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ITERATIVE METHOD FOR SOLVING NONLINEAR INTEGRAL

EQUATIONS DESCRIBING ROLLING SOLUTIONS IN STRING

THEORY

L. V. Joukovskaya∗

We consider a nonlinear integral equation with infinitely many derivatives that appears when a system of

interacting open and closed strings is investigated if the nonlocality in the closed string sector is neglected.

We investigate the properties of this equation, construct an iterative method for solving it, and prove that

the method converges.
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Nonlinear equations with infinitely many derivatives have recently become the subject of research in
both the standard and p-adic string theories [1]–[8]. The properties of some of them were systematically
investigated mathematically in [1]. Here, as a continuation of the investigation of nonlinear equations with
infinitely many derivatives, we consider the equation

aΦ3(t) + (1 − a)Φ(t) = exp
(
a
d2

dt2

)
Φ(t), (1)

appearing in string theory, with a constant a ∈ (0, 1].
A precise meaning is given to Eq. (1) in what follows. We note that in the case where a = 1, this

equation becomes the equation for the p-adic string for p = 3, investigated in [1], [2].
Equation (1) appears when a system of interacting open and closed strings is investigated if the non-

locality in the closed string interaction is neglected [3], [4]. The existence of rolling solutions of the corre-
sponding equations of motion is investigated in this model. Interestingly, this equation can be rewritten
as

Φ3(t) − Φ(t) =
d2

dt2
Φ(t)

in the mechanical approximation [4], [5]. It has the well-known kink solution

Φ(t) = tanh
(

t√
2

)
.

We note that a kink usually describes a solution depending on spatial coordinates.
In this paper, we investigate the properties of Eq. (1) and consider boundary value problems for

bounded solutions; in particular, we construct rolling solutions that interpolate between two vacuums.
Equation (1) is a pseudodifferential equation with the symbol e−aξ2

, which for positive a can be
represented as a nonlinear integral equation (similarly to the equations considered in [1], [6], [7])

Ca[Φ](t) = aΦ3(t) + (1 − a)Φ(t), (2)
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where a ∈ (0, 1) is a constant and the operator Ca is given by

Ca[ψ](t) =
∫ ∞

−∞
Ca[(t− τ)2]ψ(τ) dτ (3)

with the kernel

Ca[(t− τ)2] =
1√
4πa

e−(t−τ)2/(4a).

We seek solutions of Eq. (2) in the class of real-valued measurable functions.

Theorem 1. If a solution Φ(t) of Eq. (2) is bounded, then it satisfies the estimate

|Φ(t)| ≤ 1, t ∈ R. (4)

Proof. Let

sup
t

|Φ(t)| = M, 0 < M <∞. (5)

It follows from (2) and (3) that

|aΦ3(t) + (1 − a)Φ(t)| =
∣∣∣∣
∫ +∞

−∞
Φ(τ)Ca[(t− τ)2] dτ

∣∣∣∣ ≤
∫ +∞

−∞
|Φ(τ)|Ca[(t− τ)2] dτ ≤

≤ sup
τ

|Φ(τ)|
∫ +∞

−∞
Ca[(t− τ)2] dτ = M, (6)

Hence,

sup
t

|aΦ3(t) + (1 − a)Φ(t)| = aM3 + (1 − a)M ≤M,

i.e., M ≤ 1. The theorem is proved.

Remark 1. Theorem 1, as well as Theorems 4 and 5 proved below, are similar to the corresponding
theorems in [1], [6] but are proved here using specific features of Eq. (2).

Lemma 1. If the function Φ(t) is bounded, then the function Ca[Φ](t) is continuous in t.

Proof. As before, let supt |Φ(t)| = M . We consider the chain of inequalities

|Ca[Φ](t+ δ) − Ca[Φ](t)| 1√
4πa

∣∣∣∣
∫ +∞

−∞
(e−((t+δ)−τ)2/(4a) − e−(t−τ)2/(4a))Φ(τ) dτ

∣∣∣∣ ≤

≤ 1√
4πa

∫ +∞

−∞

∣∣∣e−((t+δ)−τ)2/(4a) − e−(t−τ)2/(4a)
∣∣∣ · |Φ(τ)| dτ ≤

≤ sup
τ

|Φ(τ)| 1√
4πa

∫ +∞

−∞

∣∣∣e−((t+δ)−τ)2/(4a) − e−(t−τ)2/(4a)
∣∣∣ dτ =

=
M√
4πa

∫ +∞

−∞

∣∣∣e−(y+δ)2/(4a) − e−y2/(4a)
∣∣∣ dy.
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Evaluating the absolute value in the integrand, we obtain

|Ca[Φ](t+ δ) − Ca[Φ](t)| ≤

≤ M√
4πa

[∫ δ/2

−∞
(e−(y+δ)2/(4a) − e−y2/(4a)) dy −

∫ +∞

δ/2

(e−(y+δ)2/(4a) − e−y2/(4a)) dy
]

=

= −M erf
(

δ

4
√
a

)
+ e−3δ/(16a)M erf

(
δ

2
√
a

)
≤

≤ −M erf
(

δ

4
√
a

)
+M erf

(
δ

2
√
a

)
, (7)

where

erf(t) =
2√
π

∫ t

0

e−τ2
dτ (8)

is the error function. Estimate (7) with Eq. (8) taken into account implies that the function Ca[Φ](t) is
continuous.

Theorem 2. All bounded solutions Φ(t) of Eq. (2) are continuous.

Proof. By Lemma 1, the function Ca[Φ](t) is continuous. We prove that the function Φ(t) is continuous.
We suppose the contradictory, that some Φ(t) is not continuous; it then follows that the functions aΦ3(t)
and (1 − a)Φ(t) are not continuous. Because a ∈ [0, 1], the function aΦ3(t) + (1 − a)Φ(t) is also not
continuous, which contradicts the continuity of CaΦ(t) and the fact that the function Φ(t) satisfies Eq. (2).

Theorem 3. If a solution Φ(t) of Eq. (2) is positive and bounded, then the action of the operator Ca

is decreasing, i.e., Ca[Φ](t) ≤ Φ(t). If a solution Φ(t) of Eq. (2) is negative and bounded, then the action

of the operator Ca is increasing, i.e., Ca[Φ](t) ≥ Φ(t).

Proof. We prove the first statement in the theorem. Because the solution Φ(t) of (2) is positive and
bounded by assumption, it follows from Theorem 1 that 0 ≤ Φ(t) ≤ 1, and therefore

Ca[Φ](t) = aΦ3(t) + (1 − a)Φ(t) ≤ Φ(t).

The second statement in the theorem is proved similarly.

Theorem 4. If a solution Φ(t) of Eq. (2) has a limit as t → +∞, then it takes one of the possible

values −1, 0, or 1.

Proof. Let limt→+∞ Φ(t) = b. We then find the limit of Ca[Φ(t)]. We have

lim
t→+∞Ca[Φ(t)] = lim

t→+∞
1√
4πa

∫ +∞

−∞
e−(t−τ)2/(4a)Φ(τ) dτ =

=
1√
4πa

[
lim

t→+∞

∫ 0

−∞
e−(t−τ)2/(4a)Φ(τ) dτ + lim

t→+∞

∫ +∞

0

e−(t−τ)2/(4a)Φ(τ) dτ
]
.
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Replacing τ → t− u in the first integral and τ → t+ u in the second, we obtain

lim
t→+∞Ca[Φ(t)] =

1√
4πa

[
lim

t→+∞

∫ +∞

t

e−u2/(4a)Φ(t− u) du+ lim
t→+∞

∫ +∞

−t

e−u2/(4a)Φ(t+ u) du
]

=

=
1√
4πa

[ ∫ +∞

+∞
e−u2/(4a)b du+

∫ +∞

−∞
e−u2/(4a)b du

]
=

b√
4πa

∫ +∞

−∞
e−u2/(4a) du,

and hence limt→+∞ Ca[Φ(t)] = b.
Taking the termwise limit as t→ +∞ in Eq. (2), we obtain the equation

ab3 + (1 − a)b = b,

which has the three roots b = 0 and b = ±1.

Theorem 5. There exists a unique nonnegative bounded continuous solution Φ(t) ≡ 1 of Eq. (2) that

satisfies the boundary conditions

lim
t→−∞Φ(t) = lim

t→+∞ Φ(t) = 1. (9)

Proof. We note that Φ(t) ≡ 1 is a solution of the boundary value problem in (2) and (9). Let Φ∗(t),
0 ≤ Φ∗(t) �≡ 1, be another bounded continuous solution of this problem. Then 0 ≤ Φ∗(t) ≤ 1, and by (9),
there exists a t0 such that

0 ≤ Φ∗(t0) = min
t

Φ∗(t) ≤ 1. (10)

From Eq. (2), we then have the estimate

aΦ∗3(t0) + (1 − a)Φ∗(t0) =
∫ +∞

−∞
Φ∗(τ)Ca[(t0 − τ)2] dτ ≥ Φ∗(t0). (11)

This inequality holds if Φ∗(t0) ≥ 1 or Φ∗(t0) = 0. Recalling that |Φ∗(t)| ≤ 1, we obtain Φ∗(t0) = 0 or
Φ∗(t0) = 1. The value Φ∗(t0) = 0 does not satisfy boundary conditions (9) because Ca[Φ∗](t0) = 0 in
this case. But because Φ∗(t) ≥ 0, we obtain Φ∗(t) ≡ 0. Hence, there exists a unique nonnegative solution
Φ∗(t) ≡ Φ(t) ≡ 1 of the boundary value problem in (2) and (9).

Theorem 6. There exists a continuous solution of Eq. (2) that satisfies the boundary conditions

lim
t→−∞Φ(t) = −1, lim

t→+∞ Φ(t) = 1 (12)

and such that the iterative procedure

CaΦn = aΦ3
n+1 + (1 − a)Φn+1 (13)

converges to this solution.

Proof. Because the equation is invariant under the replacement Φ(t) → −Φ(−t), we seek odd solutions;
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for them, the boundary value problem on the positive semiaxis t ≥ 0 can be rewritten as

Ka[φ](t) = aφ3(t) + (1 − a)φ(t), lim
t→+∞φ(t) = 1, (14)

where the operator Ka is given by

Ka[φ](t) =
∫ ∞

0

Ka(t, τ)φ(τ) dτ

with
Ka(t, τ) =

1√
4πa

[
e−(t−τ)2/(4a) − e−(t+τ)2/(4a)

]
.

A solution Φ(t) of the original problem follows from φ(t) via odd continuation: Φ(t) = sgn(t)φ(|t|). We
seek a solution of Eq. (14) using an iterative procedure similar to (13), which takes the form

Kaφn = aφ3
n+1 + (1 − a)φn+1 (15)

on the semiaxis t ≥ 0.
Solving this cubic equation for φn+1, we obtain

φn+1 = −vn(1 − a) +
1

3avn
, (16)

where

vn =
(

2
27a2Bn +

√
108(1 − a)3a3 + 729a4B2

n

)1/3

, (17)

Bn = Kaφn. (18)

As the zero iteration, we take the function

φ0 =
1 − e−(at)2

2
.

Acting with the operator Ka, we have

Kaφ0 =
1
2

(
1 − e−(at)2/

√
1+a2

)
.

Evaluating aφ3
0 + (1 − a)φ0, we obtain

aφ3
0 + (1 − a)φ0 ≤ Kaφ0,

whence
aφ3

0 + (1 − a)φ0 ≤ aφ3
1 + (1 − a)φ1,

and therefore φ0 ≤ φ1. Because the kernel is nonnegative, we obtain Kaφ0 ≤ Kaφ1 after integrating, i.e.,
B0 ≤ B1.
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(a)

(b)

Fig. 1. (a) The graph of the iteration φn for n = 0, 1, 2, 3, 4, 50, 150; the iterations φ50 and φ150 are

indistinguishable in the graph. (b) The difference φ150 − φ50.

Using explicit expressions (17) and (16) for the functions vn and φn+1, we conclude that the inequalities
B0 ≤ B1 imply the inequalities v0 ≥ v1 and φ1 ≤ φ2. Repeating the above argument n−1 times, we obtain

φ0 ≤ φ1 ≤ · · · ≤ φn ≤ φn+1.

The results of calculating the iterations are given in Fig. 1.
We now prove the inequality φn ≤ 1. It is easy to see that the initial iteration φ0 is bounded, φ0 < 1.

By (15), we then have Kaφ0 ≤ φ0 < 1, and therefore aφ3
1 + (1 − a)φ1 < 1. We suppose that there exists

t1 ≥ 0 such that φ1(t1) > 1; then aφ3
1(t1) + (1 − a)φ1(t1) > φ1(t1) > 1, which contradicts the estimate

obtained above, and hence φ1 ≤ 1. Repeating this argument n times, we find that all the functions φn+1

are bounded, φn+1 ≤ 1.
We next prove that the functions φn+1 are monotonic. We show that d(Ka[φn](t))/dt ≥ 0 assuming

that φn(t) is a nonnegative monotonically increasing function. We have

d

dt
(Ka[φn](t)) =

∫ ∞

0

K′
a(t, τ)φn(τ) dτ =

=
∫ ∞

0

(K′
1(t, τ) + K′

2(t, τ))φn(τ) dτ,
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where

K′
1(t, τ) =

1
2a

√
4πa

(τ − t)e−(t−τ)2/(4a),

K′
2(t, τ) =

1
2a

√
4πa

(τ + t)e−(t+τ)2/(4a).

Because for all t, τ ≥ 0, the kernel K′
2(t, τ) ≥ 0 and the function φn(τ) ≥ 0 and increases, it follows that

d

dt
(Ka[φn](t)) ≥

∫ ∞

0

K′
1(t, τ)φn(τ) dτ =

∫ t

0

K′
1(t, τ)φn(τ) dτ +

∫ ∞

t

K′
1(t, τ)φn(τ) dτ ≥

≥
∫ t

0

K′
1(t, τ)φn(t) dτ +

∫ ∞

t

K′
1(t, τ)φn(t) dτ = φn(t)

∫ ∞

0

K′
1(t, τ) dτ ≥ 0.

Because φ0(t) is a nonnegative monotonically increasing function, we have

Ka[φ0](t0) ≤ Ka[φ0](t1), t0 ≤ t1,

or
aφ3

1(t0) + (1 − a)φ1(t0) ≤ aφ3
1(t1) + (1 − a)φ1(t1).

It follows from this inequality that φ1(t0) ≤ φ1(t1) for t0 ≤ t1. Repeating the argument n times, we find
that φn+1(t0) ≤ φn+1(t1) for t0 ≤ t1. We have thus shown that the iterations {φn+1} are a sequence of
monotonically increasing bounded functions; therefore, there is the limit [9]

lim
n→∞φn(t) = f(t). (19)

Taking the limit as n→ ∞ in (15) and using the Lebesgue theorem [10], we obtain the equation

af3 + (1 − a)f −Kaf = 0, (20)

where f ∈ L∞[0,∞]. Therefore, the function f is a solution of Eq. (14). The function f is bounded because
φn ≤ 1; therefore, it is continuous (see Theorem 2). We have thus proved that iterative procedure (15)
converges to a continuous solution f of Eq. (14). The function f increases monotonically (because all the φn

increase monotonically) and is bounded, 0 ≤ f(t) ≤ 1; therefore, limt→+∞ f(t) exists. Because φ0 ≤ f ≤ 1
and limt→+∞ φ0 = 1/2, it follows from Theorem 4 that limt→+∞ f(t) = 1 and that the function f(t) is a
solution of problem (14).

We have thus proved that iterative process (13) converges to a continuous solution of the boundary
value problem in (2) and (12).

In summary, we have investigated the properties of integral equation (1) with infinitely many deriva-
tives, have constructed an iterative method for solving it, and have proved that this method converges.
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