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Abstract
A formal theory of causal reasoning is presented that encompasses both Pearl’s
approach to causality and several key formalisms of nonmonotonic reasoning in Arti-
ficial Intelligence. This theory will be derived from a single rationality principle of
causal acceptance for propositions. However, this principle will also set the theory of
causal reasoning apart from common representational approaches to reasoning for-
malisms.
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1 Introduction

The primary aim of this paper consists in providing both rational foundations and a
principle-based description for a particular theory of causal reasoning. This theory,
called the causal calculus, has been born as part of a general field of nonmonotonic rea-
soning inArtificial Intelligence,1 where it has been shown to cover important areas and
applications of AI, especially those that had persistently resisted feasible representa-
tion and modeling using standard logical methods. Moreover, an important advantage
of the causal approach to problems of AI has always been the fact that, by its very
nature, causal reasoning brings with it the promise of Explainable AI, an approach to
artificial intelligence that is not only practically successful but is also susceptible to
rational explanation and justification.

A new stage in the development of this theory has emerged with the realization
that it can also provide a formal representation for Pearl’s approach to causality in
the framework of structural equation models (see (Bochman & Lifschitz, 2015)).
In addition, a number of applications of the causal calculus outside AI have been
developed, such as problems of causal attribution (actual causality) in legal theory
and causal representation of general dynamic reasoning. A detailed description of the

1 See (Lifschitz, 1997; McCain & Turner, 1997).
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causal calculus, as well as the range of its current applications in AI and beyond can
be found in Bochman (2021). Given this ‘body of evidence’, a more ambitious aim
of this study is to display the causal calculus as a formal basis for a general theory
of causal reasoning, an important kind of reasoning that has deep historical roots and
solid foundations. Hopefully, it should facilitate the return of causation to its proper
and deserved place in the general picture of human reasoning.

Causation is a notoriously elusive and multifaceted notion, and its studies too often
have fallen into the parable of the blind men and the elephant by choosing only one
of its aspects as a key to the whole concept. This is the main reason why in this study
we will apply, in some sense, a venerated Hilbert’s program to formalizing causal
reasoning in that we will not define the meaning of its key notions, namely causation,
proposition, and acceptance. Instead, we will assume that the content of these notions
is determined globally by the postulates we will require them to satisfy (similar to the
formalization of geometry in Hilbert’s program).2 Any philosophical approach or a
theory of causation that would do justice to these postulates could be appropriate for
our purposes. Moreover, just as in geometry, this approach will allow us to investigate
important variants of causal reasoning which are created by varying these postulates.

In accordance with this approach, even the philosophical terminology that we
will occasionally use in this study, such as rationality, normativity, reasons, and
explanations, could be viewed as indicative and explanatory rather than compulsory.
Still, the natural and profound connections of causation with inference, reasons and
explanations, though thoroughly ‘deconstructed’ by logical positivists and analytic
philosophy,3 will play an important role in informal justifications of our formal con-
structions even though they will remain outside our formal theory. The existence of
such connections should also augment the intended understanding of causation with
features and dimensions that go beyond plain physical relations ‘out there’ in the
world. In particular, we will often point out an inherently normative character of the
principles and constructions of our theory.

At the beginning, the formalismof causal reasoningwill be defined below according
to the usual format in which logical systems of reasoning are defined. Namely, it will
have a language that consists of a set of (causal) inference rules that are defined
on an underlying set of propositions. And it will also have a semantics that will be
defined in terms of valuations on propositions that are in accord with the causal rules.
This semantics, however, will be based on a radically different, causal principle of
acceptance for propositions that will set the corresponding reasoning system apart
from traditional representational approaches to language and meaning. Moreover, our
constructions and postulates will create immediate challenges for approaches that are
based on the correspondence theory of truth. Thus, an important aspect of our general
approach to causal reasoning will amount to the fact that, though a causal theory
determines its associated rational semantics of acceptance, the latter does not and
even cannot determine the original causal theory. This fact will create an entirely new

2 This will also mean that our theory should not be viewed as an ‘explication’ of our commonsense
understanding of causation (if there is such a thing today).
3 Some of these philosophical studies, however, also curiously reinforced these connections by viewing,
for instance, inference or explanation as a proper replacement (or disambiguation) for the philosophically
problematic notion of causation.
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reasoning situation that will have multiple consequences for the corresponding theory
of causal reasoning. It will lead, in particular, to an entirely new agenda and desiderata
for such a reasoning.

With a few exceptions, we will completely omit proofs of the results and theorems
in this paper. All of them can be discerned, however, from the references provided in
the bibliography. The exception will be made for proofs of some small key facts that
could also illustrate how we can actually use causal reasoning in this setting. It should
also be mentioned that the relevant terminology in this study has been significantly
changed (compared with current and previous publications in this area) in order to
make it more relevant, convenient and friendly for a broader audience.

2 Causal theories and their semantics

As it is common for reasoning formalisms, our system of causal reasoning will have
a language and an associated semantics. Its language will be a set of causal rules
defined on an underlying language of propositions, while its semantics will be a set
of valuations on propositions that conform to the causal rules. At the first stage, our
underlying language L will be defined simply as a set of (unstructured) propositions.

A causal rule is an inference rule of the form

a ⇒ A,

where a is a finite set of propositions and A a proposition. The rule says that a set a
of propositions causes proposition A.4

By a causal theory we will mean an arbitrary set of causal rules. A causal theory
will provide an ultimate basis of causal reasoning, mainly in the form of constraints it
imposes on acceptance of propositions.

The basic principle of causal reasoning will be formulated as the following ratio-
nality postulate of acceptance for propositions:

Causal Acceptance Principle A proposition A is accepted with respect to a causal
theory � if and only if � contains a causal rule a ⇒ A such that all propositions
in a are accepted.

If we take causes as something that provide reasons for their effects (answer the
question why, using Aristotle’s phrase), then the above principle can be viewed as
expressing a constitutive principle of rationality in our context, since it states that
(acceptance of) propositions can both serve as and stand in need of reasons (see
(Brandom, 2000)). In what follows, sets of accepted propositions that conform to the
above principle will form the models of the corresponding causal theory.

There are two parts that constitute the above principle. These two parts could be
expressed as two independent rationality postulates:

Preservation Principle If all propositions in a are accepted, and a causes A, then
A should be accepted.

4 Thus, causal relata are propositions in our theory, in contrast to some other approaches that take such
relata to be events, properties, or even variables.
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Principle of Sufficient Reason Any proposition should have a cause for its accep-
tance.

The Preservation Principle expresses a widely accepted claim that the very concept
of an inference rule (however understood) presupposes that such a rule should preserve,
or ‘transmit’, acceptance of the corresponding propositions. On a normative reading,
it states that existence of (good) reason is sufficient for acceptance.

Leibniz’ Principle of Sufficient Reason is again a normative principle of reasoning
stating that propositions require reasons for their acceptance, and such reasons are
provided by establishing their causes. The origins of this principle can be found in
the well-known law of causality, but also in Aristotle’s distinction between syllogisms
and demonstrations.

Example 1 The following causal theory provides a causal description of some well-
known example originated in Pearl (1987).5

Rained ⇒Grasswet

Sprinkler ⇒Grasswet

Rained ⇒ Streetwet .

Just as for ordinary deductive inference systems, if, for instance, Rained is accepted
with respect to such a causal theory, then both Grasswet and Streetwet should also
be accepted. However, in a causal reasoning with this causal theory, any acceptable set
of propositions that contains Grasswet should contain either Rained or Sprinkler
as its causes. Similarly, Streetwet implies in this sense acceptance of both its only
possible cause Rained and a collateral effectGrasswet . Both derivations from causes
to their effects and from effects to their possible causes constitute essential parts of
causal reasoning.

In the framework of causal reasoning described in this study, the relation between
the language (of causal rules) and its semantics (of acceptance) will always remain
unidirectional. In particular, it can be made clear already at this stage that Preser-
vation principle cannot be used as a sole principle of validity for the causal rules
themselves. Namely, we cannot follow Tarski in defining causal rules as inference
rules that preserve acceptance. This could be seen already from the fact that such a
stipulation would immediately sanction the Reflexivity postulate of deductive infer-
ence (namely, all rules of the form A⇒ A) and this would trivialize in turn the second
part of our rationality postulate, the principle of sufficient reason: on a causal read-
ing, rules A⇒ A will make all propositions self-justified (self-evident).6 Incidentally,
this observation indicates also that (absence of) Reflexivity constitutes one of the key
differences between causal inference and deductive consequence.

5 We assume that the labels of associated propositions are self-explanatory.
6 Cf. (Prawitz, 2019) for a similar point.
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Rational semantics

The intended semantics of a causal theory that conforms to the above principles will
be defined again along a standard route that employs valuations on propositions for
describing semantics.

A valuation is a function v ∈ {0, 1}L that assigns either 1 (‘truth’) or 0 (‘falsity’)
to every proposition of the language. If v(A) = 1, we will say that proposition A is
accepted (‘taken-true’) in the valuation v. As usual, a valuation can be safely identified
with its associated set of accepted propositions, and we will even abuse the above
notation by viewing valuation v itself as a set of (accepted) propositions.

Remark It should bementioned already at this stage, however, that wewill not identify
non-acceptance of proposition A in a valuation (namely v(A) = 0)with rejection of A.
Moreover, our semantic constructions will become at some point openly asymmetric
between acceptance and rejection;7 this asymmetrywill play an important constructive
role in our subsequent constructions. Still, we will invariably identify in what follows
rejection of A with acceptance of its classical negation ¬A.

For any set u of propositions and a causal theory �, we will denote by �(u) the set
of all propositions that are directly caused by u in �, that is,

�(u) = {A | a ⇒ A ∈ �, a ⊆ u}.

This notation will help us in formulating the following basic definition of semantics
for our language.

Definition 1 • A causal model of a causal theory � is a valuation that satisfies the
following condition:

v = �(v).

• A rational semantics of a causal theory is the set of all its causal models.

The notion of a causal model provides precise formal expression of the Causal
Acceptance principle since it determines that a proposition is accepted in a model if
and only if it has a cause in this model.

�(u) is a monotonic operator on the set of propositions, while causal models
correspond to fixed points of this operator. Consequently, any causal theory has at
least one causal model, so it always has a rational semantics.

As an important special case, a causal theory always has the least model. Thismodel
can be obtained by applying the operator �() iteratively, starting with the empty set
∅. This least model provides a faithful representation of the concept of (deductive)
provability in our causal framework. However, this model expresses only a small part
of the informational content embodied in the source causal theory. Moreover, this
observation can actually be extended to the rational semantics itself.

7 In contrast to egalitarian bilateral approaches to inference and semantics; see, e.g., (Fine, 2018; Restall,
2009; Rumfitt, 2015). As a side remark, most of these bilateral approaches also readily adopt Reflexivity
as a rule of inference.
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A causal model, viewed just as a set of (accepted) propositions, and the ratio-
nal semantics in general contain only purely categorical, factual information. In this
respect, they provide only a possible factual output (a “factual shadow,” if you like)
of the rich causal information embodied in the original causal theory. Unlike the case
of an ordinary correspondence semantics, even the whole set of such possible outputs
is insufficient for determining, or capturing back, the initial causal information, what
causes what. We will see, in particular, that essentially different causal theories could
‘accidentally’ have the same rational semantics. Nevertheless, just as for ordinary rea-
soning formalisms, the rational semantics will play a crucial, indispensable role in
evaluation and adjudication of causal theories. To begin with, we are going to show
that it determines the underlying logic of causal reasoning.

3 Causal inference

It turns out that there are formal derivations (aka metainferences) among causal rules
that always preserve the rational semantics. Such metainferences will be taken to
constitute the underlying logic of causal reasoning. On our current maximal level of
abstraction, this logic can be described as follows:8

Definition 2 A causal inference relation is a set of causal rules that is closed with
respect to the following metainferences:

Monotonicity If a ⇒ A and a ⊆ b, then b⇒ A;
Cut If a ⇒ A and a, A⇒ B, then a ⇒ B.

The above notion of causal inference incorporates two of the three basic postulates
for ordinary Tarski consequence relations. It explicitly disavows, however, the first
postulate of Tarski consequence, the Reflexivity postulate. As we will see, it is this
‘omission’ that creates the possibility of causal reasoning in this framework. Still,
we will see that the remaining two postulates of causal inference are sufficient for a
faithful characterization of a general notion of derivability among propositions that is
determined by a given set of (causal) inference rules.

Remark Causal inference need not be anti-reflexive. Reflexive rules A⇒ A can belong
to a causal theory, but in the framework of causal reasoning they already acquire a
nontrivial content. More precisely, such a rule says that A is a self-evident proposition
that does not require further justification for its acceptance. Propositions that satisfy
such rules will be called causal assumptions in what follows.

Wewill extend causal rules to rules having arbitrary sets of propositions as premises
using a familiar compactness recipe: for any set u of propositions, we define u ⇒ A
as follows:

u ⇒ A ≡ a ⇒ A, for some finite a ⊆ u.

8 In order to simplify the notation, causal rules a ⇒ A are used in what follows both as formal objects of
our theory and as statements in the meta-language (saying that a causes A).
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For a set u of propositions, C(u) will denote the set of propositions caused by u
with respect to a causal inference relation ⇒, that is

C(u) = {A | u ⇒ A}.

As could be expected, the causal operator C will playmuch the same role as the usual
derivability operator for consequence relations. In particular, the above postulates of
causal inference can be recast as the following properties of the causal operator:

Monotonicity If u ⊆ v, then C(u) ⊆ C(v).
Cut C(u ∪ C(u)) ⊆ C(u).

Thus, C is a monotonic operator. Actually, due to compactness, C is not only mono-
tonic, but also a continuous operator. Still, C is not inclusive, that is, u ⊆ C(u) does
not always hold. Also, it is not idempotent, that is, C(C(u)) can be distinct from C(u).9

On a positive side, causal inference preserves a number of familiar properties. Thus,
any causal inference relation will already be transitive, that is, it will satisfy

(Transitivity) If A⇒ B and B ⇒C , then A⇒C .

Transitivity corresponds to the following property of the causal operator:

C(C(u)) ⊆ C(u).

Note, however, that Transitivity is a weaker property than Cut, since it does not
imply the latter (in the framework of causal inference).

For an arbitrary causal theory �, we will denote by ⇒� the least causal inference
relation that includes �, while C� will denote the associated causal operator. By this
definition, ⇒� is precisely the set of all causal rules that are derivable from � by
Monotonicity and Cut.

3.1 Causal inference vs. deductive consequence

A further insight into the properties of causal inference can be obtained by comparing
it with associated consequence relations.

As already mentioned, the only formal difference between causal inference and
ordinary Tarski consequence amounts to the Reflexivity postulate that holds for the
latter, though not for the former. Note also that any causal theory, and hence any
causal inference relation, can also be considered as an ordinary conditional theory (a
set of inference rules), so it determines the corresponding consequence relation. The
following construction provides a direct description of this consequence relation in
terms of the source causal inference relation. Namely, for a causal inference relation
⇒, we can define the following consequence relation:

u �⇒ A ≡ A ∈ u or u ⇒ A.

9 For instance, A can directly cause B, though there are no intermediate causes between A and B. In this
case, B will belong to C(A), though not to C(C(A)).
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Then the following fact can be easily verified.

Lemma 1 If⇒ is a causal inference relation, then�⇒ is the least consequence relation
containing ⇒.

Let Cn⇒ denote the derivability operator corresponding to �⇒. Then the above
description can be reformulated as the following equality, for any set u of propositions:

Cn⇒(u) = u ∪ C(u).

The above equality shows, in effect, that C(u) captures all nontrivial consequences
included in Cn⇒(u), except for u itself. Moreover, the Cut postulate immediately
implies the following equality:

C(u) = C(Cn⇒(u)).

Actually, the same Cut postulate implies also C(u) = Cn⇒(C(u)), so the causal
operator absorbs Cn⇒ on both sides:

Cn⇒ ◦ C = C ◦Cn⇒ = C .

These equalities show that deductive consequences of a given causal theory can
be safely used as intermediate premises and conclusions in causal inference. In a
hindsight, this could explain why it has been so difficult to distinguish causal reasoning
proper from general deductive reasoning. In particular, the above results allow us
to see causal rules themselves as just a special kind of deductive rules. This vision
naturally corresponds to Aristotle’s theory of reasoning in hisAnalyticswhere (causal)
demonstrations were viewed as a species of syllogisms (deductions) (see (Bochman,
2021)). It should be kept inmind, however, that deductive inference alone is insufficient
for determining the causal consequences of a set of propositions.

Our final result here provides an alternative description of the causal inference
relation generated by a causal theory �.

Corollary 2 C�(u) = �(Cn�(u)).

The above equation says, in particular, that in order to obtain all causal consequences
of a given set of propositions, we can compute first all its deductive consequences (with
respect to the original causal theory �), and then find out only which propositions are
directly caused by this derived set of consequences.

Just as for ordinary deductive reasoning, propositional theories, that is, sets of
propositions that are closed with respect to inference rules still play an important role
in describing causal inference (especially in proofs).

Definition 3 A set u of propositions is a propositional theory of a causal theory � if
�(u) ⊆ u.

Since causal inference relations can also be viewed as causal theories (sets of
inference rules), we conclude that propositional theories of a causal inference relation
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are sets of propositions that satisfy the inclusion C(u) ⊆ u for the associated causal
operator C.

A propositional theory of a causal theory is a set of propositions that is closed with
respect to its causal rules, namely, if a ⊆ u and a ⇒ B, then B ∈ u. Accordingly, such
theories have much the same properties as ordinary theories (deductively closed sets)
of consequence relations. Note, in particular, that the set of propositional theories is
closed with respect to arbitrary intersections, and consequently any set of propositions
is included in the least such theory.

As a consequence of the general correspondence between causal inference and
deductive consequence, we obtain that any causal inference relation ⇒ has the same
propositional theories as the corresponding consequence relation �⇒. Moreover, it
is well known that any consequence relation is uniquely determined by its proposi-
tional theories. A causal inference relation, however, is not fully determined by its
propositional theories.

4 Causal vs. semantic equivalence

It will be shown now that causal inference provides an adequate and maximal logical
framework for reasoning with causal models.

Definition 4 Two causal theories will be called semantically equivalent if they deter-
mine the same rational semantics.

Recall that a causal inference relation can also be considered as a causal theory.
Moreover, if ⇒� denotes the least causal inference relation that contains a causal
theory �, then we have:

Lemma 3 Any causal theory � is semantically equivalent to ⇒�.

Proof If v is a propositional theory of �, then v = Cn�(v), and hence �(v) =
�(Cn�(v)). Consequently, v = �(v) iff v = �(Cn�(v)). ByCorollary 2, this implies
that v is a model of � if and only if it is a model of ⇒�. 
�

The above lemma implies that the postulates of causal inference, namely Mono-
tonicity and Cut, are adequate for reasoning with causal models since they preserve
the latter. This fact can be viewed as a primary justification for these postulates. More-
over, we will show that this notion of causal inference constitutes the maximal logic
suitable for the rational semantics.

Definition 5 Two causal theories � and � will be called logically equivalent, if each
canbeobtained from theother using thepostulates of causal inference.Or, equivalently,
when ⇒� coincides with ⇒� .

Now, as an immediate consequence of the previous lemma, we obtain:

Corollary 4 Logically equivalent causal theories are semantically equivalent.
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The reverse implication in the above corollary does not hold, and a deep reason
for this is that the rational semantics does not fully determine the content of the
original causal theory. This means, in particular, that it may well happen that two
essentially (i.e., informationally) different causal theories could determine the same
rational semantics. This under-determination is closely related to a more general fact
that both the rational semantics itself and semantic equivalence of causal theories are
nonmonotonic notions; they are not preserved under extensions of causal theories with
further causal rules. The following simple example illustrates this.

Example 2 Let us consider two causal theories: {A⇒ B} and {A⇒C}. These causal
theories are obviously different, but they are semantically equivalent since they deter-
mine the same rational semantics, which contains a single model ∅ in which no
proposition is accepted. Now let us add to these causal theories the same causal rule
A⇒ A. Then the first causal theory will already have an additional model {A, B},
while the semantics of the second theory will acquire a different model {A,C}.

What we need, therefore, is a stronger, logical counterpart of the notion of semantic
equivalence that would be preserved under addition of new causal rules. This imme-
diately suggests the following definition.

Definition 6 Two causal theories � and � will be said to be strongly semantically
equivalent if, for any set � of causal rules, �∪� is semantically equivalent to � ∪�.

Strongly equivalent causal theories are “equivalent forever”—that is, they are
interchangeable in any larger causal theory without changing the associated rational
semantics. This naturally suggests that strong equivalence could be a kind of logical
equivalence with respect to some background logic of causal rules. And the next result
will show that this logic is precisely the logic of causal inference.

Theorem 5 Two causal theories are strongly semantically equivalent if and only if
they are logically equivalent.

Proof The direction from right to left follows from the preceding corollary and the
fact that, if � and � are logically equivalent, then, for any �, � ∪ � and � ∪ � are
also logically equivalent.

Assume now that � is not logically equivalent to �. Then we may assume for
certainty that there are propositions a and B such that a ⇒� B and a �� B. Let
u = Cn�(a) (that is, the least theory of � that includes a). Then u ⇒� B and u �� B.
Let us consider two cases.

Suppose first that u is not a theory of �. Then we choose � = {A⇒ A | A ∈ u}
as a set of additional rules. Clearly, u will become a model of � ∪ �, though not of
� ∪ �, since u is still not a theory of � ∪ �.

Suppose now that u is also a theory of �. Since u ⇒� B, we have B ∈ u. Then we
define � as {A⇒ A | A ∈ u\ C�(u)}. Note first that we still have u ��∪� B (since
C�∪�(u) coincides with C�(u)), and hence u is not a model of � ∪ �. However, we
have u ⊆ C�∪�(u), and therefore u is a model of � ∪ �. This shows that � and �

are not strongly equivalent. 
�
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The above result implies that causal inference relations are maximal inference
relations that are adequate for causal reasoning with respect to the rational semantics:
any derivation rule that is not valid for causal inference relations can be “falsified”
by finding a suitable extension of two causal theories that would determine different
rational semantics.

Note also that discriminating sets of causal rules � were restricted in the above
proof to rules of the form A⇒ A. As we will see, such rules play an important general
role in causal reasoning.

4.1 Axioms vs. assumptions

The rational semantics of causal theories is based on the law of causality, or Leibniz’s
principle of sufficient reason,which requires that any accepted proposition should have
an accepted cause. Accordingly, justification of accepted propositions (i.e., finding
reasons for their acceptance) constitutes an essential part of this semantic framework.
In fact, this is a common feature of many other formalisms of nonmonotonic reasoning
in AI.10

The law of causality inevitably leads to a fundamental problem known already
in antiquity as the Agrippan trilemma: if we do not want to accept infinite regress
of causation, we should accept either uncaused or self-caused propositions. Now, in
the framework of causal theories, there are two kinds of propositions that can play,
respectively, these two roles:

Definition 7 • A proposition A will be called an axiom of a causal theory � if the
rule ∅⇒ A belongs to �;

• A proposition A will be called a causal assumption of a causal theory if the rule
A⇒ A belongs to it.

Example 3 Let us return to Pearl’s example (Example 1):

Rained ⇒Grasswet Sprinkler ⇒Grasswet Rained ⇒ Streetwet

Note first that, taken by itself, this causal theory does not have causal models (more
precisely, it has a single empty causal model), mainly because the causal status of
Rained and Sprinkler are not determined.But now let’smake Rained and Sprinkler
causal assumptions of our theory:

Rained ⇒ Rained Sprinkler ⇒ Sprinkler .

As a result, the rational semantics of this causal theory will acquire three additional
causal models:

{Rained,Grasswet, Streetwet} {Sprinkler ,Grasswet}
{Rained, Sprinkler ,Grasswet, Streetwet}

10 See, e.g., (Denecker et al., 2015) for an abstract theory of justifications in nonmonotonic reasoning.
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These models display already some correlations (or ‘regularities’) among the rel-
evant propositions. For instance, that Rained is always accompanied by Grasswet
and Streetwet in these models (deduction), but also that Streetwet is always accom-
panied by Rained (abduction).

In clear contrast with deductive reasoning, both axioms and causal assumptions
provide reasonable end-points of the justification process in causal reasoning: axioms
do not require justification,while causal assumptions naturally correspond in this sense
to self-evident propositions. It is easy to show that for causal inference relations, any
axiom will also be an assumption, though not vice versa. The difference between the
two can be described as follows. Every axiom must be accepted in any reasonable
model, and hence it should belong to every causal model. In contrast, any causal
assumption can be incorporated into a causal model when it is consistent with the
latter, but it does not have to be included into it. As a result, causal theories admit
in general multiple causal models depending on the assumptions we actually accept.
This functionality makes causal assumptions much similar to abducibles in a system
of abductive reasoning. In fact, it has been shown in Bochman (2007) that causal
inference relations allowus to provide a uniformand syntax-independent descriptionof
abductive reasoning. Moreover, it has been shown that in many regular cases (notably,
in the finite case) the correspondence between causal and abductive theories is even
bidirectional in the sense that the rational semantics of a causal theory coincides with
the semantics of an associated abductive system.

5 Supraclassical causal reasoning

Now we are going to raise our abstract theory of causal reasoning to a full-fledged
reasoning system that will subsume, in particular, both Pearl’s approach to causa-
tion and a number of prominent formalisms of nonmonotonic reasoning in Artificial
Intelligence.

It turns out that the most basic desideratum, or prerequisite, for such a full-fledged
system of reasoning amounts to the capability of using ordinary classical entailment
as an integral part of causal reasoning.

Technically, a solution to the task of accommodating classical logical reasoning in
our causal framework is quite straightforward. Recall that any causal theory has an
associated (least) consequence relation, and this consequence relation can be safely
used as intermediate steps in causal derivations. Accordingly, all we need is to require
that this consequence relation should be supraclassical, that is, it should subsume
classical entailment.

Even at this stage, however, we have to cope with the fact that in our construction of
causal reasoning, the relation between the language of causal rules and its semantics is
asymmetric: though a causal theory determines its associated rational semantics, the
latter is insufficient for capturing back the (causal) content embodied in a causal the-
ory. Applied to our present aim of incorporating classical logic into causal reasoning,
the problem is that there seems to be no compositional (atomist) way of express-
ing the usual truth-tables of classical logical connectives ‘inferentially’ in terms of
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some derivation rules for causal theories. Moreover, the extension of our ‘vocabu-
lary’ with classical logical connectives will actually extend our expressive capabilities
beyond what is expressible in the causal language with propositional atoms only.11

This expressive gain can even be considered as an advantage of the corresponding
extended language, an advantage that will be exploited in what follows.

For all these reasons, the suggested definitions of supraclassical causal inference
and its associated rational semantics belowwill be bothminimalist and holist; theywill
require only that an appropriate causal reasoning system should respect (antecedently
understood) classical entailment among propositions.

Remark A more general picture of reasoning that naturally arises from the suggested
construction is that causal reasoning is not a replacement or competitor of logical
(deductive) reasoning, but its complement (or extension) for ubiquitous reasoning
situations where we do not have logically sufficient knowledge – see (Bochman, 2021)
for a more detailed discussion.

From now on, our underlying language L of propositionswill be a classical proposi-
tional language with the usual classical connectives and constants {∧,∨,¬,→, t, f}.
The symbol�will stand for the classical entailmentwhile Thwill denote the associated
classical provability operator. In this and subsequent sections, p, g, r , . . . will denote
propositional atoms while A, B,C, . . . will denote arbitrary classical propositions.

Definition 8 A causal inference relation in a classical language will be called supra-
classical if it satisfies the following additional rules:

(Strengthening) If b⇒C and a � B, for every B ∈ b, then a ⇒C ;
(Weakening) If a ⇒ B and B � C , then a ⇒C ;

(And) If a ⇒ B and a ⇒C , then a ⇒ B ∧ C ;
(Truth) t⇒ t;

(Falsity) f ⇒ f .

The origins of the above postulates can be found in Input/Output logics ofMakinson
and van der Torre (2000), the only difference being the last postulate, Falsity. Taken
literally, the latter could be viewed as a causal version of the ancient principle ex nihilo
nihil fit (‘Nothing comes from nothing"). However, given the other postulates (espe-
ciallyWeakening), it also implies ex falso quodlibet (“from falsehood, anything”), and
its role consists, in effect, in excluding classically inconsistent causal models.

Due to Strengthening, a causal rule a ⇒ A becomes equivalent to a single-premise
rule

∧
a ⇒ A. In addition, a rule ∅⇒ A with an empty set of premises becomes

equivalent to the rule t⇒ A. Consequently, a supraclassical causal inference relation
could already be viewed as a binary relation on the set of (classical) propositions.

The classical conjunction ∧ can be given a fully modular description in this causal
context (as the main connective in propositions) using the following double-line (bidi-
rectional) derivation rules:

a, A, B ⇒C

a, A∧B ⇒C
(∧L)

a ⇒ A a ⇒ B
a ⇒ A∧B

(∧R)

11 In clear contrast both with modern proof-theoretic and inferentialist approaches in which the reducibility
of the logical language to its atomic (pre-logical) basis is commonly viewed as an important desideratum.
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Note that these metainferences are valid for supraclassical causal inference. As a
result, conjunctions of propositions can always be eliminated both in antecedents and
consequents of causal rules. Moreover, let us say that a causal inference relation in a
classical language is conjunctive if it is closed with respect to the rule (∧R). Then we
obtain that A ∧ B is accepted with respect to such an inference relation if and only if
both A and B are accepted with respect to it:

Lemma 6 If v is a causal model of a conjunctive causal inference relation, then

A ∧ B ∈ v iff A ∈ v and B ∈ v.

However, such a modular description is impossible for the classical negation in our
causal context. Moreover, the fact that conjunction and negation form a functionally
complete set of classical connectives makes the classical negation a culprit in the
whole problem of (the absence of) a modular description for the supraclassical causal
inference.Wewill see, however, that the problemof describing the behavior of negation
in causal contexts is far from being trivial (see Sect. 10).

Causal reasoning with classical propositions requires also an appropriate ‘upgrade’
of the corresponding rational semantics. Namely, it requires that causal models should
also be closed with respect to classical entailment.

Definition 9 • A classical causal model of a causal theory � is a classically consis-
tent valuation (that is, f /∈ v) that satisfies the following condition:

v = Th(�(v)).

• A rational supraclassical semantics of a causal theory is the set of all its classical
causal models.

A classical causalmodel is a set of propositions that is closed bothwith respect to the
causal rules and with respect to classical entailment. The principle of sufficient reason
in such models is generalized, however, to the principle that any accepted proposition
should (at least) be a classical logical consequence of accepted propositions that are
caused in the model. In other words, a classical causal model is the least deductively
closed model that is determined by its causal consequences.

Remark Any classical causalmodel corresponds to a deductively closed set of classical
propositions. Such models need not satisfy bivalence: it may well happen that neither
proposition A nor its negation¬A are accepted in such amodel. Later wewill consider
a restriction of the supraclassical semantics to causalmodels that are (classical)worlds;
it will be called a rational classical semantics (see Sect. 9). This latter semantics will
sanction, however, a stronger logic of causal inference.

It turns out that supraclassical causal inference provides an adequate logical frame-
work for reasoning with respect to the rational supraclassical semantics.

Definition 10 Two causal theories � and � will be called semantically s-equivalent if
they determine the same rational supraclassical semantics, and strongly s-equivalent
if, for any set � of causal rules, � ∪ � is semantically s-equivalent to � ∪ �.
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As before, if ⇒s
� denotes the least supraclassical causal inference relation that

contains a causal theory �, then we have:

Lemma 7 Any causal theory � is strongly s-equivalent to ⇒s
�.

Thus, postulates of supraclassical causal inference are adequate for reasoning with
respect to the rational supraclassical semantics since they preserve the latter. Note also
that, for supraclassical causal inference relations, any causal model will already be a
classical model (since it will be closed with respect to classical entailment), so their
general rational semantics will coincide with the supraclassical semantics.

The following theorem shows that supraclassical causal inference constitutes a
maximal logic suitable for the supraclassical semantics.

Theorem 8 Two causal theories are strongly s-equivalent if and only if they determine
the same supraclassical causal inference relation.

Supraclassical causal inference preserves all the properties of general causal
inference.Moreover, the correspondence between causal inference and deductive con-
sequence can now be elevated to the correspondence between supraclassical causal
inference and supraclassical consequence.

A consequence relation � in a classical language is called supraclassical if it sub-
sumes classical inference, that is, � ⊆ �. Informally, supra-classicality means that the
corresponding consequence relation includes classical entailment as part of its infer-
ence rules, though it can include also ‘material’ inference rules that are not reducible
to classical entailment.

For any supraclassical causal inference relation there exists a least supraclassical
consequence relation that includes it. This consequence relation can be described
directly as follows:

A �⇒ B ≡ A⇒(A→B).

Theorem 9 If ⇒ is a supraclassical causal inference relation, then �⇒ is the least
supraclassical consequence relation containing ⇒.

Let Cn⇒ denote the consequence operator corresponding to �⇒. Then the above
description can be extended to the following equality:

Cn⇒(u) = Th(u ∪ C(u)).

The above equality shows again that causal inference captures all nontrivial con-
sequences included in Cn⇒(u), save for u itself. Moreover, as in the general case, we
still have the following equalities:

C(u) = C(Cn⇒(u)) = Cn⇒(C(u)).

Accordingly, deductive consequences of a given causal theory (including now all
classical entailments) can be safely used as intermediate premises and conclusions in
supraclassical causal inference.
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An important feature of supraclassical causal inference is that it already allows us to
express the logical notion of causal equivalence among propositions of the underlying
language.

Definition 11 Propositions A and B will be called causally equivalent with respect to
a supraclassical causal inference relation if the latter contains the rule

t⇒ A ↔ B.

Thus, A and B are causally equivalent if A ↔ B is an axiom of the causal inference
relation. The following result establishes precise sense in which this equivalence can
be termed a logical one.

Theorem 10 Propositions A and B are causally equivalent in a supraclassical causal
inference relation ⇒ if and only if any occurrence of A can be replaced by B in the
rules of ⇒.

Proof If A can be replaced by B in any rule of ⇒, then it can be replaced also in
t⇒(A↔A), which holds by Truth. Hence, t⇒(A↔B) holds in ⇒.

We will denote by X(A/B) an arbitrary classical proposition obtained from a
proposition X by replacing some of the occurrences of A in it by B. Clearly,
A↔B � X↔X(A/B). Assume now that A and B are causally equivalent, and X ⇒ Y .
Then X ⇒(A↔B) by Strengthening, and hence X ⇒(Y↔Y (A/B)) by Weakening.
Consequently, X ⇒ Y (A/B) by And and Weakening. Thus, B can replace A in the
heads of the rules from ⇒. In addition, we have X(A/B), A↔B � X , and therefore
X(A/B) ∧ (A↔B)⇒ Y by Strengthening. But we have also X(A/B)⇒(A↔B), so
we can apply Cut and obtain X(A/B)⇒ Y . This shows that A can be replaced by B
also in the bodies of the rules from ⇒. 
�

Due to the above result, causal equivalence of propositions can be used, in particular,
for describingdefinitional extensions of theunderlying languagewith newpropositions
(cf. (Turner, 1999)).

6 Structural equationmodels

Pearl’s approach to causal reasoning in the framework of structural equation models
(see (Pearl, 2009)) can be viewed as an important instantiation of our general theory.

A structural equation model12 is a triple M = 〈U , V , F〉, where
• U is a set of exogenous variables,
• V is a finite set {V1, V2, . . . , Vn} of endogenous variables that are determined by
other variables in U ∪ V , and

• F is a set of functions { f1, f2, . . . , fn} such that each fi is a mapping from
U ∪ (V \Vi ) to Vi , and the entire set, F , forms a mapping from U to V .

12 Pearl has also called it a causal model, but this would conflict with our terminology.
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Symbolically, F can be represented as a set of structural equations

Vi = fi (PAi ,Ui ) i = 1, . . . , n,

where PAi is the minimal set of variables in V \{Vi } (parents of Vi ) sufficient for
representing fi , and similarly for the relevant set of exogenous variables Ui ⊆ U .
Each such equation stands for a set of “structural” equalities

vi = fi (pai , ui ) i = 1, . . . , n,

where vi , pai and ui are, respectively, particular instantiations of Vi , PAi and Ui .
Such an equality assigns a specific value vi to a variable Vi depending on the values
of its parents and relevant exogenous variables.

In Pearl’s account, every instantiationU = u of the exogenous variables determines
a particular “causal world” of the structural model. Such worlds stand in one-to-one
correspondence with the solutions to the above equations in the ordinary mathemati-
cal sense. However, structural equations also encode causal information in their very
syntax by treating every instantiation of the variable on the left-hand side of the =
as effect and treating the corresponding instantiations of the variables on the right
as causes.13 Accordingly, the equality signs in structural equations convey the asym-
metrical relation of “is determined by.” This causal reading does not affect the set of
solutions of a structural model, but it plays a crucial role in determining the effect of
external interventions and evaluation of counterfactual assertions with respect to such
a model (see Sect. 8 below).

Since structural models are formulated in the language of structural equations, their
comprehensive logical description could be achieved only in the first-order language.
The corresponding generalization of the causal calculus to a first-order language has
actually been described in Lifschitz (1997). Still, for our current purposes we can
obviate this limitation of our (propositional) formalism by considering the Herbrand
base of this first-order language as our propositional language in this section. This
Herbrand base consists of all propositions of the form X = x , where X is some
(exogenous or endogenous) variable while x is its particular admissible value. In
other words, admissible value assignments to exogenous and endogenous variables of
the structural equations can be viewed as propositional atoms of the corresponding
propositional language. In particular, instantiations of exogenous and endogenous
variables will be called, respectively, exogenous and endogenous atoms.

Using the above formulation, the representation of Pearl’s structural models in
the causal calculus, suggested in Bochman and Lifschitz (2015), amounted in effect
to viewing each structural equality vi = fi (pai , ui ) for a particular instantiation of
the relevant variables as a causal rule saying that the instantiation pai of the parent
endogenous variables PAi and the instantiation ui of exogenous variables Ui causes

13 This description presupposes a token interpretation of structural equations as expressing relations among
their instantiations, as opposed to a type-level interpretation according to which a structural equation
expresses a direct causal relation among variables themselves.
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the instantiation fi (pai , ui ) of Vi :

PAi = pai ,Ui = ui ⇒ Vi = fi (pai , ui ).

In the special case when all the relevant variables are Boolean, a Boolean structural
equation p = F (where F is classical logical formula) produces in this sense two
causal rules

F ⇒ p and ¬F ⇒ ¬p.

It should also be required that instantiations of exogenous variables (i.e., exogenous
atoms) are causal assumptions of the corresponding causal theory. In other words, for
any exogenus atom U = u, we should accept the rule

U = u ⇒ U = u.

For Boolean exogenous variables, this amounts to adding the following two rules
for any such variable:

p⇒ p and ¬p⇒ ¬p.

Given this translation, it has been shown that Pearl’s causal worlds correspond
precisely to classical causal models of the associated causal theory that are worlds
(maximal classically consistent sets of propositions).

Example 4 The following set of (Boolean) structural equations provides a representa-
tion of Pearl’s example (see Example 1) in structural models:

Grasswet = Rained ∨ Sprinkler Streetwet = Rained.

If Rained and Sprinkler are taken to be exogenous variables, while Grasswet
and Streetwet are endogenous ones, then the corresponding Pearl’s structural model
will have the same causal worlds as the following causal theory:

Rained ⇒Grasswet Sprinkler ⇒Grasswet Rained ⇒ Streetwet

¬Rained,¬Sprinkler ⇒ ¬Grasswet ¬Rained ⇒ ¬Streetwet

with an additional stipulation that Rained, ¬Rained, Sprinkler and ¬Sprinkler
are assumptions:

Rained ⇒ Rained ¬Rained ⇒ ¬Rained

Sprincler ⇒ Sprinkler ¬Sprinkler ⇒ ¬Sprinkler

Compared with our previous causal description of this example (see Example 3),
the above causal theory contains additional causal rules, namely causal rules for the
corresponding negative literals. As we will see, however, these negative causal rules
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can be reproduced using a systematic procedure called negative causal completion—
see Sect. 11 below.

7 Defaults in causal reasoning

The causal calculus is a significant part of a general field of nonmonotonic reasoning
in Artificial Intelligence. As such, it has been shown to cover other important parts
of nonmonotonic reasoning such as abduction and diagnosis, logic programming,
and reasoning about action and change. As a further illustration of its expressive
capabilities, we will describe in this section a ‘causal counterpart’ of one of the key,
original formalisms of nonmonotonic reasoning, default logic of Raymond Reiter (see
(Reiter, 1980)). Among other things, the corresponding causal representation will also
allow us to clarify the meaning of the main notions associated with default logic and
first of all of the concept of default itself. This concept will also be shown to play, in
turn, an important general role in causal reasoning.

7.1 Defaults versus facts

Default logic is based on the notion of default as its basic concept, so the task of
describing default reasoning in causal terms cannot be achieved without a proper
formalization of this notion.

Recall that causal assumptions are propositions that satisfy rules of the form A⇒ A.
Such propositions can be accepted in a causal model (without further justification)
whenever they are consistent with the rest of accepted propositions.

Now, defaults can be viewed as a special kind of assumptions. Under this under-
standing, the difference between defaults and causal assumptions in general can be
informally described as follows: defaults are assumptions that we must accept unless
there are reasons to the contrary.

In order to formulate this (normative) requirement in causal terms, let as say that a
proposition A is rejected in a causalmodel if themodel contains a cause for the contrary
proposition ¬A. Then we can formulate the following (still informal) principle of
Default Acceptance:

Default Acceptance A default is a causal assumption that is accepted whenever it
is not rejected.

The principle of Default Acceptance could be viewed as an ‘anti-Leibniz’ principle
since it says, in effect, that a default assumption is not accepted only if we have reasons
for its rejection. Note, however, that the original Leibniz principle of sufficient reason
should still remain to hold in causal models. In particular, a proposition¬A is accepted
in such a model only if it has a cause in this model (that is, when A is rejected).
Accordingly, the principle of Default Acceptance in causal models boils down to the
principle of Default Bivalence:

Default Bivalence For any causal model v and any default assumption A, either
A ∈ v or ¬A ∈ v.
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The above principle of default bivalence can be considered as a characteristic prop-
erty of defaults (as a special kind of assumptions). Again, this is in contrast with
classical logical reasoning where all propositions are required to satisfy bivalence.
Note also that any axiom of a causal theory will also be a default on this understand-
ing (namely a default that cannot be refuted). In this sense, defaults can be viewed as
an intermediate concept between axioms and causal assumptions in general.

Default reasoning as it is formalized in default logic amounts to deriving justified
conclusions from a default theory by using its inference rules and default assumptions.
However, in the case when the set of all defaults is jointly incompatible with the
background theory, we must make a reasoned choice among the default assumptions.
At this point, default reasoning requires that a reasonable set of defaults that can be
actually used in this context not only should be consistent andmaximal but also should
explain why the rest of the default assumptions should be rejected. An important
prerequisite of such explanations is that the underlying inference system contains
cancellation rules bywhich some sets of defaults refute others (given the known facts).
The appropriate choices of default assumptions (called stable sets) will determine
then extensions of a default theory which are taken to constitute the (nonmonotonic)
semantics of the latter.

Bipolarity Turning to the justification status of the rest of propositions in default
logic, the notion of an extension of a default theory presupposes, in effect, that any
such proposition should be accepted only if it is grounded, ultimately, in the set of
accepted defaults. In other words, once we choose an acceptable (“stable”) set of
default assumptions, the rest of acceptable propositions should be derived from this
set. This pertains, in particular, even to other causal assumptions that could belong
to a (causal) theory; any such assumption becomes unacceptable unless it is derived
from accepted default assumptions.

The above stringent, ‘puritan’ understanding of acceptance for defaults and the
rest of propositions creates, in effect, a bipolar system of reasoning that divides all
propositions into two classes with opposite principles of acceptance. The first class
contains factual propositions that are viewed as unacceptable unless they are derived
fromother propositions (and ultimately from accepted defaults), while the second class
contains defaults that are viewed as acceptable unless they are refuted by other propo-
sitions (and, again, ultimately by other accepted defaults). It is this understanding that
alsomakes default logic a principal instantiation of (assumption-based) argumentation
Bondarenko et al. (1997) where defaults play the role of arguments.

7.2 Default causal theories

A formal representation of default logic in the causal calculus can be described as
follows.

Definition 12 A default causal theory is a pair (�,D), where � is a causal theory,
and D a distinguished subset of its causal assumptions, called defaults.
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In the formal descriptions below, C� will denote the causal operator corresponding
to the least supraclassical causal inference relation that contains a causal theory �.
Our next definition describes the intended semantics of a default causal theory.

Definition 13 A default model of a default causal theory (�,D) is a classical
causal model m of � that satisfies the following two conditions:

(Default Grounding) m is caused by the set of its defaults:

m = C�(m ∩ D).

(Default Bivalence) For any default D ∈ D,

either D ∈ m or ¬D ∈ m.

A default semantics of a default causal theory is the set of all its default models.

It can be verified that if an arbitrary set m of propositions satisfies the condition
of Default Grounding, it will already be a causal model of the corresponding causal
theory �, that is, m = C�(m) will hold. Consequently, the default semantics can
be viewed as a special case of the general rational semantics of causal theories. Still,
there are two reasons why the reverse inclusion does not hold in general. First, a causal
model can be generated not only by defaults, but also by other causal assumptions.
Second, even when a causal model is caused (generated) by some set of defaults,
it may still not satisfy the second condition of the above definition, the principle of
default bivalence. This might happen, in particular, even when the relevant set of
generating defaults is maximal in the sense that it is incompatible with every other
default outside this set, but the background causal theory lacks appropriate cancel-
lation rules that would allow us to refute these other defaults. As an extreme case, a
default causal theory may even lack default models at all (though it always has causal
models).

The above formalism can be shown to provide an adequate description of default
logic in the sense that there are back and forth translations between default causal
theories and their default semantics and ‘plain’ default theories in default logic with
their semantics of extensions (see (Bochman, 2023)).

By the above representation, default logic can be viewed as a species of general
causal reasoning. However, its specific features make default logic less suitable for
some applications in AI, such as abductive reasoning (and diagnosis), or reasoning
about actions that seem to require the use of assumptions that are not defaults in
the sense of default logic. Still, in many important areas using defaults instead of
general causal assumptions results in a more adequate representation. For instance,
even Pearl’s original approach to causal reasoning (see the preceding section) can be
viewed as an instantiation of a default causal theory where exogenous atoms play
the role of defaults, while endogenous atoms play the role of factual propositions.
Moreover, the whole approach to causal reasoning in Bochman (2021) was essen-
tially based on viewing causal rules themselves as default assumptions in the above
sense.
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7.3 Causal rules as defaults

AlreadyDavidHume argued inHume (1978) that causal reasoning cannot be viewed as
a kind of logical inference, because even the full knowledge of the causes is insufficient
for inferring effects a priori. Hume has suggested that the “source” of our causal
assertions can be found in the habit, or custom, of inferences that we make on the
basis of invariable regularities (‘constant conjunctions’) that we have observed in our
past experience. However, John S. Mill has added to this two further observations (see
(Mill, 1872)). First, that not every Humean regularity determines a causal relation
(for instance, the succession of day and night does not). According to Mill, only those
regularities could serve this causal role that both invariably occur and are unconditional
of any further circumstances. Still, Mill’s second important observation was that “all
laws of causation are liable to be counteracted or frustrated”. Nevertheless, Mill has
thought that the idea of an invariable and unconditional regularity (viewed as an
explication of causality) can still be preserved if we define the cause as the “sum total
of the conditions positive and negative taken together; the whole of the contingencies
of every description, which being realised, the consequent invariably follows.”

The idea of laws as invariable, exceptionless regularities has been a received under-
standing for most of the past century (see, e.g., (Hempel, 1965)), until it has been
qualified in studies of nonmonotonic reasoning in AI. One of the central objectives of
the latter has become a formalization of defeasible reasoning, a kind of reasoning in
which inference rules and their conclusions can occasionally be canceled, or defeated,
in presence of other rules.

The phenomenon of defeasibilty is actually well known also in the causal literature
under the names prevention and preemption. These are causal situations inwhich some
causal rules become disabled, or ‘canceled’ due to other active causal rules.

The simplest way of dealing with defeasibilty in nonmonotonic formalisms (that
has been actually employed in such formalisms as default logic, logic programming,
and circumscription) amounts to adding auxiliary ‘presumptions’ to an inference rule
such that only their refutation could lead to cancellation of the rule. Applying this
method to causal reasoning, we can represent defeasible causal rules as rules of the
form

C, n ⇒ E,

where n is a new proposition that refers to the underlying causal mechanism or process
that, given an “input” C , produces an “output” E . These auxiliary premises can be
viewed, however, as default assumptions, so they are presumptively accepted unless
they are explicitly refuted. Accordingly, if the cause C is accepted, we are entitled
(justified) to infer the effect E , unless n is refuted, that is, unless ¬n is caused. In the
latter case, a rule C, n ⇒ E will be actually defeated even though the cause C will
still be accepted.14

14 Note also that this refutation does not always change the acceptance status of the effect E , since E can
also have other causes.

123



Synthese (2024) 203 :19 Page 23 of 34 19

Remark The default representation of defeasibilty provides a feasible and working
account of the latter while preserving monotonicity of (causal) inference rules them-
selves, in contrast to popular alternative approaches that are based on a total rejection
of monotonicity as a way of solving this problem. These latter approaches usually
encounter an opposite problem, namely why an inference rule will (normally) con-
tinue to hold even when new facts are added to the description.

The above more ‘articulated’ representation of causal rules has been called a deep
representation in Bochman (2021), whereas a representation that does not explicitly
mention the underlying mechanisms has been called a surface representation. This
terminology has been justified by the fact that, in most cases of interest, the names
of mechanisms can be systematically eliminated (“forgotten”) without affecting the
associated rational semantics, and thereby a deep representation can be transformed
into some surface representation.

Example 5 In our running example, let as suppose that the sprinkler can also wet the
street unless our garden is fully fenced. We can represent this causal situation by
adding the following two causal rules to our causal theory from Example 3:

Sprinkler , n ⇒ Streetwet Fenced ⇒ ¬n,

where Fenced is a new causal assumption, whereas n is a default assumption about
a physical process by which the sprinkler waters the street (in the absence of obstruc-
tions). Then the associated rational semantics will obtain a number of new causal
models, in particular,

{Sprinkler ,Grasswet, Streetwet, n}
{Sprinkler ,Grasswet, Fenced,¬n}

{Rained, Sprinkler ,Grasswet, Streetwet, Fenced,¬n}

Still, it can be shown that (given some auxiliary conditions) default assumption n
can be eliminated from this causal theory by replacing the above two rules with the
following rule:

Sprinkler ,¬Fenced ⇒ Streetwet .

The default formulation of causal rules creates immediate advantages for the rep-
resentation of causal laws that has been a problem for the logic-based accounts.
Moreover, it makes the representation of causal claims much similar to their com-
monsense language descriptions. It is perfectly legitimate to say that A’s blow caused
B’s nose to bleed and to feel confidence in this statement, though we would find it
difficult to formulate a general law purporting to specify conditions under which blows
are invariably, or unconditionally, followed by bleeding from the nose (see (Hart &
Honore, 1985)). Moreover, even in this simple case, there is a logical possibility that
just at the moment A struck, B independently ruptured a blood vessel! In other words,
even here our causal claim is only a (defeasible) assumption, though a very plausible
one.
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8 Counterfactual equivalence and basic inference

In structural equation models, the relation between causal theories and their (rational)
semantics surfaces as the relation between causal and purely mathematical under-
standing of structural equations. Thus, as in the general case of causal theories, two
informationally different sets of structural equations may “accidentally” determine the
same causal worlds. And at this point, a key feature of Pearl’s approach to causal rea-
soning amounts to the assumption that the relevant differences between causal theories
can be revealed by performing the same interventions (“surgeries”) on them.

According to Pearl, in order to obtain answers to intervention (action) and coun-
terfactual queries, we have to consider submodels of a given structural causal model.
Given a particular instantiation x of a subset X of endogenous variables from V , a
submodel Mx of a structural model M is the model obtained from M by replacing its
set of functions F by the following set:

Fx = { fi | Vi /∈ X} ∪ {X = x}.

In other words, Fx is formed by deleting from F all functions fi corresponding to
members of the set X and replacing them with the set of constant functions X = x .
A submodel Mx can be viewed as a result of performing an action do(X = x) on M
that produces a minimal change required to make X = x hold true under any u. This
submodel is used in Pearl’s theory for evaluating counterfactuals of the form, “Had X
been x , whether Y = y would hold?”

In order to simplify exposition, wewill restrict the description below to the Boolean
case. Then the corresponding transformation of causal theories can be described as
follows:

Definition 14 For a causal theory � and a set L of literals, a revision �∗L of � with
L is a causal theory obtained from � by removing first all causal rules having either
literals from L or their negations in heads, and then adding L as a set of new axioms
(that is, adding rules t⇒ l for each l ∈ L).

It can be verified that revisions of causal theories exactly correspond to submodels
of Boolean structural models.

According to Pearl, every structural model stands not for just one but for a whole set
of its submodels that embody interventional contingencies. These submodels deter-
mine the “causal content” of a given structuralmodel inPearl’s approach. In accordance
with that, we can introduce the following definition:

Definition 15 Causal theories � and � are intervention-equivalent if, for every set L
of literals, the revision �∗L has the same causal worlds as the revision �∗L .

Now, at least in the finite case, it can be shown that intervention-equivalence of two
causal theories amounts to coincidence of their associated causal counterfactuals (see
(Bochman, 2021)).

The above considerations naturally suggest that Pearl’s approach is based on a
particular account of causation according to which the content of a causal theory is
fully determined by its ‘counterfactual profile’. In this sense, the approach can even
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be viewed as a further development of the counterfactual approach to causal reasoning
initiated by David Lewis in Lewis (1973).

Recall that the connection between causal inference relations and a rational
semantics of causal theories has been established via the notion of strong semantic
equivalence, namely semantic equivalence that is preserved under addition of further
rules to a causal theory. Taken in this perspective, the difference between our approach
and that of Pearl amounts to taking intervention-equivalence instead of strong semantic
equivalence as a basic information concept for causal theories. This alternative notion
of equivalence sanctions, however, a somewhat different logic for causal reasoning.

8.1 Basic causal inference

It turns out that the Cut rule of causal inference does not preserve intervention-
equivalence: there are causal theories that are equivalent with respect to supraclassical
causal inference, but their revisions with the same literals determine different causal
worlds (and different counterfactuals). In order to cope with this situation, we have to
modify our postulates of causal inference.15

Definition 16 • A set of causal rules in a classical language will be called a causal
production relation if it satisfies all the postulates of supraclassical causal inference
except Cut.

• A causal production relation will be called basic if it satisfies the rule:

(Or) If A⇒C and B ⇒C , then A ∨ B ⇒C .

The postulateOr sanctions reasoning by cases for causal rules. Now, as follows from
the above definition, basic inference is obtained from supraclassical causal inference
by replacing the Cut postulate with Or. A detailed description of this kind of causal
inference and its connections with other nonmonotonic formalisms in AI has been
given in Bochman (2004, 2005). It has been shown, in particular, that this kind of
inference can already be given a logical interpretation in possible worlds models; by
this interpretation, a causal rule A⇒ B is representable as a modal conditional

A → �B,

where � is the usual necessity operator (see also (Turner, 1999)).
The above modal representation makes it a relatively easy task to study the prop-

erties of basic inference. It allows us to explain, in particular, why it does not satisfy
Cut. In fact, basic inference is not even a transitive relation.

It has been shown in Bochman (2018) that basic inference constitutes, in effect,
the internal logic of causal reasoning in Pearl’s causal models. More precisely, it
has been shown that basically equivalent causal theories are intervention equivalent.
Moreover, the reverse implication has been shown to hold for the special case of
Pearl’s causal theories, that is, for causal theories obtained from structural equation
models by the translation ofBochman andLifschitz (2015). Some consequences of this

15 Just as it happened once in geometry.
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correspondence have been discussed in Bochman (2021) in the context of analyzing
different approaches to the notion of actual causality.

9 Classical causal inference and causal worlds

The differences between Pearl’s approach and our theory disappear, however, once we
restrict our rational semantics to causal models that are worlds (in the usual classical
meaning of the term). Note, however, that this move amounts to imposing Bivalence
on the set of accepted propositions.

Definition 17 • A causal world of a causal theory � is a classical causal model of
� which is also a world (maximal classically consistent set).

• A rational classical semantics of a causal theory is the set of all its causal worlds.

The above notion of rational classical semantics moves us one last step closer to the
traditional correspondence semantics. Nevertheless, the distinction between rational
and purely logical semantics remains, since even the rational classical semantics is still
nonmonotonic with respect to the source causal theory, so the latter is not determined
by the former.

It has been shown in Bochman (2004) that the postulate Or becomes an admissible
derivation rule with respect to the world-based rational semantics.

Definition 18 A causal inference relation will be called classical if it is supraclassical
and satisfies Or.

Classical causal inference combines the properties of both basic and supraclassical
causal inference. In particular, the causal rules of such an inference inherit a logical
semantics in the modal framework of possible worlds, in which they are interpreted
as modal conditionals A → �B.

The following result will show that classical causal inference provides an adequate
framework of reasoning with respect to the rational classical semantics. As before, we
introduce first the following definitions:

Definition 19 Causal theories � and � will be called

• (strongly) objectively equivalent if they are (strongly) semantically equivalent with
respect to the rational classical semantics;

• c-equivalent if they determine the same classical causal inference relation.

Two causal theories are c-equivalent if each theory can be obtained from the
other using derivation rules of classical causal inference relations. Then the following
result demonstrates that classical causal inference is adequate for the rational classical
semantics.

Theorem 11 Two causal theories are strongly objectively equivalent if and only if they
are c-equivalent.
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9.1 Factual and explanatory content of causal rules

In the framework of classical causal inference, the content of causal rules can be given
a more fine-grained description.

Recall that causal rules serve two functional roles in a rational semantics. First, they
propagate acceptance from their premises to their conclusions and thereby determine
ordinary ‘deductive’ constraints on possible valuations. Their second function consists,
however, in providing reasons, or explanations, for accepted propositions. Fortunately,
these two roles can be separated in classical causal reasoning by decomposing any
causal rule into a (factual) constraint and an explanation. More precisely, we have the
following decomposition of causal rules:

Lemma 12 Any causal rule A⇒ B is c-equivalent to a pair of rules

A ∧ ¬B ⇒ f and A ∧ B ⇒ B.

Proof A ∧ B ∧ ¬B ⇒ f by Falsity and Strengthening, and therefore A⇒ B implies
A ∧ ¬B ⇒ f by Cut. In the other direction, if A ∧ ¬B ⇒ f and A ∧ B ⇒ B, then
A ∧ ¬B ⇒ B by Weakening, and hence A⇒ B by Or. 
�

A rule A ∧ ¬B ⇒ f is a reductio ad absurdum constraint saying that proposition
A∧¬B is unacceptable. This implies, in particular, that classical implication A → B
should hold in any causal world. Such a constraint provides, however, only purely
factual information in causal reasoning that cannot be used, for instance, for deriving
new causal rules in a causal theory. These constraints only restrict the set ofmodels that
are admissible (causally consistent) with respect to a causal theory. In this sense they
play the role of ordinary classical formulas, namely they just express facts. However,
they do not justify, or explain, anything, and hence they can be seen as devoid of
explanatory content.

In contrast, causal rules of the form A∧ B ⇒ B are deductively (‘factually’) trivial,
since they do not impose restrictions on admissible models. Nevertheless, they play an
important explanatory role in causal reasoning. Namely, such a rule says that, in any
causal model in which A is already accepted, we can freely accept B, since it is self-
explanatory in this context. Accordingly, such rules can be called (purely) explanatory
rules.

Remark Explanatory causal rules could also be viewed asweak causal claims bywhich
the cause does not necessitate the effect, though it can explain why it occurred (cf.
(Anscombe, 1981)). Using an old example from the causal literature, syphilis does not
always cause paresis, though it is a reasonable explanation of why it happened.

Now the above lemma says that any causal rule can be decomposed into a factual
constraint and an explanatory rule. This decomposition neatly delineates two kinds of
information conveyed by causal rules. One is factual information that constraints the
set of admissible models, while the other is explanatory information describing what
propositions are caused (explainable) in such models. Moreover, the decomposition
shows that these two kinds of content are actually independent of each other, so the
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full informational content of causal theories can be safely represented as a (disjoint)
union of their factual and explanatory contents.

The interplay of the factual and explanatory contents determines, eventually, the
properties of the associated rational semantics. It is responsible, in particular, for the
nonmonotonic character of the latter. Namely, nonmonotonicity arises from the fact
that these two kinds of content have opposite impacts on acceptance of propositions.
Thus, addition of constraints leads, as expected, to reduction of the set of admissible
causal models (and hence to increase of factual information). However, the addition
of explanatory rules leads, in general, to increase of admissible causal models, and
hence to decrease of derived factual information.

9.2 Propositional completion of causal theories

The overwhelming majority of applications of causal reasoning in AI and beyond
make use of only a restricted form of causal rules, often called determinate rules,
and there are deep reasons for this restriction that are grounded in the very notion of
determinism.

Definition 20 • A causal rule is determinate if it has the form A⇒ l, where l is
a literal or falsity f . A causal theory is called determinate if it contains only
determinate rules.

• A causal theory is definite if it is determinate and any propositional atom appears
in heads of no more than a finite number of its causal rules.

It has been established already inMcCain and Turner (1997) that the rational classi-
cal semantics of a definite causal theory (being just a particular set of classical worlds)
coincideswith the fully classical semantics of a certain derived set of classical formulas
called a propositional completion of this causal theory.

Given a definite causal theory �, we can define its propositional completion
comp(�), as the set of all classical formulas of the form

l ↔
∨

{A | A⇒ l ∈ �},

where l is either a literal or falsity f . Then the following result shows that the classical
models of comp(�) precisely correspond to causal worlds of �.

Theorem 13 Rational classical semantics of a definite causal theory coincides with
classical logical semantics of its completion.

Example 6 Using once more our running Pearl’s example, the causal theory from
Example 4 has the following propositional completion:

Grasswet ↔ (Rained ∨ Sprinkler)

¬Grasswet ↔ (¬Rained ∧ ¬Sprinkler)

Streetwet ↔ Rained

¬Streetwet ↔ ¬Rained
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By the above theorem, themodels of this classical propositional theorywill coincide
with the causal worlds of the original causal theory.

Yet another observation that could be made about the above propositional comple-
tion is that the conditions for the negative literals ¬Grasswet and ¬Streetwet are
actually derivable from the conditions for the corresponding positive literals, so the
above propositional theory is logically reducible to

Grasswet ↔ (Rained ∨ Sprinkler) Streetwet ↔ Rained

Actually, this is yet another consequence of a more general fact that the negative
causal rules of the original causal theory canbe derived from the correspondingpositive
rules using negative causal completion—see Sect. 11 below.

An important practical consequence of the above theorem is the possibility of using
standard logical tools in computing the causal semantics. Still, it should be kept in
mind that the above construction of propositional completion is global (holist) with
respect to the original causal theory, so it could change nonmonotonicallywith addition
of further causal rules. That is why even in the context of classical causal inference,
deduction cannot replace causal reasoning.

10 Default negation and logic programming

The problem of representing negation has emerged as one of the main problems of
nonmonotonic reasoning, and it has immediate implications for causal reasoning.
Accordingly, a proper treatment of negation in causal contexts can be viewed as an
important part of an adequate analysis of causal reasoning in general.

So far, we have largely ignored the distinction between positive and negative propo-
sitions and have treated both indiscriminately. This uniformity could even be viewed
as a significant theoretical advantage, and adherents of many traditional approaches
to reasoning in general and causality in particular have justly celebrated it.

A large group of philosophers has rejected, however, this generalization of causal
relation to absences and negation, or at least its uniformity, though for varying reasons.
Beside some general metaphysical and conceptual objections, the corresponding stud-
ies have pointed out some important differences between these two kinds of causal
assertions, as well as specific difficulties that arise in interpreting and justifying neg-
ative causal claims.

It turns out that even the formalism of classical causal inference still has required
‘degrees of freedom’ that allow us to formalize an important alternative understanding
of negation, namely the concept of default negation. The latter is based on the idea that
a negative proposition can be accepted whenever we do not have reasons for accepting
the corresponding positive proposition.16 In this respect, the rational semantics com-
plements this idea in that it embodies a particular, causal closed world assumption,
according to which the current causal theory provides an exhaustive description of all

16 It is essentially this idea that lies at the basis of one of the first formalisms of nonmonotonic reasoning
in AI, namely circumscription of McCarthy (1980).
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the causal factors that could be used as a reason for acceptance of propositions in a
model.

The above notion of default negation allows us to provide a causal representation
of yet another key formalism of nonmonotonic reasoning in AI - logic programming.
On the causal interpretation described below, any general logic program can be seen
as a causal theory satisfying the principle of negation as default (alias the closed
world assumption). Moreover, given this principle, the correspondence between logic
programs and causal theories will turn out to be bidirectional in the sense that any
causal theory is reducible to some logic program. A more detailed description of this
correspondence as well as corresponding proofs can be found in Bochman (2005).

Speaking generally, the causal interpretation of logic programs is based on a recur-
rent idea that logic program rules provide definitions for the literals in their heads.
The declarative meaning of logic programs in modern logic programming involves,
however, an additional component: namely, an asymmetric treatment of positive and
negative information, which is reflected in viewing the corresponding negation oper-
ator not appearing in program rules as negation as failure (see, e.g., (Baral, 2003;
Lifschitz, 2019)). It turns out that such an understanding can be uniformly captured
in our theory by accepting the Default Negation postulate below that gives a formal
expression to the closed world assumption.

Definition 21 A classical causal inference relation will be called negatively closed, if
it satisfies

(Default Negation) ¬p⇒ ¬p, for any propositional atom p.

The above principle makes negations of atomic propositions causal assumptions
in the corresponding causal inference relation. Moreover, given Bivalence (that holds
for causal worlds), the Default Negation postulate stipulates, in effect, that negations
of atomic propositions are defaults. As a result, the principle of sufficient reason
is reduced in such systems to the necessity of explaining only positive facts. The
postulate can be seen as giving a formal expression toReiter’s closedworld assumption
from Reiter (1978) and reflects the main distinctive feature of reasoning behind logic
programs and databases.

A logic program � (see (Baral, 2003)) is a set of program rules of the form

not d, c ← a,not b (*)

where a, b, c, d are finite sets of propositional atoms.
Now, a stable causal interpretation of logic programs amounts to interpreting every

program rule (*) as the following causal rule:

d,¬b⇒
∧

a →
∨

c.

Then it can be shown that a stable semantics of a program � coincides with the
classical causal semantics of its translation. In addition, it can be shown that negatively
closed causal inference relations constitute precise causal logic behind stable logic
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programming. Moreover, any causal rule can be identified with some program rule
under this interpretation. Accordingly, any causal theory in which negated atoms are
defaults is reducible to a logic program, and vice versa.

11 Negative causal completion

The concept of negation as default (which is formalized in logic programming) covers
a significant portion of our understanding and use of negation in local situations. Still,
it does not fully reflect the behavior of negation in the context of causal reasoning. The
difference can be roughly described as follows. When negation is viewed as default,
negative propositions are exempted from the need of causal explanation; in other
words, they do not need causes for their acceptance. The only thing we should care
about is consistency of such negative propositions with other, positive assertions and
known causal rules. Explanatory rules ¬p⇒ ¬p provide precisely this functionality.
Commonsense causal reasoning, however, tends to preserve the symmetry between
positive and negative assertions and treat also the latter as something that can be caused
and be causes themselves. For instance, a fully symmetric treatment of positive and
negative propositions is implicit in Pearl’s approach to causality (at least in theBoolean
case).

From now on, we will restrict our attention to determinate causal theories that
involve only literals in the heads of their rules. For this case, a certain mix of the above
two views of negation suggests itself.17 It will be called the principle of negative
causation.

Definition 22 (Negative Causation Principle) A causal rule B ⇒ ¬p is acceptable
with respect to a determinate causal theory � if any causal rule of the form A⇒ p
that belongs to � is such that A is (classically) incompatible with B.

According to this principle, B causes ¬p when it undermines all potential causes
of p in �. In some sense, this principle could be viewed as a “positive” reformulation
of the ancient principle ex nihilo nihil fit, namely,

Negation (absence) of effects follows from negation (absence) of causes.

Note that, like the concept of default negation itself, this principle is also nonmono-
tonic: an acceptable negative causal claim can become unacceptable with an addition
of new positive causal rules to the causal theory.

The above principle of negative causation is actually directly encoded in Pearl’s
structural approach to causality (when applied to Boolean endogenous variables). It
is also compatible, however, with philosophical approaches to causality according to
which positive causation (or causation between real events) is the only “genuine” cau-
sation, whereas negative causation is, at best, a derivative notion (see, e.g., (Armstrong,
1997) and (Dowe, 2000)).

Now, the following completion construction is based on an idea that default negation
can be captured ‘causally’ (or inferentially) by adding to a positive causal theory all
acceptable rules of negative causation.

17 See (Denecker et al., 2015).
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Let Ap denote the disjunction of all bodies of the rules from a causal theory � that
have an atomic proposition p as its head, that is

Ap =
∨

{C | C ⇒ p ∈ �}.

Note that B ⇒ ¬p is an acceptable rule if and only if B is incompatible with
Ap. Accordingly, all acceptable negative causal rules are subsumed by rules of the
form ¬Ap ⇒ ¬p for each atom p. This sanctions the following notion of negative
completion:

Definition 23 A negative causal completion of a definite causal theory � is a causal
theory Nc(�) obtained from � by adding rules of the form

¬Ap ⇒ ¬p,

for all atoms p that appear in the heads of causal rules from �.

Negative completion can be used for completing positive causal theories that do
not contain negative literals in the heads of their rules.

Example 7 It can be verified that the ‘full’ causal theory for Pearl’s example (see
Example 4) can be obtained as a negative causal completion of the positive causal
theory from Example 3. Indeed, if we take the three rules

Rained ⇒Grasswet Sprinkler ⇒Grasswet Rained ⇒ Streetwet

and apply Definition 23 to them, we obtain the following negative causal rules:

¬Rained,¬Sprinkler ⇒ ¬Grasswet ¬Rained ⇒ ¬Streetwet .

Moreover, the same constructionmakes¬Sprinkler and¬Rained causal assump-
tions on the basis of the fact that Sprinkler and Rained are assumptions of the original
positive theory.

12 Conclusions

The causal calculus is a working theory of causal reasoning which has been shown to
provide a formal basis for reasoning and problem-solving in many areas, especially
in AI, but also in legal theory and dynamic reasoning. This theory provides also a
formal representation for Pearl’s approach to causation and thereby suggests itself as
a natural basis for a unified approach to causal reasoning.

The theory of causal reasoning described in this study poses, however, a lot of ques-
tions for a general theory of reasoning. The causal calculus is primarily an inferential,
rule-based formalism in which the language determines its associated semantics, but
the latter does not determine the original language. Already this asymmetry should
force us to reconsider the basic notions associated with representational approaches
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such as the meaning/reference of language expressions in the context of causal reason-
ing. In this respect, our inferential theory sharesmany features aswell as problemswith
the modern proof-theoretic approach to language and semantics (see, e.g., (Schroeder-
Heister, 2012)). However, it is also an essentially nonmonotonic formalism, and this
puts into question, for instance, the very possibility, or even desirability, of constructing
a causal reasoning system or its semantics bottom up from propositional atoms. Thus,
we have employed a global, holist approach to incorporating classical entailment into
causal reasoning. Though this construction is obviously deviant from standard ways of
describing logical reasoning formalisms, it nevertheless provides all that is needed for
an efficient use of such a combined causal reasoning in applications, including deriva-
tions of conclusions and computation of the corresponding models. Actual work with
this formalism could defuse the suspicion that it is somehow deficient or flawed in
this respect. This construction distinguishes our theory, however, from standard proof-
theoretic approaches that attempt to provide a reductionist inferential description of
logical connectives in terms of associated introduction and elimination rules.

In a more general perspective, the miracle of resurrection of causal reasoning in
artificial intelligence and other important fields of science confirms once again that
causation should be viewed as an essential part of our reasoning, a kind of reasoning
that has deep, though almost forgotten, roots in humanhistory.Our inferential approach
to causation largely endorses ElizabethAnscombe’s claim that causality consists in the
derivativeness of an effect from its causes (see (Anscombe, 1981)), and it goes back
as far as to Aristotle’s theory of causal demonstrations as a special kind of syllogisms
(deductions), to Leibniz’s obliteration of the distinction between reasons and causes,
and even to Hume’s views of inference as an ‘impression source’ of causation. This
view of causal reasoning provides also natural connections of our theorywith a general
approach of inferentialism (see, e.g., (Peregrin, 2014)), or at least with a version of
it that (in contrast to Sellars and Brandom) does not put conceptual barriers between
causal and inferential (normative). But all this should be a subject of an entirely
different study.
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