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EXTERNAL GRAVITATIONAL FIELD OF A NONSTATIC

SPHERICALLY SYMMETRIC BODY IN THE INERTIAL FRAME

A. A. Logunov∗ and M. A. Mestvirishvili∗

We show that the external gravitational field of a nonstatic spherically symmetric source described by a

diagonal metric tensor can only be static in the field theory of gravity.

Keywords: relativistic theory of gravity, Birkhoff theorem, graviton mass, nonstatic spherically symmetric
source

In general relativity (GR), which relates the gravitational field to the Riemannian space metric tensor,
the Birkhoff theorem that claims that the external field of a nonstatic spherically symmetric body can only
be static was proved in the class of admissible functions. In the relativistic theory of gravity (RTG) [1], [2],
the gravitational field φµν is a physical field evolving in the Minkowski space, its source is the energy–
momentum tensor of all physical fields including the gravitational field, and this tensor is conserved in
the Minkowski space. This approach results in the effective Riemannian space metric and in a system of
equations that differs from the RG system of equations. Therefore, the above problem needs a special
investigation.

The complete system of equations of the RTG is

Rµν − 1
2
gµνR+

m2

2

[
gµν +

(
gµαgνβ − 1

2
gµνgαβ

)
γαβ

]
= 8πT µν, (1)

Dν g̃
νµ = ∂ν g̃

νµ + γµαβ g̃
αβ = 0, (2)

where the energy–momentum tensor of matter, following Hilbert, is defined by the equality

√−g T µν = −2
δLM

δgµν
,

where m is the graviton mass and LM is the density of the matter Lagrangian. The effective metric of the
Riemannian space is

g̃µν = γ̃µν + φ̃µν ,

g̃µν =
√−g gµν , γ̃µν =

√−γ γµν , φ̃µν =
√−γ φµν .

System of equations (1), (2) is general-covariant w.r.t. arbitrary coordinate transformations and is
form invariant w.r.t. the Lorentz transformations. This means that the relativity principle is universal. In
contrast to GR, this principle is rigorously satisfied in the RTG for all physical phenomena including the
gravitational ones. This is why the fundamental laws of the conservation of the energy–momentum and of
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the angular momentum occur in the system. The coordinate system in Eqs. (1) and (2) is governed by the
Minkowski space metric tensor γµν . We choose the system of units in which � = c = G = 1.

For timelike and isotropic intervals in the effective Riemannian space not to leave the Minkowski space
causality cone, the conditions

gµνU
µUν ≤ 0, γµνU

µUν = 0 (3)

must be satisfied.
The effective Riemannian space has a trivial topology in the RTG; the topology in GR is nontrivial in

general. Therefore, the field description of gravity in principle cannot result in the RG equations.
Below, we find that an external gravitational field of the form

ds2 = U(t, r) dt2 − V (t, r) dr2 −W 2(t, r)[dθ2 + sin2 θ dφ2] (4)

created by a nonstatic spherically symmetric source in the inertial frame can only be static, i.e., its metric
coefficients U , V , and W must be independent of the time t.

An inertial frame in the Minkowski space is governed by the interval

dσ2 = dt2 − dr2 − r2[dθ2 + sin2 θ dφ2]. (5)

Starting from Eqs. (1), for the problem defined by Eqs. (4) and (5), we find the equations for the functions
U , V , and W :

1
W 2

− 1
2V

∂

∂r

(
1
W 2

∂W 2

∂r

)
− 3

4VW 4

(
∂W 2

∂r

)2

− ∂

∂r

(
1

2VW 2

∂W 2

∂r

)
+

+
1

2UW 2

∂W 2

∂t

∂ log(V W )
∂t

+
m2

2

[
1 − r2

W 2
+

1
2

(
1
U

− 1
V

)]
= 0,

1
W 2

+
1

2U
∂

∂t

(
1
W 2

∂W 2

∂t

)
+

3
4UW 4

(
∂W 2

∂t

)2

+
∂

∂t

(
1

2UW 2

∂W 2

∂t

)
−

− 1
2VW 2

∂W 2

∂r

∂ log(UW )
∂r

+
m2

2

[
1 − r2

W 2
− 1

2

(
1
U

− 1
V

)]
= 0,

1
W 2

∂2W 2

∂t ∂r
− 1

2W 4

∂W 2

∂r

∂W 2

∂t
− 1

2VW 2

∂V

∂t

∂W 2

∂r
− 1

2UW 2

∂U

∂r

∂W 2

∂t
= 0.

(6)

Equations (2) for expressions (4) and (5) then become

W 2 =

√
U

V
q (r),

∂

∂r

(
W 2

√
U

V

)
= 2r

√
UV ,

(7)

where q(r) is an arbitrary function.
The representation

U(t, r) = eµ(t,r), V (t, r) = eν(t,r), W 2(t, r) = eλ(t,r), q(r) = eσ(r)
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is convenient in what follows. Equations (6) in the variables µ, ν, λ, and σ take the forms

e−λ − e−ν
(
λ′′ +

3
4
(λ′)2 − 1

2
λ′ν′

)
+

1
2
e−µλ̇

(
ν̇ +

1
2
λ̇

)
+
m2

2

[
1 − r2e−λ +

1
2
(e−µ − e−ν)

]
= 0, (8)

e−λ + e−µ
(
λ̈+

3
4
(λ̇)2 − 1

2
λ̇µ̇

)
− 1

2
e−νλ′

(
µ′ +

1
2
λ′

)
+
m2

2

[
1 − r2e−λ − 1

2
(e−µ − e−ν)

]
= 0, (9)

λ̇′ +
1
2
λ̇λ′ − 1

2
ν̇λ′ − 1

2
λ̇µ′ = 0, (10)

where, for instance, λ̇ = ∂λ/∂t and λ′ = ∂λ/∂r.
Equations (7) then become

λ− 1
2
(µ− ν) = σ(r), (11)

µ′ − ν′ + σ′ = 2reν−λ. (12)

We introduce the notation

2ω = µ+ ν, (13)

f = λ− σ (r). (14)

In accordance with (11), we have

µ− ν = 2f. (15)

We then find from (13) and (15) that

µ = ω + f, ν = ω − f. (16)

We now express Eq. (12) in terms of the functions ω, f , and σ:

2f ′ + σ′ = 2reω−2f−σ. (17)

Differentiating (17) w.r.t. t, we find

2ḟ ′ = (2f ′ + σ′)(ω̇ − 2ḟ).

Substituting this expression in Eq. (10) and taking equalities (14) and (16) into account, we obtain the
inhomogeneous linear partial differential equation

∂ω

∂t
f ′ − ∂ω

∂r
ḟ = 3ḟf ′. (18)

The system of ordinary differential equations corresponding to Eq. (18) is

dt

f ′ =
dr

−ḟ =
dω

3ḟf ′ ,
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whence we find

dω = 3ḟ dt, dω = −3f ′ dr.

Adding these equalities, we obtain

dω =
3
2
∂f

∂t
dt− 3

2
∂f

∂r
dr.

We then find from the condition of the total differential that

∂2f

∂t ∂r
= 0,

but the latter means that the function f is representable in the form

f(t, r) = ψ(t) + ϕ(r). (19)

The general solution of Eq. (18) is

ω(t, r) =
3
2
(ψ(t) − ϕ(r)) + F (f), (20)

where F is an arbitrary function.
Taking expressions (19) and (20) into account, we can write Eq. (17) as

2ϕ′ + σ′ = 2r exp
[
−1

2
ψ(t) − 7

2
ϕ(r) + F (f)

]
.

Because the l.h.s. of this equation is independent of t, the r.h.s. must also be independent of t. This is
possible only if the function ψ(t) is constant, but this in turn implies that the functions µ, ν, and λ must
be time-independent. In this case, the gravitational field of form (4) is static. But the second case, where
F = f/2, is also possible. Then,

ω(t, r) = 2ψ(t) − ϕ(r),

and the functions µ, ν, and λ, according to (14) and (16), must be

µ(t) = 3ψ(t), (21)

ν(t, r) = ψ(t) − 2ϕ(r), (22)

λ(t, r) = ψ(t) + ϕ(r) + σ(r) = f + σ. (23)

To analyze this case, we must return to Eqs. (8) and (9). The difference of these equations is

e−ν
[
−λ′′ − 1

2
(λ′)2 +

1
2
λ′(µ′ + ν′)

]
+

+ e−µ
[
−λ̈− 1

2
(λ̇)2 +

1
2
λ̇(µ̇+ ν̇)

]
+
m2

2
(
e−µ − e−ν

)
= 0, (24)
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and their sum is

2e−λ − e−ν
[
λ′′ + (λ′)2 − 1

2
λ′(µ′ − ν′)

]
+

+ e−µ
[
λ̈+ (λ̇)2 − 1

2
λ̇(µ̇− ν̇)

]
+m2(1 − r2e−λ) = 0. (25)

Following (11), we have

(λ̇)2 − 1
2
λ̇(µ̇− ν̇) = 0,

and Eq. (25) hence becomes slightly simplified,

2e−λ − e−ν
[
λ′′ + (λ′)2 − 1

2
λ′(µ′ − ν′)

]
+ e−µλ̈+m2(1 − r2e−λ) = 0. (26)

We express Eqs. (24) and (26) in terms of the functions ω, f , and σ:

− f ′′ − σ′′ − 1
2
(f ′ + σ′)2 + (f ′ + σ′)ω′ − m2

2
+ e−2f

(
−f̈ − 1

2
(ḟ)2 + ḟ ω̇ +

m2

2

)
= 0, (27)

2
(

1 − m2r2

2

)
e−(λ−ν) − [

f ′′ + σ′′ + (f ′ + σ′)2 − f ′(f ′ + σ′)
]
+ e−2f (f̈ +m2eµ) = 0. (28)

In accordance with (12), we have

2reν−λ = 2f ′ + σ′, (29)

and after the exponential multiplier is replaced, Eq. (28) hence becomes

1
r

(
1 − m2r2

2

)
(2f ′ + σ′) − [

f ′′ + σ′′ + (f ′ + σ′)2 − f ′(f ′ + σ′)
]
+ e−2f (f̈ +m2eµ) = 0. (30)

Because µ depends only on t and f = ψ(t) + ϕ(r), the variables t and r become separated in Eqs. (27)
and (30):

− f ′′ − σ′′ − 1
2
(f ′ + σ′)2 + (f ′ + σ′)ω′ − m2

2
= ke−2ϕ(r), (31)

f̈ +
1
2
(ḟ)2 − ḟ ω̇ − m2

2
= ke2ψ(t), (32)

f ′′ + σ′′ + σ′(f ′ + σ′) − 1
r

(
1 − m2r2

2

)
(2f ′ + σ′) = pe−2ϕ(r), (33)

f̈ +m2eµ = pe2ψ(t), (34)

where k and p are the separation constants.
We now turn to Eqs. (32) and (34). We introduce a new variable,

ψ(t) = log a2(t). (35)
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Equations (32) and (34) then become

2aä− 8ȧ2 − m2

2
a2 = ka6, (36)

2aä− 2ȧ2 +m2a8 = pa6, (37)

whence we find

ȧ2 = − 1
12

[
m2a2 + 2m2a8 + 2(k − p)a6

]
. (38)

Differentiating, we obtain

ä = − 1
24

[
2m2a+ 16m2a7 + 12(k − p)a5

]
. (39)

Substituting (38) and (39) in Eq. (36), we obtain the relation p = −2k for the separation constants. We
then have

ȧ2 = − 1
12

(m2a2 + 2m2a8 + 6ka6). (40)

We now pass to analyzing Eqs. (31) and (33). Taking (22) and (23) into account, we write Eq. (29) in
the form

ϕ′ = −1
2
σ′ + re−3ϕ−σ. (41)

Differentiating this expression, we find

ϕ′′ = −1
2
σ′′ +

1
2
rσ′e−3ϕ−σ + e−3ϕ−σ − 3r2e−6ϕ−2σ. (42)

Substituting (41) and (42) in Eqs. (31) and (33), we obtain

− 3r2e−2σx2 + 2kx2/3 = −x(2 + 2rσ′)e−σ − σ′′ +
1
4
(σ′)2 −m2,

− 3r2e−2σx2 + 2kx2/3 = x

[
2
(

1 − m2r2

2

)
− 3

2
rσ′ − 1

]
e−σ − 1

2
σ′′ − 1

2
(σ′)2,

(43)

where we introduce x = e−3ϕ.
We consider the equations

− 3r2e−2σx2 + 2x(1 + rσ′)e−σ + σ′′ − 1
4
(σ′)2 = 0,

− 3r2e−2σx2 − x

(
1 − 3

2
rσ′

)
e−σ +

1
2
σ′′ +

1
2
(σ′)2 = 0.

(44)

Subtracting one equation from the other, we obtain

x =
(3/4)(σ′)2 − (1/2)σ′′

3 + (1/2)rσ′ eσ = α = e−3ϕ. (45)
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The quantity α is a root of Eqs. (44) at the corresponding σ. Substituting x = α in Eqs. (43), we find

2kα2/3 = −m2, (46)

2k = −α1/3m2r2e−σ. (47)

From Eqs. (46) and (47), we then have

α =
1
r2
eσ. (48)

Because the quantity α must be constant in accordance with (46), expression (48) implies that

σ = logα+ log r2. (49)

From relations (46) and (47), we then have

k = − m2

2α2/3
. (50)

In accordance with causality principle (3), we have U ≤ V . To satisfy this inequality, it suffices, by
virtue of (21) and (22), to impose the conditions

1 ≤ e−2ϕ(r), (51)

e2ψ(t) ≤ 1. (52)

Inequality (52) expresses the physical property of the gravitational field to dilate time compared with the
inertial time. Taking (45) into account, we can write condition (51) in the form

α2/3 ≥ 1. (53)

Substituting the value of k taken from (50) in (40), we obtain

ȧ2 = −m
2a8

12

(
1
a6

+ 2 − 3
α2/3a2

)
, a > 0. (54)

Because the r.h.s. of (54) with (53) included is strictly negative and the r.h.s. is always positive, the equality
is possible only if a is constant and the r.h.s. is zero.

The r.h.s. of equality (54) satisfies the inequality

(
1
a6

+ 2 − 3
α2/3a2

)
≥ 2
a6

(a2 − 1)2
(
a2 +

1
2

)
.

In order for the l.h.s. of this inequality to vanish, we must set

a = 1, α2/3 = 1. (55)

Taking (35), (45), and (55) into account, we obtain

ψ = 0, ϕ = 0. (56)
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By virtue of (49), (55), and (56), we obtain the following metric coefficients in the second case under
consideration:

U = 1, V = 1, W 2 = r2. (57)

These metric coefficients correspond to the Minkowski space metric, which means that the gravitational
field is absent.

We thus obtain the general conclusion: for a nonstatic spherically symmetric source, the metric co-
efficients of the interval of an external gravitational field of form (4) in the inertial frame can only be
static. Because the external gravitational field of form (4) created by a nonstatic spherically symmetric
body is static, we conclude based on the results in [3] that the radius of this body is always greater than
the Schwarzschild radius because of repulsion forces.
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