
Theoretical and Mathematical Physics, 144(1): 985–994 (2005)

NECESSARY COVARIANCE CONDITIONS FOR A ONE-FIELD LAX

PAIR

S. B. Leble∗

We study the covariance with respect to Darboux transformations of polynomial differential and difference

operators with coefficients given by functions of one basic field. In the scalar (Abelian) case, the functional

dependence is established by equating the Frechèt differential (the first term of the Taylor series on the

prolonged space) to the Darboux transform; a Lax pair for the Boussinesq equation is considered. For

a pair of generalized Zakharov–Shabat problems (with differential and shift operators) with operator

coefficients, we construct a set of integrable nonlinear equations together with explicit dressing formulas.

Non-Abelian special functions are fixed as the fields of the covariant pairs. We introduce a difference Lax

pair, a combined gauge–Darboux transformation, and solutions of the Nahm equations.

Keywords: Darboux transformation, Lax pair, Boussinesq equation, Zakharov–Shabat problem, shift
operator polynomial, Nahm equation

1. Introduction

We consider a kind of form-invariance of differential polynomials, having in mind a link between the
operator

n∑

k=0

ak∂
k

and the operator of the same order but with new (transformed) coefficients

n∑

k=0

ak[1]∂k.

We call this property the “covariance” of the operator under some kind of transformation. We use a similar
term in the case of shift operator polynomials.

The proof of the covariance of the equation

ψt =
n∑

k=0

ak∂
kψ (1)

with noncommutative coefficients ak under the classic Darboux transformation (DT) [1]

ψ[1] = ψ′ − σψ (2)

incorporates the auxiliary relation (we use the short notation ψ′ = ∂ψ = ψx throughout the paper) [2]

σt = ∂r + [r, σ], r =
N∑

0

anBn(σ), (3)
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where Bn are differential Bell polynomials [3]. Relation (3) generalizes the so-called Miura map and becomes
an identity when σ = φ′φ−1, where φ is a solution of Eq. (1).

The study of jointly covariant combinations of (abstract) derivatives introduces extra constraints on
the polynomial coefficients, which can be classified [4], [5]. Briefly, given the general statement about the
covariant form of a linear polynomial differential operator that determines transformation formulas for the
coefficients, the consistency between such formulas yields constraints. In the scalar case, one-potential
constructions for the KdV and Boussinesq equations were studied in [5], [6] (see Sec. 2.1) for the higher
KdV and KP equations [7].

Examples of nonlocal equations (with non-Abelian entries) integrable by the DT were considered
in [1], [8]. Some of them, reviewed in [9], [10], were recently generalized to a wide class of polynomials of
automorphisms on a differential ring [11]. Exploring noncommutative coefficients is more complicated but
much more rich and promising. This can already be seen from the standpoint of symmetry classification,
starting from the pioneering papers [12] (also see [13], [14] and [15]). Next, the link to the DT covariance
approach [16] allows constructing and classifying covariant functions for use in quantum [17] and soliton
problems. For example, there is a class of such equations

−iρt =
[
H,h(ρ)

]
, (4)

where h(ρ) is an analytic function. In quantum mechanics, the operators ρ and H play the roles of the
density matrix and Hamiltonian. The covariance of (4) under a DT was established in [18]. The cases
where f(ρ) = iρ3 and f(ρ) = iρ−1 were considered as applications in [19]. A further step to essentially
non-Abelian functions, e.g.,

h(X) = XA+AX, (5)

[A,X ] �= 0, led to [20], and generalizations were studied in [16]. Further generalizations were demonstrated
in [21], where an abundant set of integrable equations was listed. The list partially corresponds with [13],
and a link to solutions via the iteration procedures or dressing chains, usual for the DT technique, was
shown.

2. One-field Lax pair in the Abelian case

2.1. Covariance equations. We first reproduce the one-field scheme for the scalar commutative
fields, generalizing the studies of the example of the Boussinesq equation [5], [22]. We consider Eq. (1)
with the coefficients bk, k = 0, 1, 2, 3, reserving ak for the second operator of the Lax pair. The DT for the
third-order operator coefficients (Matveev’s generalization of the classic DT [1]) yields

b2[1] = b2 + b′3, b1[1] = b1 + b′2 + 3b3σ′, (6)

b0[1] = b0 + b′1 + σb′2 + 3b3(σσ′ + σ′′), (7)

and b3 does not transform. We now suppose that both operators depend on a single potential function w.
The problem for the first operator is formulated as follows: to find restrictions on the coefficients b3(x, t),
b2(x, t), b1 = b(w, t), and b0 = G(w, t) compatible with DT rules (6) and (7) of the potential function w

induced by the DT for b1 or b0. For simplicity, we set b′3 = 0.
The covariance of the corresponding spectral equation

b3ψxxx + b2(x, t)ψxx + b(w, t)ψx +G(w, t)ψ = λψ (8)
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leads to a relation only between b1 and b0. In studying the problem in (8) in the context of the Lax
representation for a nonlinear equation, we should take the covariance of the second Lax equation into
account from the very beginning. We call this the principle of joint covariance [4]. The form of the second
Lax equation fixes the place of the field w:

ψt = a2(t)ψxx + a1(t)ψx + wψ. (9)

If we consider (8) and (9) as Lax-pair equations, the DT of w must be compatible with the DT
formulas (similar to (6)) for both coefficients in (8) depending only on the variable w. Next, generalized
Miura map (3) is [2]

σt =
[
a2(σ2 + σx) + a1σ + w

]
x

(10)

for problem (9); for evolution equation (8), it is

b3(σ3 + 3σxσ + σxx) + b2(σ2 + σx) + b(w, t)σ +G(w) = const, (11)

where φ is now a solution of both Lax equations.
We next suppose that the coefficients of the operators are analytic functions of w together with their

derivatives (or integrals) with respect to x (such functions are called functions on the prolonged space).
For the coefficient b1 = b(∂−1w,w,wx, . . . , ∂

−1wt, wt, wtx, . . . ), the covariance condition is obtained for the
Frechèt differential (FD) of the function b on the prolonged space. Equating the expansion to the DT leads
to the condition

b′2 + 3b3σ′ = bw(a′1 + 2a2σ
′ + σa′2) + bw′(a′1 + 2a2σ

′ + σa′2)
′ + . . . . (12)

We call this equation the (first) joint covariance equation; it guarantees the consistency between transfor-
mations of the coefficients of Lax pair (8), (9). Comparing the two transforms gives the expression for
b(w, t) (with arbitrary α(t)):

b(w, t) =
3b3w
2a2

+ α(t). (13)

Equating the expansion of b0 = G(. . . , w, . . . ) on the prolonged space,

G(w + a′1 + 2a2σ
′ + σa′2) = G(w) +Gw(a′1 + 2a2σ

′ + σa′2) + . . . , (14)

to DT (7) for the same coefficient, we have

b′1 + σb′2 + 3b3

(
σ2

2
+ σ′

)′
=

= Gwx(a′1 + 2a2σ
′ + σa′2)

′ +G∂−1wt

[
a1t + 2∂−1(a2σ

′
t) + ∂−1(σa′2)t

]
+ . . . . (15)

This second joint covariance equation also simplifies when a′2 = 0. We note that relation (10) is used in the
left-hand side of (15) and linearizes the FD with respect to σ. Finally,

b2 =
3b3a1

2a2
+ β(t),

G(w, t) =
3b3wx

2a2
+

3b3a′1∂
−1w

2a2
2

+
3b3∂−1wt

2a2
2

.

(16)

Remark 2.1. We truncate the FD formulas at the level that is necessary for the minimal flows. Taking
the higher terms into account leads to the entire hierarchy as in [7] for the KdV–KP case.
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2.2. Compatibility condition. In the case where a′2 = 0, to which we restrict ourself, Lax sys-
tem (8), (9) produces the compatibility conditions

b3t = 2a2b
′
2 − 3b3a′′1 ,

b2t = a2b
′′
2 + 2a2b

′
1 + a1b

′
2 − 3b3a′′1 − 2b2a′1 − 3b3a′0,

b1t = a2b
′′
1 + a1b

′
1 − b3a

′′′
1 − b2a

′′
1 − b1a

′
1 − 3b3a′′0 − 2b2a′0 + 2a2b

′
0,

b0t = a1b
′
0 + a2b

′′
0 − b1a

′
0 − b2a

′′
0 − b3a

′′′
0 .

(17)

Relations (16) and (17) together with the expression for b2t produce

βt = −2βa′1. (18)

The last two equations (with the constants chosen as b3 = 1, a2 = −1, and b′2 = a′1 = 0) give

3b3(wt + a1w)t

4a2
2

= −
[(

3b3w
2a2

+ α

)
w′ − b3w

′′′

4
+

3b3a1wt

4a2
2

+
(
β − 3b3a1

4a2

)
w′′

]′
. (19)

This equation reduces to the Boussinesq equation (see, e.g., [9]) for b1 = a1 = 0, b3 = 1, and a2 = −1.

3. Non-Abelian case: Zakharov–Shabat (ZS) problem

3.1. Joint covariance conditions for general ZS equations. We change the notation for first-
order (n=1) equation (1) with coefficients from a non-Abelian differential ring A (see [2] for details) to

ψt = (J + u∂)ψ, (20)

where the operator J ∈ A is independent of x, y, and t and the potential a0 ≡ u = u(x, y, t) ∈ A is a
function of all the variables. The transformed potential is

ũ = u+ [J, σ], (21)

where again σ = φxφ
−1 with φ ∈ A being a solution of (20).

We suppose that the second operator of the Lax pair has the same form but with different entries,

ψy = (Y + w∂)ψ, (22)

Y ∈ A is a constant element, and the potential w = F (u) ∈ A is a function of the potential of Eq. (20).
The principle of joint covariance [4] is then given by

w̃ = w + [Y, σ] = F
(
u+ [J, σ]

)
(23)

with the direct corollary

F (u) + [Y, σ] = F
(
u+ [J, σ]

)
. (24)

Hence, Eq. (24) defines the function F (u). We also call this equation the joint covariance equation.
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3.2. Covariant combinations of symmetric polynomials. The first natural example is the
generalized Euler top equation with Hamiltonian (5), mentioned in the introduction. In this case, the
covariant Lax pair consists of two equations, Eqs. (20) and (22), the entries of the operators satisfy joint
covariance equation (24) and the compatibility condition if J = H and Y = H2 [16]. A more general link
Y = Jn, J = H leads to the covariance of the function

Pn(H,u) =
n∑

p=0

Hn−puHp,

given in [16]. For a further generalization, we consider combinations of polynomials such as

f(H,u) = Hu+ uH + S2u+ SuS + uS2. (25)

Substituting (25) as F (u) = f(H,u) in (24) suggests the choice Y = AB + CDE, which yields

A[B, σ] + [A, σ]B + CD[E, σ] + C[D,σ]E + [C, σ]DE =

= H [J, σ] + [J, σ]H + S2[J, σ] + S[J, σ]S + [J, σ]S2.

This expression becomes an identity if A = B = J = H , C = D = E = αH , S = βH , [α,H ] = 0, and
[β,H ] = 0 with α3 = β2. Continuing this analysis, we obtain the following statement.

Statement. The joint covariance principle defines a class of homogeneous polynomials Pn(H,u), sym-

metric under cyclic permutations, as possible Hamiltonians h(u) = Pn(H,u) for Liouville–von Neumann-

type evolution (4). A linear combination of such polynomials
∑N

n=1 βnPn(H,u) with the coefficients com-

muting with u and H also yields a covariant pair if Y =
∑N

n=1 αnH
n+1 and α1 = β1 = 1, αn+1

n = βn
n ,

n �= 1, hold.

The proof can be given by induction based on the homogeneity of Pn and the linearity of the constraints
in u. The functions FH(u) =

∑∞
0 anPn(H,u) also satisfy the constraints and define a function if the series

converges.

4. Nonlocal operators

Let A be an operator ring, and let an automorphism T have the property T (fg) = T (f)T (g) for given
elements f, g ∈ A. The general DT formulas for an operator polynomial in T are given in [11]. We call the
operator T a shift operator, but it could be general as defined above.

4.1. The one-field first-order shift operator evolution. We take the general evolution equation
in the case where N = 1,

ψt(x, t) = (U0 + U1T )ψ. (26)

There are two types of DT in this case [11], [23], denoted by the superscripts + and −. The DT of the first
kind (+) leaves U0 unchanged. We rewrite the transform of U1 as

U+
1 = σ+(TU1)(Tσ+)−1, (27)

where σ+ = φ(Tφ)−1 and the superscript + is omitted in what follows.
Nontrivial chain equations occur for the stationary version of (26),

(J + UT )ϕ = ϕµ, (28)
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if the constant element µ does not commute with ϕ and σ.
We derive the identity that links the potential U and σ (cf. [23]) by substituting

T (σ)T 2(ϕ) = T (ϕ) (29)

in shifted equation (28). We have a Miura-like link

σT (U)σ = U + [J, σ], (30)

where T (σ) = σ−1 is taken into account. It also simplifies DT formula (27):

U+ = σ(TU)σ = U + [J, σ]. (31)

Directly using Eq. (28) to express U in terms of τ = ϕµϕ−1 and σ gives U = τσ − Jσ. Substituting the
result in (30) yields

T (τ) = σ−1τσ, (32)

which defines the element τ on a set of points Tmx0 as an explicit function of σ,

τ = σ−mτ(x0)σm, (33)

which in turn gives an explicit expression for U . Finally, substituting U in (31), we obtain the dressing
chain equation

σ−m
n τ(x0)σm

n σn − σnJ = σ−m
n+1τ(x0)σm

n+1σn+1 − Jσn+1 (34)

for all n, parameterized by µ via τ(x0).
The chain equation is a natural result of expressing the DT in terms of the variable σ via the Miura

map and was studied in [24] in connection with the celebrated scalar KdV and the standard Sturm–Liouville
problem. A periodic closure of the chain produces integrable bi-Hamiltonian finite-dimensional systems and
finite-gap potentials in some special cases [25]. The Boussinesq case was explored in [22] (also see [26]). The
chain equations for the classical differential ZS problem and two types of the DT were introduced in [27]
(also see [15]).

4.2. The joint covariance equations. We take a replica of Eq. (26),

ψt(x, t) =
(
V0 + V1(U)T

)
ψ, (35)

where U1 → V1 = F (U) is changed, thus introducing a one-field Lax pair made of two ZS evolution
equations. We mean that the coefficients of both equations depend only on the operator U . Again, the
invariance of the constant V0 is implied as the property of the DT of the first kind. We transform V1

using (27), considering the result as the same function of U+
1 ; this yields the joint covariance equation

V +
1 = F (U+) = F

(
σ+(TU)(Tσ+)−1

)
= σ+

(
TF (U)

)
(Tσ+)−1. (36)

A similar equation can be derived for the alternative “−” system.
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5. Covariance theorems for higher operators

The following theorem establishes the covariance of both equations generating the Lax pair for the
Nahm equation [28].

Theorem 5.1. The equation

ψy = uTψ + vψ + wT−1ψ (37)

is covariant under the DT combined with the gauge transformation

ψ[1] = g(y)(T − σ)ψ, (38)

where g(y) ∈ A, σ = (Tφ)/φ, and φ is a (different) solution of the same Eq. (37). The transforms of the

equation coefficients are

u[1] = gT (u)
[
T (g)

]−1
,

v[1] = gT (v)g−1 − gσug−1 + gT (u)T (σ)g−1 + gyg
−1,

w[1] = gσw
[
T−1(gσ)

]−1
.

(39)

Proof. Substituting (38) in transformed equation (37) gives four equations, while the T nψ are inde-
pendent. Three of them yield transformed potentials (39). The fourth equation, after the transformations
are used, becomes

σy = σF − (TF )σ, F = uσ + v + w
[
T−1(σ)

]−1
. (40)

We can verify the condition by substituting the definition of σ and using the equation for φ.

Remark 5.1. Theorem 5.1 is naturally applicable to the spectral problem

λψ = uTψ + vψ + wT−1ψ, (41)

which occurs for stationary solutions of (37) with only the last term absent for the transform v[1]. The
transformation involves the eigenfunction φ with a different eigenvalue µ. Equation (40) becomes a “Miura-
transformation” analogue of the function σ,

µ = uσ + v + w
[
T−1(σ)

]−1
. (42)

6. Nahm equation reductions

The Nahm equations can be written in the Lax representation (originally as differential operators [28])
using spectral equation (41) and the evolution equation

ψt = (q + pT )ψ. (43)

The covariance of this equation under DT (38) can be established similarly to Theorem 5.1 with the evolution
of the function σ(t) taken into account,

σt = T (q)σ − σpσ + T (p)T (σ)σ − σq. (44)
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This proves the transformation formulas for the coefficients in (43):

p[1] = gT (p)
[
T (g)

]−1
, (45)

q[1] = g
[
T (q) − σp+ T (p)T (σ)

]
g−1 + gyg

−1. (46)

The choice p = u+ βI, q = v/2, T (ϕi) = ϕi,

u = α

(
− ıϕ1

2
− ϕ3

)
, v = ϕ3, w = α−1

(
− ıϕ1

2
+ ϕ3

)
(47)

produces the Nahm equations

ϕi,t = ıεikl[ϕk, ϕl]. (48)

System (41), (43) is covariant under the combined DT–gauge transformations if the variable g = eG is
chosen as

Gt =
α

2

[
T

(
ϕ3 +

ϕ1

2

)
T (σ) − σ

(
ϕ3 +

ϕ1

2

)]
. (49)

Finally, we can formulate the following theorem.

Theorem 6.1. System (48) is invariant under the transformations

ϕ1[1] = g

[(
T (ϕ1)

2
− ıT (ϕ3)

)
T (g)−1 + σ

(
ϕ1

2
+ ıϕ3

)[
T−1(gσ)

]−1
]
,

ϕ2[1] = g

[
T (ϕ2) + α

(
ıσϕ1

2
− ıϕ1T (σ)

2
+ σϕ3 − T (ϕ3σ)

)]
g−1,

ϕ3[1] = g

[(
T

(
− ıϕ1

2
− ϕ3

))
T (g)−1 + σ

(
− ıϕ1

2
+ ϕ3

)[
T−1(gσ)

]−1
]

(50)

with the function g = eG, where G is obtained by integrating (49).

7. Solutions of the Nahm equation

By the construction described in the preceding section, we follow the algorithm for a simple example
with T considered as the shift operator Tψ(x, y) = ψ(x+ 1, y). As a seed solution of Nahm equations (48),
we consider commuting constant matrices ϕi = Ai, i = 1, 2, 3, which implies that u, v, and w are constant
in (47). First, we must generate a solution of Lax pair (41), (43); we can find it by

φ = ξ(t)Φ(x) (51)

(all elements are assumed invertible). We obtain the equation for ξ as

ξt =
[
v

2
+ (u + βI)T

]
ξ = Zξ, (52)

which is solved by

ξ = eZtξ0. (53)
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Substituting φ in (41) yields the difference-shift-operator spectral problem

µΦ(x) = ξ−1
[
uξΦ(x+ 1) + vξΦ + wξΦ(x − 1)

]
. (54)

Separating the variables again, we construct a class of particular solutions as

Φ = ηeΣx. (55)

We thus obtain a matrix spectral problem for η,

µη = ξ−1
[
uξηeΣ + vξη + wξηe−Σ

]
(56)

with the operator in the right-hand side and hence the spectral parameter µ parameterized by t. Finally,
the matrix σ is composed as

σ = ξ(t)ηeΣη−1ξ−1(t). (57)

An appropriate choice of the commutator algebra for Ai, Σ, and η allows obtaining the explicit form of σ
and therefore constructing and solving Eq. (49) for G,

Gt =
α

2

[(
ϕ3 +

ϕ1

2

)
ξ(t)ηeΣη−1ξ−1(t) − ξ(t)ηeΣη−1ξ−1(t)

(
ϕ3 +

ϕ1

2

)]
, (58)

and then obtaining its exponential, i.e., the matrix g required for dressing formulas (50). We stress that
the matrices σ and g are independent of x; hence, the dressed ϕ[i] is also independent of x.

8. Conclusions

We have developed a general method for establishing one-field Darboux-covariant operators. It results
in the equations of joint covariance for the operator coefficients as functions on the prolonged space. We
found some solutions of the equations via the generalized Taylor expansion of functions [29].
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