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HIGHER-SPIN CONFORMAL CURRENTS IN MINKOWSKI SPACE

M. A. Vasiliev,∗ O. A. Gelfond,† and E. D. Skvortsov∗

Using the unfolded formulation of equations for massless free fields of all spins, we obtain an explicit form

of the gauge-invariant higher-spin conformal conserved charges bilinear in four-dimensional massless fields

of arbitrary spins.
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1. Introduction

In this paper, we construct an explicit form of gauge-invariant higher-spin (HS) conserved currents
constructed from four-dimensional massless fields of all spins. To the best of our knowledge, a complete real-
ization of HS conformal currents constructed from massless fields of arbitrary spins in the four-dimensional
Minkowski space has not yet been available in the literature, although some particular examples of HS
conformal currents constructed from massless fields of lower spins s ≤ 1 were considered. In particular,
x-independent HS conformal currents constructed from massless scalar, spinor, and Maxwell fields were
found in [1], and x-dependent HS currents constructed from massless scalar and spinor fields were found
in [2]. We extend these results in two directions: the currents are constructed, first, from fields of arbitrary
spin and, second, with explicit dependence on the space–time coordinates.

The analysis of HS currents has several applications. Most notably, constructing conserved currents is
the first step toward a nonlinear HS theory because they characterize the so-called Noether cubic interactions
of gauge fields of all spins. At the same time, charges constructed from the currents serve as generators of
the respective lower and higher symmetries. Hence, the construction of HS currents sheds some light on
the structure of HS symmetries and interactions.

Our construction is based on the unfolded formulation of dynamical equations in the form of zero-
curvature equations [3] and is analogous to the construction of HS currents [4] in the generalized space–time
with matrix coordinates [5]–[8].

2. Unfolded massless field equations in four-dimensional
Minkowski space

It was shown in [3], [7] that the equations for field strengths of massless fields of all spins in Minkowski
space can be concisely formulated in the unfolded form

∂

∂xaḃ
C(w, w |x) +

∂2

∂wa∂wḃ
C(w, w |x) = 0, (1)

where wa and wḃ are auxiliary commuting conjugate two-component spinor coordinates (a, b = 1, 2 and
ȧ, ḃ = 1̇, 2̇) and xaḃ are Minkowski coordinates in the two-component spinor notation. The two-component

∗Lebedev Physical Institute, RAS, Moscow, Russia, e-mail: vasiliev@lpi.ru, skvortsov@lpi.ru.
†Institute for Systems Research, RAS, Moscow, Russia, e-mail: gel@lpi.ac.ru.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 154, No. 2, pp. 344–353, February, 2008.

Original article submitted March 19, 2007.

294 0040-5779/08/1542-0294 c© 2008 Springer Science+Business Media, Inc.



indices are raised and lowered as

Aa = εabAb, Aa = εbaAb, εab = −εba, ε12 = 1, (2)

and analogously for dotted indices. The relation to the tensor notation is given by

V aḃ = Aνσaḃ
ν , (3)

where σaḃ
ν , ν = 0, 1, 2, 3, are four Hermitian 2×2 matrices.

The meaning of Eqs. (1) is as follows. The fields C(w, w |x) are assumed to be expandable in power
series in wa and wȧ,

C(w, w |x) =
∞∑

m,n=0

Ca1...anȧ1...ȧm(x)wa1 · · ·wanwȧ1 · · ·wȧm . (4)

The operator

Nw,w = wa ∂

∂wa
− wȧ ∂

∂wȧ

commutes with ∂2/(∂wa ∂wȧ). Solutions of Eqs. (1) with fixed eigenvalues of Nw,w form an invariant
subspace describing fields of different helicities h,

Nw,wC(w, w |x) = 2hC(w, w |x). (5)

The holomorphic fields

C(w, 0 |x) =
∞∑

2s=0

Ca1...a2s(x)wa1 · · ·wa2s

and their complex conjugates (wa is complex conjugate to wȧ)

C(0, w |x) =
∞∑

2s=0

Cȧ1...ȧ2s(x)wȧ1 · · ·wȧ2s

respectively describe self-dual (positive helicity) and anti-self-dual (negative helicity) gauge-invariant on-
shell nontrivial (on the equations of motion) combinations of derivatives of massless gauge fields of all spins
s = 0, 1/2, 1, . . . ,∞, where

wa ∂

∂wa
C(w, 0 |x) = 2sC(w, 0 |x)

and
wȧ ∂

∂wȧ
C(0, w |x) = 2sC(0, w |x).

These include the scalar field (s = 0)
c(x) = C(0, 0 |x),

the spinor field (s = 1/2)

ca(x) =
∂

∂wa
C(w, 0 |x)

∣∣∣∣
w=0

, c̄ȧ(x) =
∂

∂wȧ
C(0, w |x)

∣∣∣∣
w=0

,

the Maxwell tensor (s = 1)

cab(x) =
1
2

∂2

∂wa ∂wb
C(w, 0 |x)

∣∣∣∣
w=0

, c̄ȧḃ(x) =
1
2

∂2

∂wȧ ∂wḃ
C(0, w |x)

∣∣∣∣
w=0

,
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the Rarita–Schwinger field strength (s = 3/2)

cabc(x) =
1
3!

∂3

∂wa ∂wb ∂wc
C(w, 0 |x)

∣∣∣∣
w=0

, c̄ȧḃċ(x)
1
3!

∂3

∂wȧ ∂wḃ ∂wċ
C(0, w |x)

∣∣∣∣
w=0

,

the Weyl tensor (s = 2)

cabcd(x) =
1
4!

∂4

∂wa ∂wb ∂wc ∂wd
C(w, 0 |x)

∣∣∣∣
w=0

,

c̄ȧḃċḋ(x) =
1
4!

∂3

∂wȧ ∂wḃ ∂wċ ∂wḋ
C(0, w |x)

∣∣∣∣
w=0

,

and so on [7].
The primary fields are those contained in C(w, 0 |x) and their complex conjugates C(0, w |x). They

describe gauge-invariant combinations of lowest-order derivatives with respect to x of massless gauge fields,
which were considered by many authors (see, e.g., [9]). We note that the order of derivatives of a spin s

field is equal to [s].
The descendants are described by the components of C(w, w |x) that depend on both w and w and

are therefore expressed in terms of derivatives of the primary fields by (1).
The dynamical HS field equations are consequences of (1):

∂

∂xaḃ

∂

∂wa
C(w, 0 |x) = 0,

∂

∂xaḃ

∂

∂wḃ

C(0, w |x) = 0, (6)

for fields of spin s �= 0 and the massless Klein–Gordon equation

∂2

∂xaḃ ∂xaḃ

c(x) = 0 (7)

for scalar fields (for s > 0, (7) is a consequence of (6)).
A given function C(w, w | 0) of the spinors wa and wȧ uniquely reconstructs a solution of Eqs. (1) by

C(w, w |x) = exp
(
−xaḃ ∂2

∂wa ∂wḃ

)
C(w, w | 0).

Conversely, a given solution of Eqs. (1) reconstructs the full dependence on w and w as follows. The Taylor
expansion gives

C(w, w |x) = exp
(

wa ∂

∂va
+ wȧ ∂

∂v̄ȧ

)
C(v, v̄ |x)

∣∣∣∣
v=v̄=0

.

For a given helicity h ≥ 0, we obtain

C(w, w |x) =
1

(2h)!

(
wb ∂

∂vb

)2h

Fh

(
wa ∂

∂va
wȧ ∂

∂v̄ȧ

)
C(v, v̄ |x)

∣∣∣∣
v=v̄=0

,

where the function

Fh(r) =
∞∑

n=0

(2h)!
n! (2h + n)!

rn

is related to the regular Bessel functions Ik(x) (see, e.g., [10]) by

rh

(2h)!
Fh(r) = I2h(2r1/2).
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Again using Eqs. (1), we now obtain

Ch(w, w |x) = Fh(−wawḃ∂aḃ)C
h(w, 0 |x) (8)

for a field with a positive helicity h, where ∂aȧ = ∂/∂xaȧ. Analogously, we obtain

Ch(w, w |x) = F|h|(−wawḃ∂aḃ)C
h(0, w |x) (9)

for negative helicities h < 0. This reconstructs the dependence on w and w.

3. Higher-spin conformal currents

It follows from Eqs. (1) that the field equations for massless fields of all spins are sp(8) symmetric
with sp(8) being a maximal finite-dimensional subalgebra of the infinite-dimensional HS symmetry [7].
This symmetry is conformal because sp(8) contains the four-dimensional conformal algebra su(2, 2) as a
subalgebra. The infinite set of conformal HS symmetries suggests the existence of conserved HS currents.

The HS charges in Minkowski space should have the form

Q(η) =
∫

Σ3
Ω3(η), (10)

where η denotes the HS symmetry parameters, Ω3(η) is an on-shell closed 3-form (on the equations of
motion) dual to the conserved current, and Σ3 is an arbitrary three-dimensional surface in the Minkowski
space–time usually identified with the space surface R

3, i.e., the Cauchy surface.
Using the unfolded form of the massless field equations, we can easily write explicit formulas for the

conserved HS charges in the four-dimensional Minkowski space. We consider the 3-form in the Minkowski
space M4

Ω3(η) = dxaȧ ∧ dxaċ ∧ dxcȧηb1...blḃl+1...ḃt

α1...αs ×

× xb1 ė1 . . . xblėlxel+1 ḃl+1 · · ·xet ḃtTcċα1...αsel+1···etė1...ėl
, (11)

where ηβ1...βt
α1...αs are HS symmetry parameters symmetric in the upper and lower indices and the gener-

alized stress tensor Tα1...αn is also symmetric. We use notation with four-component Greek indices being
equivalent to a pair of undotted and dotted two-component indices, e.g., α = a, ȧ.

Form (11) is closed,
dΩ3(η) = 0, (12)

if the generalized stress tensor Tα1...αn(x) satisfies the conservation condition

∂

∂xbḃ
T bḃ

α1...αn−2(x) = 0. (13)

Indeed, because Tα1...αn(x) is symmetric, (12) is a simple consequence of the identity

dxaȧ ∧ dxa
ċ ∧ dxc

ȧ ∧ dxbḃ ∂

∂xbḃ
=

1
4
dxaȧ ∧ dxa

ḃ ∧ dxb
ȧ ∧ dxbḃ ∂

∂xcċ
.

For the case with an equal number of dotted and undotted indices among the indices α in (13), we obtain the
usual conservation condition for traceless symmetric tensors, which is well known to be related to conformal
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HS symmetries [1]. But it follows from Eq. (13) that all irreducible tensors of the four-dimensional Lorentz
algebra in the general case can arise as generalized conserved stress tensors except those containing only
indices of one type: dotted (i.e., self-dual) or undotted (i.e., anti-self-dual) components. We note that in
the tensor language, the Lorentz algebra of generalized stress tensors of integer spins is described by all
possible traceless Lorentz tensors that have symmetry properties of Young tableaux with at most two rows.
The components of Tα1...αn(x) that do not contribute to the conserved charge are described by all possible
two-row rectangular Young tableaux.

The key observation is that the stress tensor

T kl
α1...αn

(x) =
∂

∂yα1
· · · ∂

∂yαn

(
Ck(y |x)Cl(iy |x)

)∣∣∣∣
y=0

, (14)

where yα = (wa, wȧ), satisfies conservation condition (13) if the field Ck(y |xaȧ) satisfies four-dimensional
unfolded equation (1). Indeed, it follows from (1) that

∂

∂xbḃ

∂

∂wb

∂

∂wḃ

(
Ck(y |x)Cl(iy |x)

)
=

= − ∂

∂wb

∂

∂wḃ

(
Ck(y |x)

∂

∂wb

∂

∂wḃ
Cl(iy |x) −

(
∂

∂wb

∂

∂wḃ
Ck(y |x)

)
Cl(iy |x)

)
= 0.

We note that the conserved currents constructed from HS fields according to (14) contain higher
derivatives. This completely agrees with the analysis in [11] and also with the general property of HS
theories that their interactions contain higher derivatives [12], [13].

4. Examples

In this section, we consider some examples of conserved currents resulting from the general construction.
In terms of two-component fields, dynamical equations (6) and (7) on the (anti-)self-dual components
ca1a2...a2s(x) and c̄ȧ1ȧ2...ȧ2s(x) are rewritten as

∂a1ȧ1ca1a2...a2s = 0, ∂a1ȧ1 c̄ȧ1ȧ2...ȧ2s = 0. (15)

These equations imply that space–time derivatives of the field strengths are separately symmetric in the
dotted and the undotted indices.

Straightforwardly substituting (8) and (9) in (14) gives the generalized stress tensor that contains p

derivatives acting on spin-s self-dual and spin-s′ anti-self-dual fields,

T
s,s′,p | k,l
a(2s+p),ȧ(2s′+p) =

p∑

j=0

(−1)j (2s)! (2s + p)! (2s′)! (2s′ + p)!
(2s + j)! (p − j)! (2s′ + p − j)! j!

∂aȧ(j)c
k
a(2s)∂aȧ(p−j)c̄

l
ȧ(2s′), (16)

where the notation ∂aȧ(k) ≡ ∂k/(∂xaȧ · · · ∂xaȧ) is used and indices denoted by the same letter are assumed
to be symmetrized (with the convention that the symmetrization is a projection operator, i.e., symmetrizing
twice leaves a symmetrized tensor unchanged). Analogously, we can construct self-dual–self-dual and anti-
self-dual–anti-self-dual generalized stress tensors T

s,s′,p | k,l
a(2s+2s′+p),ȧ(p) and T

s,s′,p | k,l
a(p),ȧ(2s+2s′+p).

The generalized irreducible angular momentum tensors obtained from (11) have the form

M
s,s′,p |m,m′,n | k,l
a(2s+p−m+m′−n),ȧ(2s′m′−n) =

= T
s,s′,p | k,l

a(2s+p−m−n)b(m)c(n),ȧ(2s′+p−m′−n)ḃ(m′)ċ(n)
xb(m)

ȧ(m) xḃ(m′)
a(m′) xcċ(n), (17)
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where xb(m)
ȧ(m) ≡

m︷ ︸︸ ︷
xb

ȧ · · ·xb
ȧ.

In particular, for fields of equal spins, we obtain the generalized stress tensors

T
s,s,p | k,l
a(2s+p),ȧ(2s+p) =

p∑

j=0

(−1)j
(
(2s)!

)2((2s + p)!
)2

(2s + j)! (p − j)! (2s + p − j)! j!
∂aȧ(j)c

k
a(2s)(x)∂aȧ(p−j)c̄

l
ȧ(2s) (18)

and T
s,s,p | k,l
a(4s+p),ȧ(p) and T

s,s,p | k,l
a(p),ȧ(4s+p) corresponding to symmetric traceless tensors T

s,s,p | k,l
µ(2s+p) of rank 2s + p in

the tensor notation of the Lorentz algebra.
We consider some lower-spin examples. A spin-0 massless scalar field ck(x) satisfies the Klein–Gordon

equation
∂µ∂µck(x) = 0, (19)

which is equivalent to (7). The HS totally symmetric conserved currents constructed from higher derivatives
of the scalar field [1], [2] have the form

T
0,0,p | k,l
a(p),ȧ(p) =

p∑

j=0

(−1)j

{
p!

(p − j)! j!

}2

∂aȧ(j)c
k(x)∂aȧ(p−j)c

l(x). (20)

For the particular cases of p = 1 and p = 2, we obtain the electric current

Jk,l
a,ȧ = ∂aȧclck − ∂aȧckcl (21)

and the improved energy–momentum tensor

T
0,0,2 | k,l
aa,ȧȧ = ck∂aȧ∂aȧcl − 4∂aȧc

k∂aȧcl + ∂aȧ∂aȧckcl, (22)

which is symmetric in the color indices. In the tensor notation, these currents have the forms

Jk,l
µ = ck∂µcl − cl∂µck,

Tµν = ∂µc∂νc − 1
2
c∂µνc − 1

4
ηµν∂λc∂λc.

(23)

A spin-1/2 field ψ(x) satisfying the massless Dirac equation γµ∂µψ(x) = 0 is described by ca(x) and
c̄ȧ(x) that satisfy (15). With the color indices omitted, the electric current T 1/2,1/2,0 and the energy–
momentum tensor T 1/2,1/2,1 are

T
1/2,1/2,0
a,ȧ = cac̄ȧ,

T
1/2,1/2,1
a(2),ȧ(2) = 2(ca∂aȧc̄ȧ − ∂aȧcac̄ȧ).

(24)

A supercurrent mixing spin-0 and spin-1/2 fields is given by

T
1/2,0,1
aa,ȧ = 2ca∂aȧc − ∂aȧcac (25)

and its complex conjugate.
A massless spin-1 field can be described by a gauge-invariant field strength satisfying the Maxwell

equations
∂µFµν = 0, ∂[ρFµν] = 0. (26)
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In terms of two-component spinors, Fµν is described by caa and c̄ȧȧ, while the Maxwell equations have
form (15).

The energy–momentum tensor

Tµν = −Fµ
σFσν +

1
4
ηµνF 2 (27)

corresponds to T 1,1,0 and has the form
T 1,1,0

aa,ȧȧ = 4caac̄ȧȧ. (28)

As in the scalar field case, there exist totally symmetric HS conserved currents constructed from higher
derivatives of the spin-1 field strength [1] corresponding to the sequence T 1,1,p.

Using the energy–momentum tensor Tµν , we can construct an angular momentum tensor

Mµ,νλ = Tµνxλ − Tµλxν . (29)

In the case of spin 0, it corresponds to the spinor tensors M
0,0,2 | 1,0,0
a,ȧ(3) , M

0,0,2 | 0,1,0
a(3),ȧ , and M

0,0,2 | 0,0,1
a,ȧ .

A massless spin-2 field describes the linearized gravity. The linearized gauge-invariant combinations
of derivatives of a linearized metric tensor are given by the linearized Riemann tensor, whose trace part
is zero by virtue of the Einstein equations. The nonzero traceless part is called the Weyl tensor Hµνλρ.
As a consequence of the Einstein equations, the Weyl tensor satisfies differential restrictions, the Bianchi
identities. In terms of two-component spinors, the Weyl tensor is described by the self-dual component
cabcd(x) and anti-self-dual component c̄ȧḃċḋ(x). The consequences of the Einstein equations have form (15).

It is well known that there is a conserved current bilinear in the Weyl tensor, called the Bel–Robinson
tensor [14], [15]. In the tensor notation, it has the form

Tµνλρ = HµσνηHλ
σ

ρ
η + ∗Hµσνη

∗Hλ
σ

ρ
η, (30)

where the Hodge star ∗ denotes dualization by the Levi-Civita tensor εµνλρ. In terms of two-component
spinors, the Bel–Robinson tensor corresponds to T 2,2,0 and has the simple form

T 2,2,0
a(4),ȧ(4) = (4!)2ca(4)c̄ȧ(4). (31)

Other generalized stress tensors constructed from the Weyl tensor are given by formula (18) with s = 2.

5. Conclusion

Although the obtained list of conserved currents is infinite, it does not contain some of the expected
symmetry generators and is thus incomplete. This is not surprising, because even ordinary conserved
currents like the energy–momentum tensor and the electric charge for HS fields are not in the class of gauge-
invariant currents. Indeed, it is well known that the energy–momentum conservation in the theory of gravity
is described in terms of a gauge-noninvariant pseudotensor [16], which nevertheless yields gauge-invariant
total energy and momentum conservation laws in the free-field approximation. The same happens for all
HS fields [11], [17], [18]. The reason is that for a spin-s gauge field, the minimum degree in the derivatives
of the gauge-invariant tensors C(w, w |x) is equal to s; therefore, conserved tensors must themselves have
sufficiently high spins.

The system of all HS fields is sp(8) invariant [5], [7]. The symmetry parameters and corresponding
conserved currents in the two-component spinor notation have the following forms: generalized translations
correspond to the symmetry parameters ηaȧ, ηaa, and ηȧȧ and the conserved currents T k,l

a,ȧȧȧ, T k,l
aaa,ȧ, and

T k,l
aa,ȧȧ; generalized Lorentz boosts and dilatations correspond to the symmetry parameters ηb

a, ηḃ
a, ηb

ȧ,

300



and ηḃ
ȧ and the conserved currents T k,l

aa,ȧḃ
xbḃ, T k,l

aab,ȧxbḃ, T k,l

a,ȧȧḃ
xbḃ, and T k,l

ab,ȧȧxbḃ; generalized special confor-
mal transformations correspond to the symmetry parameters ηbb, ηbḃ, and ηḃḃ and the conserved currents
T k,l

a,ȧḃḃ
xbḃxbḃ, T k,l

ab,ȧḃ
xbḃxbḃ, and T k,l

abb,ȧxbḃxbḃ.
The list of generators of this type (which includes the generators of the usual conformal algebra

su(2, 2) ⊂ sp(8)) that can be constructed in terms of invariant HS tensors is quite short,

T k,l
aa,ȧȧ = ck∂aȧ∂aȧcl − 4∂aȧck∂aȧcl + ∂aȧ∂aȧckcl,

4caac̄ȧȧ 2(ca∂aȧc̄ȧ − ∂aȧcac̄ȧ),

T k,l
aaa,ȧ = 2(ca∂aȧc̄ȧ − ∂aȧcac̄ȧ), 6ck

aaac̄ l
ȧ,

T k,l
a,ȧȧȧ = 6c̄ l

ȧȧȧck
a, 6c̄ l

ȧȧ∂aȧck − 2∂aȧc̄ l
ȧȧck,

(32)

and obviously incomplete because the sp(8) symmetry mixes fields of all spins while generators (32) do not
contain HS fields at all. It is still unknown whether the list of HS conserved currents presented here can be
supplemented with the HS pseudotensors that may not be gauge invariant but allow constructing invariant
conserved charges.

In conclusion, we note that the formula for HS conformal currents presented here is analogous to the
formula in [4], [19] for HS conserved currents in the ten-dimensional space–time M4 suggested for describing
four-dimensional massless HS fields in [5], [7], [8]. In fact, expression (14) for T kl

α1...αn
(y |xaȧ) is the reduction

to the Minkowski space of the generalized energy–momentum tensor [4] T kl
α1...αn

(y |Xαβ), where Xαβ are
symmetric matrix coordinates in M4. Conservation condition (13) is also the reduction of the conservation
condition in M4. But the explicit relation between the two constructions, which requires an appropriate
integration over a noncontractible cycle in M4, remains undeveloped.
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