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INTEGRABLE MODEL OF INTERACTING ELLIPTIC TOPS

A. V. Zotov* and A. M. Levin'

We suggest a method for constructing a system of interacting elliptic tops. It is integrable and symplec-
tomorphic to the Calogero-Moser model by construction.
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1. Gaudin models over elliptic curves

Let X be an elliptic curve with the periods (1,7) and marked points {z;}, ¢ = 1,2,...,m, and let V
be a holomorphic vector bundle of rank N and degree k over it. By analogy with the rational case, we
define the Lax matrix L™*IN(2) of the elliptic Gaudin model EG(m|k|N) over ¥ to be a meromorphic
section of a bundle End V' with simple poles at {z;} and with the fixed residues S* € sl*(N,C). In the
Hitchin approach to integrable systems [1], [2], the corresponding 1-form L™ ¥V (2) dz describes the reduced
Higgs field. Choosing the vector bundle V fixes the corresponding quasiperiodic boundary conditions on
the lattice (1,7):

LmIkIN(z +1) = glelkIN(Z)gl_l, LmIkIN(z +7)= gTLmlkIN(Z)g;l.

Conceptually, the bundles are distinguished by their degrees. The dimension of the moduli space of a fixed-
degree bundle, which is associated with a principal SL(N,C) bundle, is GCD(N, k) — 1 [3]. Its maximum
is at £k =0 (mod N) and its minimum is at k£ = 1 (mod N). We consider these two cases in more detail.

The case deg V = 0 was first considered in [4]. The bundles are then described by N parameters {u;},
1=1,2,...,N: ug +---+uy = 0. The corresponding multipliers are

g1 = Idw, gr = e(—u) = diag(e(—u1),...,e(—un)), (1)
where e(z) = €2™V=1*, These conditions define the Lax matrix for EG(m|0|N),
m\OIN( ) _51]U1+51JZS El Z—Zl (1_5ij)zséj¢(z_zlvui_uj)7 (2)
=1

up to a conjugation by an element from the Cartan subgroup H of SL(N,C). The functions E;(z) and
¢(z,y) are given by Eqgs. (A.2) and (A.3). The Hamiltonian reduction of the direct product of the orbits of
the coadjoint action {O! x --- x O™}//H and this symmetry describes the “spin” part of the phase space
of the Gaudin model [5]. The moment map corresponding to the action has the form

H= Z Sllz (3)
1=1
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Equation p = 0 together with fixing the action of H provides the final answer for L™°IN (). The spinless
part of the phase space is a cotangent bundle to the moduli space of holomorphic bundles of degree zero
and corresponds to a dynamics of IV interacting particles with the momenta v; and coordinates u; in the
center-of-mass frame.

An important particular case is the Gaudin model corresponding to a single marked point and a
coadjoint orbit of minimal dimension at this point. This model coincides with the elliptic sl(N, C) Calogero—
Moser [6] model after the reduction described above,

Lij“ow('z) = 0i;v; + (1 — 5ij)\/—_11/<;5(z, U — uj), (4)

where v is the interaction constant. The quadratic Hamiltonian has the form

N
1
szgvf—l—ZVQp(ui—uj). (5)
i=1 i#]
The case deg V = 1 was first considered in [7]. The multipliers of the bundle V' have the forms
T

_ -1 N R |
g1 _Q ) gr = (2N+ N)A ) (6)

where @) and A are matrices defining a standard representation of the finite Heisenberg group (see the
appendix). We write the Lax matrix in a special basis {E, }, @ = (a1, a2) € Z/NZ x Z/NZ of the sl(N,C)
Lie algebra:

Lmll‘N(z) = Z Z EaS(llcpa(z —21), va(z) = e(20;wa)0(2, wa),
=1 a#0 (7)

a1 + aoT
Wo = ———.
N
The phase space EG(1|1|N) here is a direct product of the coadjoint orbits O! x -+ x O™:

i Qi T ij i

{5, 95 =2v—1 Sln[ﬁ(azﬁl — o f2) 695045 (8)

Poisson brackets (8) can be written in the R-matrix form

m|1|N m|1|N m|1|N m|1|N
{7 =), LN ) = (7Y () + 25 (), 7z, w) ()
using the Belavin-Drinfeld r-matrix [8]
r(z,w) = Z Ey ® E_qpa(z —w). (10)
a#0

Correspondence between the Calogero—Moser model and the elliptic top. The modification

was defined in [9] as a procedure changing the degree of a bundle V by one. It acts on the sections of the

bundle End V' as a gauge transformation degenerated at a fixed point. In [10], the transformation between

LA0IN LN

and was constructed; in other words, the gauge equivalence between the Calogero—Moser

model and the elliptic top was proved. In sl(2,C) case, it is easy to find an explicit change of variables,

{’U, U} =1, {Sa, Sﬁ} =2V —16(1575%

71002 _ ( v vo(2u, z))
vp(—2u, 2) —v ’ (11)

JRLE ( S3p3(2) Sip1(z) — i52¢2(2)>
S11(2) + iS23(2) —S33(2) ’
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where the indices agree with the Pauli matrix enumeration: (1,2,3) = (01,11,01). The equivalence of the

models means that there exists a gauge transformation Z(z) such that
L' () = 2(2) L1 ()27 (2).

It was shown in [10] that in the sl(2,C) case, the transformation has the form

(1]

( ) 900 (Z — 2u, 2’7’) —900(2 + 2U, 27‘)
z) = .
—b19 (Z — 2u, 2’7’) 010 (Z + 2u, 2’7’)

It then follows from (12) that

g 0010 b0 (2u) 03.(0)  foo(2u)b:10(2u)
ot 9'(0) 9(2u) 000(0)010(0) 92(2u)
_00(0) Ooo(2u) | 05o(0)  610(2u)001(2u)
—V18n = 9'(0) 9(2u) ' 610(0)001(0)  02(2u)
Sio = 610(0) 610(2u) 02,(0)  6oo(2u)0o1(2u)

TU00) 92u) T 000(0)001(0)  92(2u)

2. The model of interacting tops

We consider an elliptic top corresponding to a bundle of degree n and having the rank N = np, N > n.

This means that its Lax matrix has the quasiperiodic boundary conditions

L(z+1) = QL(z)Q ",
L(z+7)=A"L(z)A™".

(15)

But only a degenerate L(z) matrix can satisfy these conditions because there exists a diagonal matrix with

n different eigenvalues A = diag{u,...,un, P, U1, .., u,} simultaneously commuting with @ and A",

QA = AQ, A"A = AA™.
To fix this freedom, we change conditions (15) to

L(z+1) = QL(x)Q™",

L(z+71)=e(—A)A"L(2)A""e(A).
These boundary conditions demonstrate the existence of an (n—1)-dimensional moduli space.

Proposition. There exists a numerical matrix M such that

MAM ™" = @ uy 1y,
J=1

n J_
MQM™ = @e(—Np) Qpsps

J=1

MA"M™ =D Apsyp.
J=1

(17)
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The last equation indicates that A™ can be transformed to a block-diagonal form with n blocks where
each block represents a pxp A-matrix.

Proof. Let m = (o« — 1)n + 3, where « = 1,2,...,p and 8 = 1,2,...,n. We define a permutation
operation

Ynp(m) =(8—1)p+a.

We claim that the desired matrix has the form

Mij = 5(Ppn(i), 5)-

We prove this. We note that we have

(MY = 6(tnp(k), 1)

for the inverse matrix. At this stage, we have

Mij A Myt = 6(4p,n(0), )00, k) A0 (np (k) 1) = 0 (1 (0), ) Aii
(here we assume summation over repeated indices). We then have

M Qi My = 6(i,j)e(%Tm>,

M A Mg = 8(tp,n(0), §)d(modn (j + 1), k)3(np(k), 1) =
= 0(¢n p(mody (1p,n (i) +n)),1).
Setting ¢ = (8 — 1)p + o, we have
a. if a < p, then mod x (Yp.n (i)4+n) = 1p.n(0)+n = an+6, and ¢, ,(an+3) = (6—1)p+a+1 = i+1,
b. if @ = p, then modn((p — 1)n+ B+ n) =G, and ¢, ,(8) = (6 —1)p+ 1.
This completes the proof.

In what follows, we use capital Latin letters for indices taking values from 1 to n and small letters for
p—1

m,n=0,m2+n2#0"

We now use the proved proposition to rewrite the Lax matrix in the twisted basis. For the pxp blocks,

indices taking values from 1 to p. We also use the notation ) . ="

we then have

I1—-J —
L+ 1) = o( 57 ) Qe L1 (103
(18)
L]J(Z + 7') = e(—u;)ApoLU(Z)A;lee(uJ).
The factor e((I — J)/N) can be canceled by the change of variables
I—-J T
L[J(Z)HL]J(Z)G(—Z N >, UIHUI—IN.
Finally, the boundary conditions are
Lis(z+1) = QuupLrs(2)Qp
(19)

L[J(Z + 7') = e(—uI)ApoLU(Z)A;ipe(u(]).
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It is easy to find an operator L satisfying conditions (19) with a fixed residue,

1
LIJ(Z) = 561]1}] + Z(SIJ)mn¢mn(27u1J)Emna

m,n

Gmn(z,ury) = e(_Tm)¢<U1J =z X,nT,Z)

We introduce the factor 1/p to ensure that the brackets {vy,u;} = 07 are canonical.

(20)

The Poisson brackets for the matrix elements of S are the Poisson—Lie brackets corresponding to the
structure constants of gl(N, C):

(517 )t (Sicr)ea} = 2v/Tsin E(bc - ad)] Gk s (S10)arenrd — 1S asensa)  (21)

Here, we use two different bases: the standard one for the pxp blocks (I, J = 1,2,...,n) and sine-algebra
basis (A.13)—(A.16) for the elements of these blocks.
The quadratic Hamiltonian has the form

1< 1 m+nt
H=3 > i - 3 SN Te(S1sE m—n) Tr(S11 Epn) B <U1J - > (22)
=

I,J m,n

or

N =

vy —

=
Il
N =
R

Z Z TI‘(S]]E_m7_n) TI‘(S[[Emn)EQ <m Xf?’bT) —
I mmn

~
I

1

m—l—m’). (23)

Z Z Tr(SrsE—m,—n) Tr(SrEmn)E2 <u1J TN
I#J m,n

N =

The first and second terms represent the Hamiltonians of n pxp tops with the momenta v;. We note that the
analogue of the reduction by the Cartan subgroup in the degV = 0 case here requires Tr(Sr;) = const V1.
It would be interesting to interpret the last term as the potential energy of pairwise interaction. We can
do this in the case where S is the coadjoint orbit of minimal dimension, i.e., 7kS = 1. Indeed, we use the
known parameterization [11] of such orbits. For simplicity, let S € gl(N,C). Then S = £ x 1, where £ and
7 are a column and a row of length N and {&,, 75} = dap. Thus,

Tr(SIJE—m,—n) Tr(SJIEmn) = Tr(SIIEmnSJJE—m,—n)-

The condition Tr(S7;) = const means that the matrices S;; describe the coadjoint orbits of minimal
dimension equal to 2p — 2. In this case, the Hamiltonian has a simple physical interpretation:

BN 2 1 m+nT
H= 5 IZ:1U] 3 ; ﬂ;LTI"(SHELmﬁn) Tr(SHEmn)E2< ~ > —
1 Te(S11E. . S1:E E m +nrt
_ 5 Z Z I"( IT1EmmnoJgg —m,fn) 2|l uryg — N . (24)

I#J m,n

The first terms describe the energy of n pxp tops, and the last term describes the interaction for each pair.
As shown in [10], all the systems of type EG(1|k|N), k =1,2,..., N are symplectomorphic to one another.
Therefore, the obtained model of interacting tops is symplectomorphic to the N-particle Calogero-Moser
model.
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Appendix 1: Elliptic functions

In this appendix, we collect basic definitions and relations for elliptic functions needed for proving the
results in this paper. The majority of formulas are borrowed from [12] and [13]. We introduce ¢ = >,

where 7 is the modular parameter of the elliptic curve E.. The basic element is the theta function

19(2|7‘) _ q1/8 Z(_l)neﬂi(n(n+l)r+2nz) _

nez
_ ql/ 171'/4 itz ,—imz H 1 — q 1 _ qn 2171'2)(1 _ qn672i7rz). (Al)
n=1
The Eisenstein functions are
1
Eq(z|1) = 0, log¥(z|7), Ei(z|T) ~ . 2m 2, (A.2)
where
24 7'(7)
m(r) = <_> 2 m_z_:oo n_z_:oo (mT + n)? T omi n(T)
and

n(r) =q¢"* JJ

n>0

is the Dedekind function. The second Eisenstein function has the form
1
By (2|7) = —0.F1(2|7) = 0% log 9(2|7), Es(z|7) ~ = + 2.

The next important function is

Hu + 2)¥(0)

Y(u)d(z) Palz, a0+ u) = e(z0;a)¢(z, o + u). (A.3)

P(u,z) =
It has a pole at z = 0 and admits the decomposition

$(u, z) = % +E(u) + g(Ef(u) o) ... (A.4)

Its derivative is

¢(uv z)_lau(b(uv Z) =F (u + Z) - F (u)

It is related to the Weierstrass functions,

((zlr) = Ex(zlm) +2m(1)z, 9(2|7) = Ea(z]7) — 2m(7),

_ e—2n1uz O'(U + Z)
o(u,z) = 0o’ (A.5)

P(u, 2)p(—u, 2) = p(2) — p(u) = Ez(2) — Ea(u).
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The series representations are

Ei(z|T) = 2771'(1 + Z e ) =
1 = — = — | =
2 Zo 1—g¢q
) 1 qne27riz 1>
= —2m — + — 4+ — |,
<7§0 1— qneZTrzz nZZO 1— qneZTrzz 2
' (A.6)
o 5 qn627rzz
E2(Z|T) = —4r 7% (1 _ qneZTriz)Z’
) e—27‘rinz
¢(U, Z) = 27TZ ’r;Z W
The parity properties are
I—z) = —9¥(2), Ei(—z) = —E1(2), Es(—2z) = Es(2),
(A7)
¢(U, Z) = (]5(2’, u) = _(b(_ua _Z)
The behavior on the lattice is
I(z+1)=—0(z), Iz+T1)=—q 2 2VT(2),
By (2 4 2wa) = E1(2) — 41V —10,wa,
E1(2+1) :El(Z), E1(2+T) :El(Z)—Q’]T\/—_l, (AS)
Es(z 4+ 2wy) = Ea(z2), Es(z+ 1) = Ea(z2), Es(z+ 1) = Es(2),
Sut1,2)=(zu),  dlu+T,2)=e ™V gz u).
We also need the addition formulas
B(u, 2)0pp(v, 2) — (v, 2)0u@(u, 2) = (E2(v) — E2(u))p(u + v, 2) (A.9)
or
?(u, 2)0u9(v, 2) — G(v, 2)ud(u, 2) = (p(v) — p(u))d(u + v, 2). (A.10)

The proof of (A.9) is based on (A.4), (A.7), and (A.8) for the function ¢(u, z). In fact, ¢(u,z) satisfies a
more general relation that follows from the Fay trisecant formula

d(ur, z1)p(uz, 22) — P(ur + ug, 21)P(uz, 22 — 21) — O(u1 + ug, 22)P(u1, 21 — 22) = 0. (A.11)
A particular case of this formula is

P(ui, 2)Pp(uz, 2) — p(ur + uz, 2)(E1(u1) + E1(uz)) + 0-¢(u1 + ug,2) = 0. (A.12)
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Appendix 2: Sine algebra

The generators of sine algebra FE,,, are defined using the generators @ and A of the finite Heisenberg
group:

mn man i _
Emn—e<ﬁ)Q A, m—O,l,...,N ].7

(A.13)
n=0,1,....,N—1, m?>4+n?>#0 (mod N),
in the basis sl(NV,C), where
e(z) = 2™V 1%, Q = diag(e(1/N),...,e(m/N),...,1),
01 0 0
0 0 1 0
(A.14)
A =
0 0 O 1
1 0 0 0
The commutators are
(B, Enj] = 2¢/=1sin [%(kn - sj)} Eainiig (A.15)
TI‘(ESkEnj) = 55,—n5k,—jN- (Alﬁ)
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