. Letting −u(p, t) denote this asymptotic form and assuming the
unique solvability of (3.29), we find that [L0, ν] = uν, i.e.,

Lν = νL0, (3.32)

where L is the extension (in the sense of (3.6)) of differential operator (3.26). Equation (3.32) means that
ν is a dressing (transformation) operator. It was shown in [6] that by substituting (3.27) in (3.29), we
obtain the standard equation for the inverse problem for the Jost solution (see [18]) and that the second
operator of the Lax pair and also the differential equation for u(x, t) (the Fourier transform of u(p, t)) follow
from (3.28) and (3.29). We do not reproduce these details here.

3.2.2. The KPI equation. We derived the KPII equation above under the assumption that all the
times in (1.4) are real. Substituting tj → −itj in (1.4) and (1.6), instead of (3.19), we obtain

i
∂B(t)
∂t1

=
[
A, B(t)

]
, i

∂B(t)
∂t2

=
[
A2, B(t)

]
, (3.33)

and so on. Therefore, the same as in (3.20), we now obtain

A = D1. (3.34)

It follows from (3.12), (3.17), and the second equality in (3.33) that the kernel of the operator B(q) in the
(p,q) space in this case satisfies

[
p2 − (p1 + q1)2 + q2

1

]
B(p;q) = 0. (3.35)

This means that the operator B(q) satisfies the same commutator equality (3.22), while now

L0 = D2 − D2
1. (3.36)

In terms of the discussion in Sec. 3.1, this is an extension of the differential operator

L0 = i∂x2 + ∂2
x1

, (3.37)
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i.e., of the differential part of the linear operator associated with the KPI equation (see [16], [17]):

L = i∂x2 + ∂2
x1

− u(x). (3.38)

Because of Condition 3 and in analogy with (3.27) and (3.28), we now obtain

B(t, p;q1) = δ
(
p2 − p1(p1 + 2q1)

)
b(t, p), (3.39)

where

b(t1, t2, t3, p) = exp
(
−ip1t1 − ip2t2 − it3

p4
1 + 3p2

2

4p1

)
b(p). (3.40)

Again, we can define the transformation operator ν using (3.29) and (3.30). But in this case, the
argument of the δ-function in the r.h.s. of (3.39) is proportional to q1� = q1, and instead of ∂̄-problem (3.29),
we therefore obtain a nonlocal Riemann–Hilbert problem, i.e., we encounter a well-known difference between
the inverse problems for KPII and KPI equations (compare [18] with [19] and [20]). Again, L0(p;q) here
behaves polynomially at infinity, and we therefore impose the same normalization condition (3.30). Further,
using (3.22), we prove relation (3.32), where L is now the extension in the sense of (3.6) of differential
operator (3.38). Referring to [5], we can derive the second equation of the Lax pair and prove that u(x, t)
satisfies the KPI equation when the dependence on the three times t1, t2, and t3 is introduced. In the same
way, we can use identities (1.6) to derive higher equations of the KP hierarchy (see [1]). By construction,
it is clear that all of them have the same associated linear operator L.

3.2.3. The BLP equation. Now let the operator B(t) be defined by (2.2)). Hence, by (2.1), it
satisfies (2.3). Instead of (3.19), we then obtain

∂B(t)
∂t1

=
[
A, B(t)

]
,

∂B(t)
∂t2

=
[
A−1, B(t)

]
. (3.41)

Using Condition 2 or one of its differential forms (3.16)–(3.18), we find that the operator A is the same as
in (3.20). Analogously to the derivation of (3.21), it then follows from the second equality in (3.41), (3.12),
and (3.13) for j = 2 that the kernel of the operator B satisfies

(
p2 +

1
p1 + q1

− 1
q1

)
B(p;q) = 0. (3.42)

Hence, B(q) again satisfies (3.22), where by (3.12),

L0 = D2 + D−1
1 . (3.43)

Condition 3 yields B(p;q) = B(p;q1), and relation (3.42) means that the kernel B(p;q) has the form
(cf. (3.27))

B(t, p;q) = δ

(
p2 +

1
p1 + q1

− 1
q1

)
b(t, p), (3.44)

where the function b(t, p) is

b(t1, t2, t3, p) = exp
(
−ip1t1 − ip2t2 − it3p

2
1

√
1 − 4

p1p2

)
b(p), (3.45)

where the dependence on t1, t2, and t3 corresponds to (2.2).
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The kernel of the operator L0 is equal to L0(p;q) = (q2 + 1/q1)δ(p); therefore, in contrast to the KP
case, it is only a meromorphic function of q1. Correspondingly, the kernel ν(p;q1) of the transformation
operator is defined as the solution of the same ∂̄-problem (3.29). But L0(p;q) is now singular at q1 = 0,
the normalization condition is consequently given by

ν(p;q1)
∣
∣
q1=0

= δ(p), (3.46)

and we seek solutions bounded as q1 → ∞. As a result, the ∂̄-equation for the commutator [L0, ν] has an
additional inhomogeneous term (see (3.31)). Nevertheless, simple calculations prove that (3.32) also holds
in this case with the dressed operator

L = D2 + D−1
1 + D−1

1 α + β, (3.47)

where α and β are multiplication operators, i.e., they have the kernel α(x, x′; q) = α(x)δ(x − x′) and the
analogous kernel for β in the x space. Operator (3.47) is not a differential operator. A differential operator
is given by the product L̃ = D1L, which by (3.6) is the extension of the operator

L̃ = ∂x1∂x2 + 1 + αx + ∂x1 · β(x), (3.48)

i.e., the auxiliary linear operator of the BLP equation (see [8]). It was noted in [9] that studying the direct
and inverse problems for this operator in fact reduces to studying these problems for operator (3.47). It
was proved in [10] that by (3.45), the time evolution (with respect to t3) of the spectral data B leads to
the nonlinear differential BLP equation for α and β.

The exponent in (3.45) is not purely imaginary. Correspondingly, the time evolution for the BLP
equation is unstable (see [10]). It was also proved in [10] that if the dependence on t3 is given by (2.5), then
the resulting nonlinear differential equation for α and β does not have this defect. Here, we omit further
details and only mention that the dependence on t1 and t2 in (2.2) and (2.5) coincides; hence, in the case
of identity (2.6), using the above procedure, we obtain the same L-operator (3.47).

3.2.4. The DS and VN equations. We now briefly consider the consequences of identities (2.18)
and (2.19), where B is the matrix given by (2.7) and the matrices Ij are defined by (2.8). Let B1 and B2

be operators belonging to the space in Sec. 3.1 with the kernels Bj(x, x′; q) in the x space (with the kernels
Bj(p;q) in the (p,q) space). Under the action of evolutions (2.21) and (2.22), we obtain the corresponding
operators with the kernels B(t, x, x′; q) and B′(t, x, x′; q). We consider equality (2.18). Imposing Condition 2
on the operator B(t, q) and taking (3.17) and (2.8) into account, we obtain

i(AB1)(p;q) = p1B1(p;q), − i(B2A)(p;q) = p1B2(p;q), (3.49)

− i(B1A)(p;q) = p2B1(p;q), i(AB2)(p;q) = p2B2(p;q). (3.50)

Summing the equations in (3.49) and (3.50) pairwise by columns, we obtain i[A, Bj](p;q) = (p1+p2)Bj(p;q),
j = 1, 2. Therefore, by (3.12), we must here set

A(p;q) = −i(q1 + q2)δ(p), (3.51)

which, because of (3.8), can be written in the operator form as

A = −i(D1 + D2). (3.52)

414



It now remains to satisfy the equations, for example, in (3.49), giving the conditions (q1+q2+p2)B1(p;q) =
0 and (q1 +q2 + p1)B2(p;q) = 0. To satisfy these equalities, it suffices to choose the kernel of the operator
B in the form

B(p; t,q) =

(
0 δ(q1 + q2 + p2)b1(p, t)

δ(q1 + q2 + p1)b2(p, t) 0

)

, (3.53)

where we use the fact that the kernel B(t, p;q) is independent of the difference q1 − q2 by Condition 3
and (3.51). The time dependence of the operator B in the case where all three times are introduced by (2.21)
is given using the explicit relation

B(p; t,q) = e−it1p1−it2p2−t3σ3(h1p2
1−h2p2

2) ×

×
(

0 δ(q1 + q2 + p2)b1(p)

δ(q1 + q2 + p1)b2(p) 0

)

. (3.54)

Consequently, we should change t3 to it3 to avoid instability.
We must now construct a nontrivial operator L0 with constant coefficients that satisfies Eq. (3.22).

Taking the δ-functions in (3.53) and the off-diagonal matrix structure of the operator B into account, we
see that L0(p;q) = diag

{
P1(q), P2(q)

}
δ(p), where Pj(q) are polynomials. Under the condition that these

polynomials are nontrivial and have the lowest possible degree, we easily find that

L0 =

(
D2 0

0 −D1

)

. (3.55)

Because of our definitions (3.5)–(3.8), this operator is an extension of the operator

L0 =

(
∂x2 0

0 −∂x1

)

, (3.56)

which is the differential part of the two-dimensional Zakharov–Shabat problem, known to be the auxiliary
linear problem for the DS equation [21].

The transformation operator ν with the kernel ν(p;q1 + q2) is defined using ∂̄-problem (3.29) and is
normalized to be the unit matrix operator (cf. (3.30)) at the singularity point of the kernel L0(p;q), i.e.,
as q1 + q2 → ∞. We can then prove that (3.31) holds because of (3.22) and (3.55). Further, taking the
asymptotic behavior of the kernel [L0, B](p;q) as q → ∞ into account, we derive (3.32), where L is now the
extension of the linear operator of the Zakharov–Shabat problem. The consideration of identity (2.19) goes
along the same lines because the dependences on t1 and t2 in (2.21) and (2.22) coincide; we consequently
obtain the VN equation.

3.3. (1+1)-dimensional equations. We have seen that without loss of generality, the operator A

can always be chosen as a linear combination of the operators D1 and D2 with constant (matrix) coefficients
(see (3.7) and (3.8)). To obtain integrable (1+1)-dimensional equations, we can perform a reduction,
imposing the condition that the operator B commutes with an additional linear combination of D1 and D2.
As follows from (3.12), the function b(p) in (3.28), (3.40), and (3.45) is then proportional to δ(p2), and the
functions bj(p) in (3.53) are proportional to δ(p1 + p2). It is easy to verify that we thus indeed obtain the
corresponding (1+1)-dimensional nonlinear evolution equations. On the other hand, we can directly apply
the procedure described above to identities (2.9)–(2.11) and the corresponding Eqs. (2.14) and (2.15).
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As an example, we consider (2.9). Here, we have only one generator of the commutator algebra, the
commutator with AI1. Correspondingly, we realize the operator B as an integral operator in the one-
dimensional space, the operator with the kernel B(x1, x

′
1; q1). Using obvious one-dimensional versions of

the formulas given in Sec. 3.1, we here impose the condition

B(x1, x
′
1; t1, q1) = B(x1 + t1, x

′
1 + t1, ; q1) (3.57)

instead of Condition 2 (see (3.14)), and we then have

∂t1B(p1; t1,q1) = −ip1B(p1; t1,q1) (3.58)

by (3.17) for j = 1. On the other hand, by (2.12), we have ∂t1B(t) =
[
AI1, B(t)

]
. We choose A

as a differential operator with constant coefficients; because of (3.11), we then have the representation
A(p1,q1) = a(q1)δ(p1) for its kernel, where a(q1) is a polynomial. Using (2.7), (2.8), and property (3.12),
we obtain (

a(p1 + q1) + ip1

)
B1(p1,q1) = 0,

(
a(q1) − ip1

)
B2(p1,q1) = 0. (3.59)

In this case, we have no variables p2 and q2, and the zeroes of the expressions in parentheses must occur
for the same values of q1 and p1. This condition defines a(q1) as a first-order polynomial equal to −2iq1

(up to a shift by a constant), i.e.,
A(p1;q1) = −2iq1δ(p1) (3.60)

or by (3.8),
A = −2iD1. (3.61)

Equalities (3.59) then reduce to (p1 + 2q1)Bj(p1,q1) = 0; by (2.7), we hence have the representation

B(t, p1;q1) =

(
0 b1(t, p1)

b2(t, p1) 0

)

δ(p1 + 2q1) (3.62)

for the kernel of the operator B. As above, it is easy to prove that the operator L0 satisfying relation (3.22)
is given by

L0 = σ3D1, (3.63)

and we thus obtain the differential part of the one-dimensional Zakharov–Shabat problem. The transforma-
tion operator ν and the potential u can be constructed along the same lines as above using ∂̄-problem (3.29),
which here, as in the KPI and DS cases, reduces to the Riemann–Hilbert problem because of the specific
argument of the δ-function in (3.62).

4. Concluding remarks

We have demonstrated that the existence of commutator identities leads to integrable nonlinear evo-
lution equations. The proposed scheme for reconstructing such equations together with their Lax pairs
is general and model independent, although the examples considered here correspond only to the known
integrable equations. The problem of describing all commutator identities on associative algebras thus
arises. Another open question is the existence of commutator identities with three generators. Following
the lines of the procedure proposed here, we find it reasonable to expect that such identities would lead to
(3+1)-dimensional integrable equations. The commutator identities described here hold on arbitrary asso-
ciative algebras, while the realization of the operators A and B that allowed obtaining nonlinear evolution
equations was rather specific. It is worthwhile to assume that the same identities are related to some other
integrable systems under some other realization of the elements of the associative algebra.
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