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ANALYTIC PROPERTIES OF THE S-MATRIX FOR INTERACTIONS

WITH YUKAWA-POTENTIAL TAILS

M. Baldo∗ and V. S. Olkhovsky†

We give an explicit analytic expression for the S-matrix in the case of an arbitrary central interaction

inside a sphere of finite radius with a Yukawa-potential tail at large distances. The method uses the

completeness of the wave functions outside the finite sphere and also the unitarity and the symmetry

conditions for the S-matrix.
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1. Introduction

The analytic structure of the nonrelativistic one-channel S-matrix is now known rather completely
for a wide class of spherical interactions (see, e.g., [1]–[5]). It seems that the case of interactions with
Yukawa-potential tails, for which the explicit analytic representations of the S-matrix is unknown, is the
only essential exception. Indeed, this case is characteristic for nuclear physics, both for nucleon–nucleon
and nucleon–nucleus interactions. Our goal in this paper is to fill this gap to some extent based on the
method developed in [3]–[5].

2. Basic formulas and general S-matrix properties

We assume that the interaction between two colliding particles outside a sphere of finite radius a is
described by a central Yukawa potential

V = V0

[
(br)−1e−br

]
, V0 < 0, b−1 ∼ a, (1)

while it has a given arbitrary form inside the sphere.
The radial scattering wave function R

(+)
l with outgoing-wave boundary conditions for the partial wave

l, the wave number k, and r > a can be written as

R
(+)
l (k, r) =

i

2kr

[
fl−(k, r)eilπ/2 − Sl(k)fl+(k, r)e−ilπ/2

]
. (2)

The radial wave function for a bound state Rn
l in the same region can be written in the form

Rn
l (knl, r) = (2π)−1/2 Bl(knl)fl+(knl, r)

r
, (3)

where knl is the corresponding eigenvalue and Bl is the so-called bound-state constant. The S-matrix or,
more precisely, the function Sl(k) in Eq. (2) satisfies the (extended) unitarity condition

Sl(k)S∗
l (k∗) = 1 (4)
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and the symmetry condition
Sl(k)Sl(−k) = 1 (5)

(see, e.g., [1]–[5]). The definitions and some properties of the functions fl±(k, r) are given in [1]. All the
information on the interaction for r < a is contained in the functions Sl(k), constants Bl(knl), and numbers
knl.

We now consider the analytic properties of fl±(k, r) for Yukawa potentials (1). First, according to [1],
for the case l = 0, we have

f0±(k, r) =
[
1 +

∫ ∞

b

S±(b′, k)e−b′r db′
]
e±ikr, (6)

where S±(b′, k) is the solution of the equation

b(b ∓ 2ik)S±(b, k) = ρ +
∫ ∞

b

ρS±(b′, k) db′, (7)

where ρ = 2µV0/(�2b3) < 0 and µ is the reduced mass. The solution of Eq. (7) can be written as

S±(b, k) = ρ

{
b(b ∓ 2ik)

[
1 ∓ iρ

2k
log

(
1 ∓ 2ik

b

)]−1}
, (8)

and we obtain

f0±(k, r) =
{

1 + ρ

[
1 ∓ iρ

2k
log

(
1 ∓ 2ik

b

)]−1 ∫ ∞

b

e−b′r db′

b′(b′ ∓ 2ik)

}
e±ikr (6a)

from Eq. (6).
In Eq. (8), there is a logarithmic singularity of f0±(k, r) at the point k = kγ = ib/2. We consider the

analytic properties of the factor

A− =
[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1

. (9)

It is easy to verify that for complex values of k with both Re k and Im k nonzero, the factor A−1
− has no

zeros, and A− therefore has no poles. The same result is obtained for real k. Further, we set k = ix, where
x is real, and rewrite Eq. (9) in the form

A− =
[
1 +

ρ

2x
log

(
1 − 2x

b

)]−1

.

In the case 2x/b > 1, the factor A−1
− has no zeros because the logarithm is complex, and A− therefore has

no poles. In the case 0 ≤ 2x/b < 1 for ρ < 0, as in the case of the long-range part of the nuclear forces, A−
again has no poles. Finally, in the case 2x/b ≤ 0, poles can exist, but they must be located in the lower
half of the complex k plane.

In conclusion, we note that the factor A− contains no additional singularities in the upper half of the
complex k plane except a branch point at kγ = ib/2.

The treatment can be extended to higher angular momenta l > 0. The same logarithmic singularity
at the point k = kγ = ib/2 also appears in fl−(k, r). To show this, the following integral equation, which
allows computing fl−(k, r) from f0−(k, r), can be used:

fl−(k, r) = f0−(k, r) + l(l + 1)
∫ ∞

r

G(k; r, r′)(r′)−2fl−(k, r′) dr′, (10)
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where r > a and the Green’s function G(k; r, r′) has the form [1]

G(k; r, r′) = (2ik)−1
[
f0−(k, r)f0+(k, r′) − f0−(k, r′)f0+(k, r)

]
=

=
[
f0+(k, 0)

]−1[Φ(k, r)f(k, r′) − Φ(k, r′)f(k, r)
]
. (11)

Because the function Φ(k, r) is regular everywhere, the Green’s function in Eq. (11) has no singularity at
the point k. The solution fl−(k, r) of Eq. (10) for any value of l contains the same logarithmic singularity
as the function f0−(k, r) at the point kγ = ib/2.

After these preliminary considerations, we investigate the analytic structure of the S-matrix Sl(k). For
this, as in [3], [5], we use the completeness condition for the wave function in the range r ≥ a. We assume
that in this external region, the colliding particle can be described using the Schrödinger equation with a
single Yukawa potential (with the possible addition of a potential decreasing faster than any exponential).
Therefore, we can write

2
π

∫ ∞

0

k2R
(+)
l (k, r)R(+)∗

l (k, r′) dk +
∑

n

R
(n)
l (knl, r)R

(n)∗
l (knl, r

′) = r−2δ(r − r′) (12)

for r, r′ > a. Using the well-known property [1]

f∗
l+(k, r) = fl−(k, r), f∗

l−(k, r) = fl+(k, r), (13)

valid for real k, and conditions (4) and (5), we can write Eq. (12) in the form

1
2r′

∫

C

fl−(k, r)fl+(k, r′) dk − (−1)l

rr′

∫

C

Sl(k)fl+(k, r)fl+(k, r′) dk +

+
1

rr′
∑

n

(
Bl(knl)

)2
fl+(knl, r)fl+(knl, r

′) =
2πδ(r − r′)

r2
. (14)

The integration path C in Eq. (14) goes along the real axis from −∞ to ∞ except near the origin k = 0,
where it follows a semicircle of infinitely small radius in the upper half-plane D+. At the point k = 0, the
functions fl±(k, r) have poles of order l.

Because for the chosen potential in the external region (r > a), the functions fl±(k, r) have the limits
e±ikr for |k| → ∞ in all directions in the complex plane, we can deform the integration path inside D+

to another path composed of two pieces: an arbitrarily large semicircle above the real axis and a set of
contours inside D+ going around all the existing singularities, either cuts or poles, as close to them as is
convenient. After such a deformation, using the identities

∫

Γ+
fl−(k, r)fl+(k, r′) dk =

∫

Γ+
eik(r′−r) dk =

∫ ∞

−∞
eik(r′−r) dk = 2πδ(r − r′),

∫

Γ+
Sl(k)fl+(k, r)fl+(k, r′) dk =

∫

Γ+
Sl(k)eik(r′+r) dk,

(15)

we obtain [5]
∑

m

∮

km

fl−(k, r)fl+(k, r′) dk +
∑

p

∮

γp

fl−(k, r)fl+(k, r′) dk −

− (−1)l
∑

s

∮

ks

Sl(k)fl+(k, r)fl+(k, r′) dk − (−1)l
∑

q

∮

γq

Sl(k)fl+(k, r)fl+(k, r′) dk −

− (−1)l

∫

Γ+
Sl(k)eik(r′+r) dk +

∑

n

(
Bl(knl)

)2
fl+(knl, r)fl+(knl, r

′) = 0. (16)
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Here, Γ+ is an infinitely large semicircle above the real axis, km and ks denote isolated singularities, and
γp and γq are contours encircling nonisolated singularities or going along the edges of a cut in the case of
branch points. Because the functions fl+(k, r) and eikr are independent as functions of r at different points
knl, km, ks, γp, and γq (singularities for fl−(k, r) and Sl(k)) in D+, Eq. (16) is equivalent to the set of
equations

− (−1)l

∮

knl

Sl(k)fl+(k, r)fl+(k, r′) dk =
(
Bl(knl)

)2
fl+(knl, r)fl+(knl, r

′), (17)

(−1)l

∮

km

Sl(k)fl+(k, r)fl+(k, r′) dk =
∮

km

fl−(k, r)fl+(k, r′) dk, (18)

(−1)l

∮

γp

Sl(k)fl+(k, r)fl+(k, r′) dk =
∮

γp

fl−(k, r)fl+(k, r′) dk, (19)

∫

Γ+
Sl(k)eik(r′+r) dk = 0, (20)

where r, r′ ≥ a. According to the residue theorem, we can conclude from Eq. (17) that in D+, Sl(k) can
have first-order poles corresponding to the bound states and having residues equal to (−1)l+1i(2π)−1(Bnl)2.
Equation (18) can be rewritten as

∮

km

fl+(k, r)fl+(k, r′)
[
fl−(k, r′)
fl+(k, r′)

− (−1)lSl(k)
]

dk = 0,

whence we can conclude that in D+, Sl(k) can have additional isolated singularities coinciding with the
isolated singularities of fl−(k, r) in D+, near which

lim
k→km

fl−(k, r) = lim
k→km

Dm(k)fl+(k, r). (21)

The function Dm(k) is independent of r and has an isolated singularity at the point km. These results were
obtained in [1] using a different method. In Appendix 1, we present the English translation of a paper by
Olkhovsky and Tsekhmistrenko [6] (where similar results were presented concerning poles for interactions
that are more general than those in [1]); it was previously published in an Ukrainian edition, which had
not been translated into Russian and English and was hence previously unknown to readers not knowing
Ukrainian.

We now consider Eq. (19) near the logarithmic singularities of fl−(k, r) in D+. The contour γq can
be chosen in the form shown in Fig. 1. It consists of the almost closed circle γacc around kγ = ib/2 with
the small radius ε ≡ (ε/b)b and the two infinite lines γedge along the edges of the cut with a much smaller
distance between them given by (ε/b)δb, δ > 2, i.e., γq = γacc +γedge. We let γ12 denote the segment joining
the lowest points 1 and 2 of the two lines (see Fig. 1). Letting γc denote the closed contour formed by the
almost closed circle and the segment, we can write the identity

∫

γacc

=
∮

γc

−
∫

γ12

−→
ε→0

∮

γc

(22)

for the integrals in Eq. (19). Because the length of γ12 is (ε/b)δb, the integrals over γ12 and over γedge

vanish as O(εδ−2) as ε → 0. Therefore, only the contour integral over the closed circle γc centered at the
point kγ remains.
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Im k

Re k0

k° = /2ib
1 2

Fig. 1. A form of the contour γq.

We consider the integral over γc in detail. The value of the integral is determined by the behavior of
the integrand as the radius of the circle tends to zero. Therefore, we consider the limit

lim
k→kγ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1 ∫ ∞

b

e(ik−b′)r

b′(b′ + 2ik)
db′. (23)

It is easy to show that the integral over the variable b′ in this expression has a logarithmic divergence at
kγ that cancels when the corresponding factor vanishes, and the function f0−(k, r) therefore has no pole at
kγ . Explicitly evaluating limit (23) shows that in the vicinity of kγ , the function f0−(k, r) can be written
as (see Appendix 2)

f0−(k, r) → W (k, r) +
[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1

U(k, r), (24)

where the functions W and U are analytic functions of k at the point kγ and inside the small closed circle
γc. Equation (19) can therefore be rewritten as

∮

γc

S0(k)f0+(k, r)f0+(k, r′) dk =
∮

γc

f0+(k, r)f0−(k, r′) dk =

=
∮

γc

W (k, r)f0+(k, r′) dk+

+
[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1 ∮

γc

U(k, r)f0+(k, r′) dk. (25)

Because each integral in the right-hand side vanishes, we can conclude that

∮

γc

S0(k)f0+(k, r)f0+(k, r′) dk = 0. (26)

It hence follows that S0(k) can contain at most a singular factor of the type

F =
[
1 − iρ

2k
log

(
1 − 2ik

b

)][
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1

(27)

connected with the analogous logarithmic branch points at k = kγ . Of course, there may be no such factor,
or S0(k) may contain other factors that have a logarithmic branch point but vanish at kγ .
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kn2
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n2

°
q k° = /2ib

Fig. 2. A disposition of the poles and the cut.

We consider a few special cases where this factor actually occurs. If the interaction inside the sphere
r ≤ a is such that the scattering wave function in the external region (r > a) can be written in the form

Ψext = f0−(kr) − S0(k)f0+(kr) (28)

and vanishes at some point r = r0 > a, then

S0(k) =
f0−(k, r0)
f0+(k, r0)

. (29)

It follows that S0(k) must contain a factor F given by Eq. (27).
Another possibility occurs for a wide class of potentials [1], namely, when the interaction inside the

sphere r ≤ a is such that the continuity relations

Ψint ≡ const · Φ(k, a) = f0−(k, a) − S0(k)f0+(k, a),

dΨint

dr

∣
∣
∣
∣
r=a

≡ const · dΦ(k, r)
dr

∣
∣
∣
∣
r=a

=
df0−(kr)

dr

∣
∣
∣
∣
r=a

− S0
df0+(k, r)

dr

∣
∣
∣
∣
r=a

(30)

are satisfied. Here, the function Φ(k, r) is the regular solution of the radial Schrödinger equation inside the
sphere r ≤ a with the boundary condition Φ(k, 0) = 0. This function is determined only by the interaction
inside the sphere r ≤ a. Equations (30) determine the constant and the corresponding S-matrix

S0(k) =
ϕ(k, a) df0−(k, a)/da − f0−(k, a) dϕ(k, a)/da

f0+(k, a) dϕ(k, a)/da − ϕ(k, a) df0+(k, a)/da
, (31)

i.e., S0(k) also must then contain factor (27). According to (10) and (11), the same result is also obtained
for Sl(k) with l > 0.
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Using the same approach, we can study a more general case where there is a covering of the cut
(see Fig. 2) by the poles (corresponding to bound states and/or “redundant” poles that appear when the
potentials decrease exponentially). In this case, it suffices to use equalities analogous to (22),

∫

γacc(kn)

=
∮

kn

−
∫

γ12

−→
ε→0

∮

kn

and simply repeat the reasoning preceding (24). It is then easy to prove that for all these singularities,
Eq. (21) continues to hold, and the results obtained previously concerning the singularities of Sl(k) in D+

also continue to hold.
Finally, the analytic continuation of the functions Sl(k) to the lower half-plane D− can be found as

usual based on symmetry condition (5) and the known general theorem on analytic continuation.

3. The explicit analytic S-matrix representation for the chosen
class of interactions

We now try to find the explicit analytic representation of Sl(k). The factor F defined by (27) contains
logarithmic singularities analogous to those of (8) at the points kb = ib/2 and −kb, satisfies symmetry
condition (5), has the absolute value equal to unity on the real axis k, and, finally, has no other singularities
except possibly a zero of the denominator in (27) and no zeros except possibly a zero of the numerator
in (27).

Taking the behavior of (25) and equality (20) into account, we can easily see that for any value of l, the
functions S̃

(F )
l (k) = F−1S̃l(k) with S̃l(k) = Sl(k)e2ika contain no logarithmic singularities, no zeros, and

no poles connected with the presence of logarithmic factor (27). They are regular and bounded everywhere
in the upper half-plane (including the real axis) except the points knl.1 And for S̃

(F )
l (k), we can find

the product expansion following an approach that was outlined schematically in [5] and received further
development here.

First, we consider some intermediate products. The product

∏

n

k + knl

−k + knl
(32)

contains all the poles of Sl(k) in D+, has no other singularities or zeros, satisfies conditions (4) and (5) and
has the absolute value equal to unity on the real axis k.

The product
∏

v

−k + kvl

k + kvl
(33)

contains all the zeros of Sl(k) on the positive imaginary axis (except, of course, zeros of F ), contains all
the poles of Sl(k) on the negative imaginary axis (in accordance with conditions (4) and (5), which are
satisfied for (33)), has the absolute value equal to unity on the real axis k, and is regular in D+ in the case
of convergence.

The product
∏

s

(ksl − k)(k∗
sl + k)

(ksl + k)(k∗
sl − k)

(34)

contains all the zeros of Sl(k) in D+ (except the imaginary axis and zeros of F ), satisfies conditions (4)
and (5), is regular in D+ in the case of convergence, and has the absolute value equal to unity on the real
axis k.

1The possible zero of the numerator in (25) is excluded in S̃
(F )
l (k).
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The function

JlN (k) = S̃
(F )
l (k)

[∏

n

k + knl

−k + knl

N1∏

v

−k + kvl

k + kvl

N2∏

s

(ksl − k)(k∗
sl + k)

(ksl + k)(k∗
sl − k)

]−1

(35)

for finite numbers N = N1 + N2 is regular and bounded on the real axis k. If the limit

Jl(k) = lim
N→∞

JlN (k)

exists, then it has the same properties, and then

Sl(k) = e−2ikaF (k)
∏

n

k + knl

−k + knl

∏

v

−k + kvl

k + kvl

∏

s

(ksl − k)(k∗
sl + k)

(ksl + k)(k∗
sl − k)

. (36)

To be certain of the validity (correctness) of (36), it is necessary to show that two infinite products
in (36) converge. The condition for their absolute convergence is the convergence of the sum

∑

s

[∣∣
∣
∣
ksl − k

ksl + k
− 1

∣∣
∣
∣ +

∣∣
∣
∣
k∗

sl + k

k∗
sl − k

− 1
∣∣
∣
∣

]
+

∑

v

∣∣
∣
∣
kvl − k

kvl + k
− 1

∣∣
∣
∣ =

= 2|k|
{∑

s

1
|k + ksl| +

∑

s

1
|k∗

sl − k| +
∑

v

1
|k + kvl|

}
. (37)

In turn, the convergence of (37) is determined by the convergence of the sum

2
∑

s

1
|ksl| +

∑

v

1
|kvl| (38)

because |ksl| → ∞ as s → ∞ and |kvl| → ∞ as v → ∞. It is easy to see that sum (38) converges if the
analyticity of the function

J̃l(k) =
S̃

(F )
l (k)

∏

n

k + knl

−k + knl

(39)

in D+ is taken into account together with the absence of its zeros above the real axis k and if the following
theorem is used.

Theorem [7]. Let a function f(z) be bounded and analytic for Re z ≥ 0, and let its zeros in the right

half-plane z be r1e
θ1 , r2e

θ2 , . . . . Then the series
∑∞

n=1 r−1
n cos θn converges.

Because cos θn = | cos θn| ≥ ε, where ε �= 0, for J̃l(ρ) with ρ = ik, we have

ε

∞∑

n=1

r−1
n <

∞∑

n=1

r−1
n cos θn < ∞,

which proves that sum (38) converges. Hence, the infinite products in (36) converge uniformly and give a
meromorphic function with the poles −ksl and −kvl.

We note that for all known interactions in the field of nuclear and elementary particle physics, the
“resonance” zeros of the S-matrix (in the single-channel limit) are always located at increasing distances
from the real axis k (and hence at increasing distances from the imaginary axis ρ for J̃l(ρ)) with increasing
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values of k. Therefore, the lower bound ε of cos θn as n → ∞ can be not very small, and the sum
∑∞

n=1 r−1
n

is hence not only finite but also not very large, being at least proportional to ε−1.
Moreover, for all interactions for which the Levinson theorem is applicable, sum (37) must converge

as a direct consequence of the nonpositive (negative or zero) integral
∫ ∞
0

∆τ(E) dE, where ∆τ(E) =
(�/2)(∂ arg Sl/∂E)E is the time delay, � = h/(2π), and h is the Planck constant, over the whole positive
half-axis of kinetic energies E = �

2k2/(2µ) for the relative motion of colliding particles [8], [9] because
the contribution of the “resonance” zeros ks and “virtual-state” zeros kv to

∫ ∞
0

∆τ(E) dE is positive and
moreover is less than the absolute value of the contribution of the finite number of poles corresponding to
bound states and of the terms connected with reflection (from the interaction boundary).

Returning to the function Jl(k), we note that it is not only analytic in D+ but also, being an entire
function without zeros, can be written in the form eu+iv, where u + iv is an entire function (see, e.g.,
the relevant theorem in [7]). The real function u(k) must be negative in D+ because of equality (20) and
positive in D− because of conditions (4) and (5). Therefore, according to the Cauchy–Riemann equations,
the condition

0 =
∂u

∂ Im k
= −∂v

∂k
, Im k = 0, (40)

must be satisfied on the real axis k. It hence follows that the function v(k) increases monotonically and
takes any real value not more than once. Then the function u + iv takes any imaginary value not more
than once and consequently must be a linear function of k:

u + iv = 2iα1k + α2. (41)

Obviously, α1 = 0, and because of the equality Sl(0) = 1, we have α2 = 0. Thus, we finally obtain

Sl(k) = e−2ikαF (k)
∏

n

k + knl

−k + knl

∏

v

−k + kvl

k + kvl

∏

s

(ksl − k)(k∗
sl + k)

(ksl + k)(k∗
sl − k)

, (42)

where α = a − α1 ≤ a and the factor F is defined by (27).

4. Conclusions

Formula (42) is obtained for the first time and is a direct generalization of the results in [3]–[5] to
interactions with the Yukawa-potential tail. In turn, it can be easily generalized further to noncentral
parity-violating interactions and interactions with absorption using the methods presented here and in [5].
A separate work will be devoted to investigating many-channel scattering for interactions with the Yukawa-
potential tail.

We note that in all kinds of dispersion relations, it is necessary to take residues not only at the poles knl

but also at the “redundant” poles for the potential decreasing exponentially and also to take the integrals
over the contours γq around logarithmic singularities into account.

Appendix 1:2 Necessary and sufficient conditions for the
existence of the “redundant” poles (m/2)ib with b > 0,
m = 1, 2, . . . , in f0(k, r) and hence also in S0(k)

Using the Jost equation

f0(k, r) = eikr + k−1

∫ ∞

r

sin
[
k(r′ − r)

]
V (r′)f0(k, r′) dr′ (A.1)

2This translation of a paper from the Ukrainian [6] is dedicated to the memory of Yu. V. Tsekhmistrenko.
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and solving it formally by the method of successive approximations, we obtain the sum

f0(k, r) =
∞∑

v=0

f0v(k, r), (A.2)

where

f00(k, r) = eikr ,

f0v(k, r) = eikr(2ikr)v

∫ ∞

r

(
e2ik(r1−r) − 1

)
V (r1) × · · ·

· · · ×
∫ ∞

rv−1

e−2ik(rv−rv−1)V (rv) drv · · · dr1, v = 1, 2, . . . , (A.3)

for the cases where |V | < M/r2+δ, M < ∞, and δ > 0 [10].
Further, we use the following theorems.

Theorem 1 [7]. Let F (k, r) be a function of the complex variables k and r that is definite and

continuous for all values of k in some domain D and for all values of r on the contour C. Then the function

Φ(k) =
∫

C

F (k, r) dr

is an analytic function of k in the domain D. If the contour C is infinite, then uniform convergence of the

integral is also necessary.

Theorem 2 [7]. Let all the functions in the series u1(z), u2(z), . . . be analytic functions of z in the

domain D and the sum
∑∞

n=1 un(z) be uniformly convergent in every domain D′ inside D. Then the

function u(z) =
∑∞

n=1 un(z) is an analytic function of z inside D.

It follows from (A.3) and Theorem 1 that f0v(k, r), v = 0, 1, 2, . . . , are analytic functions of k in the
upper half-plane. If Born series (A.2) is uniformly convergent, then by Theorem 2, the function f0(k, r) is
analytic in the upper half-plane. Analogously, f0(−k, r) is analytic in the lower half-plane. Moreover, if
f0v(k, r), v ≥ 1, is analytic in the lower half-plane, then all successive terms are also analytic.

We now show that the following theorem holds.

Theorem 3. If f0v(k, r), v > 1, has singularities, then f01(k, r) must also have them.

Indeed, let f01(k, r) be analytic everywhere. Then all successive terms are also analytic everywhere.
This contradiction proves Theorem 3.

We use the analytic structure of f01(k, r) in the upper half-plane. Obviously, the problem can be
reduced to studying the analytic structure of the integral

I =
∫ ∞

r

e−2ikr′
V (r′) dr′

because all other terms give functions that are analytic in the whole plane.
As shown in [10], [11], in the case of the potential

V (r) = Pn(r)e−br, (A.4)
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where Pn(r) is an nth-order polynomial and b > 0, the function f0(−k, r) has poles of an order not higher
than n + 1 at the points ib/2, ib, 3ib/2, . . . , and it is analytic at all other points of the complex plane.

We now show that if f01(−k, r) has a pole of an order not higher than n + 1 at the point ib/2, then
the potential must have a term of type (A.4). It follows from the hypothesis that the integral

I1 =
∫ ∞

r

e−2ikr′
V1(r′) dr′,

where V1 = V − V2 (the term V2 does not give poles), can be represented on the real k axis in the form

I1 ≡
n∑

µ=0

ϕµ(−2ik, r)
(2ik + b)µ

, (A.5)

where ϕµ(−2ik, r) is analytic at all the poles and is nonzero at the point ib/2. Further, rewriting I1 in the
form

I1 =
∫ ∞

r

e−(2ik+b)r′
V1(r′)ebr′

dr′

and successively integrating by parts, we can transform the right-hand side of identity (A.5) into the series

−e−2ikrV1 − 1
2ik + b

e−2ikr

(
bV1 +

dV1

dr

)
− · · · − 1

(2ik + b)n
e−2ikr ×

×
(

bnV1 + nbn−1 dV1

dr
+ · · · + dnV1

drn

)
− · · · ≡

n∑

µ=0

ϕµ(−2ik, r)
(2ik + b)µ

. (A.6)

Comparing the coefficients of equal powers of 2ik + b, we obtain a successive system of the corresponding
identities. Because there is no term containing (2ik + b)−m, m > n, in the right-hand side of (A.6), we
obtain

bn+1V1 + (n + 1)bn dV1

dr
+

(n + 1)n
2

− bn−1 d2V1

dr2
+ · · · + dn+1V1

drn+1
= 0,

whence follows
V = Pn(r)e−br + V2,

where V2 is an arbitrary function that cannot be brought to the form Ps(r)e−bsr.
The following general theorem can be proved analogously.

Theorem 4. For f0(−k, r) to have poles of an order not higher than n1 + 1 at the points ib1/2, ib1,

3ib1/2, . . . , not higher than n2 + 1 at the points ib2/2, ib2, 3ib2/2, . . . , and not higher than nm + 1 at the

points ibm/2, ibm, 3ibm/2, . . . , it is necessary and sufficient that the corresponding potential have a term
∑

m,nm
Pnm(r)e−bmr.

Obviously, to have essentially singular points, it is necessary and sufficient that the corresponding po-
tential contain a term X(r)e−br , where X(r) is an uniformly convergent infinite series of the type

∑∞
n=0 αnrn

not equal to econst·rα

, 0 < α < ∞.
Investigating the behavior of I on the axis k = ib/2 in the case where V (r) = v(r)e−br , where v(r) is

an arbitrary function not having a factor econst·rα

, α ≥ 1, we can easily conclude that branch points can
appear on that axis. One of the simplest cases is the potential [e−br sin(cr)]/rq . For various q > 0, this
potential can give branch points of different types at k = ib/2 ± c/2.

If I(r) = v(r)e−brα

and α > 1 is an integer, then I and hence f0(k, r) are analytic functions in the
whole plane.

Thus, the presence of the factor e−br leads to the function f0(−k, r) becoming nonanalytic in the upper
half-plane.
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Appendix 2: Derivation of formula (24)

We rewrite expression (6a) for f0−(k, r) inside the circle γc around the point kγ = ib/2 in the form

f0−(k, r) → lim
k→kγ

{
1 + ρ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1 ∫ ∞

b

e−b′r

b′(b′ ∓ 2ik)
db′

}
e±ikr =

= lim
η→0

{
1 + ρ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1 ∫ ∞

0

e−(b̃+b)r

(b̃ + η)(b̃ + b)
db̃

}
e−ikr, (A.7)

where we introduce the variables b̃ = b′ − b and η = 2ik + b. We then make the following simple transfor-
mations of the right-hand side of (A.7):

f0−(k, r) → lim
η→0

{
1 + ρ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1 ∫ ∞

0

e−b̃re2ikr db̃

(b̃ + η)(b̃ − 2ik + η)

}
e−ikr =

= e−ikr + ρ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1 ∫ ∞

0

e−b̃r db̃

b̃(b̃ − 2ik)
eikr +

+ ρ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1

lim
η→0

∫ b

0

e−b̃r db̃

(b̃ + η)(b̃ − 2ik + η)
eikr =

= e−ikr +
A−
A+

[
f0+(k, r) − eikr

]
+

+ ρ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1

lim
η→0

∫ b

0

e−b̃r db̃

(b̃ + η)(b̃ − 2ik + η)
eikr, (A.8)

where

A∓ =
[
1 ± iρ

2k
log

(
1 ± 2ik

b

)]−1

and we use definition (6a) for f0+(k, r).
We now analyze the last integral in the right-hand side of (A.8), using formulas (3.352.1) and (8.214.1)

in [12]:

J = lim
η→0

∫ b

0

e−b̃r db̃

(b̃ + η)(b̃ − 2ik + η)
= lim

η→0

1
b − η

∫ b

0

e−b̃r

[
1

b̃ + η
− 1

b̃ + b

]
db̃ =

= lim
η→0

{
1

b − η
eηr

[
Ei(−br − ηr) − Ei(−ηr)

] − 1
b − η

ebr
[
Ei(−2br) − Ei(−br)

]}
=

= lim
η→0

1
b

[− log(ηr) + X(η, r)
]
, (A.9)

where Ei is the Airy function and

X(η, r) =
∞∑

k=1

(−br + ηr)k

k · k!
−

∞∑

k=1

(−ηr)k

k · k!
− ebr

[ ∞∑

k=1

(−2br)k

k · k!
−

∞∑

k=1

(−br)k

k · k!

]

is an analytic function of η = b + 2ik at the point η = 0 and in a small circle |η| < b. Further, we can
obviously rewrite (A.9) as

J =
1
b

{[
1 +

iρ

2k
log

(
1 +

2ik

b

)]
2ik

ρ
+ Z(k, r)

}
, (A.9a)
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where Z(k, r) = X(η, r) − log(br) − 2ik/ρ is an analytic function of k at the point k = kγ = ib/2 and in a
small circle |k| < b/2.

Using (A.9a), we continue the transformations of (A.8):

f0−(k, r) −→
k→kγ

e−ikr +
A−
A+

[
f0+(kr) − eikr

]
+ ρ

[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1

×

× lim
η→0

eikr 1
b

{[
1 +

iρ

2k
log

(
1 +

2ik

b

)]
2ik

ρ
+ Z(k, r)

}
=

= W (k, r) +
[
1 +

iρ

2k
log

(
1 +

2ik

b

)]−1

U(k, r),

where

W (k, r) = e−ikr +
2ik

b
eikr,

U(k, r) =
[
1 − iρ

2k
log

(
1 − 2ik

b

)]−1

f0+(k, r) + eikr

{
ρ

b
Z(k, r) −

[
1 − iρ

2k
log

(
1 − 2ik

b

)]}

are analytic functions of k at the point k = kγ = ib/2 and in a small circle |k| < b/2.
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