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Abstract
In this paper, I argue that the Hole Argument can be formulated without using the
notion of isomorphism, and for this reason it is not threatened by the criticism of
Halvorson andManchak (Br J Philos Sci, 2022. https://doi.org/10.1086/719193). Fol-
lowing Earman and Norton (Br J Philos Sci 38, pp. 515–525, 1987), I divide the Hole
Argument into two steps: the proof of the Gauge Theorem and the transition from the
Gauge Theorem to the conclusion of radical indeterminism. In the analaysis of the
first step, I argue that the Gauge Theorem does not rely on the notion of isomorphism
but on the notion of the diffeomorphism-invariance of the equations of local spacetime
theories; however, for this approach to work, the definition of local spacetime theories
needs certain amendments with respect to Earman and Norton’s formulation. In the
analysis of the second step, I postulate that we should use the notion of radical indeter-
minism instead of indeterminism simpliciter and that we should not decide in advance
what kind of maps are to be used in comparing models. Instead, we can tentatively
choose some kind of maps for this purpose and check whether a given choice leads
to radical indeterminism involving empirically indistinguishable models. In this way,
the use of the notion of isomorphism is also avoided in the second step of the Hole
Argument. A general picture is that physical equivalence can be established by means
of an iterative procedure in which we examine various candidate classes of maps, and,
depending on the outcomes, we need to broaden or narrow these classes. The Hole
Argument can be viewed as a particular instance of this procedure.
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1 Introduction

The Hole Argument is one of the most important arguments in philosophical debates
about the significance of symmetries and about the (in)determinism of physical theo-
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ries. Different versions of the argument differ in terms of, among other things, what
conclusion the argument is supposed to support. Einstein, who first formulated the
Hole Argument, regarded it as an argument against the general covariance of the laws
of physics (but later abandoned it). The Hole Argument was reintroduced by Earman
and Norton (1987), this time as an argument against spacetime substantivalism. How-
ever, later some authors argued that certain kinds of substantivalism are not prone to
this argument (see, e.g., Brighouse, 1994; Hoefer, 1996; Pooley, 2006). In this paper,
I will consider the Hole Argument as an argument for the thesis that diffeomorphism-
related models (cf. Definition 4 in Sect. 2) of local spacetime theories represent the
same physically possible world without presupposing anything about the relation of
this thesis to spacetime substantivalism.

The aim of this paper is to analyse the recent challenge to the Hole Argument made
by Halvorson and Manchak (2022), who suggest that it crucially relies on the notion
of isomorphism and that among various possible readings of this notion in the context
of General Relativity (GR), none is suitable to underpin the Hole Argument. I will
argue that the Hole Argument can be expressed without ever mentioning the notion
of isomorphism, so whatever problems are related to this notion, they are not relevant
in assessing this argument. This is, I will claim, because of its dynamical nature: the
mathematical fact that underpins the Hole Argument is not that certain GRmodels are
isomorphic but that the dynamical equations of GR do not change their form under
diffeomorphisms.

The paper is organised as follows. In Sect. 2, certain terminological issues con-
cerning isomorphic, isometric and diffeomorphic models will be clarified. In Sect.
3, I will review in detail the Hole Argument as formulated by Earman and Norton.
It is divided into two steps: the proof of the Gauge Theorem (step 1, Sect. 3.1) and
the transition from the Gauge Theorem to the conclusion of radical indeterminism
(step 2, Sect. 3.2). In Sect. 4, I will sketch out Halvorson and Manchak’s criticism of
this argument. I will focus on the issue of where exactly in their view the notion of
isomorphism is needed in the Hole Argument. In Sect. 5, I will present the version
of the Hole Argument that does not use the notion of isomorphism at any point. This
requires certain precisifications of this argument with respect to Earman and Norton’s
version. First, in the formulation of the Gauge Theorem (i.e., step 1) we must restrict
their notion of local spacetime theories because the definition in Earman and Norton’s
paper is too broad. Second, instead of a fully developed definition of indeterminism,
we should rather use (in step 2) a partial definition of radical indeterminism that is
relativised to the choice of the kind of maps that serve as the standard of comparison of
models (which at the same time is a tentative proposal for the standard of their physical
equivalence). Then, by means of an iterative procedure, we can find what kind of maps
should be the mentioned standard, taking into account whether this particular choice
leads to radical indeterminism and what differences between models are empirically
detectable. In Sect. 6, some further details of the paper by Halvorson and Manchak
will be discussed in light of the approach presented in Sect. 5. Additionally, I will
discuss in this section an earlier objection to the Hole Argument due to Weatherall
(2018). Finally, Sect. 7 summarises the main points of this paper.
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2 Isomorphic models, isometric models and diffeomorphic models

The aim of this section is to clarify what could be meant by saying that two models are
isomorphic, isometric or diffeomorphic. Let us start with the notion of isomorphism.
I will define it in an abstract way:

Definition 1 Two models, M and M′, are isomorphic iff they have the same mathe-
matical structure.

This definition on its own does not provide us with a practical criterion for deciding
whether two given models are isomorphic. For this aim, we also need to specify the
mathematical structure of M and M′, which might be disputable. Sometimes, this
issue is approached in the reverse order: that is, for a given class of models, one
can specify which of them are isomorphic and which are not, and then define the
mathematical structure of the models in this class as whatever is left invariant by these
isomorphisms. However, one cannot have it both ways, that is, one cannot employ this
strategy and simultaneously use Definition 1, as this would be a vicious circle.

Let us now turn to the remaining two notions, which are more concrete. One can
define the meaning of the expression “models M and M′ are isometric” in the fol-
lowing two ways1:

Definition 2 (Isometric models, narrow sense) Two models, M = 〈M, gab, O2,

. . . , On〉 andM′ = 〈M, g′
ab, O

′
2, . . . , O

′
n〉, are isometric in the narrow sense iff there

is a diffeomorphism φ : M → M such that g′
ab = φ∗gab = gab.2

Definition 3 (Isometric models, broad sense) Two models, M = 〈M, gab, O2,

. . . , On〉 andM′ = 〈M ′, g′
ab, O

′
2, . . . , O

′
n〉, are isometric in the broad sense iff there

is a diffeomorphism φ : M → M ′ such that g′
ab = φ∗gab.

The expression “modelsM andM′ are diffeomorphic” is also used in two different
senses:

Definition 4 (Diffeomorphic models, narrow sense) Two models,M = 〈M, gab, O2,

. . . , On〉 andM′ = 〈M ′, g′
ab, O

′
2, . . . , O

′
n〉, are diffeomorphic in the narrow sense iff

there is a diffeomorphism φ : M → M ′ such that g′
ab = φ∗gab and O ′

i = φ∗Oi for
i = 2, . . . , n.

Definition 5 (Diffeomorphic models, broad sense) Two models, M = 〈M, gab, O2,

. . . , On〉 and M′ = 〈M ′, g′
ab, O

′
2, . . . , O

′
n〉, are diffeomorphic in the broad sense iff

there is a diffeomorphism φ : M → M ′.

Both senses of isometric models and diffeomorphic models can be found in the
literature (e.g., Definition 2 is used in Hawking & Ellis, 1973, p. 43 and Wald, 1984,
p. 438; Definition 3 is used in Butterfield, 1989, pp. 5–6; Halvorson&Manchak, 2022,

1 Similar definitions are in Menon and Read (2024, p. 8): their Isometry1 corresponds to my isometry in
the narrow sense, whereas their Isometry2 corresponds to my isometry in the broad sense. The difference
is that they consider only the case with M ′ = M .
2 We denote by φ∗O the pushforward of O by φ.
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Fig. 1 The relations between Definitions 2–5 (“A ⇒ B” means “being related by A implies being related
by B”). Notice that being related by a diffeomorphism in the broad sense is implied by all other relations,
whereas being related by an isometry in the narrow sense implies all other relations for models consisting
only of a differential manifold and a metric (but not in general)

p. 5; Hawking & Ellis, 1973, p. 56; Malament, 2012, p. 85; Roberts, 2020, p. 253 and
Weatherall, 2018, p. 335; Definition 4 is used in Earman & Norton, 1987, p. 520; and
Definition 5 is used in Halvorson & Manchak, 2022, p. 5).3

The relations between these notions are depicted in Fig. 1. If two models are iso-
metric in the narrow sense, then they are also isometric in the broad sense but not the
other way around; and if two models are diffeomorphic in the narrow sense, then they
are also diffeomorphic in the broad sense but not the other way around. If two models
consist only of a differential manifold and a metric (or they include some other objects
but these objects are uniquely determined by the metric), then their being isometric
in the broad sense is equivalent to their being diffeomorphic in the narrow sense.
However, if our models have a different form (i.e., they include other objects besides
the metric that are not uniquely determined by the metric, such as matter fields), then
their being isometric in the broad sense does not guarantee that they are diffeomorphic
in the narrow sense; for the same reason, their being isometric in the narrow sense
also does not guarantee that they are diffeomorphic in the narrow sense. Therefore,
I would prefer to use the notion of diffeomorphic models (in the sense of Definition
4) instead of isometric models because we are going to investigate the whole class of
theories, called local spacetime theories, themodels of which can have various forms.4

From now on, “diffeomorphic models” (or “diffeomorphism-related models”) without
further specification will be understood in the narrow sense of Definition 4.

3 Earman and Norton’s Gauge Theorem and their version of the Hole
Argument

In their formulation of the Hole Argument, Earman and Norton (1987) use a
very general concept of local spacetime theories. They define such theories by
means of their models. A model of a local spacetime theory is an (n + 1)-tuple
M = 〈M; O1, . . . , Ok−1; Ok, . . . , On〉, where M is a differential manifold and Oi

for i = 1, . . . , n are fields of geometric objects defined everywhere on M . For some

3 It must be noted that some of these authors speak about isometries or diffeomorphisms rather than
about models being isometric or diffeomorphic, but I take these two ways of speaking to be naturally
inter-translatable.
4 Butterfield (1989, p. 6) calls models that are diffeomorphic in the narrow sense “isomorphic”. However,
this is not suitable for our purposes, as I would like to use the word “isomorphic” in the abstract sense
of “having the same mathematical structure” (cf. Definition 1). It is a part of the debate what exactly this
structure is and what transformations preserve it, so we should not presuppose at the stage of the choice of
terminology what are the answers to these questions.
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k < n, the last n − k + 1 objects satisfy a further requirement of being tensor fields5;
the equations of the theory consist of the vanishing of these tensor fields, that is,
Ok = 0, . . . , On = 0. I will call these vanishing tensor fields the “LHSs of the
dynamical equations” of the theory (so I will assume that whenever we talk about
some dynamical equations, all their terms are moved to the left-hand side so that they
consist of equating the combination of these terms to zero).

An example of a local spacetime theory is GR, the models of which can be rep-
resented as M = 〈M; gab, O2, . . . , Ok−1;Gab − Tab, Ok+1, . . . , On〉, where gab is
a metric tensor (field), O2, . . . , Ok−1 are matter fields, Tab is a stress energy ten-
sor (field) of these matter fields and Gab is the Einstein tensor (field), expressed in
terms of gab and its derivatives. The equations of this theory are Einstein’s equations,
Gab − Tab = 0 (plus the equations for matter fields, Ok+1 = 0, . . . , On = 0).

It is often the case in the literature that instead of such full models, only “impover-
ished” models of the form 〈M, gab〉 are considered. This can be justified as follows:
matter fields are relevant for constraining the metric gab only via the stress energy
tensor Tab because it is this quantity that enters Einstein’s equations, so it is enough
to consider 〈M, gab, Tab〉; but when we have only gab and Tab in our models, we can
regard gab as fixed and Tab as determined uniquely by gab together with Einstein’s
equations, and therefore we can simplify our models even further to 〈M, gab〉. For
models of this form, there is no difference between being diffeomorphic in the narrow
sense (Definition 4) and being isometric in the broad sense (Definition 3). However,
there are serious conceptual problems with such a simplification. One of them is that
GR understood in this way loses its dynamical aspect: the metric is not constrained
by any dynamical equations, and the set of kinematically possible models is identical
with the set of dynamically possible models. Einstein’s equations appear only as a
definition(!) of the stress-energy tensor in terms of the metric. We also lose the idea,
expressed in a famous quote by Wheeler, that in GR “matter tells space how to curve
and curved space tells matter how to move”. There is no influence of matter on the
metric in the “〈M, gab〉” view of GR. While I do not deny that this simplification
might be helpful and valid for some purposes, using it in foundational investigations
might be misleading, and this concerns the Hole Argument in particular. Therefore,
I propose to stick with full models.6 It is worth noting that even in the vacuum case
we cannot disregard Tab: such-and-such metrics are vacuum solutions of GR because
they are solutions to Einstein’s equations with Tab = 0, so the stress-energy tensor
has a role to play even in determining the class of vacuum solutions.

Another popular simplification, however, is not harmful: the LHSs of the equations
do not need to be included explicitly in the model as additional objects, as Earman
and Norton did. Instead, one can just say that a theory has models of the form M =
〈M; O1, . . . , Ok−1〉 that satisfy equations Ok = 0, . . . , On = 0. As I will often refer

5 Tensor fields are smooth assignments of tensors to each point of M . One often uses the abbreviation
“tensors” for tensor fields, which is strictly speaking not correct but should not lead to any confusions as
from the context it is clear that what is meant is the assignment of tensors to the points of the manifold and
not tensors themselves.
6 The same stance is advocated by Menon and Read (2024, p. 5, footnote 7). I thank these authors for the
discussion about this issue.
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to the details of the paper by Earman and Norton (1987), I will stick with their
convention, but nothing hinges on this choice.

GR is not the only example of a local spacetime theory. Many other theories can
be formulated in this way: Special Relativity, all relativistic field theories and even
non-relativistic spacetime theories (for Special Relativity see, e.g., Pooley, 2017, pp.
120–121; for Newtonian Gravity see, e.g., Weatherall, 2017, pp. 17–21).

Given these background notions, in Sects. 3.1 and 3.2 I will formulate the Hole
Argument in detail. Following Earman and Norton, I will divide it into two steps: the
Gauge Theorem and its application to obtain the conclusion of radical indeterminism.

3.1 Step 1: the Gauge Theorem

The first step in the formulation of the Hole Argument is the following theorem by
Earman and Norton (1987, p. 520):

Theorem 1 (Gauge Theorem) IfM = 〈M; O1, . . . , On〉 is a model of a local space-
time theory T and φ : M → M is a diffeomorphism, then the carried along tuple
M′ = 〈M, φ∗O1, . . . , φ∗On〉 is also a model of T .

Models related by φ are diffeomorphic in the sense of Definition 4. I will present
the entire proof of this theorem because its details will be important for my assessment
of the objections against it. Let us assume that M is a model of T . Recall that in the
models of our theory T , the last n − k + 1 geometrical objects are the LHSs of the
dynamical equations of T . Therefore, M needs to satisfy the following equations:

Oi = 0 for i = k, . . . , n. (1)

These equations can be written in the coordinate form as7

(Oi )
m = 0 for i = k, . . . , n. (2)

To show that the transformed tensors φ∗Oi are also equal to zero, Earman and
Norton use the following trick. The new model M′ has been obtained by using the
diffeomorphismφ to transform geometric objects onM , leaving the coordinates intact.
However, we can also carry along the coordinate system {xm} in which Eq. (1) have
been written, obtaining

{xm′ } = {φ∗xm}. (3)

This expression means that xm
′
, which is an mth coordinate in the new coordinate

frame, is equal to the mth coordinate in the old coordinate frame transformed by φ∗.
Earman and Norton (1987, p. 520) observe that performing both active and passive
transformations on a geometrical object at the same time does not change it, so that the

7 I use the original notation of Earman and Norton’s paper, but it must be noted that it is simpli-
fied at this point, as Oi can have more than one index. Therefore, in general, equation (2) should be
(Oi )

m1...mq mq+1...mr = 0.
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components of any object in the old coordinate frame are the same as the components
of an actively transformed object in the new coordinate frame. In symbols,

(Oi )
m = (φ∗Oi )

m′
for i = k, . . . , n. (4)

By combining Eqs. (2) and (4), we get

(φ∗Oi )
m′ = 0 for i = k, . . . , n. (5)

The next crucial observation is that the last n − k + 1 objects in M are tensors.
This is important because tensors have a special property: if their components vanish
in one coordinate frame, then they vanish in any coordinate frame. Therefore, from
(5) it follows that

(φ∗Oi )
m = 0 for i = k, . . . , n (6)

because (φ∗Oi )
m are just (φ∗Oi )

m′
expressed in the old coordinate frame {xm}. In the

coordinate-free formulation, the equations are

φ∗Oi = 0 for i = k, . . . , n. (7)

However, this is precisely what we wanted to establish—namely, thatM′ satisfies
the same dynamical equations as M, so it is a model of the same theory T . At least,
this is what Earman and Norton conclude. I think that this conclusion is a bit too quick,
and more needs to be said about what it means that two equations are the same and
what conditions a local spacetime theory must satisfy for this conclusion to be valid
(see section 5.1).

3.2 Step 2: from the Gauge Theorem to radical indeterminism

Consider any local spacetime theory T and one of its models Mhole = 〈M, O1,

. . . , On〉. Choose a bounded region H ⊂ M and define the hole diffeomorphism
φ : M → M as follows: it acts as the identity outside of H but differs from the
identity within H (it needs to smoothly become the identity near the boundary of H ).
Now, consider a newmodelM′

hole = 〈M, φ∗O1, . . . , φ∗On〉. By the Gauge Theorem,
it is also a model of T . As the chosen region H could be arbitrarily small, the pair
of models M and M′ witnesses the (radical) indeterminism of T . In Earman and
Norton’s words (1987, p. 516):

In developing the dilemma, we shall see that the equations of these theories
are simply not sufficiently strong to determine uniquely all the spatio-temporal
properties to which the substantivalist is committed. The type of indetermin-
ism involved will be a very radical one indeed. Given some neighbourhood of
spacetime we shall see that these theories cannot uniquely determine the fields
within the neighbourhood from even the most exhaustive prescription of the
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fields outside of it. This is true no matter how small the neighbourhood. We have
christened this behaviour ‘radical local indeterminism’.

However, the conclusion of radical indeterminism is avoided if one assumes that
although Mhole and M′

hole differ mathematically, they do not differ physically, that
is, if one assumes that diffeomorphic models of the same local spacetime theory
are physically equivalent. Earman and Norton (1987, p. 522) call the principle that
“diffeomorphic models [of a given local spacetime theory] represent the same physi-
cal situation” Leibniz Equivalence. They assume that any substantivalist approach to
spacetime must reject this principle, and therefore view the Hole Argument as under-
mining spacetime substantivalism.However, subsequent developments in the literature
suggest that the connection between substantivalism and Leibniz Equivalence is more
subtle. The position called “sophisticated substantivalism” (Pooley, 2006) or “dynamic
structural realism” (Stachel, 2014) combines the assumption of the reality of space-
time points with Leibniz Equivalence by claiming that spacetime points lack primitive
identity. As declared earlier, I will not discuss the issue of substantivalism here and
focus solely on Leibniz Equivalence, 8

4 Halvorson andManchak’s criticism of the Hole Argument

Halvorson and Manchak (2022, p. 2) take the Hole Argument to have three main
ingredients: the assumption of substantivalism, certain mathematical facts and the
conclusion of “pernicious indeterminism” (called by Earman and Norton “radical
indeterminism”). They observe thatmost of the existing literature focused on clarifying
the first and the last ingredient—that is, what substantivalism exactly is and what it
means that a theory is (in)deterministic. In contrast, Halvorson and Manchak want to
focus on the second ingredient—that is, what mathematical facts are underlying the
Hole Argument. Their argumentative strategy is as follows (2022, p. 3):

It seems that there are two mathematical claims that might be relevant here. The
first claim is that there are distinct but isomorphic models. But that fact is not
strong enough to support the rest of the argument. The second claim is that there

8 It should be mentioned that Roberts (2020) recently challenged Earman and Norton’s view on the
relationship between Leibniz Equivalence and the Hole Argument. He distinguishes two versions of Leibniz
Equivalence, weak and strong. Weak Leibniz Equivalence states that “isomorphic mathematical structures
can each be used with equal accuracy to represent a given physical situation (though not necessarily at
once)”. Roberts observes that the weak version is irrelevant to the Hole Argument. The fact that Mhole
in one context can represent the same physical situation as M′

hole in a different context is irrelevant
for blocking radical indeterminism because the latter arises from the assumption that Mhole and M′

hole
represent different physical situations in the same context, which is fully consistent with Weak Leibniz
Equivalence. Strong Leibniz Equivalence states that “isomorphic mathematical structures can all be used
with equal accuracy to represent a given physical situation, at once”. The strong version is able to block
radical indeterminism but has counterexamples. However, all of Roberts’s counterexamples are such that at
least one of the models does not represent an entire possible world, so they do not undermine the validity
of Strong Leibniz Equivalence for models representing entire possible worlds. Here, I will understand
Leibniz Equivalence (formulated as in the main text, i.e., with “diffeomorphic” in place of “isomorphic”
and “represent” in place of “can be used to represent”) as a principle about models representing entire
possible worlds in which case, I think, it is valid and not threatened by Roberts’s argumentation. I hope to
analyse this issue at length elsewhere.
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are isomorphisms that only move elements inside a hole. But that claim, as we
show, is false.

This leads them to conclude that the Hole Argument is wrong because one cannot find
appropriate mathematical facts that could serve as the second ingredient.

Halvorson and Manchak’s analysis is based on the assumption that the notion of
isomorphism plays a central role in the Hole Argument (2022, p. 10).9 In their reading
of Earman and Norton, the notion of isomorphism is needed both to establish the
Gauge Theorem (which I called “step 1”; see Sect. 3.1) and to make the conclusion
about indeterminism (which I called “step 2”; see Sect. 3.2).

Concerning step 1, according to Halvorson and Manchak (2022, pp. 13–14), the
justification of the Gauge Theorem relies on the notion of isomorphism: M and M′
are regarded as models of the same theory because they are regarded as isomorphic.
Concerning step 2, it requires the precisification of the meaning of indeterminism.
According to Halvorson and Manchak (2022, p. 12), the notion of indeterminism can
be spelt out (using my notation, not theirs) in the following way:

Definition 6 (Indeterminism according to Halvorson and Manchak) A theory T is
indeterministic iff there are two models of T , M = 〈M; O1, . . . , On〉 and M′ =
〈M ′; O ′

1, . . . , O
′
n〉, such that there is a proper open subset O of M (where M \ O

contains some initial segment of M), and an isomorphism φ : M → M ′ that changes
things in O but not outside O .

This formulation is imprecise because we need to specify what it means that φ changes
(or does not change) things in O . For this purpose, we need the standard of comparison
for the pair of models M and M′—that is, another map that tells us which points in
the base manifold of M′ should be regarded as counterparts of which points in the
base manifold of M. Let us call this map ψ : M → M ′. Halvorson and Manchak
(2022, p. 13) advocate that this map should be an isomorphism. Then, the definition
of indeterminism becomes as follows:

Definition 7 (Indeterminism according to Halvorson and Manchak, more precise ver-
sion with isomorphism as the standard of comparison) A theory T is indeterministic
iff there are two models of T ,M = 〈M; O1, . . . , On〉 andM′ = 〈M ′; O ′

1, . . . , O
′
n〉,

such that there is a proper open subset O of M (where M \ O contains some ini-
tial segment of M), and isomorphisms ψ : M → M ′ and φ : M → M ′ such that
φ|M\O = ψ |M\O but φ|O 	= ψ |O .
Notice that there are two isomorphisms invoked byDefinition 7: the first isomorphism,
ψ , is the standard of comparison, whereas the second isomorphism, φ, is a map
that “generates” indeterminism (i.e., changes things in O but not outside O , where
“changing” and “not changing” are understood relative to ψ). Another option they
consider is that ψ should be the identity map 1 on M (Halvorson & Manchak, 2022,
p. 13), in which case the definition becomes10:

9 I assume that they use the word “isomorphism” in the sense of Definition 1.
10 Cf. Weatherall (2018), who disregards the choice of the identity map as the standard of comparison and
endorses the choice of isomorphisms in this role.
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Definition 8 (Indeterminism according to Halvorson and Manchak, more precise ver-
sion with the identity map as the standard of comparison) A theory T is indeterministic
iff there are two models of T , M = 〈M; O1, . . . , On〉 and M′ = 〈M; O ′

1, . . . , O
′
n〉,

such that there is a proper open subset O of M (where M \ O contains some initial
segment of M), and an isomorphism φ : M → M such that φ|M\O = 1|M\O but
φ|O 	= 1|O .
Observe that in contrast to Definition 7, Definition 8 can be formulated only formodels
with the same base manifold (i.e., M ′ = M).

To sum up, the notion of isomorphism appears two or three times in my recon-
struction of Halvorson and Manchak’s interpretation of Earman and Norton’s Hole
Argument: once in the justification of the Gauge Theorem and once or twice in the
definition of indeterminism (Definitions 7 or 8)—as a transformation between mod-
els that witnesses indeterminism (i.e., φ) and as the standard of comparison (i.e., ψ),
unless it is chosen to be the identity map. Having set the dispute in this way, Halvorson
and Manchak argue that no candidate for the notion of isomorphism of GR models is
suitable to play all these roles at the same time. For the sake of brevity, I will omit
the details of their argumentation because they are not important for my subsequent
analysis.

5 The two steps of the Hole Argument without the notion
of isomorphism

In this section, I will argue that Earman and Norton’s Gauge Theorem and the Hole
Argument (or at least their slightly modified versions) can be formulated without
using the notion of isomorphism. If I am right, then the criticism of Halvorson and
Manchak does not have any bearing on the validity of this argument. In particular, the
issue of what is the proper notion of isomorphism for GR models is irrelevant for the
assessment of the Hole Argument understood in this way.

5.1 The notion of isomorphism is not needed for step 1 of the Hole Argument

In Sect. 3.1, I presented a detailed proof of Earman and Norton’s Gauge Theorem.
Halvorson and Manchak suggest that the notion of isomorphism is indispensable in
the proof of the Gauge Theorem, but one can see that in Sect. 3.1 this notion was
not used even once. The claim that “if M is a model of a theory T , then M′ is also
a model of T ” is justified by Earman and Norton not by appealing to M and M′
being isomorphic but by the fact that they satisfy the same dynamical equations.11

11 Menon andRead (2024) argue independently for this claim,which they phrase in a different but arguably
equivalent way: “the real physical content of general covariance is contained in the fact that solutionhood is
preserved under diffeomorphisms, not merely that some diffeomorphisms are isometries” (Menon & Read,
2024, p. 5, footnote 7). Landsman (2023) also understands the Hole Argument dynamically. He relates
it to the theorem of Choquet-Bruhat and Geroch (1969) about the existence and uniqueness of globally
hyperbolic solutions to the Einstein field equations. As I use the concept of radical indeterminism instead of
indeterminism defined as the existence of distinct solutions with the same initial data on a Cauchy surface
(see Sect. 5.2), my approach also applies to solutions that are not globally hyperbolic.
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The assumption that the last n − k + 1 objects12 (i.e., Ok, . . . , On) are tensor fields is
used in the transition from (5) to (6), but the property of tensor fields that is exploited
here is not that diffeomorphisms are their isomorphisms but that if their components
vanish in one coordinate frame, then they vanish in any coordinate frame (which is
independent of any claims about which transformations are isomorphisms of tensor
fields). Therefore, the crucial notion in the Gauge Theorem is that of the dynamical
equations of a theory and not the isomorphisms of its models.

However, there is a significant subtlety here, whichwill ultimately lead us to amodi-
fication of the notion of local spacetime theory. Even granting the above explanations,
one could have the following worry. The Gauge Theorem relies on the assumption
that Eqs. (1) and (7) are the same equations. However, it has not been made explicit
which criterion of the identity of equations is used here. One candidate would be the
isomorphism of the tensor fields that appear on the LHS of these equations. Under this
approach, Eqs. (1) and (7) are said to be the same because Oi and φ∗Oi are isomorphic
(for i = k, . . . , n). However, this approach is not available to us, as it smuggles the
notion of isomorphism through the back door.

Another candidate for the identity criterion for equations uses the notion of the
(functional) form of equations. Let us begin with a simple example. The equations of
the Newtonian mechanics of n pointlike particles with gravity as the only force are as
follows:

mi
d2

dt2

xi (t) −

∑

j 	=i

Gmim j

xi (t) − 
x j (t)

|
xi (t) − 
x j (t)|3 = 0, (8)

where i, j = 1, . . . , n.
It is well known that these equations are invariant under the symmetries of the

Galilean group. I will present the idea of the form of equations using the simplest of
these symmetries—namely, translations in space. Translations in space amount to a
change of the spatial variable 
x �→ 
x ′ = 
x + 
a, where 
a is some fixed spatial vector.
This transformation acts on the first term in (8) as follows:

mi
d2

dt2
(
x ′

i (t)) = mi
d2

dt2
(
xi (t) + 
a) = mi

d2

dt2

xi (t) + mi

d2

dt2

a = mi

d2

dt2

xi (t), (9)

whereas on the second term in (8) it acts as follows:

∑

j 	=i

Gmim j

x ′
i (t) − 
x ′

j (t)

|
x ′
i (t) − 
x ′

j (t)|3
=

∑

j 	=i

Gmim j
(
xi (t) − 
a) − (
x j (t) − 
a)

|(
xi (t) − 
a) − (
x j (t) − 
a)|3

=
∑

j 	=i

Gmim j

xi (t) − 
x j (t)

|
xi (t) − 
x j (t)|3 .

(10)

From (9) and (10), it follows that whenever (8) is satisfied, the following “primed”
equation is also satisfied:

12 See the beginning of Sect. 3 for the meaning of the division of {O1, . . . , On} into two classes.
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mi
d2

dt2

x ′
i (t) −

∑

j 	=i

Gmim j

x ′
i (t) − 
x ′

j (t)

|
x ′
i (t) − 
x ′

j (t)|3
= 0. (11)

The crucial observation here is that Eqs. (8) and (11) have the same form: (11) is just
(8) with 
xi replaced by 
x ′

i and 
x j replaced by 
x ′
j . This is often taken as the defining

feature of a symmetry: the claim that spatial translations are symmetries of the New-
tonian mechanics of n pointlike particles can be understood as the claim that spatial
translations do not change the form of the equations of this theory (and analogously
for other symmetries; see, e.g., Brading & Castellani, 2007, pp. 1342–1343; Giulini,
2007, p. 108; Saunders, 2003, p. 299; cf. Pooley, 2017, pp. 114–120). This is some-
times called the “covariance” or “form-invariance” of the dynamical equations under
symmetries (although these terms are also used with other meanings).13

One should distinguish here between two seemingly similar claims, one trivial
and the other nontrivial. The trivial claim is that if we replace in the LHS of (8) all
occurrences of 
x by 
x ′, then we will obtain the LHS of (11), so such a replacement
transforms the LHS of (8) into an expression of the same form. This trivial claim
holds no matter what the relation is between 
x and 
x ′ (and even if they are entirely
unrelated). In contrast, the nontrivial claim is that whenever equation (8) holds for 
x ,
the equation of the same form holds for 
x ′ = 
x + 
a. This nontrivial claim is true only
for very special choices of 
x ′.14 For example, if we had chosen 
x ′ = 
x + 
a(t), then
we would get an additional term mi

d2

dt2

a(t) in (9), so that equation (11) would follow

from (8) only if d2

dt2

a(t) = 0 (i.e., 
a = 
a1t + 
a2), which is a restrictive constraint on


a(t). For other choices of 
a(t), equation (11) would simply not follow from (8).
What does the form-invarianceof equations look like in the case ofGR?Consider the

Einstein tensor. It is a function of themetric as well as its first and second derivatives—
schematically, Gab(gab, ∂gab, ∂2gab). Again, one should distinguish between two
seemingly similar claims, one trivial and the other nontrivial. The trivial claim is that if
we replace inGab(gab, ∂gab, ∂2gab) all occurrences of gab by g′

ab, then wewill obtain
Gab(g′

ab, ∂g
′
ab, ∂

2 g′
ab), so such a replacement transforms Gab(gab, ∂gab, ∂2gab) into

an expression of the same form. This trivial claim holds no matter what the relation
between gab and g′

ab is (and even if they are completely unrelated). In contrast, the
nontrivial claim is that φ∗Gab(gab, ∂gab, ∂2gab) = Gab(φ∗gab, ∂φ∗gab, ∂2φ∗gab), as
it depends on the details of the functional form of Gab and on φ being a diffeomor-

13 It might happen that the relation of having the same mathematical structure (i.e., of being isomorphic)
and being related by the transformation that does not change the form of the dynamical equations of the
theory (i.e., being symmetry-related) coincide extensionally (i.e., two models are related by one of them iff
they are related by the other), but (i) this is not always the case (cf. the last paragraph of Sect. 7) and (ii) even
if this is the case, the two relations are still conceptually different, despite having the same extension. If we
adopt a liberal understanding of isomorphisms from category theory, then there will always be a category
of models such that the symmetries of a theory count as isomorphisms (cf. Dewar 2019). However, this is
not the reason why symmetries are distinguished, as there might also be other categories involving the same
set of models but with a different choice of isomorphisms. The reason why symmetries are distinguished is
their connection to the dynamical laws of the theory.
14 And it is true because of the special features of Eq. (8): in the first term, the addition of constant 
a is
cancelled out by the derivation, whereas in the second term it is cancelled out by taking a difference.
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phism. The nontriviality comes from the fact that this does not hold for all functions
of the metric and its derivatives but only for special ones, such as Gab.

More generally, for any local spacetime theory, the form-invariance of Oi ’s (for
i = k, . . . , n), understood as functions of geometric objects O1, . . . , Ok−1 and their
derivatives, under diffeomorphisms means that for any diffeomorphism φ,

φ∗Oi

(
O1, . . . , Ok−1,

∂

∂x1
O1, . . . ,

∂

∂xN
O1, . . . ,

∂

∂x1
Ok−1, . . . ,

∂

∂xN
Ok−1, . . . ,

∂N

∂x1 . . . ∂xN
O1, . . . ,

∂N

∂x1 . . . ∂xN
Ok−1

)

Oi

(
φ∗O1, . . . , φ∗Ok−1,

∂

∂x1
φ∗O1, . . . ,

∂

∂xN
φ∗O1, . . . ,

∂

∂x1
φ∗Ok−1, . . . ,

∂

∂xN
φ∗Ok−1, . . . ,

∂N

∂x1 . . . ∂xN
φ∗O1, . . . ,

∂N

∂x1 . . . ∂xN
φ∗Ok−1

)
.

(12)

Similarly, the form-invariance of the equations of a local spacetime theory means that
whenever

Oi

(
O1, . . . , Ok−1,

∂

∂x1
O1, . . . ,

∂

∂xN
O1, . . . ,

∂

∂x1
Ok−1, . . . ,

∂

∂xN
Ok−1,

. . . ,

∂N

∂x1 . . . ∂xN
O1, . . . ,

∂N

∂x1 . . . ∂xN
Ok−1

)
= 0 (13)

holds for i = k, . . . , n, then also

Oi

(
φ∗O1, . . . , φ∗Ok−1,

∂

∂x1
φ∗O1, . . . ,

∂

∂xN
φ∗O1, . . . ,

∂

∂x1
φ∗Ok−1, . . . ,

∂

∂xN
φ∗Ok−1,

. . . ,

∂N

∂x1 . . . ∂xN
φ∗O1, . . . ,

∂N

∂x1 . . . ∂xN
φ∗Ok−1

)
= 0 (14)

holds for i = k, . . . , n. This follows from the form-invariance of the LHSs of these
equations, given by (12).
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The above considerations suggest that for the Hole Argument to work, we need a
modification of Earman and Norton’s notion of local spacetime theory. To its charac-
teristics reviewed in Sect. 3, one should add the following conditions:

• The last n−k+1 objects (i.e., Ok, . . . , On), which are the LHSs of the dynamical
equations of the theory, are functions of O1, . . . , Ok−1 and their derivatives.

• Ok, . . . , On (as functions of O1, . . . , Ok−1 and their derivatives) are form-
invariant under diffeomorphisms.

• Two models M and M′ are models of the same theory iff they involve the same
number of geometric objects of each type (e.g., if Oi is a vector field, then O ′

i is
also a vector field) and their dynamical equations have the same form. 15

In the original characterisation of local spacetime theories by Earman and Norton,
nothing is said about Ok, . . . , On other than that they are tensors. However, this is not
enough for our purposes. For these tensors to be the LHSs of the equations of a theory,
they need to put some constraints on the behaviour of other objects that appear in
the models of this theory (i.e., O1, . . . , Ok−1), which is where the first new condition
comes from. Once their functional form is identified, one can talk meaningfully about
the invariance of this form under diffeomorphisms, which is the subject of the second
condition. 16 Finally, all models of the theory should satisfy the same dynamical
equations, where “the same” is understood as “having the same form” (which is not an
arbitrary reading of “the same” because equations of the same form can be regarded
as just the same equation written in a different notation).

One can ask how restrictive our additional conditions on local spacetime theories
are. Consider the example that is of the foremost importance in the discussions about
the Hole Argument—namely GR. GR is a local spacetime theory not only in Earman
and Norton’s broader sense reviewed in Sect. 3 but also in our more constrained sense.
This is because Gab is a function of the metric gab together with its first and second
derivatives, and Gab and Tab do not change their form under diffeomorphisms. The
latter means that whenever gab satisfies Einstein’s equationsGab−Tab = 0, the trans-
formedmetric g′

ab satisfies the equations of the same form but with gab replaced by g′
ab

in all its occurrences (both inGab and Tab) and Oi replaced by O ′
i for i = 2, . . . , k−1

in all their occurrences. The same is true for the diffeomorphic-invariant formulation
of Special Relativity (see, e.g., Pooley, 2017, pp. 120–121) because there the LHS of
the dynamical equations is the Riemann curvature tensor, which is diffeomorphism-
invariant. To tackle this issue more generally, we would need to know whether any

15 Instead of this condition, Earman and Norton (1987, p. 517) have only the completeness condition,
according to which if a local spacetime theory T has models of a certain form that satisfy certain equations,
then any model of this form that satisfies these equations is also a model of T . However, this does not
exclude that T also has models of different form or satisfying different equations, which I think should be
excluded.
16 One can object that if we assume the diffeomorphism-invariance of the equations at the outset, the
intermediary steps in the proof in Sect. 3.1 are redundant, as we could have moved straight from (1) to
(7). The validity of this objection depends on what exactly is assumed to be diffeomorphism-invariant: the
equations of the theory or the tensors Ok , . . . , On . If the former, then these intermediary steps are indeed
not needed, but if the latter, then these steps are indispensable, as from the fact that φ∗Oi has the same
form as Oi (for i = k, . . . , n) it does not automatically follow that whenever Ok = 0, . . . , On = 0 holds,
φ∗Ok = 0, . . . , φ∗On = 0 also holds. In the main text, the latter variant is chosen.
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tensor that is a function of some geometric objects and their derivatives is form-
invariant under diffeomorphisms. If this is so, then Earman and Norton’s definition of
local spacetime theories together with my first and third conditions entail the second
condition, so it does not add any genuinely new constraint. However, I am not aware
of any proof that this is indeed true.

5.2 The notion of isomorphism is not needed for step 2 of the Hole Argument

According to Halvorson and Manchak, to define indeterminism precisely, we need to
use the notion of isomorphism at least once (Definition 6) and perhaps even twice
(Definition 7). If they are right, then step 2 of the Hole Argument relies on the notion
of isomorphism; but I will argue that this is not the case.

It seems that to decide whether two models related by a hole diffeomorphism are a
witness of indeterminism, we should define precisely the notions of determinism and
indeterminism. However, this task is beset with difficulties. A general idea of indeter-
minism (as formulated for physical theories) is that twomodels of a theory are awitness
of indeterminism iff they agree on some (sufficiently large) region but disagree else-
where. Tomake this precise, one should clarify what “agreement” and “disagreement”
mean in this context and specify what kind of “sufficiently large regions” should be
taken into account. Starting with the second issue, let us call such regions “S-regions”.
An idea explored in the mathematical physics literature is that S-regions should be
Cauchy surfaces (see, e.g., Choquet-Bruhat & Geroch, 1969; Ringström, 2009; cf.
Landsman, 2023), but this option is available only for globally hyperbolic models of
GR, which form a proper subclass of all models of GR. This is especially problematic
because there are good candidates for witnesses of the indeterminism of GR that are
not globally hyperbolic (see, e.g., Doboszewski, 2017, 2019). Another idea is to use a
family of notions of (in)determinism, one for each choice of S-regions (see, e.g., But-
terfield, 1989, pp. 7–9 and Doboszewski, 2017, pp. 10–11, who define S-determinism
instead of determinism simpliciter).

Fortunately, the family of models generated by hole diffeomorphisms from some
given modelM is so specific that it would count as a witness of indeterminism for all
reasonable definitions of this notion. This is because the hole diffeomorphism can be
defined nomatter how small the “hole”.17 Therefore, nomatter how large the S-regions
are, there will always be a hole diffeomorphism that is the identity on some S-region
and is different from the identity elsewhere, which is why this kind of indeterminism
has been termed “radical” by Earman and Norton.18 What is more, we do not even
need the full definition of radical indeterminism here—it suffices that we provide a
partial definition (which specifies a sufficient condition for radical indeterminism), as
long as it is satisfied in all cases of interest.

17 By the “hole” I do not mean here the region without matter (as was the case in Einstein’s original
formulation of the Hole Argument) but just the region on which a given hole diffeomorphism is not the
identity map.
18 Observe that among other differences between indeterminism and radical indeterminism, there is this
one: an instance of the former is a pair of models, whereas an instance of the latter is a family of models
such that one of them is the “original” model and the others are generated from it by applying to it hole
diffeomorphisms with various possible choices of the “hole”.
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Another problem is how to tell whether two models (or their parts) “agree” or
“disagree”—that is, whether they are (physically) equivalent. Weatherall (2018) uses
the notion of the “standard of sameness” or “standard of comparison”; the latter term is
also adopted byHalvorson andManchak. The standard of comparison is a kind ofmaps
K that determine which points in a givenmodel should be compared with which points
in another model in assessing whether these two models are the same or different.19

If there is no map of kind K between two models, then they are surely different; but if
there is a map of kind K between two models, then in comparing these models point
by point we should use this map. The problem is that it seems that we should decide in
advance what is the standard of comparison before we even start assessing whether a
class of models is an instance of radical indeterminism and this choice has significant
influence on our verdict. According to Weatherall and Halvorson and Manchak, the
notion of isomorphism is crucial here because for each theory, the isomorphisms of
its models should serve as the standard of comparison. However, as I will argue, the
impression that we need to choose in advance the kind of maps K that serve as the
standard of comparison iswrong. Finding K is a part of our task of analysing the theory
instead of being the starting point of such an analysis, and the Hole Argument has a
role to play in finding K for local spacetime theories. What we can do is to choose K
tentatively and see what the consequences of a given choice are; and if some choice
has unfavourable consequences, we should try another one. For this purpose, we can
relativise our partial definition of radical indeterminism to the choice of the kind of
maps K that serve as the standard of comparison between models of a given theory.

What is the meaning of this choice of the standard of comparison between models?
I think that it should always be regarded as a tentative proposal (i.e., a candidate)
for the relation of physical equivalence. This is because we are not interested here
in models of a given theory as abstract mathematical entities but as representations
of physical possibilities. If we choose as our standard of comparison a kind of maps
K , then models that do not differ as compared by a map of kind K would count
as the same relative to this choice; but this choice would be inappropriate in the
context of physics if the equivalence according to maps of kind K did not coincide
with physical equivalence. Therefore, the standard of comparison of models and the
standard of physical equivalence should be thought of as two aspects of the same
notion. 20 However, this does not mean that by tentatively choosing a certain kind K ,
we thereby settle the issue of which models are physically equivalent. This is only a

19 This is similar to the idea of counterparts in Lewisian modal metaphysics (cf. Lewis, 1968). However,
our question also makes sense outside the context of Lewis’s philosophy, as it concerns models rather than
possible worlds, and the former do not need to be in one-to-one correspondence to the latter. In fact, once we
decide on the standard of comparison, we can regard models that are the same according to it as representing
the same possible world.
20 Gomes and Butterfield (2023) argue that there does not exist a single kind of maps that should be used
to compare spacetime points in all situations. They give examples of contexts in which points are compared
bymeans of a map that is not an isomorphism (the definition of the Lie derivative, Noether’s second theorem
and limits of spacetimes). However, I think that their observations do not undermine the claim that there
exists a single kind of maps that should be used to compare models when our aim is to establish their
physical equivalence; this is consistent with other kinds of maps being validly used to compare models for
other purposes. Therefore, I take it that their claims are not in tension with the suggestion in the main text
that for any theory there exists a single kind of maps that is the right standard of comparison (in this sense,
related to physical equivalence), and one of our aims in interpreting this theory is to find it.
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tentative proposal put forward for investigation, and whether a given choice of K is
accurate depends on the nature of the physical world and not on our conventions.

I would like to propose the following partial definition of radical indeterminism of
a theory relative to maps of kind K :21,22

Definition 9 (Partial definition of radical indeterminism relative to maps of kind K )
If a theory T has a model M = 〈M; O1, . . . , On〉 such that there exists an infinite
series of regions of M , H0 � H1 � H2 � . . ., such that (i) for any ε > 0, there
exists Hj that is included in an open ball with a diameter ε or smaller, 23 and (ii) for
any Hj , there exists another model of T ,M′ = 〈M; O ′

1, . . . , O
′
n〉, with the following

properties:

(1) there is a map between these models, φ : M → M , such that φ |M\Hj is a map of
kind K ,

(2) but there is no map of kind K between these models (i.e., on the whole M),

then T is radically indeterministic relative to maps of kind K .

This definition expresses the following intuition: the radical indeterminism of a
theory means that no matter how large is the subset of M on which we specify the
values of physical quantities (i.e., no matter how large is M \ Hj ), this would be not
sufficient to determine the values of those quantities on the entire M . Importantly,
this definition is relative to the choice of K , so the same theory might be radically
indeterministic under some choices of K but not under others.

Earman and Norton’s version of the Hole Argument can be conceived as using the
above partial definition of radical indeterminism with the full identity as K (where
the difference between the full identity and the standard identity map is that the latter
preserves only points of the manifold, whereas the former also preserves all geometric
objects at these points). For this choice of K , the above partial definition becomes:

21 This definition is to some extent similar to Butterfield’s (1989) definition of determinism Dm2 in that
it involves two maps, the first of which relates the corresponding regions of two models and the second of
which relates the two models taken as wholes. In contrast, it is significantly different from Definition 7 used
by Halvorson and Manchak (see Sect. 6).
22 It has been suggested to me that such a relativisation of the notion of indeterminism to the choice of
K is problematic because indeterminism is supposed to be a metaphysical notion. Although I agree with
classifying this notion as metaphysical, I also assume that the only possible way of answering the question
of whether our world is (in)deterministic is by examining the question of whether our physical theories
are (in)deterministic. As it turns out, the interpretation of these theories is often not straightforward; in
particular, from the bare formalism of a theory it does not follow which states should be regarded as
physically equivalent and which not, which is of pivotal importance for our question. Therefore, I propose
to proceed by examining various candidates for the relation of physical equivalence between the states
instead of choosing one of them in advance; the consequences of each choice should help us to decide
which of them is the most plausible one. In this approach, the questions of indeterminism and of physical
equivalence (which are both metaphysical and not purely formal) are considered jointly and not one before
the other.
23 This condition captures the idea that a hole can be chosen to be arbitrarily small. We define ε in terms of
a metric. Alternatively, we can postulate that the series {Hj } converges to an empty set, in which case we
can express condition (i) using only topology, without referring to a metric. Despite the fact that the limit
of this series (defined topologically) is an empty set, every element of it is a region, which I take to be by
definition non-empty; therefore, for every Hj , two models differing on Hj , M and M′, will always have
different values of geometric object fields at some points of M .
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Definition 10 (Partial definition of radical indeterminism relative to the full identity)
If a theory T has a model M = 〈M; O1, . . . , On〉 such that there exists an infinite
series of regions of M , H0 � H1 � H2 � . . ., such that (i) for any ε > 0, there
exists Hj that is included in an open ball with a diameter ε or smaller, and (ii) for
any Hj , there exists another model of T ,M′ = 〈M; O ′

1, . . . , O
′
n〉, with the following

properties:

(1) there is a map between these models, φ : M → M , such that φ |M\Hj is the full
identity (i.e., for any p ∈ M \ Hj , φ(p) = p and O ′

i |M\Hj = φ∗Oi |M\Hj =
Oi |M\Hj for i = 1, . . . , n),

(2) but there is no full identity map between these models (i.e., there is no map φ :
M → M such that for any p ∈ M , φ(p) = p and O ′

i = φ∗Oi = Oi for
i = 1, . . . , n),

then T is radically indeterministic relative to the full identity.

To see that Definition 10 is satisfied in the case considered by Earman and Norton, it
suffices to consider, as they originally did, a series of “holes” {Hj } and, for each hole
Hj , a diffeomorphism φ that is the identity on M \ Hj and is not the identity on Hj .
This diffeomorphism φ can be used to generate a modelM′ from a given modelM.24

Since the restriction of φ to M \ Hj is the full identity, condition (1) of Definition 10
is satisfied; and since there is no full identity between M and M′, condition (2) is
also satisfied. It should be noted that even if the metric is the same at every point of
M , a non-trivial hole diffeomorphism can be constructed (see Example 1 in Manchak
& Barrett, 2023 for such a construction for Minkowski spacetime).

If usingDefinition 9 relative to K weobtain the conclusion of radical indeterminism,
we might wish to change our choice of the kind of maps that serve as the standard of
comparison of models (call this new choice K ′), so that the models witnessing radical
indeterminism relative to K would count as physically equivalent in light of K ′. This
K ′ should be chosen so that K ⊆ K ′, and the maps that have been used to generate
witnesses of radical indeterminism should also belong to K ′ (otherwise, we would
still retain the same witnesses of radical indeterminism, which is what we wanted
to eliminate). However, we are not forced to reach this conclusion. In particular, if
we know that models M and M′ are empirically inequivalent (that is, they can be
distinguished by some observation or experiment), then we surely should not regard
them as physically equivalent. In such a case, radical indeterminism would need to be

24 The word “generate” might misleadingly suggest that in this way we create a new model, which previ-
ously was not there. However, this should rather be seen as a way of investigating the class of models of a
given theory, which is determined by the theory’s equations. Therefore, by applying a diffeomorphism to a
given modelM and generating in this way a new modelM′, we do not add anything to the class of models
of the theory but only discover that it has such diffeomorphism-related models. For this reason, I do not
think that one can “block” the Hole Argument before it starts by hypothesising that the hole diffeomorphism
is a mathematical operation without physical significance and as such should not be performed on models
(see Curiel, 2018, pp. 452–453). We (as researchers) can stop the activity of applying diffeomorphisms to
already known models of the theory, but this would not prevent the existence of diffeomorphism-related
models in the class of all models of this theory.
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regarded as an empirical hypothesis and not a methodological vice of our theory.25

Perhaps there might also be other obstacles to regarding such models as physically
equivalent, even if they are empirically equivalent.26 However, if there are no such
obstacles, the overall conclusion of the argument is that models related by maps of
kind K ′ are physically equivalent. The above reasoning might, of course, be repeated
for our new choice of the standard of comparison K ′. If it turns out that our theory
is still radically indeterministic relative to K ′, we should change K ′ to another kind
of maps K ′′ (provided that there are no obstacles to doing this, such as the empirical
inequivalence of two models related by a map of kind K ′′) and so on until we do not
encounter any new witnesses of radical indeterminism. Therefore, our reasoning here
is iterative and is an instance of a broader philosophical idea of reflective equilibrium.

The notion of isomorphism does not occur in the above reasoning. This (together
with the results of Sect. 5.1) establishes the claim that appears in the title of this paper:
namely, that the Hole Argument does not (or at least does not need to) rely on this
notion. However, one can worry that even though the notion of isomorphism is not
used explicitly in our reasoning, perhaps it is invoked there implicitly. For example, the
following objection has been raised to my approach. The mere fact that in addition to
the original modelM the laws of the theory allow another modelM′ does not in itself
show that this theory is indeterministic—having more than one model is not enough
for indeterminism. In addition, one needs to specify the relation between M andM′
that makes this pair of models a witness of indeterminism, and this—the argument
goes—cannot be done without referring to the notion of isomorphism.

The two features of my formulation of the Hole Argument that are crucial for seeing
that we do not need the notion of isomorphism here is its reliance on the notion of
physical equivalence and its iterative nature. According to Definition 9, the relation
that makes a pair of models a witness of indeterminism is the existence of a map of
kind K between proper parts of M and M′ together with the non-existence of any
map of kind K between M and M′ (taken as wholes). Since maps of kind K are
taken (tentatively) at a given stage of our iterative procedure as a standard of physical
equivalence, this means that proper parts of M and M′ are physically equivalent in
light of this standard, whereas M and M′ are not physically equivalent in light of
this standard. If for arbitrarily large proper parts of M one can find such M′, then

25 For this reason, I think that the two dilemmas that Earman andNorton present as two separatemotivations
for regarding models related by a hole diffeomorphism as physically equivalent (i.e., the verificationist
dilemma and the indeterminism dilemma) are not in fact independent: the radical indeterminism that arises
in the Hole Argument (which is the subject of the indeterminism dilemma) is methodologically problematic
because the models that are its witnesses are empirically indistinguishable (which is the subject of the
verificationist dilemma). At this point, I disagree with Pooley and Read (2021), who want to separate
what they call the “underdetermination version of the argument” and the “indeterminism version of the
argument” (closely corresponding to Earman and Norton’s two dilemmas). I think that even though we
do not need (empirical) underdetermination to establish (radical) indeterminism, in the absence of such
underdetermination, this indeterminismwould be just an empirical hypothesis and not something inherently
problematic. If this empirical hypothesis found no support in our observations and experiments, then this,
I think, would be a sign that our theory (rather than its interpretation) is wrong and that we should look for
a different one (with different dynamical equations).
26 For example, Møller-Nielsen (2017) suggests that two models should be regarded as physically equiv-
alent only if there is available a perspicuous account of their shared ontology—their empirical equivalence
is not sufficient.
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the theory under consideration is said to be radically indeterministic. Therefore, for
radical indeterminism we require much more than just the existence of two models of
the same dynamical equations—they need to be related in a particular way, which is
defined in terms of maps of kind K . Importantly, the notion of physical equivalence is
not the notion of isomorphism in disguise: at any stage of our iterative procedure we
may consider maps that are not mathematical isomorphisms of the theory’s models,
and there is no guarantee that at the end of this procedure K will coincide with the
class of such isomorphisms. Since the procedure is iterative, we are not presupposing
that a given kind of maps K coincides with the actual physical equivalence relation:
we tentatively choose some K , investigate what are the consequences of this choice
(among which there might be the radical indeterminism of our theory relative to K ),
and then, on this basis, we adjust our choice.

A general picture that emerges from these considerations is that physical equiv-
alence can be established by means of an iterative procedure in which we examine
various candidate classes of maps, and, depending on the outcomes, we may need to
broaden or narrow these classes. The exact criteria that should be used in assessing
the proposed kinds of maps are a matter of debate. In this paper, one such criterion
has been spelled out: if for a given K our theory T turns out to be radically inde-
terministic relative to K in the sense of Definition 9 and models related by maps of
kind K are empirically indistinguishable, then this is a reason to replace K with some
K ′ such that K � K ′ and such that the family of models that is a witness of radical
indeterminism is no longer a witness of radical indeterminism of T relative to K ′.27
In this iterative procedure, it might also turn out that K is too broad a class of maps.
For example, if models related by K are empirically distinguishable, then we need
to choose a narrower class, while taking into account the outcomes of previous steps
(in order to avoid restoring the previously eliminated cases of radical indeterminism).
The Hole Argument can be viewed as a particular instance of this procedure, where
T is GR (or any local spacetime theory) and K is the full identity.28

Why not just choose K at the very beginning to be the class of maps that induces
the empirical equivalence relation? There are several reasons for not doing this. First,
it might not be obvious from the start which models are empirically equivalent and
which are not, and establishing the empirical equivalence relation might be a part
of a larger work that also involves various formal and conceptual analyses of the
theory. Second (and relatedly), it might happen that we first encounter a witness of
the radical indeterminism of our theory (at the level of formal calculations) and only
after that we ask ourselves whether models constituting it are empirically equivalent
or not. This order of thought is correctly captured by the procedure described here.

27 This formulation is cautious in the sense that this conjunction of radical indeterminism and empirical
indistinguishability is said to be only a reason for changing K , which is consistent with this reason being
outweighed by other reasons for not changing K . It is a further question whether this reason is always
sufficient.
28 Another instance can be found, arguably, in classical electromagnetism. If we start with a theory for-
mulated in terms of the electromagnetic potential Aμ and choose K to be the full identity, then we can
construct a family of models that are empirically indistinguishable and are a witness of radical indetermin-
ism in the sense of Definition 9. This suggests another choice of K : namely, models related by a gauge
transformation Aμ �→ A′

μ = Aμ + ∂φ should also be regarded as physically equivalent (even though they
are not isomorphic because they differ in the value of Aμ).
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Third, theremight be reasons for regarding empirically equivalentmodels as physically
inequivalent (cf. footnote 26), or at least we should not exclude this in advance.

An important question is where the above iterative procedure ends up in the case
of GR. Should we regard any two diffeomorphism-related models (in the sense of
Definition 4) as physically equivalent? I do not attempt to settle this issue here. There
are suggestions in the literature that our standard of physical equivalence should be a
class of maps narrower than all diffeomorphisms. For example, Johns (2019) claims
that only diffeomorphisms smoothly connected to the identity can be used to run the
Hole Argument; and Belot (2013) argues that in certain contexts models related by
a diffeomorphism are physically inequivalent if this diffeomorphism does not leave
invariant a certain fixed structure (but see Luc, 2022 for the criticism of this view in
the case of models considered as representing entire possible worlds).

If indeed the physical equivalence of GR models is given by the class of all diffeo-
morphisms (or all diffeomorphisms smoothly connected to the identity), then the final
result of the iterative procedure formulated in this section is not at all revolutionary.
However, it was not my aim to suggest a new answer to the question about which GR
models are physically equivalent but rather to explicitly formulate a systematic way
of settling questions of this kind. I believe that something close to what I called here
an “iterative procedure” is in fact used implicitly by many researchers interested in
physical equivalence, but I find it valuable to make this procedure explicit and more
precise.

6 Some further comments on papers by Halvorson andManchak
(2022) andWeatherall (2018)

In this section, I collect a few remarks that further clarify the relationship between
the view on the Hole Argument developed in Sect. 5 and papers by Halvorson and
Manchak (2022) andWeatherall (2018). First, I will analyse the relationship between
Theorem 1 by Halvorson and Manchak and the existence of the hole diffeomorphism
that leads to radical indeterminism relative to the full identity (in the sense ofDefinition
10). Second, I will compare my partial definition of radical indeterminism (Definition
9) with Halvorson and Manchak’s definition of indeterminism (Definition 7). Third,
I will show how my approach can be used to reply to an earlier criticism of the Hole
Argument byWeatherall. Finally, I will make some comments on the usage of category
theory in the discussion of the Hole Argument.

It has been suggested tome that themain technical result ofHalvorson andManchak,
their Theorem 1, establishes that there is no hole diffeomorphism that acts in the way
needed to satisfy Definition 10. However, the content of that theorem is tangential
to what I have argued for in Sect. 5. To recall, Theorem 1 (Halvorson & Manchak,
2022, p. 18) states that if φ andψ are isometries (in the sense of Definition 3) between
models M = 〈M, g〉 and M′ = 〈M ′, g′〉 such that φ |O= ψ |O for some nonempty
subset O of M , then φ = ψ . The models considered in this theorem in general
might have different base sets, in which case we cannot use Definitions 9 and 10
(and the full identity map cannot be defined). Therefore, in order to relate Theorem
1 to my considerations, we need to assume that M = M ′. The next difference is
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that Theorem 1 concerns two maps between models, whereas Definitions 9 and 10
concern the existence of a map of kind K between proper parts of models and the
non-existence of a map of kind K between these models taken as wholes—at no
point is a comparison of two maps of kind K considered. Finally, Theorem 1 does
not say anything about full identity maps; it is only about isometries. In particular,
condition φ |O= ψ |O does not guarantee that φ and ψ are full identity maps on O .
Incidentally, even though Halvorson and Manchak’s Theorem 1 is about isometries,
it does not help to test whether Definition 9 holds for K being the class of isometries
because its presupposition is that there exists an isometry betweenM andM′, while
here we ask whether there exists such an isometry, given that there exists an isometry
between (sufficiently large) proper parts of M and M′.29

This leads us to the issue of the relationship between Definition 9 (the partial defi-
nition of radical indeterminism proposed in this paper) and Definition 7 (the definition
of indeterminism used by Halvorson and Manchak). I claim that these definitions are
significantly different in that Definition 7 can be applied only tomodels betweenwhich
there exists an isomorphism. This arguably results in some incorrect verdicts concern-
ing (in)determinism. If we take isomorphisms of GR models to be isometries in the
sense of Definition 3 (which is their preferred choice), then some important exam-
ples of the indeterminism of GR, such as non-isometric extensions of Taub-NUT (see
Chruściel & Isenberg, 1993, Doboszewski, 2017, pp. 200–202), will be “invisible” for
their definition (i.e., not classified as an instance of indeterminism) because there is no
isometry between them. Non-isometric extensions of Taub-NUT will also be invisible
for my Definition 9 if we choose K to be isometries (in the sense of Definition 3).
However, this is a correct result because they are instances of “usual” indeterminism
and not of radical indeterminism, and as such should not motivate us to change our
tentative standard of physical equivalence K . I suppose that the root of the problem
with Definition 7 in this context is that it relies on the intuition that in order to tell that
two models differ (which is required for them to be a witness of indeterminism), we
need to be able to compare them, and such a comparison can be done only by means of
some map (which according to Halvorson and Manchak should be an isomorphism).
However, there is another way of telling that two models are different—namely, by
showing the non-existence of an appropriate map between them; this is (rightly, I
think) captured by Butterfield (1989) Dm2 and my Definition 9 and (wrongly, I think)
neglected by Halvorson and Manchak’s Definition 7. Indeterminism is then the case
where the models are not the same (there is no map of kind K between them) but their
sufficiently large parts are the same (there is a map of kind K between these parts).

This aspect of Halvorson andManchak’s approach can be traced back, I think, to the
paper by Weatherall (2018). Let me then briefly reconstruct Weatherall’s view here.
According to him, the Hole Argument relies on a confusion arising from using two

29 Corollary 1 of Theorem 1 (Halvorson & Manchak, 2022, p. 18) attempts to exclude the existence of
a hole diffeomorphism, but it is not applicable to situations that are relevant for the Hole Argument, as it
is understood in Sect. 5. It states that if M = 〈M, g〉 is a model of GR and φ : M → M is an isometry
(betweenM and itself) that is the identity on some non-empty open subset O of M , then φ = 1M (i.e., φ
is the identity on entire M). However, Corollary 1 is derived from Theorem 1 by taking M = M ′, g = g′
and ψ = 1M , and in the cases relevant for the Hole Argument the last two assumptions do not hold: we
have g 	= g′ and 1M is not an isometry between M and M′.
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different standards of comparison of models at the same time. On the one hand, the
isometry (in the sense of Definition 3) betweenM = 〈M, gab〉 andM′ = 〈M, g′

ab〉 is
used to establish that they are physically equivalent; and on the other hand, the identity
map on M is used to establish that they are different. However, Weatherall (2018, p.
338) claims that

[...] one cannot have it both ways. Insofar as one wants to claim that
these Lorentzian manifolds are physically equivalent, or agree on all observ-
able/physical structure, one has to use [the isometry map] to establish a standard
of comparison between points. And relative to this standard, the two Lorentzian
manifolds agree on themetric at every point—there is no ambiguity, and no inde-
terminism. (This is just what it means to say that they are isometric.) Meanwhile,
insofar as one wants to claim that these Lorentzian manifolds assign different
values of the metric to each point, one must use a different standard of compar-
ison. And relative to this standard—that given by [the identity map on M]—the
two Lorentzian manifolds are not equivalent. One way or the other, the hole
argument seems to be blocked.

How can one respond to this criticism of the Hole Argument in light of the consider-
ations of Sect. 5? First, I agreed there that the standard of comparison ofmodels should
be closely associated with physical equivalence. However, the former is a matter of
our choice, whereas the latter is not. We cannot turn physically equivalent models into
physically inequivalent ones (or the other way around) merely by changing the way of
comparing them. Pooley and Read (2021) express this observation by saying that the
physical equivalence of two models is a “feature that holds full stop” and not a feature
that holds relative to the choice of a map used to compare these models. Whether two
models are equivalent or not depends partially on our representational conventions
and partially on what physical differences there are in the world. For this reason, I said
(in Sect. 5.2) that the standard of comparison is a tentative proposal for the relation of
physical equivalence and not just the relation of physical equivalence. In my approach,
the (true) relation of physical equivalence is something that we are going to find by
using the iterative procedure, in which the Hole Argument has an important role to
play. Therefore, the choice of the full identity as K in Definition 9 does not make
any two models that are not related by the full identity physically inequivalent; in our
iterative procedure, we hypothetically assume that they indeed are inequivalent, but
the aim of this procedure is to examine precisely this hypothesis.

Second, according to Weatherall (who is followed by Halvorson and Manchak)
if maps of kind K are the standard of comparison for a given theory, then in order
to compare two models of that theory, M and M′, we should first find a map of
kind K between them and then compare M and M′ point by point using this map.
The drawback of this approach is that in many situations the models will turn out
to be incomparable because there is no map of kind K between them. In fact, since
Halvorson and Manchak’s Theorem 1 shows that for any pair of Lorentzian manifolds
there is at most one isometry between them, if we choose isometry to be the standard
of comparison (understood in the Weatherall–Halvorson–Manchak way), any two
Lorentzian manifolds will turn out to be either equivalent or incomparable. However,
the verdict one should expect in the case of non-isometric Lorentzian manifolds is
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that they are inequivalent and not that they are incomparable. That difference between
“incomparable” and “inequivalent” might seem to be purely verbal and unimportant,
but when applied to the issue of (in)determinism, it leads (arguably) to some incorrect
verdicts, as explained in the third paragraph of this section.

The final issue to be considered in this section is an objection that has been raised to
my proposal in category-theoretic terms. According to this objection, my “suggestion
that one could use different standards of equivalence than isomorphism is to deny
(...) that the category used to represent the models of such theory is the correct one”,
which “does nothing to show that the standard form of GR [based on the category of
Lorentzian manifolds with isometries as isomorphisms] is amenable to the Hole Argu-
ment”. This is close in spirit to Weatherall (2018, p. 331), who claims that “the default
sense of ‘sameness’ or ‘equivalence’ of mathematical models in physics should be the
sense of equivalence given by the mathematics used in formulating those models”,
which is typically “some form of isomorphism”, where the term “isomorphism” is
used “in the broad sense of category theory”. In the case of GR, Weatherall (2018, p.
343) says,

once one asserts that spacetime is represent[ed] by a Lorentzian manifold, one is
committed to taking isometric spacetimes to have the capacity to represent the
same physical situations, since isometry is the standard of isomorphism given
in the mathematical theory of Lorentzian manifolds. To deny this would be,
in effect, to insist that it is some other structure—one that is not preserved by
isometries [i.e., different than aLorentzianmanifold]—that represents spacetime
in relativity theory.

Therefore, in the end, the two ways of blocking the Hole Argument from the previous
quote by Weatherall (2018, p. 338) are not equally good according to him—only the
one that relies on isometries as the standard of comparison of Lorentzian manifolds is
in agreement with scientific practice.

In response, let me make four points. First, as already stressed, I distinguish mathe-
matical equivalence (encoded in the isomorphisms between the models) from physical
equivalence—even if they happen to coincide, they are, from the conceptual point of
view, two different equivalence relations. Therefore, establishing the mathematical
equivalence relation on the class of models does not automatically lead to the conclu-
sions concerning the physical equivalence relation on that class.

Second, the formulation of the iterative procedure does not presuppose anything
about its outcome. In particular, it does not exclude that our conclusion about the
physical equivalence relation appropriate for GR models obtained by means of this
iterative procedure will be the same as that obtained by Weatherall, Halvorson and
Manchak (and many others), as the choice of K other than the class of isomorphisms
is here only tentative and subject to revision in light of the outcomes of relativising
Definition 9 to this particular K . The difference is that now this conclusion will be
reached using our iterative procedure, which relies on the dynamical equations of the
theory and our partial definition of radical indeterminism but does not presuppose that
isomorphisms are the standard of comparison and physical equivalence. Therefore, I
do not “deny (...) that the category used to represent the models of such theory is the
correct one”, although I also do not exclude this possibility in advance.
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Third, even if we assume that the standard of comparison of models should always
coincide with their isomorphisms, the iterative procedure described in Sect. 5 can still
be useful but needs to be reinterpreted. Namely, instead of thinking about a fixed class
of models and changing K ’s, we should think about changing a category of models
with the choice of K being a part of the specification of that category. Then, the
question “Which kind of maps K should be the standard of comparison for the class
of models of GR?” is replaced with the question “What should be the kind of maps
K that partially specifies the category of models of GR?” Our iterative procedure can
be used to guide our answering both of these questions, albeit with a slightly different
interpretation of the result in each case.

Fourth, a way of interpreting the discussed objection is that it was a mistake to
even consider the full identity as the candidate for the standard of comparison of GR
models. If from the very beginning we choose the standard of comparison of GR
models (i.e., K in Definition 9) to be isometries (in the sense of Definition 3), then we
would not get the verdict of radical indeterminism at any stage of our considerations.
Does this mean that the Hole Argument is blocked before it starts? The answer is no
because the Hole Argument relies on Definition 9with K chosen to be the full identity;
what happens for a different choice of K is irrelevant. However, one can attempt to
undermine the significance of this argument by saying that we should not consider the
full identity as K at all for reasons independent of the Hole Argument, which are much
stronger and/or more obvious than the reason provided by the Hole Argument.30 But
do we have such reasons? The bare appeal to scientific practice is very unilluminating;
moreover, such practice, if rational, should itself be based on some reasons, which the
philosophy of science should try to uncover.

7 Summary

I have argued that theHoleArgument in its (what I claim to be) proper formulation does
not rely on the notion of isomorphism: this notion is not needed in either of its two
steps. The Gauge Theorem (step 1) establishes that if M = 〈M, O1, O2, . . . , On〉
is a model of a local spacetime theory T (satisfying the additional condition that
Ok, . . . , On are functions of O1, . . . , Ok−1 together with their derivatives and are
form-invariant under diffeomorphisms), then anyM′ obtained fromM by applying a
diffeomorphism is also a model of T becauseM andM′ satisfy the same dynamical
equations (and not because they are isomorphic). To conclude from theGaugeTheorem
that any local spacetime theory is radically indeterministic unless we regard any two
of its diffeomorphism-related models as physically equivalent (step 2), we also do
not need the notion of isomorphism: we only need to tentatively choose the kind of
maps that will serve as our standard of comparison of models and check whether our
theory satisfies the partial definition of radical indeterminism relative to this kind of
maps. If we choose a too narrow class of maps, then we will find instances of radical
indeterminism, in which case we should (other things being equal) broaden this class.

30 That seems to be, in the end, the point of Weatherall (2018, p. 343): “the hole argument merely supports
a view one could have had independent reasons to accept”.
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My conclusion that the notion of isomorphism is not needed to formulate the Hole
Argument does not imply that the notion of isomorphism cannot be relevant to this
argument. I think that it might be relevant: for example, if we assume that from the fact
that two models are isomorphic it follows that they are physically equivalent and that
diffeomorphisms (in the sense of Definition 4) are isomorphisms of GR models, then
these assumptions imply that diffeomorphic models of GR are physically equivalent;
therefore, the conclusion of radical indeterminism of GR is blocked. However, the role
of the notion of isomorphism is here only intermediary and this notion is dispensable—
one can directly consider the question of which GR models are physically equivalent
without engaging in the debate about isomorphisms.

But can these two issues, the mathematical equivalence of models given by their
isomorphisms and the physical equivalence of models, really be separated?Weatherall
(2018, p. 337) seems to think that the only way to argue for the physical and empirical
equivalence of models is to establish a mathematical isomorphism between them. If
he is right, then the notion of isomorphism is not dispensable for the study of physical
equivalence, as I have suggested in the previous paragraph. However, I find this view
rather dubious: empirical equivalence is an empirical issue after all, so it cannot be
the case that the only way to establish it is to analyse the mathematical formalism of
the theory without any recourse to empirical investigations. Physical equivalence is a
more subtle issue, but it also surely is not a purely formal feature of the theory, albeit
it is also not the same as empirical equivalence (unless we are radical empiricists).

An example from Weatherall (2020, p. 86) can be used to support this point and to
show how isomorphisms and physical equivalence can come apart.31 He considers a
variant of GR, the models of which are Lorentzian manifolds enriched with a smooth
individuating field (its role is to label all points of spacetime and therebymake it possi-
ble to distinguish any point from the others). Diffeomorphisms are not isomorphisms
of these new models because they (in general) change the individuating field, which is
a part of the structure of these models. However, this does not influence the physical
equivalence relation: our iterative procedure should provide the same verdict for these
models as for the original ones (i.e., consisting of Lorentzian manifolds without the
individuating field) because physical situations represented by these two classes of
models are the same. In general, the models of our theories might possess too much
or too little structure compared with what is needed to account for the physical situ-
ations they aim to describe, in which case the equivalence relation induced by their
isomorphisms will be not identical with the physical equivalence relation between
them.
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Chruściel, P. T., & Isenberg, J. (1993). Nonisometric vacuum extensions of vacuum maximal globally

hyperbolic spacetimes. Physical Review D, 48(4), 16616–1628.
Curiel, E. (2018). On the existence of spacetime structure. The British Journal for the Philosophy of Science,

69(2), 447–483.
Dewar, N. (2019). Sophistication about symmetries. The British Journal for the Philosophy of Science, 70,

485–521.
Doboszewski, J. (2017). Non-uniquely extendible maximal globally hyperbolic spacetimes in classical

general relativity: A philosophical survey. In G. Hofer-Szabó & L.Wroński (Eds.),Making it formally
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