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UNIVERSALLY COUPLED MASSIVE GRAVITY

J. B. Pitts∗† and W. C. Schieve∗

We derive Einstein’s equations from a linear theory in flat space–time using free-field gauge invariance

and universal coupling. The gravitational potential can be either covariant or contravariant and of almost

any density weight. We adapt these results to yield universally coupled massive variants of Einstein’s

equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The Freund–

Maheshwari–Schonberg theory is therefore not the unique universally coupled massive generalization of

Einstein’s theory, although it is privileged in some respects. The theories we derive are a subset of those

found by Ogievetsky and Polubarinov by other means. The question of positive energy, which continues

to be discussed, might be addressed numerically in spherical symmetry. We briefly comment on the issue

of causality with two observable metrics and the need for gauge freedom and address some criticisms by

Padmanabhan of field derivations of Einstein-like equations along the way.
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1. Introduction

Constructing a relativistic gravitational theory based on principles such as an analogy to Maxwellian
electromagnetism, the universal coupling of the gravitational field to a combined gravity–matter energy–
momentum complex, and also the requirement that the gravitational field equations alone (without the
matter equations, again in analogy with electromagnetic charge conservation) entail energy–momentum con-
servation was a major part of Einstein’s search for an adequate theory of gravity in 1913–1915 (see [1], [2]).
Einstein subsequently downplayed these investigations [2], and the above ideas later came to be associated
with the non-Einsteinian field theory approach to gravitation. Such a derivation of Einstein’s or similar
gravitational field equations can use a priori preferred coordinates and a canonical energy–momentum tensor
or a flat background metric and variational metric energy–momentum tensor, the difference being basically
formal.

Several authors [3]–[14] have discussed the utility of a flat background metric ηµν in general relativity
or the possibility of deriving that theory, approximately or exactly, from a flat space–time theory.1 A back-
ground metric allows introducing a gravitational energy–momentum tensor [17], not merely a pseudotensor.
As a result, gravitational energy and momentum are independent of the coordinates but dependent on the
gauge [18]. If we want to regard the background metric seriously as a property of space–time and not just
treat it as a useful fiction, then the relation between the effective curved metric’s null cone and that of the
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flat background must be considered. That issue was addressed with some success for the massless case of
Einstein’s equations [13].

Preparatory to considering massive theories of gravity, we generalize our derivation of Einstein’s equa-
tions using gauge invariance for the free field and universal coupling [12] to permit almost any density
weight and either covariant or contravariant valency for the symmetric rank-two gravitational potential.
This generality to some degree parallels that in Kraichnan’s classic work [4], but our derivation has several
improvements and can be easily adapted to massive theories. The choices of index position and density
weight make no difference (after field redefinitions) in the massless theories, but they yield distinct massive
theories here. Along the way, we address Padmanabhan’s recent objections to field derivations of Einstein’s
equations [19].

Several authors recently discussed the subject of massive gravity with spin-2 and spin-0 compo-
nents [20], [21]. While it is permissible simply to postulate the nonlinear features (if any) of a mass
term, it seems preferable to find well-motivated theoretical principles to constrain such choices. Some time
ago, Ogievetsky and Polubarinov (OP) derived a two-parameter family of massive variants of Einstein’s
equations [7], which contains both our one-parameter families (quantization was considered briefly in [22]).
Their derivation relied on gauge invariance (at least for the massless part of the Lagrangian density) but
not universal coupling. Instead, they imposed a spin-limitation principle to exclude some degrees of free-
dom, many with the wrong sign and thus negative energy, from the full nonlinear interacting theory. The
Freund–Maheshwari–Schonberg (FMS) massive theory was originally derived using universal coupling with
a canonical, not metric, energy–momentum tensor [23]. While the FMS theory is recovered among our
results, it is not the unique universally coupled massive variant of Einstein’s equations, contrary to previ-
ous claims [23], [24]. Our derivation using the metric energy–momentum tensor seems shorter and cleaner
than the FMS derivation using the canonical energy–momentum tensor. In a future work, we will consider
universal coupling using a tetrad, not metric, formalism, thus obtaining additional universally coupled the-
ories, and will use the metric formalism to show that all the OP theories are universally coupled. All known
universally coupled theories correspond to the OP family of theories; hence, their derivation and the metric
universal coupling derivation currently lead to coinciding results. The FMS theory, subsequently adopted
by Logunov and collaborators [11], also faces questions regarding positive energy and causality, on which
we briefly comment in what follows.

2. Effectively geometric theories from universal coupling and
gauge invariance

We previously derived Einstein’s theory and other effectively geometric theories using gauge-invariant
free-field theories and universal coupling [12], which was significantly based on the work of Kraichnan [4] and
Deser [9]. Whereas the gravitational potential was previously taken to be a symmetric rank-two covariant
tensor field, we now generalize this derivation to the case of a density of almost any weight and either
covariant or contravariant valency. Given the generality of Kraichnan’s derivation, it is not surprising that
these generalizations again yield only Einstein’s and other effectively geometric theories. Nothing especially
novel is obtained for massless theories, but the derivations below are adapted to massive gravity for the
first time.

2.1. Free-field action for a covariant tensor density potential. For the massless theories, an
initial infinitesimal invariance (up to a boundary term) of the free gravitational action is assumed. For the
subsequent derivation of massive theories, the gauge freedom is broken by a natural mass term algebraic in
the fields, but the derivative terms retain the gauge invariance.

Let Sf be the action for a free symmetric tensor density γ̃µν (of density weight −l, where l �= 1/2)
in a space–time with a flat metric tensor ηµν in arbitrary coordinates. The torsion-free metric-compatible
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covariant derivative is denoted by ∂µ; hence, ∂αηµν = 0. It is convenient to use not the flat metric itself but
its related densitized metric η̃µν = ηµν(

√−η )−l of weight −l. We note that in the forbidden case l = 1/2,
η̃µν is noninvertible: ηµν(

√−η )−1/2 determines only the null cone, not a full metric tensor.2 The field γ̃µν

turns out to be the gravitational potential. Although it has become customary in work on loop quantum
gravity to denote the density weight of fields by placing the corresponding number of tildes above or below
a symbol to express its positive or negative density weight, that custom is impossible here. The density
weight l (l �= 1/2) can be large, nonintegral, or even irrational, and we therefore merely write a tilde over
most densities. All indices are respectively raised and lowered with ηµν and ηµν with two exceptions. For
the densitized flat metric η̃µν , the oppositely densitized inverse flat metric is η̃µν . Similarly, the inverse
of the densitized curved metric g̃µν defined below is g̃µν . Because we use tensor densities extensively, we
recall the forms of their covariant and Lie derivatives. A (1, 1)-density φ̃α

β of weight w is a representative
example. The Lie derivative is given by [25]

£ξφ̃
α
β = ξµφ̃α

β ,µ −φ̃µ
βξα,µ +φ̃α

µξµ,β +wφ̃α
βξµ,µ , (1)

and the η-covariant derivative is given by

∂µφ̃α
β = φ̃α

β ,µ +φ̃σ
βΓα

σµ − φ̃α
σΓσ

βµ − wφ̃α
βΓσ

σµ, (2)

where Γσ
βµ are the Christoffel symbols for ηµν . After the curved metric gµν is defined below, the analogous

g-covariant derivative ∇ with the Christoffel symbols {α
σµ} follows.

The desire to avoid ghosts motivates gauge invariance for linear theories [26]. We require that the free
field action Sf change only by a boundary term under the infinitesimal gauge transformation

γ̃µν → γ̃µν + δγ̃µν , δγ̃µν = ∂µξ̃ν + ∂ν ξ̃µ + cηµν∂αξ̃α, (3)

where c �= −1/2 and ξ̃ν is an arbitrary covector density field of weight −l.3 We can expect the appearance
of a connection between l and c. For any Sf invariant in this sense under (3), a certain linear combination
of the free field equations is identically divergenceless, as we now show. The action changes by

δSf =
∫

d4x

[
δSf

δγ̃µν
(∂ν ξ̃µ + ∂µξ̃ν + cηµν∂αξ̃α) + eµ,µ

]
=

∫
d4x fµ,µ . (4)

The explicit forms of the boundary terms given by eµ,µ and fµ,µ are not needed for our purposes. Integrating
by parts, letting ξ̃µ have compact support to annihilate the boundary terms, and using the arbitrariness of
ξ̃µ, we obtain the identity

∂µ

(
δSf

δγ̃µν
+

c

2
ηµνησα

δSf

δγ̃σα

)
= 0. (5)

This is the generalized Bianchi identity for the free theory, which in the most common case is a linearized
version of the original geometric Bianchi identity. A natural choice for Sf is the linearized GR Lagrangian
density, but no such detailed assumptions on the form of Sf are used here. Because noninteracting sourceless
fields are unobservable [27], the theory is interesting only after an interaction is introduced.

As Kretschmann pointed out long ago in response to Einstein, any theory can be given a generally
covariant formulation in the sense that the equations hold in any coordinate system, Cartesian or oth-
erwise [28]–[31]. The resulting formulation might be called weakly or trivially general covariant. Often

2This exceptional case was of interest in deriving slightly bimetric theories [12], where
√−η can appear in the field equations

of the interacting theories.
3The case c = −1/2 merely gives a scalar theory in the somewhat comparable work of OP [7].
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achieving weak general covariance involves using absolute objects [29], [30], such as a flat metric tensor,
as it does here. The distinctively novel aspect of Einstein’s theory of gravity is supposedly its lack of
absolute objects or “prior geometry” [29], [32].4 This property might be called strong or nontrivial general
covariance. This distinction between two senses of general covariance was discussed previously [35]. The
derivation presented here and in some other works starts with a weakly generally covariant theory and con-
cludes with a strongly generally covariant one without absolute objects.5 Therefore, the quite misleading
claim [19] that flat space–time derivations of Einstein’s equations only result in general covariance because
they feed it in at the beginning should not be accepted. The two senses of general covariance are very
different; Padmanabhan’s criticism commits the fallacy of equivocation.

2.2. Metric energy–momentum tensor density. If the energy–momentum tensor is to be the
source of the gravitational potential γ̃µν , then consistency requires that the total energy–momentum tensor
be used including the gravitational energy–momentum, not merely the nongravitational (“matter”) energy–
momentum, because only the total energy–momentum tensor is divergenceless in the sense of ∂ν [9] or,
equivalently, in the sense of a Cartesian coordinate divergence. To obtain a global conservation law, a
vanishing coordinate divergence for the four-current is needed.

An expression for the total energy–momentum tensor density can be derived from S using the metric
recipe [4], [17], [29], [36] as follows. The action depends on the flat metric density η̃µν , gravitational potential
γ̃µν , and matter fields u. Here, u represents an arbitrary collection of dynamical tensor fields of arbitrary
rank, index position, and density weight. Using the OP spinor formalism that uses the “square root of the
metric” rather than a tetrad or other additional structure [37], we can likely also include spinor fields.

Under an arbitrary infinitesimal coordinate transformation described by a vector field ξµ, the action
changes by the amount

δS =
∫

d4x

(
δS

δγ̃µν
£ξγ̃µν +

δS

δu
£ξu +

δS

δη̃µν
£ξη̃µν + gµ,µ

)
, (6)

with boundary terms from gµ,µ vanishing because ξµ is compactly supported. But S is a scalar, and hence
δS = 0. Letting the matter and gravitational field equations hold, integrating by parts, discarding vanishing
boundary terms, and using the arbitrariness of the vector field ξµ gives

∂ν

(
δS

δη̃µν
− l

2
η̃αβ η̃µν δS

δη̃αβ

)
= 0. (7)

This quantity is an energy–momentum tensor density for matter and gravitational fields. The flatness of
ηµν is relaxed in taking the functional derivative δS/δη̃µν and is restored later. This move is sometimes
criticized [19], but it is unobjectionable even in flat space–time because it is merely a formal trick useful for
defining the energy–momentum tensor, not an illicit use of curved space–time. Using the connection between
the Rosenfeld energy–momentum tensor and the symmetrized Belinfante canonical energy–momentum ten-
sor [36], [38], we could regard the metric recipe as a mathematical shortcut to the conceptually unimpeach-
able but mathematically inconvenient Belinfante tensor modified with terms proportional to the equations
of motion. The metric energy–momentum tensor is not unique at this stage, because terms proportional

4Actually, the matter is more complicated: R. Geroch and Giulini recently noted in effect that g, the determinant of the
metric tensor, is an absolute object because any point has a neighborhood with a coordinate system such that the component
of g has the value −1 [33], [34].

5The fact that g counts as absolute in general relativity in the Anderson–Friedman absolute-object program suggests that
general relativity is not strongly covariant after all. But the point remains that two very different notions of general covariance
are in play. In addition to the field equations, the topology, boundary conditions, and causality should be examined in seeking
absolute objects [13]. We emphasize that the massless cases are considered here; obviously, the massive theories contain the
flat metric and are therefore not strongly generally covariant.
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to the equations of motion and their derivatives, as well as superpotentials, can be added. Another option
would be to use Lagrange multipliers and let the background metric be flat only on-shell [39]. As is shown
below, using the superpotential freedom judiciously is important in deriving the field equations.

2.3. Full universally coupled action. We find an action S satisfying the plausible physical postu-
late that invertible linear combinations of the Euler–Lagrange equations are just invertible linear combina-
tions of the free field equations for Sf augmented by the total energy–momentum tensor. A simple way to
impose this requirement reduces to the condition

δS

δγ̃µν
=

δSf

δγ̃µν
− λ

δS

δη̃µν
, (8)

where λ = −
√

32πG. (Because the linear combinations of the free Euler–Lagrange equations and of the full
Lagrange equations with interaction are invertible in this case, the linear combination can now be applied
to the energy–momentum tensor.) It seems prudent to set c = −l to make the generalized Bianchi identity
and the energy–momentum tensor density take similar forms.

The basic variables here are the gravitational potential γ̃µν and the flat metric density η̃µν . But we
can freely change the variables in S from γ̃µν and η̃µν to the bimetric variables g̃µν and η̃µν [4], where

g̃µν = η̃µν − λγ̃µν . (9)

(We can then define the metric gµν from g̃µν using matrix algebra and then define the g-covariant derivative
∇ as usual, but we have little need to use ∇ explicitly.)

Equating coefficients of the variations gives

δS

δη̃µν

∣∣∣∣γ̃ =
δS

δη̃µν

∣∣∣∣g̃ +
δS

δg̃µν
(10)

for δη̃µν and
δS

δγ̃µν
= −λ

δS

δg̃µν
(11)

for δγ̃µν . Combining these two results gives

λ
δS

δη̃µν

∣∣∣∣γ̃ = λ
δS

δη̃µν

∣∣∣∣g̃ − δS

δγ̃µν
. (12)

Equation (12) splits the energy–momentum tensor into two parts: one that vanishes when gravity is on-shell
and one that does not. Using this result in universal-coupling postulate (8) gives

λ
δS

δη̃µν

∣∣∣∣g̃ =
δSf

δγ̃µν
. (13)

Taking the divergence, recalling free-theory Bianchi identity (5), and using c = −l, we derive

∂µ

(
δS

δη̃µν

∣∣∣∣g̃ − l

2
η̃µν η̃αβ

δS

δη̃αβ

∣∣∣∣g̃
)

= 0. (14)

The quantity in parentheses is exactly (
√−η )l δS/δηµν |g̃. Hence, the part of the energy–momentum tensor

not proportional to the gravitational field equations has identically vanishing divergence (on either index),
i.e., is a (symmetric) “curl” [29]. The splitting of the energy–momentum tensor ensures that in the massless
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case, the gravitational field equations alone, without separately postulating the matter equations, entail
conservation of energy–momentum for the resulting effectively geometric field equations.

Because the quantity δS/δηµν |g̃ is symmetric and has identically vanishing divergence on either index,
it necessarily has the form [40]

δS

δηµν

∣∣∣∣g̃ =
1
2
∂ρ∂σ

(
M[µρ][σν] + M[νρ][σµ]

)
+ B

√
−ηηµν , (15)

where Mµρσν is a tensor density of unit weight and B is a constant. This result follows from the converse of
the Poincaré lemma in Minkowski space–time. We cannot choose Mµρσν arbitrarily but must choose it such
that the term δSf/δγ̃µν is accommodated. The freedom to add an arbitrary curl must therefore be used in
a quite definite way. As Huggins, a student of Feynman, showed in his dissertation [41] and Padmanabhan
recently emphasized [19], coupling a spin-2 field to the energy–momentum tensor does not lead to a unique
theory, because of terms of this curl form. Rather, as Huggins said (p. 39 in [41]): “an additional restriction
is necessary. For Feynman this restriction was that the equations of motion be obtained from an action
principle; Einstein required that the gravitational field have a geometric interpretation. Feynman showed
these two restrictions to be equivalent.”

Gathering all dependence on ηµν (with g̃µν independent) into one term yields S = S1[g̃µν , u] +
S2[g̃µν , ηµν , u]. It is easy to verify that if

S2 =
1
2

∫
d4xRµνρσ(η)Mµνρσ(ηµν , g̃µν , u) +

∫
d4xαµ,µ +2B

∫
d4x

√
−η, (16)

then δS2/δηµν |g̃ has exactly the desired form, while S2 does not affect the Euler–Lagrange equations,
because δS2/δg̃µν = 0 and δS2/δu = 0 identically [4].6 The coefficient B of the four-volume term is
naturally chosen to cancel any zeroth-order term (such as from a cosmological constant) in the action such
that the action vanishes when there is no gravitational field. The four-divergence αµ,µ resolves worries [19]
about obtaining terms that are not analytic in the coupling constant λ. It is unclear whether the Hilbert
action is best in any event, given its badly behaved conservation laws [42].

Hence, the universally coupled action for the covariant tensor density case is

S = S1[g̃µν , u] +
1
2

∫
d4xRµνρσ(η)Mµνρσ + 2B

∫
d4x

√
−η +

∫
d4xαµ,µ . (17)

The boundary term is at our disposal; if αµ is a unit-weight vector density, then S is a coordinate scalar.
Using the effective curved metric density g̃µν , we can define an effective curved metric by g̃µν = gµν(

√−g )−l

and an inverse curved metric density g̃µν = gµν(
√−g )l.

For S1, we choose the Hilbert action for general relativity plus minimally coupled matter and a cos-
mological constant:

S1 =
1

16πG

∫
d4x

√
−g R(g) − Λ

8πG

∫
d4x

√
−g + Smatter[gµν , u]. (18)

It is well known that the Hilbert action is the simplest (scalar) action that can be constructed using only
the metric tensor. If the gravitational field vanishes everywhere, then the gravitational action should also
vanish. In the massless case, the result is that B = Λ/(16πG). For the generalization to the massive case
considered below, the gauge-breaking part of the mass term introduces another zeroth-order contribution
that also needs to be canceled. It is also possible to couple the matter to the Riemann tensor for gµν or to
allow higher powers of the Riemann tensor in the gravitational action, if desired. In the massless case, we
could set Λ = 0 [23].

6If it seems that using this term (1/2)
R

d4x Rµνρσ(η)Mµνρσ (ηµν , g̃µν , u) is too clever to be invented without knowing

Einstein’s theory in advance and thus cheating [19], then a symmetric curl term ∂ρ∂σ(M[µρ][σν] + M[νρ][σµ])/2 + B
√−ηηµν

should be simply added to the metric energy–momentum tensor by hand using the usual underdetermination of the energy–
momentum tensor.
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3. Massive universally coupled gravity for a covariant tensor
density potential

Our goal is to generalize the above derivation to obtain one or more massive finite-range variants
of Einstein’s equations. Such field equations would be related to Einstein’s much as Proca’s massive
electromagnetic field equations are related to Maxwell’s. But a spin-2–spin-0 massive theory would have
ghosts at the level of the free linear theory. Good linear behavior is generally required as a guide to good
nonlinear behavior. But good linear behavior seems neither necessary nor sufficient for good nonlinear
behavior. In the present case, it seems quite possible that the nonlinear form of the Hamiltonian constraint
cures the bad behavior of the linear theory. We briefly discuss this matter below.

It can be expected that the mass term for a free field is quadratic in the potential and lacks derivatives.
The free-field action Sf is now assumed to have two parts: a (mostly kinetic) part Sf0 that is invariant
under the previous gauge transformations as in the massless case above and an algebraic mass term Sfm

that is quadratic and breaks the gauge symmetry. We seek a full universally coupled theory with an action
S that has two corresponding parts: S = S0 + Sms. They are the familiar part S0 (yielding the Einstein
tensor, the matter action, a cosmological constant, and a zeroth-order four-volume term) and the new
gauge-breaking part Sms, which also has another zeroth-order four-volume term. As it turns out, the mass
term is constructed from both the algebraic part of S0 (the cosmological constant and four-volume term)
and the purely algebraic term Sms.

Requiring Sf0 to change only by boundary terms under the variation γ̃µν → γ̃µν+∂µξ̃ν+∂ν ξ̃µ+cηµν∂αξ̃α

for c �= −1/2 implies the identity

∂µ

(
δSf0

δγ̃µν
− l

2
ηµνησα

δSf0

δγ̃σα

)
= 0. (19)

We again postulate the universal coupling in the form

δS

δγ̃µν
=

δSf

δγ̃µν
− λ

δS

δη̃µν
. (20)

Changing to the bimetric variables g̃µν and η̃µν , as before, implies that

δSf

δγ̃µν
= λ

δS

δη̃µν

∣∣∣∣g̃. (21)

We now introduce the quantities Sfm and Sms, Sf = Sf0 + Sfm and S = S0 + Sms, in order to treat the
pieces that existed in the massless case separately from the new pieces in the massive case. We thus obtain

δSf0

δγ̃µν
+

δSfm

δγ̃µν
= λ

δS0

δη̃µν

∣∣∣∣g̃ + λ
δSms

δη̃µν

∣∣∣∣g̃. (22)

Assuming that the new terms Sfm and Sms correspond, we separate this equation into the familiar part
δSf0/δγ̃µν = λ (δS0/δη̃µν)|g̃ and the new part δSfm/δγ̃µν = λ (δSms/δη̃µν)|g̃. Using invariance (19), we
derive the form of S0 as

S0 = S1[g̃µν , u] + S2, (23)

as in the massless case. We again choose the simplest case and obtain the Hilbert action with a cosmological
constant, with matter coupled only to the curved metric.

The new part in the massive case is

δSfm

δγ̃µν
= λ

δSms

δη̃µν

∣∣∣∣g̃.
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Assuming that the free-field mass term is quadratic in the gravitational potential, we find that its variational
derivative is

δSfm

δγ̃µν
= a

√
−η γ̃αβ(η̃αµη̃βν + bη̃αβ η̃µν).

Changing to the bimetric variables gives

a
√−η

λ
(−g̃αβ + η̃αβ)(η̃αµη̃βν + bη̃αβ η̃µν) = λ

δSms

δη̃µν

∣∣∣∣g̃. (24)

We take the expression for Sms in the natural form

Sms =
∫

d4x (pg̃αβ η̃αβ + q)
√
−η, (25)

where p and q are real numbers to be determined below. We note that the term
√−g itself, which gives

a cosmological constant, plays no role here and is already included in S0. Using the relation
√−η =

(
√
−η̃ )1/(1−2l), we calculate (δSms/δη̃µν)|g̃. Equating λ (δSms/δη̃µν)|g̃ to δSfm/δγ̃µν , i.e., equating corre-

sponding coefficients, determines several of the constants. Equating the coefficients of the
√−η η̃µν terms

gives q = (2−4l)a(1+4b)/λ2, equating the coefficients of the
√−η η̃µν η̃αβ g̃αβ terms gives p = −ab(2−4l)/λ2,

and equating the coefficients of the
√−η η̃αµη̃βν g̃αβ terms gives p = a/λ2. Using the last two results to-

gether gives b = 1/(4l − 2). Using all three results together gives q = −2a(2l + 1)/λ2. Combining the
algebraic piece of S0 with Sms gives

Salg = − Λ
8πG

∫
d4x

√
−g + 2B

∫
d4x

√
−η +

a

λ2

∫
d4x (g̃αβ η̃αβ − 4l − 2)

√
−η. (26)

When the gravitational potential vanishes, Salg and hence the zeroth-order term should also vanish.
Imposing this condition gives

B =
Λ

16πG
− a(1 − 2l)

λ2
.

Because our goal is to find a massive generalization of Einstein’s theory, not a theory with an effective
cosmological constant, we require that the first-order term in γ̃µν also vanish. Because λ2 = 32πG, it
follows that Λ = a(1 − 2l)/2. Hence, the sign of the formal cosmological-constant term depends on the
density weight of the initially chosen potential. We also expect the quadratic part of the algebraic component
Salg of the action to agree with the free-field mass term Sfm. After a binomial expansion and some algebra,
we see that this is the case.7 The weak-field expansion of the full massive nonlinear action S allows relating
the coefficient a to the mass m of the spin-2 gravitons: a = −m2. For nontachyonic theories, we impose
the condition a < 0.

Combining all these results gives the total massive action S, which depends on the spin-2 graviton
mass m and the parameter l controlling the relative mass of the spin-0 ghost:

S =
1

16πG

∫
d4x

√
−g R(g) + Smatter[g̃µν , u] +

+
1
2

∫
d4xRµνρσ(η)Mµνρσ [η̃µν , g̃µν , u] +

∫
d4xαµ,µ −

− m2

16πG

∫
d4x

[√
−g(2l − 1) −

√
−η(2l + 1) +

1
2
√
−η g̃µν η̃µν

]
, (27)

7In [24], there is a mistake in the binomial expansion for
√−g between Eqs. (43) and (44).
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where l �= 1/2. These theories are all universally coupled, contrary to the claim that only the FMS theory
has this property [23], [24].

The Euler–Lagrange equations are easily found if the metric gµν is used as the dynamical variable.
The result is

δS

δgµν
= −

√−g

16πG
Gµν − m2

16πG

[
2l − 1

2
√
−g gµν +

(
√−η )l+1

4(
√−g )l

(2ηµν − lηαβgαβgµν)
]

+
δSmatter

δgµν
. (28)

Following Boulware and Deser [24], we can linearize these theories and check whether the spin-0 component
is tachyonic. Nontachyonicity entails −1/2 ≤ l < 1/2. For l = 0, the spin-0 ghost has the same mass as the
spin-2 degrees of freedom, and this theory (with density weight zero for the potential) is hence the cleanest in
the set. (The connection between density “weight” and graviton “mass” is an amusing linguistic accident.)
Investigating various masses for the spin-0 degree of freedom might have some empirical consequences. This
is especially the case in large-scale and homogeneous situations, for example, in cosmology [21]. The ratio
of the spin-0 mass m0 to the spin-2 mass m2 is given by

m2
0

m2
2

=
−4l2 + 1
2l2 + 1

. (29)

Hence, the mass is an even function of l. For l = −1/2, the spin-0 degree of freedom is massless, and
√−η

is absent from the mass term. As l → 1/2, the scalar again becomes light, and the coefficient of
√−g tends

to zero, although the value l = 1/2 is forbidden. Between these massless endpoints, the spin-0 degree of
freedom becomes heavier. At the midpoint l = 0, the scalar has the same mass as the spin-2 field, giving
a simple form of the wave equation for the linearized massive Einstein equations. Thus, the spin-0 ghost
is never heavier than the spin-2 degrees of freedom, and the l �=0 theories hence have weaker gravitational
attraction at large distances and in homogeneous situations.

4. Derivation of a contravariant tensor density potential: Massless
case

We briefly present the contravariant analogue of the above derivation of Einstein’s equations. The
gravitational potential is now a contravariant symmetric tensor density field γ̃µν of density weight l, where
l �= 1/2. In addition to the obvious moves of some indices, we introduce some sign changes in the contravari-
ant case. The hope for a simple rule relating index moves and sign changes is disappointed because the
symmetry between the (0, 2) theory of weight −l and the (2, 0) theory of weight l is broken: the Lagrangian
density is a scalar density of weight 1, not weight 0. The consequences of this imperfect symmetry are more
apparent in the massive case below than in the current massless case. It is convenient to use not the inverse
flat metric itself but the densitized related metric η̃µν = ηµν(

√−η )l of weight l, where l �= 1/2.
In the massless theories, we assume an initial infinitesimal invariance (up to a boundary term) of the

free gravitational action Sf under the infinitesimal gauge transformation γ̃µν → γ̃µν + δγ̃µν , where

δγ̃µν = ∂µξ̃ν + ∂ν ξ̃µ + cηµν ∂αξ̃α, (30)

c �= −1/2, and ξ̃ν is an arbitrary vector density of weight l. It proves expedient to set c = −l. For any Sf

invariant in this sense, a certain linear combination of the free-field equations is identically divergenceless:

∂µ

(
δSf

δγ̃µν
− l

2
ηµνησα δSf

δγ̃σα

)
= 0. (31)
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This is the generalized Bianchi identity for the free-field theory. Local energy–momentum conservation,
which holds with the use of the Euler–Lagrange equations for the gravity γ̃µν and matter u, can be written
as

∂ν

(
δS

δη̃µν
− l

2
η̃αβ η̃µν

δS

δη̃αβ

)
= 0. (32)

We write the universal-coupling postulate in the form

δS

δγ̃µν
=

δSf

δγ̃µν
+ λ

δS

δη̃µν
(33)

(the reason for choosing of the sign of the term containing the energy–momentum tensor soon becomes
clear). We obtain S, changing from γ̃µν and η̃µν to the bimetric variables g̃µν and η̃µν , where

g̃µν = η̃µν + λγ̃µν . (34)

The coefficient of λγ̃µν is chosen such that the covariant and contravariant cases, as far as is easily achieved,
define the gravitational potential similarly. In particular, to the linear order in the potential in Cartesian
coordinates, the traceless part of the gravitational potential γ has the same observable significance, whether
it is the density difference between the covariant curved and flat and curved metrics or the density difference
between the contravariant flat and curved metrics.8 Equating coefficients of the variations gives

δS

δη̃µν

∣∣∣∣γ̃ =
δS

δη̃µν

∣∣∣∣g̃ +
δS

δg̃µν
(35)

and
δS

δγ̃µν
= λ

δS

δg̃µν
, (36)

whence we obtain
δSf

δγ̃µν
= −λ

δS

δη̃µν

∣∣∣∣g̃. (37)

The use of the generalized Bianchi identity implies that S splits into a component S1[g̃µν , u] and a component
S2 that takes form (16). The quantity S2 contains all the ineliminable dependence on the background
metric and does not contribute to the field equations. The simplest choice of S1 gives the Hilbert action
for Einstein’s equations and a cosmological constant, as in the covariant case. The specific choice from the
allowed values of l makes no difference in the massless case.

5. Derivation for a contravariant tensor density potential:
Massive case

The choice of the density weight l makes a difference in the massive generalization of this contravariant
derivation, much as in the covariant case. The FMS–Logunov theory turns out to be the l=1 contravariant
universally coupled massive theory. While in some clear senses the l=1 theory is the best of the contravariant
massive theories, it is not the only such theory. The free-field action Sf again has two parts: the part Sf0

that is mostly kinetic and has a local gauge symmetry and an algebraic mass term Sfm. The action S of
the full theory again splits into two parts, S0 and Sms.

8If gµν = ηµν − λγµν , then the inverse metric yields an infinite series expansion (at least formally), whose first term has
a sign different from what a naive index raising might suggest: gµν = ηµν + λγµν + · · · implies that gµν − ηµν ≈ λγµν , not
−λγµν . If the exact relation gµν − ηµν = λψµν holds (the sign of the λ term is important), then ψµν ≈ γµν . Thus, the
meaning of the gravitational potential is insensitive to a sign change, and it is therefore easier to compare the various massive
theories.
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Requiring Sf0 to change only by a boundary term under the infinitesimal variation

δγ̃µν = ∂µξ̃ν + ∂ν ξ̃µ − lηµν ∂αξ̃α, (38)

where l �= 1/2, implies the identity

∂µ

(
δSf0

δγ̃µν
− l

2
ηµνησα δSf0

δγ̃σα

)
= 0. (39)

We again postulate the universal coupling in form (33). We change to the bimetric variables g̃µν and η̃µν .
Letting the new mass terms and the terms previously present agree separately, we find that the mass terms
satisfy

δSfm

δγ̃µν
= −λ

δSms

δη̃µν

∣∣∣∣g̃. (40)

The action Sfm is chosen to be quadratic in the gravitational potential and to satisfy

δSfm

δγ̃µν
= a

√
−η γ̃αβ(η̃αµη̃βν + bη̃αβ η̃µν). (41)

The quantity Sms is naturally chosen in the form

Sms =
∫

d4x (pg̃αβ η̃αβ + q)
√
−η (42)

for unspecified p and q. Matching the coefficients of several terms gives

q =
−(2 − 4l)a(1 + 4b)

λ2
, p =

ab(2 − 4l)
λ2

, p =
a

λ2
,

b = − 1
4l − 2

, q =
2a(2l − 3)

λ2
.

Requiring the zeroth-order algebraic term in S to vanish gives

B =
Λ

16πG
+

a(1 − 2l)
λ2

.

Requiring the first-order algebraic term to vanish, after some algebra, gives Λ = −a(1− 2l)/2. The second-
order term agrees with the free-field mass term, as could be hoped. The spin-2 graviton mass m is given
by a = −m2.

Combining all these results, we obtain the total massive action S, which depends on the spin-2 graviton
mass m and the parameter l controlling the relative mass of the spin-0 graviton:

S =
1

16πG

∫
d4x

√
−g R(g) + Smatter[g̃µν , u] +

+
1
2

∫
d4xRµνρσ(η)Mµνρσ [η̃µν , g̃µν , u] +

∫
d4xαµ,µ −

− m2

16πG

∫
d4x

[
−
√
−g(2l − 1) +

√
−η(2l − 3) +

1
2
√
−η g̃µν η̃µν

]
, (43)

where l �= 1/2. The empirically doubtful Fierz–Pauli mass term is not among the universally coupled
theories considered in this paper. All these theories are contained in the OP 2-parameter family.
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While we could use some contravariant tensor (or tensor density) to find the Euler–Lagrange equations,
the equations are more easily compared with those previously found if the metric gµν is used. The resulting
equations are

δS

δgµν
= −

√−g

16πG
Gµν − m2

16πG

[
1 − 2l

2
√
−g gµν +

(
√−g )lηαβ

4(
√−η )l−1

(lgαβgµν − 2gµαgνβ)
]

+
δSmatter

δgµν
. (44)

Linearizing these theories shows that the spin-0 field is not a tachyon if and only if 1/2 < l ≤ 3/2. For
l = 1, the spin-0 ghost has the same mass as the spin-2 degrees of freedom, and these field equations, which
correspond to the FMS–Logunov theory, are hence the cleanest in the set. At the linear level, the (0, 2)
theory of weight −l is identical to the (2, 0) theory of weight l + 1. Hence, for the (2, 0) theory of weight
l + 1, the ratio of the spin-0 mass m0 to the spin-2 mass m2 is given by

m2
0

m2
2

=
−4(l − 1)2 + 1
2(l − 1)2 + 1

.

The mass is an even function of l − 1. For l = 3/2, the spin-0 degree of freedom is massless, and
√−η is

absent from the mass term. As l → 1/2, the scalar again becomes light, and the coefficient of
√−g tends to

0, although the value l = 1/2 is forbidden. Between these massless endpoints, the spin-0 degree of freedom
becomes heavier. At the midpoint l = 1 (the FMS–Logunov theory), the spin-0 graviton has the same
mass as the spin-2 graviton, giving a simple form of the wave equation for the linearized massive Einstein
equations. Hence, the spin-0 ghost is never heavier than the spin-2 degrees of freedom for this family of
theories, although such can occur for the larger family of OP massive theories [7].9

6. Massive gravities and experiment

In both experimental [43] and theoretical contexts, it is common to speak of the mass of the graviton,
as if all gravitons must have the same mass. While all gravitons do have the same mass in the most
famous spin-2–spin-0 massive gravity (developed by FMS and studied by Logunov and collaborators), the
existence of the OP theories shows that massive gravity has two mass parameters that should be tested
experimentally. It would be worthwhile to ascertain to what degree the tacit assumption of equal spin-2
and spin-0 masses is actually used in finding experimental bounds on massive gravity. Astrophysical tests
for changes in the behavior of the degrees of freedom present in massless general relativity primarily bound
the spin-2 mass. The empirical bounds on the spin-2 graviton mass are so tight that the spin-2 part of
the mass term is empirically negligible except in strong fields or over cosmic distances [20], [21]; these
regimes are also those investigated by Logunov and collaborators. The flexibility in the spin-0 mass in
the massive theories derived here opens some phenomenological opportunities by increasing the range of
the spin-0 repulsion that counterbalances some of the spin-2 attraction. The larger family of OP massive
theories permits either longer or shorter range for the spin-0 repulsion compared with the spin-2 attraction.
Babak and Grishchuk recently investigated a similar phenomenological flexibility [21]. They noted that
their massive spin-2, massless spin-0 special case agreed with general relativity in cosmological contexts
because of the high degree of symmetry. Hence, cosmological limits on the graviton mass(es) primarily
bound the spin-0 mass. While the OP theories have nonlinear mass terms motivated from first principles
in contrast to Babak and Grishchuk’s linear mass terms motivated by mathematical simplicity, similar
qualitative behaviors of the two kinds of two-parameter massive gravities can be expected outside highly
nonlinear regimes.

9It is reassuring that in the conformally flat special case gµν = φηµν , the (2, 0) theory of weight l + 1 and (0, 2) theory of
weight −l coincide.

711



In view of the tight empirical bounds on the graviton masses, the observable consequences of a mass
term are rather difficult to detect. But there are two important theoretical issues that arise at the classical
level for massive variants of Einstein’s equations. The first is the well-known question of stability, positive
energy, etc., given the wrong-sign spin 0. The second is the question of causality: massive gravity is a
special relativistic field theory with ηµν observable, but there is reason to fear that field propagation might
violate causality by having the light cone of the effective metric gµν leak outside that of ηµν . We now turn
to these issues.

7. Positive energy

It has long been argued that massive variants of Einstein’s equations pose the unpleasant dilemma [24],
[44] that either the mass term is of the Fierz–Pauli form with 5∞3 degrees of freedom (pure spin 2) and
is empirically falsified by having a discontinuous massless limit or the theory has 6∞3 degrees of freedom
including a wrong-sign spin 0 (a spatial scalar density) and instability arises after linearization. The former
problem is the van Dam–Veltman–Zakharov discontinuity [45], about which a large literature has appeared
in the last few years after a long period of relative quiet. More relevant for our purposes is whether the
massive theories with 6∞3 degrees of freedom (spins 2 and 0) are unstable.

Contrary to widely held views, Visser argued that the massive theories with 6∞3 degrees of freedom
might well be stable [20]. More recently, Babak and Grishchuk argued that such theories actually are
stable [21]. Concerning the specific case of the FMS theory, the authors of the theory were themselves
unconvinced of instability [23], although they did not follow up on the matter after arguments for instability
were published. In the middle to late 1980s, Logunov and collaborators (such as Loskutov and Chugreev)
adopted the FMS theory as the massive version of the relativistic theory of gravity. They argued that
this specific theory might well be stable [11], linearization arguments notwithstanding. More compellingly,
Loskutov calculated the gravitational radiation from a bounded source and concluded that it is in fact
positive definite [46], even though the theory has a wrong-sign spin-0 component. It is curious that this
conclusion has received so little response.

While the question of positive energy (or positive mass, as is often said in a gravitational context) has
not been settled with a favorable outcome (in the sense of a general proof that all exact solutions satisfying
certain energy conditions have positive mass), neither do the arguments for instability from linearization
seem compelling. It is useful to show using a Hamiltonian formalism that linearization is untrustworthy
because it essentially changes the form of the Hamiltonian constraint such that instability becomes more
plausible than is true for the exact nonlinear theory. Although the wrong-sign spin 0 is present in the
nonlinear theory, its kinetic energy is related to that of the right-sign degrees of freedom such that it can
easily radiate only together with the positive energy degrees of freedom. Precisely this feature is lost upon
linearization. This important feature of the Hamiltonian constraint depends essentially on a cubic term in
the Hamiltonian density and hence on a quadratic term in the field equations.

In the case of the FMS–Logunov contravariant weight-1 theory, the field equations impose a lower bound
on the Hamiltonian density a little below zero, in contrast to boundary terms (which should be annihilated,
at least in static contexts, because of the exponential Yukawa falloff of the gravitational potential of bounded
systems). Discarding unimportant terms and factors from action (43), we obtain the Lagrangian density

L =
√
−gR(g) − m2

(
−
√
−g −

√
−η +

1
2
√
−g gµνηµν

)
. (45)

We use the ADM (3+1)-dimensional split10 [32] and choose coordinates (Cartesian, spherical, or the like)
such that η00 = −1 and η0i = 0. The curved metric gµν is then expressed in terms of a lapse function

10The ADM split is a noncovariant (3+1)-representation of the metric tensor of Riemannian space first proposed by Arnowitt,
Deser, and Misner.
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N relating the effective proper time to the coordinate time, a shift vector βi expressing how the spatial
coordinate system appears to shift among the various time slices, and a curved spatial metric hij with the
inverse hij and determinant h. Letting gµν be the inverse curved metric as usual, we have g00 = −N−2 (the
inverse metric being most convenient here), gij = hij , and g0i = hijβ

j . The indices for three-dimensional
quantities are raised and lowered with hij . Dropping a divergence from the Hilbert-like action above, we
have the FMS massive version of the standard (3+1)-dimensional Lagrangian density

L = N
√

h

[
3R + KabK

ab − K2 + m2

(
1 − hijηij

2

)]
+ m2

[√
−η +

√
h

2N
(ηijβ

iβj − 1)
]
. (46)

Hereafter, we drop the superscript on 3R.
Defining canonical momenta as usual, we obtain the usual results

πij =
∂L

∂hij,0
=

√
h(Kij − hijK), Pi =

∂L
∂βi

,0

= 0, P =
∂L

∂N,0
= 0. (47)

The four vanishing canonical momenta are called primary constraints in the context of constrained dynam-
ics [47].

Performing the generalized Legendre transformation and using the primary constraints gives the canon-
ical Hamiltonian density

H = N

[
H0 + m2

√
h

(
1
2
hijηij − 1

)]
+ βiHi − m2√−η +

m2
√

h

2N
(1 − ηijβ

iβj), (48)

where, as usual,

H0 =
1√
h

(
πijπij −

1
2
π2

)
−
√

h R, Hi = −2Djπ
j
i ,

and Dj is the three-dimensional torsion-free covariant derivative compatible with hij . For m = 0, we recover
the usual form that is purely a sum of constraints, but m �= 0 destroys that form and leads to six, not two,
degrees of freedom. We note that we have retained the zeroth-order term −m2√−η, and Minkowski space–
time hence has zero energy, as it should. Boulware and Deser omitted this term [24]. Varying the lapse N

and shift vector βi, we obtain the secondary constraints, namely, the modified Hamiltonian constraint

∂H
∂N

= H0 + m2
√

h

(
−1 +

1
2
hijηij

)
− m2

√
h

2N2
(1 − ηijβ

iβj) = 0 (49)

and the modified momentum constraint

∂H
∂βi

= Hi −
m2

√
h

N
ηijβ

j = 0. (50)

These constraints are second-class [48]. As Boulware and Deser pointed out, we can use these relations to
eliminate the lapse and shift from the Hamiltonian density to obtain a partly on-shell Hamiltonian density
purely in terms of the true degrees of freedom and their momenta:

H =

√
2m2

√
h

[
H0 + m2

√
h

(
hijηij

2
− 1

)]
+ HiHjηij − m2√−η.

Expressing the lapse in terms of the true degrees of freedom, we obtain

N2 =
hm4

2m2
√

h
[
H0 + m2

√
h(hijηij/2 − 1)

]
+ HiHjηij

. (51)
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Changing the variables from the lapse N to the recently popular “slicing density” α = N/
√

h [49] allows
writing the on-shell Hamiltonian density as H = m2(1/α−√−η ). Boundary terms have been omitted, but
they vanish in some cases because of the Yukawa fall-off for localized sources.

We now consider the linearization of the exact Hamiltonian density. The slicing density α = N/
√

h

has the virtue of reducing the number of radicals in the off-shell Hamiltonian density and also giving the
on-shell Hamiltonian density a simple form. Before linearization, we have

H = α

[
πijπkl

(
hikhjl −

1
2
hijhkl

)
− hR + m2h

(
−1 +

1
2
hijηij

)]
+

+ βiHi − m2√−η +
m2

2α
(1 − ηijβ

iβj). (52)

We now let ηij = δij , hij = δij +φij , and α = 1+a. We are only interested in the kinetic term. The quintic
and quartic terms containing aΠ2φ2, Π2φ2, and aΠ2φ (indices suppressed) are dispensable, but dropping
the cubic term a(πijπij − πiiπjj/2) creates serious problems connected with the term −πiiπjj/2 that did
not arise in the exact theory. The kinetic term containing the worrisome wrong-sign scalar −π2/2 is located
in the Hamiltonian constraint of the exact theory, where its ability to do damage is mitigated, but after
linearization, the −π2/2 term leads to troubles, such as by radiating arbitrarily much negative energy away
or by permitting the radiation of arbitrarily much positive energy, leading to instability. If we had the
cubic terms such as a(πijπij − πiiπjj/2) and perhaps its spatial derivative analogue, then the approximate
Hamiltonian constraint would still substantially resemble the exact form and might behave better.

Boulware and Deser [24], noting the on-shell square root form of H above (and lacking the zeroth-order
term), commented that “the Hamiltonian form (in terms of 6 degrees of freedom) . . . appears to be positive
definite. Since in addition, the linearized approximation here corresponds to a scalar-ghost admixture, and
so gives the linearized Einstein interaction in the weak-field limit, it would seem that this model has at
least two improvements over [the empirically doubtful Fierz–Pauli theory and generalizations thereof]: Its
energy is positive and it has correct linearized behavior. However, it is unacceptable: The vacuum is not a
local minimum, but only a saddle point, as may be seen by considering equilibrium (static) configurations,
or simply expanding H to quadratic order, where it is found to agree with the linearized (ghost) version
H . That for appropriate excitations the quadratic part of H can be negative may seem irrelevant in view
of the apparent positivity of the complete H . . . . Unfortunately, the argument of the square root is not
intrinsically positive . . . even though its positivity is required for the theory to make sense, i.e., for N2

to be positive . . . (otherwise, the effective Riemannian metric ‘seen’ by matter will become pathological).
Therefore one would have to impose that the excitations respect this requirement, i.e., cut off arbitrarily
those modes which take H below its vanishing vacuum (g = η) state value. Instability near vacuum (g � η)
is the reason for rejecting this and other models whose quadratic mass is not of Pauli–Fierz form.”

This is a puzzling argument because N ≤ 0 gives a singularity; there is hence no need to “impose”
N > 0 by hand. A remaining question is whether the theory hits N = 0 so often that singularities form
in mundane contexts. No argument to that effect has been given, while the fact that N → 0 implies
gravitational time dilation suggests that N has little tendency to vanish [50]. There seems to be no need for
H to be positive everywhere as long as H =

∫
H d3x is positive (or nonnegative) for some suitable boundary

conditions. The restoration of the negative zeroth-order term to H implies that H is bounded from below
but not by zero.

There are currently (to our knowledge) no known solutions of the nonlinear field equations, exact or
numerical, of FMS–Logunov or any other “ghost” theory of the families considered here that have negative
total energy. The same is true for solutions that indicate instability by radiating negative net energy. Given
the need for a nonperturbative treatment, the question of stability might best be resolved with the help of
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numerical relativists. It suffices to work in spherical symmetry, where the wrong-sign field can radiate but
most of the right-sign fields cannot.

8. Causality

Given that massive gravities are considered in Minkowski space–time with an observable background
metric ηµν , a further issue worth considering is whether the null cone of the flat background metric is a
bound of the effective curved metric gµν . The flat metric is observable, and violation of the null cone of ηµν

hence implies backwards causation in some Lorentz frames, which is usually rejected. Causality for higher-
spin theories has already caused trouble in the case of spin-3/2 fields. Velo and Zwanziger [51] concluded
that the “main lesson to be drawn from our analysis is that special relativity is not automatically satisfied
by writing equations that transform covariantly. In addition, the solutions must not propagate faster than
light.”

The argument has been made that massive gravity leads to causality violation in the sense of special
relativity (this is relevant because of the observable flat metric [13], [52]). As Chugreev rightly notes, the
static field of sources, if any, must be taken into account; for cosmological models, the presence of matter
everywhere might suffice to preserve causality [53]. But surely it is a contingent rather than necessary
truth that the universe is filled with matter everywhere.11 Gravitational radiation decays as 1/r, and
the static field due to localized sources decays as e−mr. Therefore, the radiation eventually wins and
threatens the proper relation between the two null cones. Because we wish to regard many solutions
without matter everywhere and with gravitational radiation as physically meaningful (although apparently
not corresponding to the actual world), some additional strategy for ensuring the correct relation between
the null cones of the two metrics is needed. The only option that comes to mind is to install artificial gauge
freedom, perhaps using parameterization along the lines of [52], [54], and then to use the same strategy
that we used to impose η-causality in the massless case [13]. The resulting gauged massive gravity has
a gauge transformation groupoid, not a group. It is noteworthy that parameterization yields results that
for the lowest-order terms resemble Stueckelberg’s trick for introducing gauge freedom into massive Proca
electromagnetism. Stueckelberg’s trick has sometimes been used in the lowest order in gravity [55], but it
remained unclear what the generalization to nonlinear field equations might be. It seems plausible that
other methods for installing artificial gauge freedom, such as the BFT procedure [56] or gauge unfixing [57],
ought to give similar results, although we have not investigated those questions carefully.
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