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INTEGRABLE MODEL OF INTERACTING ELLIPTIC TOPS

A. V. Zotov∗ and A. M. Levin†

We suggest a method for constructing a system of interacting elliptic tops. It is integrable and symplec-

tomorphic to the Calogero–Moser model by construction.
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1. Gaudin models over elliptic curves

Let Στ be an elliptic curve with the periods (1, τ) and marked points {zi}, i = 1, 2, . . . ,m, and let V
be a holomorphic vector bundle of rank N and degree k over it. By analogy with the rational case, we
define the Lax matrix Lm|k|N(z) of the elliptic Gaudin model EG(m|k|N) over Σ to be a meromorphic
section of a bundle EndV with simple poles at {zi} and with the fixed residues Si ∈ sl∗(N,C). In the
Hitchin approach to integrable systems [1], [2], the corresponding 1-form Lm|k|N(z) dz describes the reduced
Higgs field. Choosing the vector bundle V fixes the corresponding quasiperiodic boundary conditions on
the lattice 〈1, τ〉:

Lm|k|N (z + 1) = g1L
m|k|N (z)g−1

1 , Lm|k|N (z + τ) = gτL
m|k|N (z)g−1

τ .

Conceptually, the bundles are distinguished by their degrees. The dimension of the moduli space of a fixed-
degree bundle, which is associated with a principal SL(N,C) bundle, is GCD(N, k) − 1 [3]. Its maximum
is at k = 0 (modN) and its minimum is at k = 1 (modN). We consider these two cases in more detail.

The case deg V = 0 was first considered in [4]. The bundles are then described by N parameters {ui},
i = 1, 2, . . . , N : u1 + · · · + uN = 0. The corresponding multipliers are

g1 = IdN , gτ = e(−u) = diag(e(−u1), . . . , e(−uN)), (1)

where e(x) = e2π
√−1x. These conditions define the Lax matrix for EG(m|0|N),

L
m|0|N
ij (z) = δijvi + δij

m∑

l=1

Sl
iiE1(z − zl) + (1 − δij)

m∑

l=1

Sl
ijφ(z − zl, ui − uj), (2)

up to a conjugation by an element from the Cartan subgroup H of SL(N,C). The functions E1(z) and
φ(x, y) are given by Eqs. (A.2) and (A.3). The Hamiltonian reduction of the direct product of the orbits of
the coadjoint action {O1 × · · · × Om}//H and this symmetry describes the “spin” part of the phase space
of the Gaudin model [5]. The moment map corresponding to the action has the form

µ =
m∑

l=1

Sl
ii. (3)
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Equation µ = 0 together with fixing the action of H provides the final answer for Lm|0|N(z). The spinless
part of the phase space is a cotangent bundle to the moduli space of holomorphic bundles of degree zero
and corresponds to a dynamics of N interacting particles with the momenta vi and coordinates ui in the
center-of-mass frame.

An important particular case is the Gaudin model corresponding to a single marked point and a
coadjoint orbit of minimal dimension at this point. This model coincides with the elliptic sl(N,C) Calogero–
Moser [6] model after the reduction described above,

L
1|0|N
ij (z) = δijvi + (1 − δij)

√−1νφ(z, ui − uj), (4)

where ν is the interaction constant. The quadratic Hamiltonian has the form

H =
N∑

i=1

1
2
v2

i +
∑

i�=j

ν2℘(ui − uj). (5)

The case deg V = 1 was first considered in [7]. The multipliers of the bundle V have the forms

g1 = Q−1, gτ = −e
(
τ

2N
+

z

N

)
Λ−1, (6)

where Q and Λ are matrices defining a standard representation of the finite Heisenberg group (see the
appendix). We write the Lax matrix in a special basis {Eα}, α = (α1, α2) ∈ Z/NZ×Z/NZ of the sl(N,C)
Lie algebra:

Lm|1|N(z) =
m∑

l=1

∑

α�=0

EαS
l
αϕα(z − zl), ϕα(z) = e(z∂τωα)φ(z, ωα),

ωα =
α1 + α2τ

N
.

(7)

The phase space EG(1|1|N) here is a direct product of the coadjoint orbits O1 × · · · × Om:

{Si
α, S

j
β} = 2

√−1 sin
[
π

N
(α2β1 − α1β2)

]
δijSi

α+β . (8)

Poisson brackets (8) can be written in the R-matrix form

{Lm|1|N
1 (z), Lm|1|N

2 (w)} = [Lm|1|N
1 (z) + L

m|1|N
2 (w), r(z, w)] (9)

using the Belavin–Drinfeld r-matrix [8]

r(z, w) =
∑

α�=0

Eα ⊗ E−αϕα(z − w). (10)

Correspondence between the Calogero–Moser model and the elliptic top. The modification
was defined in [9] as a procedure changing the degree of a bundle V by one. It acts on the sections of the
bundle EndV as a gauge transformation degenerated at a fixed point. In [10], the transformation between
L1|0|N and L1|1|N was constructed; in other words, the gauge equivalence between the Calogero–Moser
model and the elliptic top was proved. In sl(2,C) case, it is easy to find an explicit change of variables,

{v, u} = 1, {Sα, Sβ} = 2
√−1εαβγSγ ,

L1|0|2 =

(
v νφ(2u, z)

νφ(−2u, z) −v

)
,

L1|1|2 =

(
S3ϕ3(z) S1ϕ1(z) − iS2ϕ2(z)

S1ϕ1(z) + iS2ϕ2(z) −S3ϕ3(z)

)
,

(11)
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where the indices agree with the Pauli matrix enumeration: (1, 2, 3) = (01, 11, 01). The equivalence of the
models means that there exists a gauge transformation Ξ(z) such that

L1|1|2(z) = Ξ(z)L1|0|2(z)Ξ−1(z). (12)

It was shown in [10] that in the sl(2,C) case, the transformation has the form

Ξ(z) =

(
θ00(z − 2u, 2τ) −θ00(z + 2u, 2τ)

−θ10(z − 2u, 2τ) θ10(z + 2u, 2τ)

)
. (13)

It then follows from (12) that

S01 = −v θ01(0)
ϑ′(0)

θ01(2u)
ϑ(2u)

+ ν
θ201(0)

θ00(0)θ10(0)
θ00(2u)θ10(2u)

ϑ2(2u)
,

−√−1S11 = −v θ00(0)
ϑ′(0)

θ00(2u)
ϑ(2u)

+ ν
θ200(0)

θ10(0)θ01(0)
θ10(2u)θ01(2u)

ϑ2(2u)
,

S10 = −v θ10(0)
ϑ′(0)

θ10(2u)
ϑ(2u)

+ ν
θ210(0)

θ00(0)θ01(0)
θ00(2u)θ01(2u)

ϑ2(2u)
.

(14)

2. The model of interacting tops

We consider an elliptic top corresponding to a bundle of degree n and having the rank N = np, N > n.
This means that its Lax matrix has the quasiperiodic boundary conditions

L(z + 1) = QL(z)Q−1,

L(z + τ) = ΛnL(z)Λ−n.
(15)

But only a degenerate L(z) matrix can satisfy these conditions because there exists a diagonal matrix with
n different eigenvalues Ā = diag{u1, . . . , un, p, u1, . . . , un} simultaneously commuting with Q and Λn,

QĀ = ĀQ, ΛnĀ = ĀΛn.

To fix this freedom, we change conditions (15) to

L(z + 1) = QL(z)Q−1,

L(z + τ) = e(−Ā)ΛnL(z)Λ−ne(Ā).
(16)

These boundary conditions demonstrate the existence of an (n−1)-dimensional moduli space.

Proposition. There exists a numerical matrix M such that

MĀM−1 =
n⊕

J=1

uJ Idp×p,

MQM−1 =
n⊕

J=1

e
(
J − p

N

)
Qp×p,

MΛnM−1 =
n⊕

J=1

Λp×p.

(17)
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The last equation indicates that Λn can be transformed to a block-diagonal form with n blocks where
each block represents a p×p Λ-matrix.

Proof. Let m = (α − 1)n + β, where α = 1, 2, . . . , p and β = 1, 2, . . . , n. We define a permutation
operation

ψn,p(m) = (β − 1)p+ α.

We claim that the desired matrix has the form

Mij = δ(ψp,n(i), j).

We prove this. We note that we have

(M−1)kl = δ(ψn,p(k), l)

for the inverse matrix. At this stage, we have

MijĀjkM
−1
kl = δ(ψp,n(i), j)δ(j, k)Ājjδ(ψn,p(k), l) = δ(ψn,p(i), l)Āii

(here we assume summation over repeated indices). We then have

MikQklM
−1
li = δ(i, j)e

(
ψp,n(i)
N

)
,

MijΛn
jkM

−1
kl = δ(ψp,n(i), j)δ(modN (j + n), k)δ(ψn,p(k), l) =

= δ(ψn,p(modN (ψp,n(i) + n)), l).

Setting i = (β − 1)p+ α, we have

a. if α < p, then modN (ψp,n(i)+n) = ψp,n(i)+n = αn+β, and ψn,p(αn+β) = (β−1)p+α+1 = i+1,

b. if α = p, then modN ((p− 1)n+ β + n) = β, and ψn,p(β) = (β − 1)p+ 1.

This completes the proof.

In what follows, we use capital Latin letters for indices taking values from 1 to n and small letters for
indices taking values from 1 to p. We also use the notation

∑
m,n =

∑p−1
m,n=0, m2+n2 �=0.

We now use the proved proposition to rewrite the Lax matrix in the twisted basis. For the p×p blocks,
we then have

LIJ(z + 1) = e
(
I − J

N

)
Qp×pLIJ(z)Q−1

p×p,

LIJ(z + τ) = e(−uI)Λp×pLIJ(z)Λ−1
p×pe(uJ).

(18)

The factor e((I − J)/N) can be canceled by the change of variables

LIJ(z) → LIJ(z)e
(
−z I − J

N

)
, uI → uI − I

τ

N
.

Finally, the boundary conditions are

LIJ(z + 1) = Qp×pLIJ(z)Q−1
p×p,

LIJ(z + τ) = e(−uI)Λp×pLIJ(z)Λ−1
p×pe(uJ).

(19)

48



It is easy to find an operator L satisfying conditions (19) with a fixed residue,

LIJ(z) =
1
p
δIJvI +

∑

m,n

(SIJ)mnφmn(z, uIJ)Emn,

φmn(z, uIJ) = e
(−nz

N

)
φ

(
uIJ − m+ nτ

N
, z

)
.

(20)

We introduce the factor 1/p to ensure that the brackets {vI , uJ} = δIJ are canonical.
The Poisson brackets for the matrix elements of S are the Poisson–Lie brackets corresponding to the

structure constants of gl(N,C):

{(SIJ)ab, (SKL)cd} = 2
√−1 sin

[
π

p
(bc− ad)

]
(δKJ (SIL)a+c,b+d − δIL(SKJ )a+c,b+d). (21)

Here, we use two different bases: the standard one for the p×p blocks (I, J = 1, 2, . . . , n) and sine-algebra
basis (A.13)–(A.16) for the elements of these blocks.

The quadratic Hamiltonian has the form

H =
1
2

n∑

I=1

v2
I − 1

2

∑

I,J

∑

m,n

Tr(SIJE−m,−n)Tr(SJIEmn)E2

(
uIJ − m+ nτ

N

)
(22)

or

H =
1
2

n∑

I=1

v2
I − 1

2

∑

I

∑

m,n

Tr(SIIE−m,−n)Tr(SIIEmn)E2

(
m+ nτ

N

)
−

− 1
2

∑

I �=J

∑

m,n

Tr(SIJE−m,−n)Tr(SJIEmn)E2

(
uIJ − m+ nτ

N

)
. (23)

The first and second terms represent the Hamiltonians of n p×p tops with the momenta vI . We note that the
analogue of the reduction by the Cartan subgroup in the degV = 0 case here requires Tr(SII) = const∀I.
It would be interesting to interpret the last term as the potential energy of pairwise interaction. We can
do this in the case where S is the coadjoint orbit of minimal dimension, i.e., rkS = 1. Indeed, we use the
known parameterization [11] of such orbits. For simplicity, let S ∈ gl(N,C). Then S = ξ × η, where ξ and
η are a column and a row of length N and {ξa, ηb} = δab. Thus,

Tr(SIJE−m,−n)Tr(SJIEmn) = Tr(SIIEmnSJJE−m,−n).

The condition Tr(SII) = const means that the matrices SII describe the coadjoint orbits of minimal
dimension equal to 2p− 2. In this case, the Hamiltonian has a simple physical interpretation:

H =
1
2

n∑

I=1

v2
I − 1

2

∑

I

∑

m,n

Tr(SIIE−m,−n)Tr(SIIEmn)E2

(
m+ nτ

N

)
−

− 1
2

∑

I �=J

∑

m,n

Tr(SIIEm,nSJJE−m,−n)E2

(
uIJ − m+ nτ

N

)
. (24)

The first terms describe the energy of n p×p tops, and the last term describes the interaction for each pair.
As shown in [10], all the systems of type EG(1|k|N), k = 1, 2, . . . , N are symplectomorphic to one another.
Therefore, the obtained model of interacting tops is symplectomorphic to the N -particle Calogero–Moser
model.
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Appendix 1: Elliptic functions

In this appendix, we collect basic definitions and relations for elliptic functions needed for proving the
results in this paper. The majority of formulas are borrowed from [12] and [13]. We introduce q = e2πiτ ,
where τ is the modular parameter of the elliptic curve Eτ . The basic element is the theta function

ϑ(z|τ) = q1/8
∑

n∈Z

(−1)neπi(n(n+1)τ+2nz) =

= q1/8e−iπ/4(eiπz − e−iπz)
∞∏

n=1

(1 − qn)(1 − qne2iπz)(1 − qne−2iπz). (A.1)

The Eisenstein functions are

E1(z|τ) = ∂z logϑ(z|τ), E1(z|τ) ∼ 1
z
− 2η1z, (A.2)

where

η1(τ) = ζ

(
1
2

)
=

3
π2

∞∑

m=−∞

∞′∑

n=−∞

1
(mτ + n)2

=
24
2πi

η′(τ)
η(τ)

and

η(τ) = q1/24
∏

n>0

(1 − qn)

is the Dedekind function. The second Eisenstein function has the form

E2(z|τ) = −∂zE1(z|τ) = ∂2
z logϑ(z|τ), E2(z|τ) ∼ 1

z2
+ 2η1.

The next important function is

φ(u, z) =
ϑ(u + z)ϑ′(0)
ϑ(u)ϑ(z)

, ϕα(z, α+ u) = e(z∂τα)φ(z, α + u). (A.3)

It has a pole at z = 0 and admits the decomposition

φ(u, z) =
1
z

+ E1(u) +
z

2
(E2

1 (u) − ℘(u)) + . . . . (A.4)

Its derivative is

φ(u, z)−1∂uφ(u, z) = E1(u + z) − E1(u).

It is related to the Weierstrass functions,

ζ(z|τ) = E1(z|τ) + 2η1(τ)z, ℘(z|τ) = E2(z|τ) − 2η1(τ),

φ(u, z) = e−2η1uz σ(u + z)
σ(u)σ(z)

,

φ(u, z)φ(−u, z) = ℘(z) − ℘(u) = E2(z) − E2(u).

(A.5)
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The series representations are

E1(z|τ) = −2πi
(

1
2

+
∑

n�=0

e2πiz

1 − qn

)
=

= −2πi
(∑

n<0

1
1 − qne2πiz

+
∑

n≥0

qne2πiz

1 − qne2πiz
+

1
2

)
,

E2(z|τ) = −4π2
∑

n∈Z

qne2πiz

(1 − qne2πiz)2
,

φ(u, z) = 2πi
∑

n∈Z

e−2πinz

1 − qne−2πiu
.

(A.6)

The parity properties are

ϑ(−z) = −ϑ(z), E1(−z) = −E1(z), E2(−z) = E2(z),

φ(u, z) = φ(z, u) = −φ(−u,−z).
(A.7)

The behavior on the lattice is

ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = −q−1/2e−2π
√−1zϑ(z),

E1(z + 2ωα) = E1(z) − 4π
√−1∂τωα,

E1(z + 1) = E1(z), E1(z + τ) = E1(z) − 2π
√−1,

E2(z + 2ωα) = E2(z), E2(z + 1) = E2(z), E2(z + τ) = E2(z),

φ(u+ 1, z) = φ(z, u), φ(u+ τ, z) = e−2π
√−1zφ(z, u).

(A.8)

We also need the addition formulas

φ(u, z)∂vφ(v, z) − φ(v, z)∂uφ(u, z) = (E2(v) − E2(u))φ(u + v, z) (A.9)

or

φ(u, z)∂vφ(v, z) − φ(v, z)∂uφ(u, z) = (℘(v) − ℘(u))φ(u + v, z). (A.10)

The proof of (A.9) is based on (A.4), (A.7), and (A.8) for the function φ(u, z). In fact, φ(u, z) satisfies a
more general relation that follows from the Fay trisecant formula

φ(u1, z1)φ(u2, z2) − φ(u1 + u2, z1)φ(u2, z2 − z1) − φ(u1 + u2, z2)φ(u1, z1 − z2) = 0. (A.11)

A particular case of this formula is

φ(u1, z)φ(u2, z) − φ(u1 + u2, z)(E1(u1) + E1(u2)) + ∂zφ(u1 + u2, z) = 0. (A.12)
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Appendix 2: Sine algebra

The generators of sine algebra Emn are defined using the generators Q and Λ of the finite Heisenberg
group:

Emn = e
(
mn

2N

)
QmΛn, m = 0, 1, . . . , N − 1,

n = 0, 1, . . . , N − 1, m2 + n2 	= 0 (mod N),

(A.13)

in the basis sl(N,C), where

e(z) = e2π
√−1z, Q = diag(e(1/N), . . . , e(m/N), . . . , 1),

Λ =





0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0





.
(A.14)

The commutators are

[Esk, Enj ] = 2
√−1 sin

[
π

N
(kn− sj)

]
Es+n,k+j , (A.15)

Tr(EskEnj) = δs,−nδk,−jN. (A.16)
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