
ORIGINAL RESEARCH

Synthese (2024) 203:99
https://doi.org/10.1007/s11229-024-04526-x

Abstract
The mechanistic account of computation offers one promising and influential theory 
of computational implementation. The aim of this paper is to shore up its concep-
tual foundations by responding to several recent challenges. After outlining and 
responding to a recent proposal from Kuokkanen (Synthese 200:247, 2022a), I 
suggest that computational description should be conceptualised as a form of ide-
alisation (selectively attending to modified subsets of model features) rather than 
abstraction (selectively attending to subsets of features within a target system). I 
argue that this conceptualisation not only offers the best way of making sense of 
computational implementation, but also a way of resolving each of the outstand-
ing challenges facing the mechanistic account. The idealisation view allows the 
mechanistic account to make sense of the omission process found in computational 
descriptions without leaving the relationship between physical and computational 
properties mysterious.

Keywords  Mechanistic computation · Implementation · Mechanistic hierarchy · 
Abstraction · Idealisation

1  Introduction

The project of naturalising physical computation has been underway for some time 
now. From simple mapping and causal accounts (Putnam, 1975; Chalmer, 1994, 2011; 
Chrisley, 1995) to representational and semantic proposals (Fodor, 1981; Sprevak, 
2010; Shagrir, 2006, 2020), philosophers of mind and cognitive science have long 
sought to articulate an objective, explanatory and taxonomically adequate concep-
tion of computation. One particularly promising and influential theory in recent years 

Received: 23 September 2023 / Accepted: 8 February 2024 / Published online: 14 March 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

An idealised account of mechanistic computation

Luke Kersten1

	
 Luke Kersten
kersten@ualberta.ca

1	 Department of Philosophy, University of Alberta, Edmonton T6G 1C9, Canada

1 3

http://orcid.org/0000-0001-7054-8942
http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-024-04526-x&domain=pdf&date_stamp=2024-3-13


Synthese (2024) 203:99

is “the mechanistic account of computation” (or simply “the mechanistic account”) 
(Piccinini, 2007, 2015, 2020; Fresco, 2014; Miłkowski, 2013, 2015). According to 
the mechanistic account, the task of explaining under what conditions a physical 
system implements a computation (computational implementation) is best explicated 
within a mechanistic framework. Computational properties are mechanistic proper-
ties, computational explanation is a species of mechanistic explanation, and compu-
tational mechanisms are a special type of mechanism (e.g., ones with teleological 
functions).1

To provide a concrete example, consider Piccinini’s (2015) version of the mecha-
nistic account. For Piccinini, concrete computation occurs wherever there is a physical 
system that has an organisation of spatiotemporal components such that it computes 
an abstract function in virtue of manipulating medium-independent vehicles. The 
account offers three conditions on implementation.

The first is that a physical system must be kind of functional mechanism – that is, 
a mechanism with teleological functions.2 The system has to possess properties that 
organise in such a way so as to produce or support some behaviour – the reverse of 
which is that if a system fails to perform its function it must be the result of a break-
down in the organisation of the system’s component parts. For example, calculators 
are functional mechanisms in virtue of the fact that they carry out their particular 
functions (e.g., computing sums) via the interaction, organisation, and relation of 
their component parts (e.g., processors, memory units, input devices, and output 
devices).

The second is that one of the capacities of the mechanism must be the ability to 
compute at least one mathematical function. A system must be able to map from an 
input I (and possibly internal states S) to an output O. A system’s behaviour must sat-
isfy at least one abstract description mapping of inputs to outputs, which also suffices 
to show that a system is following a rule. The neural network in the ocular-motor 
system responsible for horizontal eye movement, for example, computes at least 
one abstract function (an integration relation) in virtue of preserving the relationship 
between eye-velocity and eye-position (Leigh & Zee, 2006).3

1  Complementing the question of computational implementational is the question of computational indi-
viduation, i.e., the task of explaining under which conditions it is true or false to say of a physical system 
that it implements a particular computational model rather than another, e.g., AND versus OR (Sprevak, 
2018). While important, the current paper focuses only on computational implementation for matters of 
scope. It leaves discussion open as to which account of computational individuation best fits with the 
mechanistic account, though it is worth noting that authors diverge on the issue (see, e.g., Fresco, 2010, 
2021; Dewhurst, 2018; Coehlo Mollo, 2018; Fresco & Milkowski, 2021; Fresco, 2021).

2  For Piccinini (2020), a teleological function is a stable contribution towards a goal of an organism. Goals 
can be either biological or nonbiological. Biological goals include survival, development, reproduction 
or helping, whereas nonbiological goals are any other goals pursued by an organism, such as using a 
Tobacco pipe to hold tobacco.

3  Relevant here is the distinction between normative teleological functions and perspectival functions. 
For Piccinini (2015, 2020), teleological functions are objective in the sense that they are stable causal 
contributions to the goals of an organism. The functions can be individuated objectively in virtue of some 
combination of the organism and its environment. Perspectivalism, on the other hand, which says that 
functional attributions are relative to observer-interests (and hence subjective), is ill-suited to account of 
the functions of objects (artefactual or biological) because it does not do justice to our scientific practices 
– some traits have multiple functions, but not in virtue of multiple perspectives, e.g., the function of the 

1 3

99  Page 2 of 24



Synthese (2024) 203:99

The third is that a physical system must process medium-independent vehicles. 
For a state or variable to be medium-independent, it must possess certain structure 
(i.e., degrees of freedom), and be capable of being implemented in different media in 
virtue of that structure (Garson, 2003). If the input–output mapping is sensitive to at 
least some portion of the medium-independent vehicle over which it is defined, then it 
counts as a computation. A digit, for example, can be said to be medium-independent 
because it can be implemented in completely different materials (e.g., silicon chips 
or vacuum tubes) in virtue of possessing the right structure (i.e., where it lies along a 
string). For Piccinini, only functionally integrated systems that compute at least one 
abstract function via vehicle manipulation qualify as concrete computing systems.

Given the conditions offered for implementation, it is often suggested that com-
putational explanations take on a dual emphasis within the mechanistic account 
(Piccinini & Craver, 2011; Miłkowski, 2013; Piccinini, 2015, 2020).4 In particular, 
computational explanations must not only provide abstract, functional characterisa-
tions of a physical system, but also a detailed, structural descriptions of how the 
system’s component parts are organised and operate, what are respectively referred to 
as the “functional” and “structural” aspects of constitutive explanation. For example, 
to explain horizontal eye movement, a mechanistic computational analysis not only 
has to describe the function being computed by the ocular-motor system, such as an 
integration relation, but one also has to explain how the neurons in the ocular-motor 
system carry out the particular function via preserving morphic-relations between 
eye-velocity and eye-position. To qualify as a physical computing system, the ocu-
lar-motor system must be capable of sustaining a functional description in terms of 
an input-output relation and a structural description in terms of the activities and 
organisation of its component parts. A mechanism’s ability to perform computations 
is explained mechanistically in terms of its components, their functions, and their 
organisation.

The mechanistic account has several advantages as theory of implementation. One 
is its claim to objectivity. According to Piccinini’s account, for example, only those 
systems which implicate functional mechanisms processing medium-independent 
vehicles qualify as computing systems. The mechanistic account ties computational 
implementation directly to specific features of the world, providing a matter of fact 
as to whether or not physical systems qualify as computing systems. Another is its 
explanatory adequacy. A theory of implementation should explain computational 
implementation in terms better understood than computational implementation. 
Since physical computing is explained relative to the mechanistic framework, com-
putational implementation is cashed out in terms of better understood notions, such 
as functional mechanism or teleological function. A third is its taxonomic adequacy. 
Because only those functional mechanisms that process medium-independent vehi-
cles qualify as computing systems, for instance, paradigmatic cases of computing, 
such as Turing machines or calculators, qualify as computing systems, while non-

heart pumping blood (see Piccinini (2015, p.103) for details. For further discussion of the perspectivalist 
position, see Schweizer (2019) or Lee (2021).

4  While I cannot defend the particular take of the mechanistic account on computational explanation here, 
for a defense, see Piccinini (2015, p.142).

1 3

Page 3 of 24  99



Synthese (2024) 203:99

paradigmatic cases, such as digestive systems or solar systems, do not. The concept 
of physical computation emerging from the mechanistic account is one that is suf-
ficiently restrictive so as to be useful for explanatory purposes yet liberal enough to 
cover a number of important types of computing, such as Turing machines, neural 
networks, and digital/analog computers.5

The trouble is that the mechanistic account has come under pressure recently from 
several directions. Some, for instance, have worried that computational processes 
do not involve the manipulation of abstract medium-independent properties in the 
way that the mechanistic account suggests (Hutto et al., 2019); others that there is no 
method of identifying the generality of computational phenomena within the mecha-
nistic account (Kersten, 2020); and some further still that computational and physical 
properties cannot be reconciled at all within a mechanistic hierarchy (Elber-Dorozko 
& Shagrir, 2019). Such challenges threaten to undermine the mechanistic account’s 
status as a workable theory of implementation, putting pressure one or more of its 
key assumptions.

The aim of this paper is to shore up the conceptual foundations of the mechanistic 
account by offering a novel extension to the view. The goal is to rescue one promi-
nent and influential theory of implementation from a series of recent challenges, and 
in the process further explicate its conceptual underpinnings. I begin, in Sect. 2, by 
outlining three outstanding challenges facing the mechanistic account, unpacking the 
key assumptions targeted by each. Then, in Sect. 3, I examine a recent response from 
Kuokkanen (2022a), one which appeals to a distinction between ‘vertical’ and ‘hori-
zontal’ abstraction. I argue that Kuokkanen’s proposal, while promising, nonetheless 
introduces a further problematic gap in thinking about implementation. This leads 
me, in Sect.  4, to propose an alternative. I suggest that computational description 
is better conceptualised as a form of idealisation rather than abstraction within the 
mechanistic account. I suggest that this conceptualisation not only offers the best way 
of making sense of implementation, but also a way of resolving the three outstand-
ing problems. To further cement the benefits of the shift in thinking, I conclude, in 
Sect. 5, by taking up a further recent challenge.

2  Three challenges

As mentioned, three recent challenges have been levied against the mechanistic 
account.6 Each puts pressure on one or more of account’s key assumptions, and each 
attempt to show that computational explanation fails to conform in one or more ways 
to the norms of mechanistic explanation.

5  There are other desiderata that are sometimes offered, such as miscomputation and non-circularity, but 
these three broadly capture some of the features regularly offered by theorists in favour of the mechanistic 
account (see, e.g., Miłkowski, 2013; Fresco, 2014; Piccinini, 2015; Sprevak, 2012, 2018).

6  For discussion of further problems that have been raised, such as the decomposition problem, see 
Shagrir (2022, Ch. 6).

1 3

99  Page 4 of 24



Synthese (2024) 203:99

2.1  The abstraction problem

The first challenge is the “abstraction” problem (Haimovici, 2013; Hutto et al., 2019; 
Maley, forthcoming). While there have been several formulations of the worry, Hutto 
et al. (2019) offer a particularly clear expression, writing: “The trouble is that if 
medium independent vehicles are defined by their abstract properties then it is unclear 
how such vehicles could be concretely manipulated by their abstract properties” (p. 
278).7 The concern is that while it makes sense to say that computational processes 
are abstract (i.e., medium-independent), it makes less sense to say that abstract, com-
putational processes are concrete processes of a mechanism.8

To illustrate, Hutto et al. focus on Piccinini and Bahar’s (2013) discussion of neu-
ral spike trains (the time-series electrical signals recorded from individual neurons). 
Neural spike trains are said to be medium-independent according to Piccinini and 
Bahar in virtue of the fact that they (i) depend on functionally relevant aspects of the 
neural events, such as firing rates and timing, and (ii) can be implemented in different 
physical media, such as silicon chips. Brains are said to perform a generic form of 
computation in virtue of manipulating these medium-independent vehicles (see also 
Piccinini, 2015, p.120-5).

The trouble, though, as Hutto et al. see it, is that Piccinini and Bahar’s discussion 
does not explain, even in principle, how neural spike trains, as abstract, medium-
independent processes, could be processed by concrete, medium-dependent proper-
ties. They write, for instance: “Understanding how neural processes can be sensitive 
to concrete, medium dependent properties presents no conceptual difficulty. By con-
trast, we have no conception of how concrete neural process could causally manipu-
late, abstract medium independent vehicles” (p. 278). There seems to be a tension 
in saying that abstract, medium-independent properties are manipulated by concrete 
physical processes as some proponents of the mechanistic account do. Incorporating 
talk of concrete mechanisms appears to introduce a difficulty in understanding in 
what sense computational process and vehicles remain abstract.

The abstraction problem emerges from two different elements regularly brought 
together within the mechanistic account. The first, as we saw, is that computational 
explanations are said to require some level of structural detail. To qualify as a com-
putational explanation, a given analysis must specify how a mechanism’s compo-
nent parts and activities are organised and operate to support a system’s capacities 
– recall condition two of Piccinini’s account, for instance. The second, though, is that 
computational explanations involve preserving certain degrees of freedom in their 
descriptions (i.e., medium-independence) – condition three of Piccinini’s account. 
Computational explanations are thought to be necessarily abstract. These two 
assumptions appear set to pull in opposite directions. In putting the abstract and con-
crete together under one roof, the mechanistic account is seemingly led into confus-
ing talk of concrete, physical processes manipulating abstract, medium-independent 
properties.

7  Haimovici (2013) was the first to point out the tension, albeit in a slightly different form. The focus there 
was on the relation between functional and structural properties, but the conclusion is similar.

8  For additional discussion, see Kuokkanen and Rusanen (2018) or Kersten (2020).

1 3

Page 5 of 24  99



Synthese (2024) 203:99

2.2  The generality problem

The second challenge is the “generality” problem (Elber-Dorozko & Shagrir, 2019; 
Kersten, 2020). The generality problem worries that the mechanistic account is 
unable to identify the generality of computational phenomena within its mechanistic 
hierarchies.

Part of the issue is the assumption that generality is determined by the vertical 
level of mechanistic hierarchies. For example, one might say that rat navigation is 
a “more” general phenomenon than memory because of its position at the top of a 
mechanistic hierarchy. Explanatory shifts from higher-level phenomenon, such as 
rat navigation, to lower-level component and activities, such as rat memory, involve 
a reduction in the generality of the phenomenon being explained. One method for 
fixing or determining the generality of a phenomenon within mechanistic analysis 
is to appeal to cross-situational stability (Boone & Piccinini, 2016). For example, 
one might say that because rats often make particular types of navigational errors 
in water mazes this reveals something important about how spatial maps are used 
in memory. Going beyond specific token instances allows researchers to identify the 
robust, cross-situational properties that form general features of rat memory.

The trouble is that cross-situational stability will not work as a method for deter-
mining the generality of computational phenomena. This is because cross-situational 
stability would require that physical and computational properties stand in part-
whole relations to one another, the idea being that moving from higher or lower levels 
of a given hierarchy would reflect a corresponding move between compositionally 
related higher- and lower-level phenomena. However, as many have pointed out, 
the relation between computational and physical properties or entities is not one of 
part-to-whole; it is not a relation of constitution. Rather, physical and computational 
properties relate via a relation of implementation (Piccinini, 2015; Sprevak, 2018).

For example, whereas the components of a Dell Laptop are parts of the computer, 
the state of a transistor is not a part of the vehicle. A transistor does not constitute a 
computational vehicle but implements a medium-independent vehicle such as a bit. 
This means that cross-situational stability is unavailable as a method for determining 
generality. It makes matters unclear as to whether it is the computational description 
or the explanandum phenomenon that is more or less general. If it is the former rather 
than the latter, then a phenomenon’s generality is fixed or determined by the general-
ity of an abstract description. This threatens to loosen the mechanistic account’s grip 
on objectivity. There is no way of tracking the computational properties back to their 
implementational counterparts. If computational descriptions are detached from their 
implementational properties, then the mechanistic account lacks the means to match 
the generality of a phenomenon and its abstract descriptions. Without a method of 
determining the generality of its phenomenon, the mechanistic account’s ability to 
provide abstract, objective descriptions of computational phenomenon begins to look 
tenuous.

1 3

99  Page 6 of 24



Synthese (2024) 203:99

2.3  The hierarchy problem

The final challenge is the “hierarchy” problem, or what has also been called the 
“problem of integration of the computational and mechanistic” (Elber-Dorozko & 
Shagrir, 2018, 2019; Shagrir, 2022). The hierarchy problem suggests that the mech-
anistic account faces a dilemma: it is either unable to explain how computational 
and implementational descriptions relate or it makes computational explanation 
non-mechanistic.

Consider the first horn of the dilemma. According to the mechanist, a computa-
tional-level C1 of some mechanistic hierarchy, consisting of the component parts 
(e.g., registers and circuits), their function, and their organisation, can be analysed by 
describing the computational components of an underlying computational level C0, 
such as logic gates. But C1 can also be described as being implemented by medium 
dependent physical properties, such as voltages. Call this level P0. Notice that it is 
unclear how P0 and C1 are supposed to relate if computations are part of a single 
mechanistic hierarchy. While P0 describes physical medium dependent properties, 
C1 describes abstract medium-independent properties. If the properties of P0 are not 
parts of the properties of C1 and vice versa, then P0 cannot be at a “lower level” than 
C1. There appear to be two sets of properties within a single mechanistic hierarchy, 
one computational (C0, C1, C2…) and one implementational (P0, P1, P2…), and it is 
unclear how they relate. The challenge is to explain how the relevant computational 
and implementational properties can be brought together within the same level(s) of 
a mechanistic hierarchy.

One way to avoid the issue is to separate computational and implementational 
properties. According to this “two-hierarchy view”, computational properties reside 
on one mechanistic hierarchy, and implementational properties reside on adjacent 
levels of a separate hierarchy. Each level is a complete explanation of the phenom-
enon at the level above. For example, computational properties, such as a CPU, are 
explained by lower-level properties of the control unit, registers, and logic units, 
whereas silicon chips are constituted by ensembles of transistors. The benefit of this 
move is that it avoids explaining how the two hierarchies come together. Compu-
tational explanations are both abstract and full-fledged mechanistic explanations 
(Coehlo Mollo, 2018). They pick out two different mechanistic hierarchies: one com-
putational; one implementational.

The trouble is that the separation into two hierarchies reduces computational 
explanation to form of functional analysis. This is the second horn of the dilemma. 
If there are now two separate hierarchies, then computational explanations no lon-
ger involve decomposing computations into lower level implementational proper-
ties. Rather, functional decompositions simply involve decompositions from one set 
of computational properties to another. Implementational properties may still figure 
into analysis, but only via mapping to a given computational level. The separation of 
computational and implementational may avoid the integration issue, but only at the 
cost of giving up on what makes the mechanistic account unique, i.e., mechanistic 
explanation. The dilemma, in short, is that the mechanistic account can either choose 
the single-hierarchy view, in which case it sacrifices explaining the relation between 
computational and implementational properties, or it can adopt for the two-hierarchy 

1 3

Page 7 of 24  99



Synthese (2024) 203:99

view, in which case it reduces computational explanations to (non-mechanistic) func-
tional explanations. Neither option is particularly palatable.

So, to sum up, the mechanistic account faces three outstanding challenges. The 
first is that computational processes do not seem to involve the causal manipulation 
of abstract medium-independent properties (the abstraction problem); the second is 
that there is no method for identifying the generality of phenomena (the generality 
problem); and the third is that computational and physical properties do not appear to 
integrate (the hierarchy problem). Notice that the last two problems are closely con-
nected. If the generality of a phenomenon is determined by its place in a mechanistic 
hierarchy, then the mechanist has to show how computational and implementational 
properties fit together.

3  Computational description as horizontal abstraction

Kuokkanen (2022a) has recently set out to tackle the abstraction, generality, and hier-
archy problems. The aim is to rescue the “objective status” of abstract descriptions 
within the mechanistic account by showing how computational properties can be 
proper parts of the world.

To do so, Kuokkanen calls on a distinction between two forms of abstraction, what 
are called “vertical” and “horizontal” abstraction.9 Vertical abstraction involves omit-
ting details from a description when moving between levels of organisation, whereas 
horizontal abstraction requires fixing attention to level of organisation and then 
abstracting away from the physical details of entities at that level. Vertical abstrac-
tion requires movement from lower to higher levels of organisation, while horizontal 
abstraction requires more or less general descriptions of general entities at a given 
level.

According to Kuokkanen, computational descriptions are a product of horizon-
tal abstraction within the mechanistic account. To be specific, they are the product 
of omitting irrelevant physical details at a given mechanistic level. As Kuokkanen 
(2022a) describes the view: “Both vertical and horizontal abstraction are at work, but 
what does the crucial work in capturing the relevant properties for the computational 
description is the horizontal abstraction” (p. 246). According to this picture, mecha-
nistic levels are ‘wide’, in the sense that descriptions at one end of a mechanistic 
level provide full physical detail and at the other they provide abstract, computational 
detail.

To illustrate, consider, as Kuokkanen enjoins, how one might describe the states 
of a transistor. On the one hand, one might describe how a transistor is constituted 
or realised in different physical media, such as electrical circuits. This would be to 
abstract away from the physical details between levels. On the other hand, one might 
describe the states of the transistor in terms of the properties of a logic gate, i.e., 1s 
and 0s. This would be to abstract away from physical details at the same level of 
organisation. One can either move vertically between levels, or horizontally between 
more or less abstract descriptions at the same level. Computational descriptions are 

9  The original distinction is owed to Mäki (1992).

1 3

99  Page 8 of 24



Synthese (2024) 203:99

to be found on the horizontal axes, while constitutive, part-whole relations are to be 
found on the vertical axes.10

The vertical/horizontal distinction is also said to cut across the two “roles” of 
abstraction (Boone & Piccinni, 2016). One role is to identify the specific complex 
components, subsets of causal powers, and organisational relations that produce a 
general phenomenon, e.g., rat navigation. This is what is known as “ontic” abstrac-
tion. Another role is to strip unnecessary details from one’s descriptions, e.g., details 
about the aerodynamics of a toy model plane. This is known as “epistemic” abstrac-
tion. If ontic and epistemic abstraction concern the roles of abstraction, then ver-
tical and horizontal abstraction concern the directions of abstraction. Horizontal 
abstraction involves moving sideways at the same level, whereas vertical abstraction 
involves moving up and down between levels. Horizontal and vertical abstraction 
can be either epistemic or ontic. However, as we will see, to successfully defend the 
mechanistic account, an ontic conception of the distinction is required.

The question is, how does the move to horizontal abstraction help in addressing 
the abstraction, generality, and hierarchy problems?

First, notice that if computational descriptions are understood as the result of ontic 
horizontal abstraction, then the abstraction problem no longer appears to arise. If it 
right to say that computational descriptions pick out general phenomena within a 
given mechanistic level, then there is nothing particularly mysterious in saying how 
abstract, medium-independent properties relate to physical medium-dependent prop-
erties. Abstract, computational vehicles are simply more general phenomena residing 
at a given wide mechanistic level, ones identified via horizontal descriptive abstrac-
tions. The computational properties described by horizontal abstract descriptions 
correspond to proper parts of the world (i.e., descriptions of complex components, 
subsets of causal powers, and organisational relations at a given mechanistic level). 
There is nothing metaphysically spooky about them. Computational descriptions are 
both objective and metaphysically harmless.11

Second, recall that the generality problem worried there was no way of tracking 
computational properties back to their implementational counterparts. One conse-
quence of the vertical/horizontal distinction, though, is that there are now two kinds 
of generality, one in which higher-level, general phenomena are abstracted away from 
lower-level phenomena (vertical abstraction), and one in which the physical proper-
ties are omitted at a given level resulting in medium-independent, computational enti-
ties (horizontal abstraction). Because of this, there is no need to track computational 
properties back to their implementational properties. The generality of a phenomenon 
is determined by the amount of detail provided by a horizontal descriptive abstrac-
tion within a given mechanistic level. As Kuokkanen (2022a) puts it: “In MAC [the 
mechanistic account of computation], computational or mathematical descriptions 
are arrived at by horizontal abstraction in the same mechanistic hierarchy one uses 
for determining the generality of a physical phenomenon.” The generality problem 

10  Kuokkanen (2022a) suggests that one can maintain the vertical-horizontal distinction, even if compu-
tational descriptions are arrived at by horizontal descriptive abstraction. The distinction is a more general 
feature of modelling practice.
11  For an alternative solution to the abstraction problem, see Kersten (2020).

1 3

Page 9 of 24  99



Synthese (2024) 203:99

does not arise because computational and implementational properties reside at the 
same mechanistic levels of a single hierarchy.

Finally, and following on from the previous solution, if computational descriptions 
are a product of horizontal abstraction, then the relation between computational and 
physical properties can be explained (the hierarchy problem). If varying the amount 
of detail at a given mechanistic level allows one to move from physical to com-
putational descriptions (horizontal descriptive abstraction), then computational and 
physical properties can relate at any given level of a single mechanistic hierarchy. 
Computational and physical properties exist alongside one another on a continuum of 
abstractive description within a given mechanistic level. Because mechanistic levels 
are wide, the question of how to relate two separate hierarchies does not arise. There 
are not two separate computational and implementational hierarchies in need of inte-
gration but one hierarchy involving parallel computational and physical properties 
residing on wide mechanistic levels.

3.1  The limits of horizontal abstraction

Kuokkanen’s (2022a) proposal is an admirable one. It offers a straightforward reso-
lution to the three challenges and clarifies several aspects of abstraction, such as its 
roles versus directions. The problem is that the proposal, while promising, comes up 
short in delivering an account of computational description, and this spells trouble 
for the proposed solutions.

To see why, let us return to the case of a logic gate. In a standard digital computer, 
a logic gate is made up of combinations of transistors – physical devices which carry 
electrical currents, act either as a switch or amplifier, and are usually built out of 
silicon chips. Under normal conditions, if an electric current is present, then a tran-
sistor’s states can be described as either ‘on’ or ‘off’. If the transistor’s states are on, 
then it can be assigned a value of ‘1’; if they are off, then it can be assigned a value 
of ‘0’. The upshot is a description of a logic gate. A logic gate is built out components 
which can hold two stable but different states. Combining sets of transistors in differ-
ent ways creates different types of logic gates, e.g., AND or OR.

Notice, though, that while a logic gate can be built out of transistors, abstracting 
away from its physical properties does not deliver a description of ‘0s’ and ‘1s’. 
Omitting detail from a physical description does not thereby transform it into a com-
putational description. Ignoring a transistor’s weight, size, or colour, for example, 
does not result in a mathematical description. It simply provides a more stripped back 
physical description. While simple, this point is important. Regardless of how help-
ful horizontal abstraction might be in capturing the physical structures within a given 
mechanistic level, it does not appear to account for the implementational relation 
between physical and computational properties. If horizontal descriptive abstractions 
are not capable, even in principle, of delivering computational descriptions, then 
there is an important gap at the centre of Kuokkanen’s proposal. There is a clear limit 
to what horizontal abstraction can do in explicating mechanistic computation.12

12  To be clear, Kuokkanen (2022a, b) is more interested in analysing Piccinini’s version of MAC (e.g., how 
to interprets Piccinini’s talk about abstraction) and offering some theoretical clarifications than arguing for 

1 3

99  Page 10 of 24



Synthese (2024) 203:99

Interestingly, Kuokkanen (2022b) is alive to this issue, even framing it as a problem 
for the single hierarchy view, writing: “No matter how much descriptive abstraction 
one performs, she still needs to decide the rules according to which the mapping or 
implementation is carried out between the physical properties left from the descrip-
tive abstraction and the mathematical properties.” However, despite acknowledging 
the issue, there are important implications for the proposal as it relates to the three 
problems.

First, notice that if horizontal abstractive descriptions are not sufficient for produc-
ing computational descriptions, then it is unclear how to explicate the relationship 
between concrete physical processes and abstract, medium-independent properties 
(the abstraction problem). Horizontal abstractions were supposed to explain the sense 
in which abstract, computational vehicles could be said to interact with concrete 
physical processes. If they no longer do so, then it is once again unclear in what sense 
computational processes are concrete processes of a mechanism.

Second, if horizontal abstraction does not suffice to account for the presence of 
computational entities, then it seems that Kuokkanen’s account no longer provides 
a means of determining the generality of computational phenomena (the generality 
problem). Recall that the generality problem was said not to arise because horizontal 
abstractions occurred within the same mechanistic hierarchy. But, if this is no longer 
the case, because abstractive description within a level does not suffice to identify 
computational properties, then there is once again a need to explain how computa-
tional properties can be tracked back to their implementational counterparts.

Finally, if computational properties do not arise as a result of horizontal abstrac-
tion, then computational and physical properties no longer exist within a single 
mechanistic hierarchy (the hierarchy problem). If varying the amount of detail at 
a given mechanistic level no longer moves one from a physical to computational 
description (via horizontal descriptive abstraction), then computational and physical 
properties cannot be related at a given level of a single mechanistic hierarchy. This 
means the integration issue re-emerges. The mechanist is forced to either sacrifice the 
relation between computational and implementational properties or reduce computa-
tional explanation to a form (non-mechanistic) functional explanation.

But perhaps there is a way to supplement the proposal. As hinted at, Kuokkanen 
(2022b) suggests that a mapping rule might suffice to connect descriptive abstrac-
tions to computational descriptions, writing: “To arrive at a computational descrip-
tion, we make an agreement of a sort: we must agree that when the current in a certain 
transistor is between, say, x and y, its state is 1. This establishes the implementation 
relation: we set some rules according to which we map mathematical descriptions or 
properties onto physical descriptions.” In addition to abstractive description, the sug-
gestion is that a full description of the implementation relation also requires making 
a contract or decision so as to determine when the mathematical or computational 
entities map onto physical entities at a given level of a mechanistic hierarchy.

There is trouble looming for such a proposal, though. If horizontal descriptive 
abstraction is not sufficient for computational description and additional interpreta-

or defend the mechanistic account. Here I am simply extending the analysis to mechanistic computation 
more generally insofar as it offers a solution to the three challenges.

1 3

Page 11 of 24  99



Synthese (2024) 203:99

tive choices on the part of the observer are required, then Kuokkanen’s proposal no 
longer appears to deliver the objectivity it once promised for the mechanistic account. 
Recall that part of the goal was to show that computational descriptions within the 
mechanistic account were ontic in nature – that is, that they involve identifying the 
specific complex components, subsets of causal powers, and organisational relations 
that produce a general phenomenon. Descriptions earn their ontic status when their 
structures successfully track or match those of the world. However, it now seems that 
the accuracy of a computational description depends on the choice of mapping rule. 
If this is right, then computational descriptions are primarily the product of descrip-
tive choices, rather than a property of the processes being described; there is nothing 
that in principle constrains the mapping choice. Kuokkanen’s proposal seems to be 
in a bind: it either, at best, comes up short with respect to explaining computational 
description or, at worst, undermines the mechanistic account’s claim to objectivity. 
Neither option is particularly palatable.

To be clear, the worry is not that the vertical-horizontal distinction itself is suspect 
or that horizontal abstraction does not occur within mechanistic hierarchies. Rather, 
the concern is that in tying computational description to horizontal abstraction, the 
mechanistic account either has to leave the implementational relation unexplained 
or, in explicating the relation, it has to give up an important part of what makes the 
mechanistic account initially desirable as a theory of implementation: namely, objec-
tivity. Thus, if there is a way to resolve the three problems while avoiding these out-
comes, then such a proposal would be doubly appealing. It is to this task I now turn.

4  Computational description as idealisation

Part of the trouble for Kuokkanen’s proposal, I think, is that it overemphasises the 
notion of abstraction in thinking about mechanistic computation. This is understand-
able to some extent, but it throws up barriers in coming to grips with implementation. 
The better approach, I want to suggest, is to think of computational description within 
the mechanistic account not as a form of abstraction but as a type of idealisation.13

While there are a number of ways to draw the distinction, one plausible way, and 
the one I adopt here following Portides (2018), is to think of abstraction as a process 
of omitting features of a phenomenon from a model and idealisation as a process 
of modifying features that are retained in a model.14 On this reading, the difference 
between abstraction and idealisation is the difference between attending to certain 
features of a phenomenon within a model and attending to the ways in which certain 
model features of a phenomenon can be treated. One of the benefits of this framing 
is that it avoids thorny debates about the role of approximation and truth/falsehood, 

13  Schweizer (2019) articulates a somewhat related idea. However, while his “computational perspectival-
ism” also emphasises computational descriptions as a form of idealisation, it does not do so from within a 
mechanistic view, nor does it develop a conception of computation as idealisation specifically with an eye 
to explicating physical computation. The view is also explicitly non-objective and observer-dependent.
14  For alternative ways of drawing the distinction, see Jones (2005), Godfrey-Smith (2009) or Morrison 
(2015).

1 3

99  Page 12 of 24



Synthese (2024) 203:99

while nonetheless providing a relatively straightforward way to capture the intuitive 
difference between the two notions.15

For instance, in mechanics, the material composition and internal structure of a 
body are often ignored in setting-up equations for motion. In such cases, the omission 
of certain features of a phenomenon (e.g., weight, height, etc.) results in a simplified 
description of a target system, e.g., a body in motion. A mechanical model is cre-
ated by focusing on certain features of a target system at the expense of others. This 
is an instance of abstraction. In building a model of population genetics, however, 
mating (the explanandum phenomenon) is often treated as random, population size 
as infinite, and generations as non-overlapping. In this instance, certain features are 
omitted in the model, but the retained features are not treated as they normally appear 
in actual circumstances (e.g., real populations are finite, mating patterns are non-ran-
dom, and grandparents often co-exist with their grandchildren). The model involves 
modifying certain features found in an actual system for various model-specific ends, 
e.g., to avoid the evolutionary effects of genetic drift. This is a case of idealisation.

The distinction can also be drawn more formally. As Portides (2018, pp. 5889-90) 
characterises the two notions:

Abstraction  Let Σ consist of all features of an arbitrary system (not necessarily all 
identified) that could contribute to the parameters of theory and could be expressed 
by means of those parameters. Let Δ be a set of identified features, where Δ ⊂ Σ. 
Abstraction is the act of attending to Δ as if all other members of Σ were absent.

Idealisation  Let Σ consist of all logically possible ways by which perceived features 
(or more generally, knowledge about features) of actual systems could be modified. 
Let every member of Σ be expressible by means of the parameters of theory and not 
conflict with theoretical principles. Then Σ consists of all possible ways by which the 
features retained in a model description could be treated. Let Δ be a set of ways by 
which the different retained features are treated or considered, where Δ ⊆ Σ. Idealisa-
tion is the act of attending to Δ.16

Whereas abstraction involves selectively attending to a subset of features within a 
target system relative to the parameters of a theory, idealisation involves selectively 
attending to a subset of features once they have been modified or treated according to 
the parameters of a background theory.17

As the forgoing suggests, abstraction and idealisation are similar in several 
respects. Both result in simplified descriptions, both involve a process of selective 
attention, both operate relative to background theories, and both lead to distortions 
in model features (not all features of a target system are included in a model). How-
ever, despite such similarities, the two processes nonetheless come apart. As Portides 

15  For further detail and defence of the view, see Portides (2018).
16  Portides’ (2018) formulation is itself adapted from an earlier version by Mäki (1992, pp.107–139).
17  This characterisation of idealisation is similar to ‘Galilean’ and ‘minimalist’ forms, in that it also can 
involve distortions and false assumptions under the guidance of a representational ideal, but it does not 
require that its modifications, strictly speaking, have to be false (see Weisberg, 2007).

1 3

Page 13 of 24  99



Synthese (2024) 203:99

(2018, p.5891) notes, attending to certain features at the expense of others (abstrac-
tion) is a way of stressing the priority of those features in explaining some observable 
behaviour or phenomenon, whereas attending to certain ways features of a phenom-
enon can be treated (idealisation) is a way to meet the more specific aims of a model, 
such as screening-off casual factors, grouping particulars into a genus, or making 
approximations about a system.

It should be relatively clear, I hope, that Kuokkanen’s proposal thinks of computa-
tional description along the lines of abstraction rather than idealisation. For instance, 
in describing the relationship between computational description and horizontal 
abstraction, he writes: “In MAC, computational descriptions are located a certain 
point on the horizontal axes. One arrives at the point of computational description 
by omitting irrelevant physical properties at level.” For Kuokkanen, arriving at a 
computational description involving omitting sufficient physical details from one’s 
descriptions at a given mechanistic level. The movement from physical to compu-
tational description requires attending to features of a target system and not others.

We have already seen the limits of this approach, but we are now in a position to 
explain why it comes up short. While it is certainly true to say that computational 
description involves omitting physical detail, the retained model features must also 
undergo a transformation during conceptual isolation. That is, computational descrip-
tion involves modifying or treating the retained features of a mechanistic model in 
accord with the parameters of computational theory. Adapting Portides’ (2018, p. 
5985) formulation slightly, if every member of Σ of a mechanistic model is express-
ible by means of the parameters of computational theory, then Σ consists of all pos-
sible ways by which the features retained in a physical description could be treated. 
If Δ picks out a set of ways of attending to how the retained features are treated or 
considered, then computational descriptions are idealisations, where Δ ⊆ Σ. This is 
how physical descriptions within a mechanistic model can be turned into computa-
tional descriptions.

For example, consider the case of modelling a standard digital computer. First, a 
number of physical structures and properties of the target system can be described, 
e.g., the computer’s transistors, registers, memory units, etc. – in the present termi-
nology, these properties and structures constitute the ‘retained’ features of the model, 
as not all the features of the target system are included in the model. Then, such 
features can be arranged or organised into different levels, which constitutes a mecha-
nistic hierarchy – when focusing on a specific level of this hierarchy, we identify a 
subset of the features within the target system, such as the physical properties of its 
transistors or registers.

The claim here is that to arrive at a description of computational properties we 
must further selectively attend to a subset of the features of the mechanistic model and 
modify them in accord with the assumptions of computational theory. For example, at 
the level of primitive computing component, a transistor can be only interpreted as a 
logic gate when its states are assigned the values 1 and 0. This interpretation is only 
possible if the transistor is able to support two stable but different states. If the tran-
sistor is not bi-stable, then it conflicts with the requirements of being a computational 
vehicle, i.e., having the requisite two degrees of freedom. It is in virtue of attending 
to a subset of the features of the transistor (i.e., its degrees of freedom), as they accord 

1 3

99  Page 14 of 24



Synthese (2024) 203:99

with computational theory, that the description of the physical transistor turns into 
a mathematical description of a device that processes 1s and 0s, i.e., a logic gate.18

Further cases can be provided using empirical examples. For instance, when mod-
elling rat navigation, researchers often construct a hierarchy of levels, ranging from 
outward behaviour and spatial memory to hippocampal and single neuron activity 
(Craver, 2007, 2013). In constructing such a representation, there is a focus on a 
subset of physical properties within the target system which are modified in ways 
that do not align with biological reality, such as treating the all-or-nothing principle 
found in neurons as a stepwise function or long-term potentiation as form of Hebbian 
learning. This is done in order to explore various information processing capacities 
of the system, such as why rats exhibit certain rotational errors in mazes. Notice 
that in such cases certain features of the target phenomenon are omitted, such as a 
neuron’s refraction rate or depolarisation, while others, such as the all or nothing-or-
nothing principle, are treated in ways that align with certain background principles, 
e.g., information processing theory. In constructing a mechanistic model of rat navi-
gation, computational properties emerge via a process of omission and modification.

For present purposes, what is particularly interesting about the shift from abstrac-
tion to idealisation is that it allows us to make sense of the omission process found 
in computational descriptions, but it does not leave the relationship between physi-
cal and computational properties unaccounted for. This is because the move from 
physical to computational description, on the proposed account, involves selectively 
attending to a subset of retained features within a mechanistic model and treating 
them in accord with computational theory. This process does involve omitting physi-
cal details, but it is not this fact alone which transforms a physical description into 
a computational one. Rather, a computational description requires focusing on the 
ways in which certain features of a mechanistic model can be treated in light of con-
straining computational assumptions; computational description requires more than 
abstraction.

It is quite understandable, though, why Kuokkanen (2022a) and others have come 
to focus on abstraction. The hierarchical nature of mechanisms naturally lends itself 
to talk of ‘abstracting away’ from physical details – mechanists, such as Piccinini 
(2015), for example, who’s account forms the core of Kuokkanen’s analysis, regu-
larly speaks of computational descriptions as being a product of “abstracting away” 
from lower-level details. In wedding computational implementation to the mecha-
nistic framework, it is not surprising that some have been tempted to think of the 
movement between computational and physical properties as a form of abstraction. 
Moreover, given that abstraction usually precedes idealisation in model building, in 
that one needs to attend to certain features before one can attend to the ways the fea-
tures can be treated, it is understandable that the distinction between abstraction and 
idealisation has been largely overlooked in discussions of the mechanistic account. 
As we saw, the two processes are often tied up together in building a representation 
of a target system.

18  In many ways, this is not a new point, but the reframe is important because it does much to bring out 
what is often implicit in discussion of mechanistic computation (e.g., Miłkowski, 2013; Piccinini, 2015).

1 3

Page 15 of 24  99



Synthese (2024) 203:99

Nonetheless, this does not mean that abstraction and idealisation are the same, 
nor that computational description should be thought as a form of abstraction. As 
we have seen, doing so results in an important gap in our account of implementa-
tion, whereas treating computational description as a form of idealisation helps to 
close this gap. Reframing computational description as a form of idealisation not 
only helps to explicate the implementational relation within the mechanistic account 
but it also accords nicely with scientific modelling practice.19

4.1  The abstraction, generality, and the hierarchy problems: redux

If computational description is indeed better understood as a form of idealisation 
rather than abstraction within the mechanistic account, then what follows? Let us 
return to the abstraction, generality, and hierarchy problems to see.

First, notice that if computational descriptions are idealisations, then computational 
processes and structures reflect a particular way of describing certain features within a 
mechanistic model; computational properties are modified subsets of retained model 
features. This provides a clue as to how abstract, computational processes can be 
concrete processes of a mechanism (i.e., the abstraction problem). Abstract, medium-
independent properties relate to concrete, medium-dependent properties in virtue of 
the latter being the properties out of which the former are assembled. Computational 
vehicles are general types of phenomena, residing at a given mechanistic level, iden-
tified through conceptual isolation and modification. For example, returning to the 
case of Piccinini and Bahar’s neural spike trains, a computational description first 
depends on identifying the functional features of a mechanism, such as firing rates 
and timing, and describing them in ways that satisfy a particular an input-output rela-
tion. Evaluating whether populations of spiking neurons are medium-independent 
involves assessing the degrees of freedom amongst electrochemical signals in the 
brain. Computational descriptions are the product of modifying or treating subsets 
of physical properties relative to a mechanistic model in accord with computational 
theory. They are objective yet metaphysically innocuous.

Second, consider that if the current proposal is right, then, relative to a mechanistic 
model, computational properties are fixed at a given level. As we saw, in transform-
ing a physical description into a computational description, one needs to focus on a 
subset of physical properties in a given mechanistic model that accord with constrain-
ing background assumptions – for example, that the structures possess the requisite 
degrees of freedom to be described as computational vehicles. Another way to put 
this is to say that for every member of Σ of a mechanistic model that is expressible by 
means of the parameters of computational theory, Δ picks out a subset of ways mem-
bers of Σ can be treated. This means there is no need to track computational prop-
erties back to their implementational counterparts. Each mechanistic level includes 
those computational entities which are formed out of the relevantly constrained 

19  To be clear, while it may be the case that idealisation is involved in computational explanation more 
generally, the current proposal is only meant to apply to the mechanistic account. The question of the 
nature of computational explanation is a complex and vexed one. I am here simply working under the 
assumption that the mechanistic account offers one plausible account of computational explanation.

1 3

99  Page 16 of 24



Synthese (2024) 203:99

physical properties. The generality problem does not arise because computational 
phenomena are tied or locked-in to each level of a mechanistic hierarchy. Similar to 
Kuokkanen’s proposal computational and implementational properties reside at the 
same mechanistic levels of a single hierarchy, but, unlike Kuokkanen’s proposal, they 
are not purely a product of descriptive abstraction. Rather, they are formed through 
idealising selections.

Finally, and following on from the previous solution, if computational properties 
are indeed products of idealisation, then there is a clear sense in which computational 
and implementational properties can co-exist within a single hierarchy (the hierar-
chy problem). For example, as mentioned, for a given computational level C1 of 
some mechanistic hierarchy (consisting of the component parts, their function, and 
their organisation), C1 can relate to an underlying computational level C0 in virtue 
of mapping the set of features picked out by C1 to the set of features picked out by 
C0 within a hierarchy. But this does not mean that C1 cannot also be described in 
terms of a set of medium dependent properties, such as voltages. In fact, it is to be 
expected. P describes the unmodified set of physical properties populating a mecha-
nistic level which form the basis of idealising selections resulting in C1. The relation 
between C1 and P is not one of two different sets of properties (computational and 
implementational) but, rather, one set of properties selectively attended to in differ-
ent ways within the same level. Computational and implementational properties can 
be brought together within the same level(s) of a mechanistic hierarchy insofar as 
one selectively attends to different features of the retained model features relative to 
different constraining background theories (e.g., functional versus computational).

The question remains, though, does treating computational description as a form of 
idealisation deliver the objectivity required by the mechanistic account? Recall here 
that a description earns its ontic status if it tracks or matches its structures with those 
of the world. In the present context, this means that a computational description must 
pick out complex components, subsets of causal powers, and organisational relations 
within a target phenomenon. As we saw, computational properties are the product 
of omitting and modifying certain features within a mechanistic model. However, 
mechanistic models are also representations of target physical systems, such as neu-
rons or digital computers; mechanisms are always mechanisms of something (Craver, 
2013; Miłkowski, 2013). This means that the model features out of which compu-
tational properties are assembled are poised to track structures in a target physical 
system, such as a digital computer. Of course, whether a particular target system is 
apt to be described along computational lines is subject to the further conditions of 
explanatory utility and accuracy, but the representational elements found within the 
mechanistic model nonetheless correspond to features of the world. Relative a given 
mechanistic model, it can be true or false to say of a physical system that it imple-
ments a particular computation.

It is important to be clear about the form of objectivity secured here, as one might 
worry that the idealisation view makes computational ascriptions agent relative in 
some problematic sense (i.e., non-naturalistic or pragmatic). Thankfully this is not 
the case. For while it is true that computational descriptions are relative to a mecha-
nistic model according to the current proposal, this does not mean that agents can 
independently decide what each variable in a system represent. This is because, as 

1 3

Page 17 of 24  99



Synthese (2024) 203:99

mentioned, computational ascriptions are still importantly constrained by physical 
features of a mechanism. Recall, for example, that if a transistor is not capable of 
being described as bi-stable, then it conflicts with the requirements of being a compu-
tational vehicle. A computational vehicle must possess spatiotemporal parts that can 
take on different values and change over time. A transistor without such features fails 
to have the requisite degrees of freedom so as to qualify as computational; mapping 
choices are constrained by the world in various ways.20 The claim is not that that 
one should modify the phenomena to match the relevant background theory, which 
would make computational ascriptions agent-centric. Rather, the suggestion is that 
ascriptions of computational processes depend on the features of the world aligning 
or conforming to the relevant background theory, e.g., computation. Conceptualising 
computational description as a form of idealisation, at least within the mechanistic 
framework, does secure an important form objectivity.

What is more, as argued, abstraction and idealisation are both defined relative to 
background theories (e.g., computation). Whereas abstraction involves selectively 
attending to a subset of features within a target system relative to the parameters of 
a theory, idealisation involves selectively attending to a subset of features once they 
have been modified or treated according to the parameters of a background theory. 
This means that the notion of objectivity secured here is the same as the one at play 
in Kuokkanen’s account. Abstractive descriptions also operate relative to the assump-
tions of computational theory, a point, recall, revealed by the fact that Kuokkanen 
(2022b) suggests that a mapping rule might suffice to connect descriptive abstrac-
tions to computational descriptions. Thus, even if one remains sceptical of the form 
of objectivity secured by the current proposal, Kuokkanen’s proposal fares no bet-
ter in establishing a notion of objectivity via abstraction – this is in addition to the 
sceptical considerations offered in Sect. 3.1. There would still be reason to prefer the 
proposed account over Kuokkanen’s even if one remained sceptical of the notion of 
objectivity delivered, as the current account solves the three challenges while also 
explicating the implementational relation.

So, to summarise the results of the section: first, computational descriptions are 
a form of idealisation within the mechanistic account; second, conceptualising com-
putational description as a form of idealisation helps to explicate the implementation 
relation; third, thinking of computation as a type of idealisation provides a solution 
to the three outstanding challenges; and fourth, the suggested shift secures a form 
of objectivity for the mechanistic account. Taken as a whole, these considerations 
should begin to tip the balance, I think, in favour of the proposed account. While 
Kuokkanen’s proposal is instructive in several respects, the current proposal helps to 
resolve the three problems while also further explicating implementation and retain-
ing a sense of objectivity. It preserves the core elements of Kuokkanen’s proposal 
– the idea that omitting physical details is involved in ontic abstraction – but does so 
without compromising other aspects of the mechanistic account.

20  It is worth mentioning that Shagrir (2020, 2022) marshals this point, in his master argument, to argue 
for more than one possibility open for mapping. However, the argument, while important, applies more 
directly to account of individuation rather than implementation, which is the present concern, and so it 
worth setting it to one side for the moment.

1 3

99  Page 18 of 24



Synthese (2024) 203:99

5  Mechanistic computation and information processing

I want to address a final concern now, and in so doing further cement the benefits of 
thinking of computational description as a form idealisation.

In a recent, wide-ranging treatment, Shagrir (2022) argues that the most pressing 
objection to the mechanistic account is the fact that it downplays the importance 
of information processing and representation in the cognitive and neural sciences.21 
For example, the ‘normalization equation’, which can be found across the nervous 
system, provides a quantitative description of a cell’s response. It helps to explain 
why parts of the nervous system exhibit certain behaviours, such as cross-orientation 
suppression. But the normalization equation does not make essential reference to 
causal structures.22 Rather, it explains the behaviour of the nervous system via refer-
ence to a single computational principle, i.e., that neurons are able to transit more 
information if their individual firing rate is suppressed by the population average. If 
this is right, then the mechanistic account appears to offer an inadequate account of 
computation. As Chirimuuta (2014, p.128) elsewhere makes the point: “Information-
theoretic and computational principles are central to interpretative modelling, and 
causal-mechanical descriptive detail and accuracy is not required.” Computational 
explanations not only aim to describe how mathematical functions are implemented 
and performed, but also why the mathematical operations relate to the information 
processing task being performed.

Notice, though, that, as we saw, while one of the constraints on idealisation is the 
background theory (e.g., computational theory), another is the aim of a model. There 
are many different aims in making idealising selections, and any particular idealisa-
tion can serve more than one aim at a time; another way to make this point is to say 
that there can be multiple ‘representational ideals’ on a model (Weisberg, 2007). For 
example, as mentioned, when it is assumed that population size is infinite in a popu-
lation genetic model, this modifies certain features of the target system. But doing 
so also aids in screening off complicating causal variables, such as those concerning 
evolutionary affects from genetic drift. Attending to the different ways features of a 
phenomenon can be treated (idealisation) is a way of meeting the more specific aims 
of a model, where that might mean screening-off casual factors, grouping particulars 
into a genus, or making approximations about a system.

A similar point holds in the case of mechanistic computation. While one of the aims 
of a computational model within a mechanistic analysis is to describe the internals of 
mechanism parts and their interactions (i.e., answering how-questions), another is to 
account for why a given mathematical function relates to its wider task environment 
(i.e., answering why-questions). Miłkowski (2013) calls these the isolated and con-
textual levels of analysis. For example, in a cash register, at the contextual level, one 
describes the cash register as playing a certain role in a supermarket, such as enabling 

21  For a similar worry based on interpretative models in cognitive neuroscience, see Chirimuuta (2014).
22  Chirimuuta (2014) argues that it is efficient coding which delineates the set of counterfactual dependen-
cies between input to the system (e.g. sensory information) and/or system requirements (e.g. task for which 
information is needed) and the computational properties of the system. For replies showing how efficient 
coding might be integrated with the mechanistic account, see Wajnerman Paz (2017) or Fuentes (2023).

1 3

Page 19 of 24  99



Synthese (2024) 203:99

the calculation of sums; one includes here a description of a bar-code scanner, a con-
veyor belt, etc. On the other hand, at the isolated level, a dedicated computer using 
special software is described, one which enables the commutativity or associativity 
of addition, for example.

While the isolated level describes how the parts of the mechanism are specified 
along with their interactions (activities or operations), the contextual explicates the 
function of the mechanism in its broader context (i.e., how inputs and outputs of the 
system connect with the surrounding context). The necessity of the contextual level 
stems from the fact that knowing which computing system’s properties are relevant 
to a mechanism’s inputs and outputs requires knowing how the mechanism’s inputs 
and outputs interact with their context. Without knowing which external events cause 
which internal events, one cannot distinguish the functionally relevant and irrelevant 
properties of a mechanism (Piccinini, 2015, p.139).23

For example, returning the ocular-motor system case, whereas the how-question 
describes the mathematical function as computed by the neural integrator, the why-
question describes the relation between the computed function and the physical 
environment. Here the analysis invokes a physical constraint: namely, the relation 
between eye velocity and the distance between successive eye positions. This is what 
helps to distinguish the function being performed as an integration relation rather 
than, say, multiplication or exponentiation (Bechtel & Shagrir, 2011, p.316). There is 
a morphism mapping relation between the function and the target domain. A complete 
mechanistic computational explanation requires analysis at both levels. It involves a 
formal specification of the information processing task being performed and a speci-
fication of relevant implementational variables, e.g., the relevant algorithms.

The importance of this point for present purposes is that there is nothing that pre-
vents computational explanations from explicating the relationship between a math-
ematical function and an information processing task. It simply requires shifting 
attention to the different explanatory aims of the computational model – aims which 
are reflected in the different levels of analysis one can take during computational 
explanation. A mechanistically adequate model of computation must answer both 
why and how questions at multiple levels, each corresponding to the different aims of 
selective idealisations. The idealisation view provides a lens through which to view 
the multiple functions of computational descriptions within the mechanistic account.

Why, though, is it not enough to say that the semantic account, which does make 
information essential to computational implementation, is better equipped to handle 
such cases? How is the mechanistic account superior in dealing with cases such as the 
normalisation equation? This is Chirimuuta (2014) and Shagrir’s (2022) take after all. 
This is an interesting question, but it is not, strictly speaking, the present concern. The 
challenge is whether the mechanistic account has the resources in principle to make 
sense of information processing. As we have seen, it does. While there may be addi-
tional reasons to favour the semantic account, the mechanistic account, particularly 
when interpreted along idealisation lines, does not lack the tools to make sense of 
the relation.24 To be clear, the argument on offer does not establish the superiority of 

23  For an externalist reading of this point, see Kersten (2017).
24  For further discussion of the relation, see Piccinini (2018).

1 3

99  Page 20 of 24



Synthese (2024) 203:99

the mechanistic account over rival accounts of implementation, such as the semantic 
account; that is a different argument for a different day. Rather, it provides additional 
reasons to favour the idealisation view as a right interpretation of the mechanistic 
account. This outcome is slightly more modest, but it is still important.

With all that said, it is perhaps understandable why the preoccupation with abstrac-
tion has led some to suggest that computational description involves a process of 
subtracting features from a target system (i.e., abstraction); Kuokkanen’s proposal 
encourages such a view, for example. Nonetheless, such a conception gives the mis-
leading the impression that computational explanations only relate to implementa-
tional details, whereas re-envisaging mechanistic computation along idealisation 
lines helps to further reveal the varied nature of computational descriptions.

6  Conclusion

So, what are the key takeaways? First, the mechanistic account should move away 
from thinking about computational description in terms of abstraction. As we have 
seen, this approach is useful, but it comes at a cost. Second, the mechanistic account 
is better served by thinking of computational description as a form of idealisation. As 
argued, this shift not only helps to explicate implementation, but it also offers a clear 
path to resolving the three outstanding challenges facing the mechanistic account. 
The idealisation view allows the mechanistic account to make sense of the omis-
sion process found in computational descriptions without leaving the relationship 
between physical and computational properties mysterious. And finally, shifting to 
the idealisation view helps to secure an important form of objectivity for the mecha-
nistic account. As we saw, it provides a matter of fact as to whether or not a physical 
system qualifies as a computing system, preserving a key motivation for the mecha-
nistic account as a theory of implementation. Thus, while the current account still 
requires further elaboration and defence, I think it adds a constructive proposal for 
how to further explicate the conceptual foundations of mechanistic computation, as 
well as how to respond to several outstanding criticisms.

Acknowledgements  I want to thank two anonymous reviewers from the journal for their helpful feedback 
and comments on earlier drafts of the paper. This research was generously supported by the Killam Trusts.

Declarations

Competing Interests  The author declares no competing interests.

References

Bechtel, W., & Shagrir, O. (2011). The non-redundant contributions of Marr’s three levels of analysis for 
explaining information processing mechanisms. Topics in Cognitive Science, 7(2), 312–322. https://
doi.org/10.1111/tops.12141.

Boone, W., & Piccinini, G. (2016). Mechanistic abstraction. Philosophy of Science, 83, 686–697. https://
doi.org/10.1086/687855.

1 3

Page 21 of 24  99

https://doi.org/10.1111/tops.12141
https://doi.org/10.1111/tops.12141
https://doi.org/10.1086/687855
https://doi.org/10.1086/687855


Synthese (2024) 203:99

Chalmers, D. (1994). On implementing a computation. Minds and Machines, 4(4), 391–402. https://doi.
org/10.1007/BF00974166.

Chalmers, D. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science, 
12(1), 323–357.

Chirimuuta, M. (2014). Minimal models and canonical neural computations: The distinctness of com-
putational explanation in neuroscience. Synthese, 191(2), 127–153. https://doi.org/10.1007/
s11229-013-0369-y.

Chrisley, R. (1995). Why everything doesn’t realize every computation. Minds and Machines, 4, 403–430.
Coelho Mollo, D. (2018). Functional individuation, mechanistic implementation: The proper way of seeing 

the mechanistic view of concrete computation. Synthese, 195, 3477–3497. https://doi.org/10.1007/
s11229-017-1380.

Craver, C. (2007). Constitutive explanatory relevance. Journal of Philosophical Research, 32, 1–20. 
https://doi.org/10.5840/jpr_2007_4.

Craver, C. (2013). Functions and mechanisms: A perspectivalist account. In P. Huneman (Ed.), Functions: 
Selections and Mechanisms (pp. 133– 158). Dordrecht: Springer.

Dewhurst, J. (2018). Individuation without representation. British Journal for the Philosophy of Science, 
69(1), 103–116. https://doi.org/10.1093/bjps/axw018.

Elber-Dorozko, L., & Shagrir, O. (2018). Computation and levels in the cognitive and neural sciences. 
In M. Sprevak, & M. Colombo (Eds.), The Routledge Handbook of the computational mind (pp. 
205–225). Routledge. https://doi.org/10.4324/9781315643670.

Elber-Dorozko, L., & Shagrir, O. (2019). Integrating computation into the mechanistic hierarchy in the 
cognitive and neural sciences. Synthese. https://doi.org/10.1007/s11229-019-02230-9.

Fodor, J. (1981). Representations: Philosophical essays on the foundations of Cognitive Science. MIT 
Press. A Bradford Book.

Fresco, N. (2010). Explaining computation without semantics: Keeping it simple. Minds and Machines, 
20, 165–181. https://doi.org/10.1007/s11023-010-9199-6.

Fresco, N. (2014). Physical computation and Cognitive Science. Springer.
Fresco, N. (2021). Long-arm functional individuation of computation. Synthese, 199(6), 5. https://doi.

org/10.1007/s11229-021-03407-x.
Fresco, N., & Miłkowski, M. (2021). Mechanistic computational individuation without biting the bullet. 

British Journal for the Philosophy of Science, 72(2), 431–438.
Fuentes, J. (2023). Efficient mechanisms. Philosophical Psychology. https://doi.org/10.1080/09515089.2

023.2193216.
Garson, J. (2003). The introduction of information into Neurobiology. Philosophy of Science, 70(5), 926–

936. https://doi.org/10.1086/377378.
Godfrey-Smith, P. (2009). Abstractions, idealizations and evolutionary biology. In A. Barberousse, M. 

Morange, & T. Pradue (Eds.), Mapping the future of biology: Evolving concepts and theories. Boston 
studies in the philosophy of science (pp. 47–55). Springer.

Haimovici, S. (2013). A problem for the mechanistic account of Computation. Journal of Cognitive Sci-
ence, 14, 151–181.

Hutto, D., Myin, E., Peeters, A., & Zahnoun, F. (2019). The cognitive basis of computation: Putting Com-
putation back in its place. In M. Colombo, & M. Sprevak (Eds.), The Routledge Handbook of the 
computational mind (pp. 265–281). Routledge.

Jones, M. (2005). Idealization and abstraction: A framework. In M. Jones, & N. Cartwright (Eds.), Ideal-
ization XII: Correcting the model, idealization and abstraction in the sciences (pp. 173–217). Rodopi.

Kersten, L. (2017). A mechanistic account of wide computationalism. Review of Philosophy and Psychol-
ogy, 8(3), 501–517. https://doi.org/10.1007/s13164-016-0322-3.

Kersten, L. (2020). How to be concrete: Mechanistic computation and the abstraction problem. Philo-
sophical Explorations, 23(3), 251–266. https://doi.org/10.1080/13869795.2020.1799664.

Kuokkanen, J. (2022a). Vertical-horizontal distinction in resolving the abstraction, generality and hierar-
chy problems. Synthese, 200, 247. https://doi.org/10.1007/s11229-022-03725-8.

Kuokkanen, J. (2022b). No computation without implementation? A potential problem for the single hierar-
chy view of physical computation. Synthese, 200(370). https://doi.org/10.1007/s11229-022-03696-w.

Kuokkanen, J., & Rusanen, A. (2018). Making too many enemies: Hutto and Myin’s attack on Computa-
tionalism. Philosophical Explorations, 21(2), 282–294. https://doi.org/10.1080/13869795.2018.147
7980.

Lee, J. (2021). Mechanisms, wide functions, and content: Towards a Computationalism pluralism. British 
Journal for the Philosophy of Science, 72(1), 221–244.

1 3

99  Page 22 of 24

https://doi.org/10.1007/BF00974166
https://doi.org/10.1007/BF00974166
https://doi.org/10.1007/s11229-013-0369-y
https://doi.org/10.1007/s11229-013-0369-y
https://doi.org/10.1007/s11229-017-1380
https://doi.org/10.1007/s11229-017-1380
https://doi.org/10.5840/jpr_2007_4
https://doi.org/10.1093/bjps/axw018
https://doi.org/10.4324/9781315643670
https://doi.org/10.1007/s11229-019-02230-9
https://doi.org/10.1007/s11023-010-9199-6
https://doi.org/10.1007/s11229-021-03407-x
https://doi.org/10.1007/s11229-021-03407-x
https://doi.org/10.1080/09515089.2023.2193216
https://doi.org/10.1080/09515089.2023.2193216
https://doi.org/10.1086/377378
https://doi.org/10.1007/s13164-016-0322-3
https://doi.org/10.1080/13869795.2020.1799664
https://doi.org/10.1007/s11229-022-03725-8
https://doi.org/10.1007/s11229-022-03696-w
https://doi.org/10.1080/13869795.2018.1477980
https://doi.org/10.1080/13869795.2018.1477980


Synthese (2024) 203:99

Leigh, J., & Zee, D. (2006). The neurology of Eye Movements. Oxford University Press.
Maley, C. J. (forthcoming). Analogue computation and representation. The British Journal for the Philoso-

phy of Science. https://doi.org/10.1086/715031.
Miłkowski, M. (2013). Explaining the computational mind. MIT Press.
Miłkowski, M. (2015). Computational mechanism and models of Cognition. Philosophia Scientiae, 18(3), 

1–14.
Mäki, U. (1992). On the method of isolation in Economics. Poznan Studies in the Philosophy of the Sci-

ences and the Humanities, 26(4), 317–351.
Morrison, M. (2015). Reconstructing reality. Oxford University Press.
Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74, 501–526. https://doi.

org/10.1086/522851.
Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford University Press.
Piccinini, G. (2018). Computational mechanisms. In S. Glennan, & P. Illari (Eds.), The Routledge Hand-

book of mechanisms and Mechanical Philosophy (pp. 435–446). Routledge Taylor & Francis Group.
Piccinini, G. (2020). Neurocognitive mechanisms: Explaining Biological Cognition. Oxford University 

Press. https://doi.org/10.1093/oso/9780198866282.001.0001.
Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of Cognition. Cogni-

tive Science, 37(3), 453–488. https://doi.org/10.1111/cogs.2013.37.issue3.
Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mech-

anism sketches. Synthese, 183, 283–311.
Portides, D. (2018). Idealization and abstraction in scientific modeling. Synthese. https://doi.org/10.1007/

s11229-018-01919-7.
Putnam, H. (1975). The mental life of some machines. Mind, language and reality, philosophical papers, 

volume 2, (pp. 408– 28). Cambridge University Press: Cambridge.
Schweizer, P. (2019). Computation in Physical systems: A normative mapping account. In D. Berkich, & 

M. Vincenzo d’Alfonso (Eds.), On the cognitive, ethical, and scientific dimensions of Artificial Intel-
ligence (pp. 27–47). Philosophical Studies Series, Springer.

Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153, 393–416. https://doi.org/10.1007/
s11229-006-9099-8.

Shagrir, O. (2020). In defense of the semantic view of computation. Synthese, 197, 4083–4108.
Shagrir, O. (2022). The nature of physical computation. Oxford University Press.
Sprevak, M. (2010). Computation, Individuation and the received view on representation. Studies in the 

History of Philosophy of Science Part A, 41, 260–270.
Sprevak, M. (2012). Three challenges to Chalmers on computational implementation. Journal of Cognitive 

Science, 13, 107–143.
Sprevak, M. (2018). Triviality Arguments About Computational Implementation. In The Routledge 

Handbook of the Computational Mind, edited by M. Sprevak, and M. Colombo, 175– 191. London: 
Routledge.

Wajnerman Paz, A. (2017). Pluralistic mechanism. Theoria: Revista De Teoría. Historia y Fundamentos 
de la Ciencia, 32(2), 161–175.

Weisberg, M. (2007). Three kinds of idealization. Journal of Philosophy, 104(12), 639–659.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and appli-
cable law.

1 3

Page 23 of 24  99

https://doi.org/10.1086/715031
https://doi.org/10.1086/522851
https://doi.org/10.1086/522851
https://doi.org/10.1093/oso/9780198866282.001.0001
https://doi.org/10.1111/cogs.2013.37.issue3
https://doi.org/10.1007/s11229-018-01919-7
https://doi.org/10.1007/s11229-018-01919-7
https://doi.org/10.1007/s11229-006-9099-8
https://doi.org/10.1007/s11229-006-9099-8

	﻿An idealised account of mechanistic computation
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Three challenges
	﻿﻿2.1﻿ ﻿The abstraction problem
	﻿﻿2.2﻿ ﻿The generality problem
	﻿﻿2.3﻿ ﻿The hierarchy problem

	﻿3﻿ ﻿Computational description as horizontal abstraction
	﻿﻿3.1﻿ ﻿The limits of horizontal abstraction

	﻿4﻿ ﻿Computational description as idealisation
	﻿4.1﻿ ﻿The abstraction, generality, and the hierarchy problems: redux

	﻿5﻿ ﻿Mechanistic computation and information processing
	﻿6﻿ ﻿Conclusion
	﻿References


