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MIXED-SYMMETRY MASSLESS GAUGE FIELDS IN AdS5

K. B. Alkalaev∗

Using the su(2, 2) spinor language, we describe free mixed-symmetry massless bosonic and fermionic gauge

fields of arbitrary spins in the AdS5 space. We construct manifestly covariant action functionals and derive

field equations.
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1. Introduction

We continue the study of the five-dimensional higher-spin gauge theory [1]–[5]. Our goal is to formulate
manifestly covariant gauge-invariant actions describing the free-field dynamics of massless mixed-symmetry
bosonic and fermionic gauge fields of arbitrary spins s = (s1, s2). Our treatment of AdS5 mixed-symmetry
gauge fields is based on the framelike approach proposed in [6], [7]. But instead of the (spinor)–tensor
language used in [6], [7], we use a spinorial description of AdS5 higher-spin fields based on the well-known
fact that the AdS5 algebra o(4, 2) is isomorphic to su(2, 2). Therefore, o(4, 2) (spinor)–tensor fields can
be described equivalently as su(2, 2) multispinors. The main advantage of the spinorial description is that
bosonic and fermionic fields of any spin s = (s1, s2) can be considered uniformly.

Although the d-dimensional analysis in [6], [7] certainly includes the AdS5 case, reformulating these
results in the spinor language may be interesting in several aspects. In general, such a reformulation
is motivated by the desire to take a step toward a supersymmetric nonlinear higher-spin gauge theory,
which is interesting in the context of a higher-spin version of the AdS5/CFT4 correspondence (see [8] for a
review). The nonlinear equations of motion for AdSd totally symmetric bosonic fields and the underlying
higher-spin gauge algebras are now constructed [9], but extending them to general mixed-symmetry fields
remains an open problem. On the other hand, in the case of the AdS5 higher-spin dynamics, there is a
real possibility to construct a nonlinear theory of higher-spin fields of all symmetry types. Indeed, in five
dimensions, one benefits from using the isomorphism o(4, 2) ∼ su(2, 2). In particular, in the spinor language,
(supersymmetric) higher-spin algebras were identified as certain star-product algebras with su(2, 2) spinor
generating elements [10], [11]. There also exist manifestly covariant formulations of free AdS5 higher-spin
dynamics1 [1]–[4] and N=0, 1 (supersymmetric) action functionals that describe cubic interactions of totally
symmetric AdS5 fields [2], [5].

This paper is organized as follows. In Sec. 2, we describe the background AdS5 geometry in the spinor
notation [2]. In Sec. 3, we consider AdS5 higher-spin gauge fields of mixed-symmetry type and describe
their multispinor and (spinor)–tensor forms. In Sec. 4, we introduce higher-rank tensors as functions of
auxiliary spinor variables [2] and construct gauge transformations and linearized higher-spin curvatures.
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actions for general AdS5 mixed-symmetry massless fields were considered in [13]. Also, there are various manifestly covariant
Lagrangian formulations for particular examples of AdSd mixed-symmetry gauge fields [14].
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In Sec. 5, we construct manifestly gauge-invariant higher-spin actions. In Sec. 6, we derive equations of
motions and discuss constraints for extra fields. We make concluding remarks in Sec. 7.

2. AdS5 background geometry in the spinor notation

Gravitational fields in AdS5 are identified with a 1-form connection that takes values in the AdS5

algebra su(2, 2),
Ω(x) = dxn Ωn

α
βtα

β , (2.1)

where tα
β are basis elements of su(2, 2) and Ωα

α = 0.2 The su(2, 2) gauge field in (2.1) decomposes
into a frame field and a Lorentz spin connection. This splitting can be performed in a manifestly su(2, 2)-
covariant manner by introducing a compensator field [2], [15], an antisymmetric bispinor V αβ = −V βα. The
compensator is normalized such that VαγV βγ = δα

β and Vαβ = (1/2)εαβγρV
γρ. The Lorentz subalgebra

is identified with the stability algebra of the compensator. This allows defining the frame field Eαβ and
Lorentz spin connection ωα(2) as [2]

Eαβ = DV αβ ≡ dV αβ + Ωα
γV γβ + Ωβ

γV αγ , EαβVαβ = 0,

ωα
β = Ωα

β +
λ

2
EαγVγβ ,

(2.2)

where λ is a cosmological parameter, λ2 > 0. We note that because the compensator is Lorentz-invariant,
we regard V αβ as a symplectic metric that allows raising and lowering spinor indices in a Lorentz-covariant
way: Xα = V αβXβ, Yα = Y βVβα.

The AdS5 field strength corresponding to gauge field (2.1) has the form

Rα
β = dΩα

β + Ωα
γ ∧ Ωγ

β , (2.3)

and the background AdS5 space is described by the 1-form field Ωα
0 β = (hαβ , ω

α(2)
0 ), which satisfies the

zero-curvature condition [16]
Rα

β(Ω0) = 0. (2.4)

3. Higher-spin fields

To describe a spin-(s1, s2) gauge field, we introduce a pair of mutually conjugate su(2, 2) traceless
multispinors symmetric in the lower and upper indices [1]–[6],3

Ωα(m)
β(n)(x) ⊕ Ω

β(n)
α(m)(x), Ωα(m−1)γ

β(n−1)ρ(x) δρ
γ = 0, (3.1)

which are 1-forms
Ωα(m)

β(n)(x) = dxn Ωn
α(m)

β(n)(x) (3.2)

with
m = s1 + s2 − 1, n = s1 − s2 − 1. (3.3)

2Throughout the paper, we work within the “mostly minus” signature (+ – . . . –) and use α, β, γ = 1, 2, 3, 4 for su(2, 2)
spinor indices, m, n = 0, 1, 2, 3, 4 for world indices, a, b, c = 0, 1, 2, 3, 4 for tangent Lorentz so(4, 1) vector indices, and A, B, C =
0, 1, 2, 3, 4, 5 for tangent so(4, 2) vector indices. We also use condensed notation for a set of symmetric spinor indices α(k) ≡
α1 . . . αk. Indices denoted by the same letter are assumed to be symmetrized as XαY α ≡ Xα1Y α2 + Xα2Y α1 .

3The complex conjugation operation is defined by the rule Xα = XβCβα, Y
α

= CαβYβ , where the bar denotes complex

conjugation and Cαβ = – Cβα and Cαβ = – Cβα are some real matrices such that CαγCβγ = δα
β [2].
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To decompose representations (3.1) of the AdS5 algebra su(2, 2) into representations of its Lorentz subal-
gebra, we use the compensator V αβ . The result of the reduction is given by

Ωα(s1+s2−1)
β(s1−s2−1)(x) =

s1−s2−1∑

t=0

ωα(s1+s2−1)γ(t),γ(s1−s2−t−1)(x)Vβ(s1−s2−1),γ(s1−s2−1), (3.4)

where the condensed notation Vα(k),β(k) ≡ Vα1β1Vα2β2 · · ·Vαkβk
is introduced. The Lorentz algebra irre-

ducible components
ωα(s1+s2+t−1),β(s1−s2−t−1)(x), 0 ≤ t ≤ s1 − s2 − 1, (3.5)

satisfy the Young symmetry condition

ωα(s1+s2+t−1),αβ(s1−s2−t−1)(x) = 0, (3.6)

and contractions with Vαβ are zero,

ωα(s1+s2+t−1),β(s1−s2−t−1)(x)Vαβ = 0. (3.7)

According to the analysis in [1], [2], multispinors with |m−n| = 0 correspond to totally symmetric spin-
s1 bosonic fields and are self-conjugate. Other fields with |m − n| ≥ 1 are described by a pair of mutually
conjugate multispinors and correspond either to totally symmetric fermionic spin-s1 fields, |m − n| =
1 [3], [4], or to mixed-symmetry bosonic and fermionic fields, |m − n| ≥ 2 [2], [4]. We note that mixed-
symmetry gauge fields necessarily occur in the spectrum of N≥2-extended five-dimensional higher-spin
gauge superalgebras, while N≤1 (super)algebras describe only totally symmetric fields [11].

To relate the spinor and (spinor)–tensor forms of mixed-symmetry field dynamics, we examine the
o(4, 1) (spinor)–tensor cousins of multispinor fields (3.5)–(3.6) at s2 �= 0. The result is that a collection of
o(4, 1) gauge fields is represented by complex-valued (spinor)–tensor fields of the form

ωa(s1−1),b(s2+t) = dxn ωn
a(s1−1),b(s2+t), 0 ≤ t ≤ s1 − s2 − 1, (3.8)

for bosonic mixed-symmetry fields and

wα|a(s1−1),b(s2+t) = dxn wn
α|a(s1−1),b(s2+t), α = 1, 2, 3, 4, 0 ≤ t ≤ s1 − s2 − 1, (3.9)

for fermionic mixed-symmetry fields (α denotes a five-dimensional Dirac spinor index). In both cases,
fields (3.8) and (3.9) have the Young symmetry property and are traceless (bosons) or gamma-transverse
(fermions).

In accordance with the nomenclature in [6], fields (3.8) and (3.9) with the parameter t ≥ 1 are called
extra fields. Fermionic field (3.9) at t = 0 is called the physical field. To classify the bosonic field in (3.8)
with t = 0, we decompose it into real and imaginary parts as

ωa(s1−1),b(s2) = ω1
a(s1−1),b(s2) + iω2

a(s1−1),b(s2). (3.10)

Using the five-dimensional Levi-Civita symbol, one of the fields, ω1 or ω2, can be dualized into a field with
one index in the third row, for example,

ωa(s1−1),b(s2) = ω1
a(s1−1),b(s2) + iεabcdeω2

a(s1−2)
c,

b(s2−1)
d,e, (3.11)

where the dual three-row field ω
a(s1−1),b(s2),e
2 is traceless and has the Young symmetry property. We call

the real part Re ωa(s1−1),b(s2) of field (3.11) the physical field. The imaginary part Imωa(s1−1),b(s2) of this
field is called an auxiliary field. In fact, any bosonic field (3.8) can be represented as a pair of real fields
with one of them having one index in a third row. The resulting collection of real Lorentz-covariant fields
is described by three-row o(4, 1) Young tableaux arising as a decomposition of a certain o(4, 2) three-row
Young tableau [2], [6].
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4. Higher-spin linearized curvatures

The analysis of linearized curvatures in this section is close to the analysis in the previous papers on
totally symmetric fields [2], [3]. It turns out that the general form of gauge transformations for mixed-
symmetry fields remains intact except for an additional dependence on the spin s2 and the appearance of a
nonzero operator T0 for bosonic nonsymmetric fields (see (4.18) and (4.20)). This last feature is not typical
for bosonic systems and is a reflection of an implicit presence of the Levi-Civita symbol in the definition of
real bosonic components of complex-valued fields (3.8). The calculation of the bosonic operator T0 is the
main result in this section.

We introduce auxiliary commuting variables aα and bβ transforming under the fundamental and the
conjugate fundamental representations of su(2, 2). It is convenient to represent higher-spin fields (3.2) as
functions of the auxiliary variables,

Ω(a, b|x) = Ωα(s1+s2−1)
β(s1−s2−1)(x)aα(s1+s2−1)b

β(s1−s2−1), (4.1)

where
aα(m) = aα1 · · ·aαm , bβ(n) = bβ1 · · · bβn . (4.2)

The corresponding five-dimensional linearized higher-spin curvature is given by

R(a, b|x) = dΩ(a, b|x) + Ω0
α

β

(
bβ ∂

∂bα
− aα

∂

∂aβ

)
∧ Ω(a, b|x), (4.3)

where the background 1-form connection Ω0
α

β satisfies zero-curvature condition (2.4). The linearized
(Abelian) higher-spin transformations are

δΩ(a, b|x) = D0ξ(a, b|x), (4.4)

where the background covariant derivative is given by

D0 = d + Ω0
α

β

(
bβ ∂

∂bα
− aα

∂

∂aβ

)
. (4.5)

Condition (2.4) implies that δR(a, b|x) = 0. The Bianchi identities have the form

D0R(a, b|x) = 0. (4.6)

In the subsequent analysis, we use two sets of differential operators in the auxiliary variables [2],

S− = aα
∂

∂bβ
V αβ , S+ = bα ∂

∂aβ
Vαβ , S0 = Nb − Na (4.7)

and

T− =
1
4

∂2

∂aα∂bα
, T + = aαbα, T 0 =

1
4
(Na + Nb + 4), (4.8)

where
Na = aα

∂

∂aα
, Nb = bα ∂

∂bα
. (4.9)

With (4.7) and (4.8), the irreducibility conditions for Ω(a, b) are reformulated as

T−Ω(a, b) = 0, (S0 + 2s2)Ω(a, b) = 0. (4.10)
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As demonstrated in Sec. 3, the higher-spin gauge field Ω decomposes into Lorentz subalgebra representations
in accordance with formula (3.4). In terms of operators (4.7) and (4.8), formula (3.4) is rewritten as

Ω(a, b|x) =
s1+s2−1∑

t=0

(S+)tωt(a, b|x), (4.11)

where
ωt(a, b|x) = ωα(s1+s2+t−1),β(s1−s2−t−1)(x)aα(s1+s2+t−1)bβ(s1−s2−t−1) (4.12)

are Lorentz-covariant gauge fields (3.5). The irreducibility conditions in (3.6) and (3.7) become

S−ωt(a, b) = 0, T−ωt(a, b) = 0. (4.13)

Higher-spin gauge symmetry (4.4) requires the bosonic and fermionic Lorentz-covariant higher-spin
curvatures rt and gauge transformations to be given by

rt = Dωt + T −ωt+1 + λT 0ωt + λ2T +ωt−1, (4.14)

δωt = Dξt + T −ξt+1 + λT 0ξt + λ2T +ξt−1, (4.15)

where the 0-forms ξt are Lorentz-covariant gauge parameters and D is the background Lorentz-covariant
derivative

D = d + wα
0 β

(
aα

∂

∂aβ
+ bα

∂

∂bβ

)
. (4.16)

The operators T −, T +, and T 0 have the forms

T + =
(

1 − ∆2

(S0)2

)
hα

β aα
∂

∂bβ
, (4.17)

T 0 = − ∆
S0

hα
β

(
bα

∂

∂bβ
− aα

∂

∂aβ
+

2
S0 − 2

(
bγ

∂

∂aγ

)
aα

∂

∂bβ

)
, (4.18)

T − =
1

1 − S0
hα

β

(
(2 − S0)bα

∂

∂aβ
+ bγ

∂

∂aγ

(
bα

∂

∂bβ
− aα

∂

∂aβ

)
+

+
1

S0 − 3

(
bγ

∂

∂aγ

)2

aα
∂

∂bβ

)
, (4.19)

where the parameter ∆ takes the values

∆ =





2s2 for bosons,

2s2 + 1 for fermions,
(4.20)

and satisfy the relations
{T 0, T −} = {T 0, T +} = 0,

(T −)2 = 0, (T +)2 = 0,

D2 + λ2{T −, T +} + λ2(T 0)2 = 0.

(4.21)

We note that the coefficients in (4.17)–(4.19) can be changed by field redefinitions of the form ω̃t = C(t, s)ωt

with C �= 0.
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5. Higher-spin action

Before considering actions for arbitrary mixed-symmetry gauge fields, we examine the case of the
simplest nonsymmetric bosonic field of spin (2, 1) described by a 1-form Ωα(2)(x). Up to total derivative
terms, the action functional has the unique form

S(2,1)
2 =

∫

M5
hα

β ∧ Rβγ ∧ Rγα, (5.1)

where hα
β is the background AdS5 frame field and the curvature is

Rα(2) = D0Ωα(2) ≡ DΩα(2) + λhα
γ ∧ Ωγα. (5.2)

The equations of motion resulting from action (5.1) are

H2
α

γ ∧ Rγβ + H2
β

γ ∧ Rγα = 0 (5.3)

plus the complex-conjugate equations for Ωαβ . We note that these bosonic equations are of the first order,
which makes them similar to fermionic equations. But as discussed in Sec. 3, the real and imaginary parts
of the complex-valued field Ωα(2)(x) are regarded as physical and auxiliary fields (3.11), with the auxiliary
field being expressed by virtue of its equation of motion in terms of first derivatives of the physical field. To
describe this mechanism in more detail, we consider the tensor form of action (5.1). According to (3.10),
the o(4, 1) field isomorphic to Ωα(2)(x) is

ω[ab] = ωab
1 + iωab

2 . (5.4)

The corresponding linearized curvature and gauge transformations have the forms

Rab = Dωab − iλ

2
εabcdehc ∧ ωde, δωab = Dξab − iλ

2
εabcdehcξde, (5.5)

where D is the background Lorentz-covariant derivative, ξab is a 0-form complex gauge parameter, and ha

is the background frame field. We note that the terms in (5.5) involving the Levi-Civita symbol are in fact
the operator T 0 expressed in the spinor notation by formula (4.18). The Bianchi identities are

DRab − iλ

2
εabcdehc ∧ Rde = 0. (5.6)

The action has a form analogous to (5.5),

S(2,1)
2 =

∫

M5
εabcdeh

e ∧ Rab ∧ R
cd

, (5.7)

where R
cd

is complex-conjugate curvature (5.5). The equations of motion are

Ha
c ∧ Rcb − Hb

c ∧ Rca = 0, Hab
def= ha ∧ hb (5.8)

plus the complex-conjugate equations.
To clarify the dynamical content of these equations, we regard the real or imaginary part of the field

ωab given by (5.4) as a dualized auxiliary field, for example,

ωab
1 = ωab

1 , ωab
2 =

1
λ

εabcdeω2 cde, (5.9)
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where ωab
1 and ωabc

2 are the physical and auxiliary fields with antisymmetric indices and the factor λ−1 is
introduced to express the fact that the mass dimensions of physical and auxiliary fields are different. These
fields can be unified into a single o(4, 2) field Ω[ABC] [6]. It can be shown that action (5.7) can be rewritten
as

S(2,1)
2 =

1
λ2

∫

Md

εABCDEF hEV F ∧ RABM ∧ RCDNVMVN . (5.10)

In this form, the action coincides with the action for the AdSd “hook” field explicitly studied in [6]. We
note that the flat limit of action (5.7) (or, equivalently, (5.10)) yields a dual description of the spin-2 field,
which precisely corresponds to Curtright’s action [17]. Another comment is that the described procedure
for unifying dynamical and auxiliary fields into a single complex-valued field was used to study the so-called
odd-dimensional self-duality for massive antisymmetric tensor fields in Minkowski space [18].

Action for nonsymmetric AdS5 gauge fields. In what follows, we construct free actions describing
mixed-symmetry bosonic and fermionic gauge fields in AdS5. The case of totally symmetric fields was
considered in [2], [3].

As in [2], [3], [6], we seek mixed-symmetry field action functionals in the form

S(s1,s2)
2 =

∫

M5
Ĥ ∧ Rs1,s2(a1, b1) ∧ Rs1,s2(a2, b2)|ai=bi=0, (5.11)

where Rs1,s2 is linearized higher-spin curvature (4.3) and Ĥ is the 1-form differential operator

Ĥ =
(

α(p, q)hαβ
∂2

∂a1α∂a2β
b̂12 + β(p, q)hαβ ∂2

∂bα
1 ∂bβ

2

â12 +

+ γ(p, q)hα
β ∂2

∂a2α∂bβ
1

ĉ12 + ζ(p, q)hα
β ∂2

∂a1α∂bβ
2

ĉ21

)
(ĉ12)2s2 . (5.12)

Here, hα
β is the background frame field, and the coefficients α, β, γ, and ζ are functions of the operators

p = â12b̂12, q = ĉ12ĉ21, (5.13)

where

â12 = Vαβ
∂2

∂a1α∂a2β
, b̂12 = V αβ ∂2

∂bα
1 ∂bβ

2

,

ĉ12 =
∂2

∂a1α∂bα
2

, ĉ21 =
∂2

∂a2α∂bα
1

.

(5.14)

These functions are responsible for various types of index contractions between the frame field and the
curvatures. The action is invariant under complex conjugation S2 = S2 when the coefficients α, β, γ, and
ζ are real.

Because the general variation of the linearized curvatures is δR = D0δΩ and because the action is
formulated in an AdS5 covariant way, integrating by parts yields the variation

δS(s1,s2)
2 =

∫

M5
D0Ĥ ∧ δΩ(a1, b1) ∧ R(a2, b2)|ai=bi=0 + c.c. (5.15)

The derivative D0 produces the frame field each time it hits the compensator D0V
αβ = hαβ . Taking

D0h
αβ = 0, hα

β = hαγV βγ into account and using the notation Hαβ = Hβα = hα
γ ∧ hβγ , we find

D0Ĥ =
(

ρ1Hα
β ∂2

∂a2α∂b1
β
ĉ12 + ρ2Hα

β ∂2

∂a1α∂b2
β
ĉ21 +

+ ρ3Hαβ
∂2

∂a1α∂a2β
b̂12 + ρ3H

αβ ∂2

∂bα
1 ∂bβ

2

â12

)
(ĉ12)2s2 , (5.16)
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where

ρ1 =
1
2

(
1 + p

∂

∂p

)
(−2γ(p, q) + (α + β)(p, q)),

ρ2 =
1
2

(
1 + p

∂

∂p

)
(−2ζ(p, q) + (α + β)(p, q)),

ρ3 =
1
2
q

∂

∂p
(ζ(p, q) − γ(p, q)).

(5.17)

For the trivial solution ρi = 0, the covariant derivative of Ĥ vanishes, D0Ĥ = 0, and the corresponding
action functional is a total derivative. It follows from (5.17) that ρi = 0 whenever

(α + β)(p, q) = 2γ(p, q), ζ(p, q) = γ(p, q). (5.18)

Clearly, by adding total derivatives with the coefficients satisfying (5.18), we can always set γ = 0 and
β = 0 in action (5.11), (5.12).

Generally, action (5.11) does not describe massless higher-spin fields, because there are too many
nonphysical dynamical variables associated with the extra fields. To eliminate the corresponding degrees of
freedom, we must fix the operator Ĥ in an appropriate form by virtue of the decoupling condition [6], [19].
It requires the variation of the quadratic action with respect to the extra fields to be identically zero,

δS(s1,s2)
2

δωt>0
≡ 0. (5.19)

To analyze the extra field decoupling condition, we observe that all gauge fields of the extra type can be
combined into a single irreducible su(2, 2) tensor ξ(a, b) satisfying (Na −Nb − 2s2 − 2)ξ(a, b) = 0. Then the
variation of the extra fields becomes

δΩextra(a, b) = S+ξ(a, b), (5.20)

and the extra field decoupling condition (5.19) amounts to
(

∂

∂p
− ∂

∂q

)
(qρ2) + ρ3 = 0,

(
∂

∂p
− ∂

∂q

)
ρ3 = 0,

ρ1 + ρ3 = 0.

(5.21)

Modulo total derivative contributions (5.18), the general solution of system (5.21) is

γ(p, q) = 0, β(p, q) = 0, ζ(p, q) = ζ(0) (p + q)s1−s2−1

q
,

α(p, q) = −ζ(0)(s1 − s2 − 1)
∫ 1

0

dτ (pτ + q)s1−s2−2 =

= −ζ(0)
s1−s2−2∑

k=0

(s1 − s2 − 1)!
(k + 1)!(s1 − s2 − k − 2)!

pkqs1−s2−k−2.

(5.22)

The factor q−1 appearing in ζ(p, q) can be removed by redefining ζ(p, q) → qζ(p, q). This operation does
remove the singularity because the last term in the operator Ĥ in (5.12) contains the combination ĉ21(ĉ12)2s2 ,
which is always q(ĉ12)2s2−1 by the definition of q in (5.14). An overall factor ζ(0) in front of the action of a
given spin (s1, s2) cannot be fixed from the analysis of the free action and represents the residual ambiguity
in the coefficients.
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6. Equations of motion and constraints

To obtain equations of motion, we rewrite the nontrivial part of variation (5.15) as

δS(s1,s2)
2 = − ζ(0)(s1 − s2 − 1)

2

∫
(p + q)s1−s2−2

(
(s1 − s2 + 1)q + 2(s1 − s2)p

s1 − s2 − 1
×

× Hα
β ∂2

∂a1α∂b2
β

+ Hα
β ∂2

∂a2α∂b1
β
(ĉ12)2 − Hαβ

∂2

∂a1α∂a2β
b̂12ĉ12 −

− Hαβ ∂2

∂bα
1 ∂bβ

2

â12ĉ12

)
(ĉ12)2s2−1 ∧ r0(a1, b1) ∧ δω0(a2, b2) + c.c. part. (6.1)

Substituting the fields

r0(a1, b1) = r0α(s1+s2−1),
β(s1−s2−1)a1 α(s1+s2−1)b

β(s1−s2−1)
1 ,

ω0(a2, b2) = ω0
γ(s1+s2−1),

ρ(s1−s2−1)a2 ρ(s1−s2−1)b
γ(s1+s2−1)
2

(6.2)

in variation (6.1) and using their Young symmetry properties

Y1 ≡ S−
1 : Y1r

0(a1, b1) = 0,

Y2 ≡ S+
2 : Y2ω

0(a2, b2) = 0,
(6.3)

we obtain equations of motion that can be conveniently written as

Ê ∧ r0(a, b) = 0, (6.4)

where Ê is a 2-form differential operator given by

Ê = Hα
β

(
aα

∂

∂aβ
+ κ2bα

∂

∂bβ
+ κ3S

+aα
∂

∂bβ
+ κ4T

+ ∂2

∂aα∂bβ
+ κ5T

+S+ ∂2

∂bα∂bβ

)
(6.5)

with the coefficients

κ2 =
1 + (s1 + s2 − 1)(s2 + 1)
1 − (s1 − s2 + 1)(s2 + 1)

, κ3 = −κ4 =
1 − κ2

2(s2 + 1)
, κ5 =

κ2 − 1
4s1(s2 + 1)

. (6.6)

Analogous equations hold for the complex-conjugate physical field ω0. The operator Ê satisfies the condi-
tions

[S−, Ê] = 0, [T−, Ê] = 0, (6.7)

i.e., preserves the Young symmetry and V -transversality properties of the physical curvature r0. By con-
struction, this operator also satisfies the extra field decoupling condition, which means that the term T −ω1

containing the extra field ω1 in the curvature r0 = Dω0+T 0ω0+T −ω1 does not contribute to the equations
of motion, i.e., Ê ∧ T −ω1 = 0.

As in the papers on totally symmetric fields [19], we assume that the constraints for extra fields have
the form

Υ+
2 ∧ rt(a, b) = 0, 0 ≤ t < s1 − s2 − 1, (6.8)
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where Υ+
2 is the 2-form operator that increases t and satisfies the condition

T + ∧ Υ+
2 = 0. (6.9)

The operator Υ+
2 is required to have property (6.9) because it ensures that the number of independent

algebraic relations imposed on the curvature rt coincides with the number of components of extra fields
ωt>0 modulo pure gauge components of the form δωt+1 = T −εt+2. It can be shown that the operator Υ+

2

is uniquely fixed in the form
Υ+

2 = T 0 ∧ T +. (6.10)

By virtue of constraints (6.8), the field ωt+1 can be expressed via derivatives of ωt for any t > 0. Finally,
we can obtain the fields ωt expressed in terms of the derivatives of ω0 with the highest derivative order
equal to t.

7. Conclusion

We have constructed a manifestly covariant Lagrangian formulation for AdS5 mixed-symmetry massless
gauge fields in the framework of the su(2, 2) spinor formalism. The approach we used is based on the frame-
like formulation of mixed-symmetry fields elaborated in [6], [7]. Our results can be regarded as the final
step in the study of the manifestly covariant Lagrangian formulation of AdS5 higher-spin gauge fields in the
su(2, 2) formalism. An important problem for further research is to develop the unfolded form of free mixed-
symmetry field dynamics based on the Weyl tensors following from the equations of motion and constraints
for extra fields analyzed in Sec. 6. This will allow formulating the central on-mass-shell theorem similarly to
the case of totally symmetric gauge fields [2], [19] and establishing a relation with the unfolded formulation
of mixed-symmetry fields developed in [4]. Also, the constructed Lagrangian formulation allows studying
N -extended supersymmetric cubic interactions of AdS5 gauge fields at the level of action functionals, thus
generalizing the N=0, 1 results in [2], [5].
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