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Abstract
Neural structural representations are cerebral map- or model-like structures that struc-
turally resemble what they represent. These representations are absolutely central to
the “cognitive neuroscience revolution”, as they are the only type of representation
compatible with the revolutionaries’ mechanistic commitments. Crucially, however,
these very same commitments entail that structural representations can be observed
in the swirl of neuronal activity. Here, I argue that no structural representations have
been observed being present in our neuronal activity, no matter the spatiotemporal
scale of observation. My argument begins by introducing the “cognitive neuroscience
revolution” (Sect. 1) and sketching a prominent, widely adopted account of structural
representations (Sect. 2). Then, I will consult various reports that describe our neu-
ronal activity at various spatiotemporal scales, arguing that none of them reports the
presence of structural representations (Sect. 3). After having deflected certain intuitive
objections to my analysis (Sect. 4), I will conclude that, in the absence of neural struc-
tural representations, representationalism and mechanism can’t go together, and so
the “cognitive neuroscience revolution” is forced to abandon one of its commitments
(Sect. 5).

Keywords Structural representations · Eliminativism · Neuroscience · Mechanistic
explanation · Neurocognitive revolution

1 Introduction: neural structural representations and the cognitive
neuroscience revolution

Representations remain as central to cognitive science as elusive to our understanding
(Villaroja, 2017; Favela & Machery, 2023). Philosophers invested in the “cognitive
neuroscience revolution” (Boone & Piccinini, 2016), however, argue that cognitive
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neuroscience1 operates upon a stable concept of neural representation. In their view,
cognitive neuroscience depicts neural representations as inner maps or models that
represent their targets by resembling them in a particular, structural way. Call these
representations neural structural representations—NSRs for short (see Gładziejewski,
2015, 2016; Gładziejewski & Miłkowski, 2017; Williams, 2017; Williams & Colling,
2017; Wiese, 2016, 2017; Morgan & Piccinini, 2018; Piccinini, 2020a, 2020b, 2022).

Prima Facie, contemporary cognitive neuroscience relies heavily on NSRs. The
spatial navigational skills of rats are explained by appealing to a cognitivemap hosted
in the hippocampus (cf. O’Keefe & Nadel, 1978; Moser et al. 2008). Motor control is
accounted for in terms of variousmodels computing and controlling motor trajectories
(Mcnamee & Wolpert, 2019; Pickering & Clark, 2014), which might underpin social
cognition (Haruno et al., 2003). The “mirror” property ofmany neurons is increasingly
interpreted in terms of innermodels allowing to simulate actions (Csibra, 2008; Kilner
et al., 2007) and emotions (Rizzolatti&Sinigaglia, 2023). Popular neurocomputational
frameworks such as predictive processing cast all brain functions as operations on
complex, multifaceted statisticalmodels of the environment (cf. Buckley et al., 2017).2

More generally, the idea that inner models are the only way in which an agent can
make sense and control the flux of input the environment bombards the agent with
is gaining momentum (Brette, 2019; Seth, 2015). The cognitive centrality of inner
models is further confirmed by a host of neurorobotic experiments (Tani, 2007, 2016)
and neurocomputational models (cf. Ha & Schmidhuber, 2018a, 2018b; Poldrack,
2020). And so, whilst such map- and model-like structures are in no way the only type
of representational structure cognitive neuroscientist invoke (cf. Backer et al., 2022;
Barack & Krakauer, 2021; Frisby et al., 2023), it is undeniable that they do play a
large explanatory role in contemporary cognitive science.

When it comes to the “cognitive neuroscience revolution”, however, NSRs are not
“just” important. They are central. For, supporters of the “cognitive neuroscience
revolution” claim that cognitive neuroscience is deeply committed to a mechanistic
explanatory strategy (see Gładziejewski, 2015; Boone & Piccinini, 2016; Williams
& Colling, 2017; Piccinini, 2020a).3 On this view, to explain cognitive capacities
(and their behavioral manifestations) is to identify and describe the physical mecha-
nism responsible of them; that is, to identify and describe a set of organized physical
components whose causal interaction constitutes the cognitive capacity in question
(or causes the relevant behavioral manifestation; see Craver, 2007; Bechtel, 2008).
Crucially, mechanistic explanations are (at least partially) ontic explanations. Their
explanantia are not (only) statements concerning mechanisms, but also the actual
mechanisms (cf. Craver, 2007, p. 27; Illari, 2013).

Clearly, if one accepts this view of explanation in regards to cogni-
tive (neuro)science, it follows that the representations invoked in cognitive
(neuro)scientific explanations must be real and literal components of our

1 Here, “cognitive neuroscience” and “cognitive science” will refer only to mainstream approaches—that
is, representational and computational—in the respective disciplines. For non-mainstream alternatives, see
(Anderson 2014; Bruineberg & Rietveld 2019; Chemero 2009; Kelso 1995; Van der Weel et al., 2022).
2 Predictive Processing also admits non-representational interpretations which (sadly) remained quite
marginal (see Downey 2018; Facchin 2021a).
3 But see (Silberstein & Chemero 2013; Silberstein 2021) for a diverging opinion.
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(neuro)cognitive mechanisms, whose content must literally and really be causally
efficacious within the mechanisms’s inner functional economy—which is prima facie
highly problematic. For, it is quite natural to think that representational contents
are causally inert. All the heavy causal lifting seems done by the representational
vehicles—the physical structures “doing” the representing by “carrying” the contents
around—rather than the contents themselves (cf. Egan, 2020). So, aren’t mechanistic
explanations just incompatible with content-based, representational explanations?

Proponents of the “cognitive neuroscience revolution” appeal to NSRs to provide
a negative answer. For, structural representations are underpinned by representational
vehicles whose physical shape is not just casually potent, but also semantically rel-
evant. This is because the physical shape of the vehicles, and the particular way in
which they resemble their targets, determineswhat these vehicles represent. In the case
of NSRs, then, semantic content and vehicular shape are at least largely overlapping,
if not the exact same thing (Lee, 2019; Piccinini, 2022; Williams & Colling, 2017).
Semantic contents are thus able to play an active causal role within our neurocogni-
tive mechanisms, and are thus able to play a genuine explanatory role in mechanistic
explanations (cf. O’Brien, 2015).

NSRs are thus cast as genuinely representational components of neurocognitive
mechanisms, allowing representational and mechanistic explanations to mesh. This
view, I nowwant to highlight, has an important implication: if NSRs are bona fide com-
ponents of neurocognitivemechanisms, then theymust be observable andmanipulable
as any other component of said mechanisms. Proponents of the neurocognitive rev-
olution agree—either implicitly (see Williams, 2017) or explicitly (Piccinini, 2020a,
Thompson and Piccinini 2018). Hence, at least insofar NSRs are concerned, we can
circumvent the seemingly never-ending debate concerning the reality of internal rep-
resentations (cf. Anderson & Champion, 2022; Hutto & Myin, 2013; Ramsey, 2007;
Segundo-Ortin & Hutto, 2021). To determine whether NSRs are real, one just needs
to peek inside the neurocognitive system and see whether NSRs—or, more accurately,
NSRs-supporting vehicles4—can be found (cf. Bechtel, 2008, 2014; Facchin, 2021a;
Piccinini, 2020a; Thomson & Piccinini, 2018). For simplicity, let me refer to NSRs
supporting vehicles as NSRVs.

The aim of this paper is to take one such peek. As its title suggests, I argue that no
NSRVs can be observed. My analysis unfolds as follows. (Sect. 2) introduces a widely
accepted account of structural representations, focusing on the constraints it places on
representational vehicles. (Sect. 3) considers whether neuronal vehicles satisfy these
constraints, focusing in particular on activations of individual neurons (Sect. 3.1),
neural maps (Sect. 3.2) and activation spaces (Sect. 3.3). In all these cases, I conclude
that the relevant vehicles do not satisfy the constraints introduced in (Sect. 2), and so
that they can’t be NSRVs. (Sect. 4) anticipates some objections. (Sect. 5) considers
the implications of my verdict for the cognitive neuroscience revolution, concluding
the paper.

4 This caveat is actually important: NSRs proper are relations between neural vehicles and their targets, so
they can’t be observed just by observing neural goings on. At best, then, observing neural goings lets us
see one relatum, that is, the relevant representational vehicles (the NSRV).
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2 A standard account of (neural) structural representations

Informally described, structural representations are model- or map- like structures
which represent their targets (i.e. what the representation is “aimed at”) by being struc-
turally similar to them. Cartographic maps are paradigmatic examples of structural
representations, for they represent a terrain by replicating the terrain spatial structure
with their own spatial structure: if location a is west of location b, then the map will
display the point standing for a left of the point standing for b. Can this intuitive, but
imprecise, idea of a structural representation be made more rigorous?

Paweł Gładziejewski (2015, 2016) offers a nowadays standardly accepted philo-
sophical analysis of structural representations5:

Within a system S, a vehicle V is the vehicle of a structural representation of a
target T if and only if:

(1) Structural similarity: V is structurally similar to T; &
(2) Action Guidance: The structural similarity in (1) allows V to guide S’s action

in regards to T; &
(3) Decouplability: (2) can obtain even when V is decoupled from T; &
(4) Error Detection: S can detect the representational errors of V

There is much to say about (1)-(4), both as individually and as a whole. One first
important thing to notice is that they all concern structural representations in gen-
eral—they’re not specific to NSRs. This is a good thing, as it allows me to explain
(1)-(4) in terms of structural representations everyone is familiar with, such as maps.
The step from structural representation in general to NSRs can then be easily made
by placing an appropriate restriction on the physical medium realizing the vehicles:
vehicles must be realized by neurons—or, more precisely, by patterns of neuronal
activities.

Secondly, (1)-(4) all concern the vehicle of a structural representation. Consider, for
example, the physical support underpinning a cartographicmap. It is that support—that
is, the representational vehicle—that (1) is structurally similar to the mapped terrain,
(2) is used to guide our actions (e.g. in traversing said terrain), (3) can guide our actions
when we’re decoupled from that terrain (e.g. allowing us to plan the way ahead), and
(4)whose usage allows us to detect its eventual representational errors (e.g. by noticing
that it leads us systematically astray). So, (1)-(4) specify the relevant vehicular features
underpinning structural representations. Notice also that, since (1)-(4) are imposed in
conjunction, the vehicles underpinning structural representations must satisfy all of
them. I will now examine each condition in turn, focusing in particular on (1) and (2),
as they will be extremely important throughout the entirety of (Sect. 3).

Condition (1) requires the representational vehicleV to be structurally similar to the
represented target T. Note that the relevant similarity relation holds between a single
vehicle and its target, rather than a number of vehicles and a set of targets. To unpack
the relevant similarity relation, like Gładziejewski, I chose a very liberal unpacking,

5 Through, as a reviewer noticed, this is not the only possible understanding of structural representations.
See the Appendix at the end of the paper. Still, Gładziejewski’s account remains the one most typically
referred to in the cognitive neuroscience revolution.
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which makes (1) easier to satisfy—and so, NSRVs easier to spot.6 Thus, this is the
relevant charitable interpretation of NSRs in the present context. On my view:

V is structurally similar to T if and only if:
(a) There is a one-to-one mapping from some vehicle constituents (VA…VN) of
V to some target constituents (TA…TN) of T; &
(b) There is one relation holding among the vehicle constituents of V and
one relation � holding among the target constituents of T such that, for all the
vehicle constituents satisfying (a): (VA,VB) → �(TA,TB). (cf. O’Brien and
Opie 2004).

(a) imposes a one-to-one mapping from some relevant physical bits and pieces of
the vehicle V (i.e. vehicle constituents) to some bits and pieces of the target T (i.e.
the target constituents). I won’t pose any restriction on what may count as a vehicle
constituent—everything may be vehicle constituent, provided that it is a material
constituent of a vehicle. For the sake of simplicity, however, I won’t consider here
arbitrary, or “unnatural” way of carving up vehicles: whilst “unnatural” mappings
alway allow to find a structural similarity (cf. McLendon, 1955), it is very doubtful
our neurocognitive systems care about them—they won’t be, as Shea (2018) usefully
puts it, exploitable by our neurocognitive system.Also, again for the sake of simplicity,
I’ll always assume that the mapping in (a) is “subscript preserving”: VA maps onto
TA, VB maps onto TB, … and VN maps onto TN.

(b) forcesV and T to share the same inner relational structure: if a relevant relation
holds between VA and VB and they satisfy (a), then a relevant relation holds between
TA and TB. Notice that (b) mentions one relation in V and one in T. So, in order for
(b) to obtain the relations preserved by the mapping in (a) needs to be constant on both
sides of the mapping. So, if (VA,VB)→ �(TA,TB) but (VC,VD)→ (TC,TD) rather
than �(TC,TD), then (b) fails to obtain and V and T are not structurally similar. To
understand the point intuitively, imagine amap representing the distance between some
cities in a region in terms of distances between them, and also the distances between
other cities in the same region only in terms of the colors used to represent the cities
(e.g. cities represented in darker colors are further apart than cities represented in
lighter colors). Such a map would not count as a structural representation according
to Gładziejewski’s analysis (and it would also be really hard to use).7

Crucially, conditions (a) and (b) determine the relevant semantic properties of
structural representations. They determine what a vehicle V represents.8 In struc-
tural representations, VA represents TA, and the fact that (VA,VB) represents that
�(TA,TB) (e.g. Shea, 2018). Again, this point can be made intuitively clear by looking
at ordinary cartographic maps. Imagine a map of the Alps. The biggest triangle shaped

6 As Kohar (2023) has persuasively argued, this is also the only relevant unpacking of the structural
similarity.
7 As an additional point, notice that (b) allows for = . So, the two relations can be identical. And that is
exactly what happens with regular cartographic maps, in which spatial relations are involved on both sides
of the mapping.
8 At least partially. Other factors may be relevant in determining the content of V. For example, Shea (2018)
calls upon teleological factors, whereas Piccinini (2020a; 2022) calls upon teleo-informational factors and
factors concerning the embodiment and embeddedness of cognitive systems.
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figure on the map represents the biggest mountain of the Alps (Mont Blanc), and the
fact that such a big square is placed above a big green area represents the fact that
Mont Blanc is north of the Italian plains.Thus (a) and (b)—that is, (1)—are the reasons
why the physical shape of the representational vehicles of structural representations
are imbued with their semantic properties (Williams & Colling, 2017).

Notice how (1) entails that structural representations have a specific form of seman-
tic transparency. Since the mapping in (a) is one-to-one and (b) operates only on one
relation for V and one relation for T, then it is always possible to interpret all the
“ (VX,VY)” univocally and transparently: (VA,VB) can only represent �(TA,TB).
Notice that since structural representations are transparent, their content is neither
disjunctive nor indeterminate: (VA,VB) represents that—and only that—�(TA,TB).
Were it to represent something disjunctive or indeterminate—say, something like
{�(TA,TB) or �(T@,TB)} or {�(TA,TB) or (TA,TB)}—then either (a) or (b) would
fail to obtain, and with it (1) would fail to obtain too.

Condition (2) is satisfied when the structural similarity in (1) guides the actions of
a system S that are “aimed at” T. When this happens, S’s odds of success are sensitive
to the quality of the similarity holding between V and T (see Shea, 2018, p.142). The
more V structurally resembles T, the higher S’s odds of non-accidental success; and,
the lower the quality of the resemblance, the lower S’s odds. Ceteris paribus,9 the
better the map resembles the terrain, the more one is able to traverse it. The worse
their resemblance, the more one is likely to get lost.

Notice that satisfying (2) entails that content is causally potent. For, intervention
on the structural similarity in (1) just are interventions on what V represents—that is,
its contents. But, as seen above, these interventions also modify the agent’s odds of
success: the better the similarity, the better the agent’s odds. This is enough tomakeV’s
content causally potent under an interventionist notion of causality (Gładziejewski &
Miłkowski, 2017): changes in V’s contents cause an agent to be more likely to non-
accidentally succeed or fail.

Here, I wish to highlight two ways in which the structural similarity between V and
T can be worsened—and so, two ways to non-accidentally decrease an agent’s odds
of success. First, the similarity can be worsened because single vehicle constituents
of V map onto many target constituents of T. This is one way to violate (a). I will
call it an (a)-violation. Secondly, the similarity between V and T may be degraded
because two constituents of V display the corresponding constituent of T as being in
a relation that does not in fact hold. This is one way of violating (b)—and I will call it
a (b)-violation. Resorting to the map example may help clarify both cases. When an
(a)-violation occurs, one bit of the map “stands for” multiple bits of the terrain—like a
dot on a map representing both Paris and Rome. When a (b)-violation occurs, the map
inaccurately displays the terrain by displaying certain parts of it being in a relation
that does not in fact hold between them—like a map displaying Rome north of Paris.
There are of course further ways in which the structural similarity between V and T
may be worsened: (a) and (b) can be violated in many other ways. But my arguments
won’t hinge on these violations, so I won’t discuss them.

9 This Ceteris paribus clause is meant to exclude cases in which excessive degrees of similarity stand in
the way of representational usage, as in the case of an hypothetical map in 1:1 scale.
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Point (3) mentions decouplability. Decouplability is an essential feature of all rep-
resentations, which captures the idea that representations represent their target even
when their target is not causally affecting them or the agents relying on them (cf.
Orlandi, 2020). A map can be used even when the mapped terrain is not causally
interacting with the map or its user: for example, a map of Tokyo represents Tokyo
even if it, and its user, are located in Buenos Aires. Minimally, then, decouplability
can be unpacked as follows: V is decoupled from T when T is not causally influenc-
ing V—for example, by causing its tokening (cf. Gładziejewski, 2015, 2016). Notice,
however, that (3) requires somethingmore than decouplability thus spelled: it requires
decouplable representations to still play the action guiding role specified by (2) when
decoupled. So, for a map of Tokyo to fully satisfy (3) it is not enough that it contin-
ues to represent Tokyo while located in Buenos Aires. It must also perform its action
guiding duties while in Buenos Aires—for example, by allowing the map user to plan
her trip to Tokyo in a way such that the plan’s odds of non-accidental success depend
on the degree of similarity holding between the map and Tokyo.

Lastly, (4) is entailed by (2)10: if V guides S’s actions in regards toT as required by
(2), then the degree of similarity between V and T is reflected in S’s odds of success.
Hence non-accidental behavioral successes can act as reliable (through defeasible)
indicators of representational accuracy: pragmatic successes indicate representational
successes, and pragmatic failures indicate representational failures—thereby allow-
ing the detection of representational errors. (cf. Gładziejewski, 2015, 2016, see also
Bielecka & Miłkowski, 2020 for further elaboration).

Summingup: structural representations are representational vehicles (1) structurally
similar to a target, (2)whose structural similarity guides an agent’s action aimed at that
target, (3) that can do so even when decoupled from their target and (4) that allow their
user to determine their representational accuracy via the success-rate of the actions they
guide. NSRs are just structural representations realized in the neural medium. Thus,
if they are present, we should be able to observe NSRVs: neural vehicles satisfying
(1)-(4).

But, does our neuronal activity really realize such vehicles? I think the existing
neuroscientific data motivate a negative answer.

3 Are bona fide neural vehicles vehicles of neural structural
representations?

To determine whether neural vehicles satisfy (1)-(4), one must first determine what
neural vehicles are. Here, I take neural vehicles to be neural activity, which I will
consider at various nested scales of spatiotemporal organization. Now, neural activity
need not be triggered by any external stimulus or task: its origin may be endogenous,
and entirely determined by the inner dynamics of the nervous system. The activity of
the “resting state” or “default mode” network may be a good example of such purely
endogenous neural activity (cf. Raichle, 2015). Understanding such bouts of intrinsic

10 At least, in sufficiently complex systems: we surely could design a robot whose central control system
allows the tokening of states satisfying (1)-(3) but not (4). However, since the paper focuses on brains (and
brains are arguably sufficiently complex) I will take (4) to be entailed by (2).
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activity is surely crucial to fully understand how the brain works. Yet, in this paper, I
will largely ignore them. As the majority of neuroscientists (eg. Friston, 2005; Mesu-
lam, 2008; Villaroja, 2017; Backer et al., 2022; Frisby et al., 2023) and philosophers of
mind/cognitive (neuro)science—defenders of the “cognitive neuroscience revolution”
included (e.g. Piccinini, 2020a; Thomson&Piccinini, 2018)—Iwill here be concerned
mostly with neuronal responses to external stimuli. I will analyze them at three distinct
spatiotemporal levels: the level of individual neuronal responses (Sect. 3.1), the level
of neural maps (Sect. 3.2), and the level of entire activation spaces (Sect. 3.3). In all
these cases, I claim that they do not, and, indeed, cannot, satisfy (1)-(4).

Why focus on neuronal responses? The reason is purely methodological. Pretty
much every formof representationalismhas to assume that, when a system S dealswith
a target T, S has to tokenize a vehicle V which represents T—else, a representational
explanation of the phenomenonwould not bewarranted. So, observing how S responds
to T is a good way to observe what vehicle V (representing T) S tokenizes, in a way
that makes it easy to check whether V is a NSRV. Observing intrinsic bouts of S’s
activity, on the other hand, is a less reliable observational procedure. For, we can’t
exclude that at least some of these bouts of activity are not representational vehicles,
and we currently lack a way to tell these two apart. Moreover, we presently lack a way
to connect “endogenously” tokenized vehicles to their targets, in a way that clearly
prevents us from determining whether they qualify as NSRV.11

That being said, I can’t help but admit that neuronal responses are not the only
representational vehicles populating our brain. Indeed, alongside bouts of “intrinsic”
neural activity, other neuronal activities and structures are labeled as neuronal vehicles.
I will consider some of these structures in (Sect. 3.4), arguing that these too fail to
qualify as NSRV.

3.1 Individual neuronal responses are not vehicles of neural structural
representations

Individual neurons respond to stimuli selectively: different stimuli elicit different
responses. Typically, neurons have one preferred stimulus, which elicit the strongest
response. Preferred stimuli vary depending from neuron to neuron, reflecting their spe-
cialized functional roles. For example, neurons in the primary visual cortices respond
to simple visual stimuli like oriented bars (cf. Hubel & Wiesel, 1968). Neurons in
hierarchically higher layers of the visual cortex respond to more complex stimuli—-
for example, neurons in area MT respond to movement directions (cf. De Angelis
& Newsome, 1999). Neurons further away from sensory areas respond to even more
complex stimuli (or features thereof): the parietal cortex houses neurons responding to
specific quantities (Nieder et al. 2006), the inferior premotor areas of the frontal cortex
house neurons that respond to specific actions (Kohler et al., 2002) and, apparently,
there are even neurons in the inferior temporal cortex preferring specific individuals

11 Notice that the point here is exclusivelymethodological. It should not be confused with the endorsement
of an “indicator” view of representation, according to which neural activity represents what it causally
sensitive to/ correlates with. On the relationship between structural representations and indicators, see
references given in (§3.1).
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(Quiroga et al., 2005). Thus, individual neurons have preferred stimuli of different
sorts, which they are often said to represent. But are these representations NSRs? Are
they underpinned by NSRVs?

It is a bit hard to provide a direct answer to these questions. Sure, NSRVs should be
observable andmanipulable as anyother component of amechanism—but this time it is
a bit unclear what we should be looking at (or thinking with) exactly. For, “individual
neuronal response” can be read in at least three different ways: (i) as designating
individual spikes (i.e. single neuronal discharges), (ii) as designating spike trains (i.e.
sequence of discharges) and (iii) as designating a neuron’s firing rate compared to a
baseline. Options (i)-(iii) all pick up a bona fide representational vehicle supporting
a specific representational scheme (e.g. Brette, 2015; Dayan & Abbott, 2005). Thus,
the claim that individual neuronal responses are NSRVs can be read in at least three
different ways. As a consequence, it is not immediately clear what sort of observations
and manipulations would support it.12

Now, whilst interpretations (i)-(iii) are all possible, I want to suggest that they all
face certain important challenges, whose collective weight seems enough to reject the
idea that individual neuronal responsesmay qualify asNSRVsunder any interpretation.

First, it is very hard to see how an individual neuronal response could structurally
resemble its target—be it an oriented bar or an individual person. This is because it
is very hard to see how the vehicle (i.e. the individual response, however interpreted)
could be non-arbitrarily decomposed into vehicle constituents as requested by (a). It is
not at all clear what could count as a vehicle constituent of a single neuronal response:
a “part” of a spike, an individual spike (or sequence of spikes) in a spike train, part of
the voltage emitted, a fraction of the firing rate, part of the neurotransmitters emitted,
or something else entirely? All these options pick up certain bona fide parts of a single
neuronal response. Yet, there seems to be no privileged way to choose between them
(cf. Maley, 2023): the choice of vehicle constituents seems entirely arbitrary. This is a
serious problem when it comes to satisfying (1). Of course, I don’t want to deny that
wemay discover that there are functionally relevant, non-arbitrary ways to decompose
individual neuronal responses. But we’ve not discovered them yet. So, even supposing
that one such partition exists (which is something my dialectical adversaries should
argue for!) we’ve not yet observed the relevant NSRVs, for we simply do not know
what that partition is. Moreover, even if a privileged, non-arbitrary way to identify
vehicle-constituents in individual neuronal responses were to be found, we still would
have to specify what sort of relevant relation holding amongst the vehicle-constituents
as specified by (b). A task as daunting as the previous one.

Secondly but not least importantly, such tasks are not just daunting. They are also
entirely unmotivated—at least insofar the explanatory practices of present day cog-
nitive neuroscience go. For, whilst contemporary cognitive neuroscientists typically
assume that individual neuronal responses represent individual targets, they do not
claim that specific parts of neuronal responses represent specific parts of the target,
nor do they claim that relations between parts of neuronal responses represent relations

12 Notice that the claims that neuronal maps and activations spaces are vehicles of NSRs are not similarly
ambiguous: both claims express a form of population coding, which is a special case of rate coding. No
interpretation of these claims in terms of single spike trains (or single spikes) is possible.
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between parts of the target. But that’s exactly the way in which structural representa-
tions represent. Moreover, I suspect that claims such as “The first spike of the spike
train represents the leftmost bit of the oriented bar” or “the fact that spike VA preceded
spike VB represents the fact that a part TA of the oriented bar is left of a part TB of the
same bar” would be considered not just unjustified, but entirely exotic by the majority
of cognitive neuroscientists. So exotic, indeed, to be a bona fide reductio of the idea
that individual neuronal responses are NSRVs.13

Summing up: the claim that individual responses are NSRvs is hard to “cash out”, it
yields extremely exotic conclusions and it is entirely unjustified by the current practice
of cognitive neuroscience. Individual neuronal responses are in fact typically described
as “indicator” or “detector” representations (cf. Backer et al., 2022; Gładziejewski &
Miłkowski, 2017; Ramsey, 2003; Williams & Colling, 2017).14 On this view, the
firing of a neuron does not provide an inner model of a target which replicates the
target’s inner structure. Rather, the firing of a neuron simply signals the presence of the
target at the time of firing. So, the actual practice of cognitive neuroscience—that is,
the observations and manipulations that cognitive scientists actually carry out—does
not suggest or motivate the claim that individual neuronal responses are NSRVs. If
anything, individual neuronal responses are said to be the vehicle constituents of
individual structural representations (cf. Gładziejewski &Miłkowski, 2017; Williams
& Colling, 2017)—a view whose two different popular incarnations will be discussed
in (Sects. 3.2 and 3.3).

Beforemoving on, however, I need to face an increasingly popular line of argument,
which casts indicators as a special case of structural representation (Morgan, 2014;
Facchin, 2021b, Nirshberg & Shapiro 2021, Nirshberg, 2023).15 Clearly, this view
challengesmy analysis: if indicators are structural representations, then indicator states
qualify as NSRV. And so, if individual neuronal responses are indicator states, to
observe them just is to observe a NSRV.

Why, however, should one think that indicators are a special case of structural
representation? The answer seems to be the following. Consider an indicator such
as a familiar mercury thermometer. The height of the bar grows proportionally to
the temperature: the hotter the environment, the higher the bar. Such an observation
seems to generalize to all indicators: there is always some indicator-specific relation
between indicator states and indicated states. In a hygrometer, the higher the humidity,
the longer the indicating hair gets; the floater of a fuel gauge gets lower as the tank
gets emptier, and so forth. So, for every pair of indicator states VA and VB there is a
relation such that the corresponding indicated states TA and TB are in a relation. In
other words, (VA,VB) → �(TA,TB) holds, and the indicator and the indicated target
are thus structurally similar. This is enough to satisfy (1). And various ingenious

13 One could still argue that individual neuronal responses represent what they represent because they are
part of a larger structural representation. Notice, however, that, in such a case, individual neuronal responses
would not be NSRVs, but only vehicle constituents of a larger NSRV. At any rate, §§ 3.2-3.4 will consider
putatively larger vehicles, concluding that they don’t qualify as NSRVs either.
14 Piccinini (2020a) might, under a certain reading, be an exception—but he really seems more concerned
with populations of neurons rather than individual neurons. I will thus deal with his view in (§3.2).
15 See also (Gładziejewski & Miłkowski 2017; Lee & Calder 2023) for other attempts to resist this view.
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arguments can take care of (2)—(4). Or so, at least, many philosophers have argued
(see, in particular, Facchin, 2021b).

Should we thus accept that indicators are structural representations? I’m inclined
towards a negative answer—but I won’t defend it here, as determining whether indi-
cators really are structural representations is clearly beyond the scope of this paper.16

What I will notice, however, is that even if the line of reasoning sketched above were
successful, it would not show that individual neuronal responses satisfy (1). To see
why, consider how that pattern of reasoning may be applied to individual neuronal
responses. Imagine to observe a neuron that indicates an oriented bar: the neuron fires
most vigorously as the orientation of the bar triggering it most closely approximates
the preferred orientation, hence (VA,VB) → �(TA,TB). But what are VA and VB in
this example? The natural answer is that they are the individual neuronal responses to
stimuli TA and TB. When the neuron “saw” the stimulus TA (which approximates the
preferred orientation better than TB) then it responded entering in a state VA (which
is much more active than VB). So, according to the very same pattern of reasoning
that should demonstrate that indicators are structural representations, individual neu-
ronal responses fail to qualify as structural representations—at least, given the relevant
notion of structural representation discussed in Sect. 2. They are, at best, constituents
of a structural representation. It follows that observing individual neuronal responses
does not amount to observing NSRV.

At this point, however, it is natural to wonder whether V—the entire set of indicator
states being structurally similar toT—qualifies as a NSRV that we have observed. The
answer to this question will be provided in (Sect. 3.4). But before providing it, I need
to consider another important (family of) candidate NSRV; namely neural maps.

3.2 Neural maps

Above, I’ve argued that individual neuronal responses are not NSRVs. But what about
the responses of multiple neurons?

Piccinini (2020a), argues at length that various types of cortical maps—includ-
ing the retinotopic map in the primary visual cortex and the motor and sensory
homunculi—qualify as NSRVs. Ramsey (2016), Shea (2018) and Gładziejewski and
Miłkowski (2017) all claim that certain neurons in the hippocampus of rats are con-
nected in a map-like way, so as to structurally represent the rat’s environment.17 So,
many authors suggest that the real NSRVs are responses ofmultiple neurons organized
in a map-like way.

These arguments can call upon awealth ofwell-known neurophysiological and neu-
ropsychological data. For example, Piccinini (2020a, p. 271) stresses the retinotopic
organization of the primary visual cortices (V1), nicely displayed in Fig. 1:

The neurons constituting V1 them are spatially organized so as to replicate (a
tweaked version of) the spatial structure of the original visual stimulus (cf. Tootell
et al., 1988). If neuronVA is left of neuronVB, then TA (i.e. whateverVA is responding

16 Through see the post scriptum to see one reason underpinning such a negative answer.
17 See (Bechtel 2008; 2014; Thomson and Piccinini 2018) for a non NSRs-centric representational account
of these neural structures.
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Fig. 1 Cortical topography of V1: the spatial structure of the stimulus (left) is mirrored—in a systematically
distorted fashion—by V1 neurons (right). The same topological structure, however, is instantiated in both.
Source: Figs. 1 and 2b in (Tootell et al. 1998). Reproduced with permission. Copyright (1988) Society for
Neuroscience

to) is left of TB. This is a clear structural similarity tying together the neural map and
its representational target. Further, Piccinini stresses that the columnar organization of
V1 contains many “smaller scale” cortical maps representing significant properties:

“V1 contains multiple fine-grained topographically organized feature maps of
such properties embedded in the larger-scale retinotopic representation of space.
For instance, those neurons selective for horizontally oriented bars tend to cluster
together in cortical columns in V1, and nearby columns contain neurons that are
tuned to similar orientations” (Piccinini, 2020a, p. 272).

So, if column VA is close to column VB, then TA is similar to TB. Similar “smaller
scale” maps are found in many neural areas. For example the neurons area MT (a
further visual area particularly sensitive to movement) are arranged so as to com-
pose a “movement map”. Neurons that prefer similar direction of motion cluster into
columns, and columns are spatially organized so that spatially close columns prefer
similar movements (cf. De Angelis & Newsome, 1999). The closer two columns (or
two neurons) are, the more similar the velocities they respond: if VA is close to VB.
then TA is similar to TB. More intuitively strikingly still, there are the cortical “ho-
munculi” and “simunculi” drawn by Penfied and Woolsey (cf. Penfield and Brodley
1937; Woolsey et al., 1952). It’s hard to look at them without noticing how nicely the
spatial organization of these neurons “recapitulates” the spatial organization of bodily
parts—for one example, see Fig. 2.

Notice how easily the relevant structural similarity can be seen in Fig. 1 and Fig. 2.
Isn’it simply obvious that these structures are structurally similar to their target, in a
way that clearly satisfies (1)?

Whilst these structures obviously seem structurally similar to their targets, it is not at
all obvious that they are—or so I will later argue. But before doing so, I wish to notice
that even if such similarities were present, the fact that their presence is obvious to us
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Fig. 2 The sensory homunculus. Note how the spatial relations between the cortical areas “mirror” the spatial
relations between the represented body parts
Source: Wikimedia. This file is reproduced, without modification, from https://commons.wikimedia.org/
wiki/File:Sensory_Homunculus-en.svg in accordance with its Creative Commons License. Original cre-
ator: OpenStax College (http://cnx.org/content/col11496/1.6/). Modified byWikimedia users Popadius and
Preoptic

does not entail that our neurocognitivemechanisms “see” the similarity too—indeed, it
seems that our neurocognitive mechanisms are blind such similarities in the execution
of their tasks. And, for this reason, these similarities fail to satisfy (2). Consider, for
example, the somatotopic organization of the cortical homunculus—and the structural
similarity it underpins. Does the somatotopic spatial arrangement of these neurons
guide our actions as required by (2)? Prima facie, the answer is negative. Imaginary
interventions that modify only the somatotopic organization of the homunculi (i.e.
the relative spatial locations of the neurons constituting it) do not seem to have any
effect on our behavior. After all, if they modify only the somatotopic organization
of these neurons, they leave intact their input–output profile and mutual connections,
allowing the homunculus they constitute to contribute to an agent’s behavior in the
same way in which a somatotopically non-modified homunculus would. Changes in
the somatotopicity of homunculi—and the structural similarity they underpin—do
neither increase nor decrease the agent’s chance of success. So, (2) fails to obtain.
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One could object that similar though experiments are ill-suited to determinewhether
(2) obtains or not. Looking at some real experiments, however, yields the same verdict.
Consider, for example, the data collected by Hartmann et al. (2016).18 Simplifying to
the extreme, they equipped rats with prosthesis enabling them to perceive and respond
to infrared lights. The prosthesis were “caps” of infrared sensors (allowing for a 360°
panoramic infrared vision) that communicated with the rat’s “sensory homunculus”
(i.e. their primary somatosensory cortices). Crucially, they could do so in a way that
either respected or flouted (to various degree) the homunculus’s somatotopic organi-
zation—e.g. the front-facing infrared sensor could be connected with the head of the
rat’s homunculus (respecting somatotopicity) or with its rear or side (flouting soma-
totopicity). Now, Hartmann and colleagues report that all rats managed to achieve a
high success rate in the experimental task (infrared light discrimination), regardless
of the degree of somatotopicity of their prosthesis. Sure, the better the somatotopicity,
the faster behavioral success came. But, eventually, even rats equipped with “non-
somatotopic” prosthesis were eventually able to perform at the level of rats equipped
with “somatotopic” prosthesis. This clearly violates (2), according to which the degree
of somatotopicity should be reflected in higher or lower odds of behavioral success.

Now, one could object that these data are less clear cut that I’m making them
appear—after all, rats with “non-somatotopic” prosthesis learned how to face the
experimental task more slowly than rats with “somatotopic” prosthesis, and this might
be counted as one way in which degrees of somatotopicity influence the agent’s odds
of non-accidental success during the learning phase. I’m not persuaded that this is
the case (why should the degree of somatotopicity matter only during the learning
phase of a task?)—but even if it were the case, other experimental data on homunculi
can be marshaled to support my conclusion. For example, Chakrabarty and Martin
(2000) have found that, during postnatal development of the primary motor cortex
(i.e. the motor homunculus) the number of sites representing more than one limb
increases. This suggests that such “multi target” sites are needed to effectively control
movements—something that improves during postnatal development. And yet, “multi
target” neurons clearly degrade the structural similarity in (1), as they are a case of an
(a)-violation (cf Sect. 2).19 So, a worsening of the structural similarity correlates with
an increase of performance, blatantly violating (2). Martin et al (2005) present similar
data, suggesting that increases in “multi target” neurons are positively correlated with
increases of motor expertise.20

The evidence above gestures towards a point that can perhaps be less messily
expressed (and generalized beyond homunculi) as follows. The structural similar-
ity of cortical maps is based on certain spatial relations holding amongst the map’s
constituents—that is, spatial relation between neurons. Now, according to a standard

18 Though it should be noted that the experimental interventions in (Hartmann et al., 2016) are not interven-
tions only on somatotopicity, as they always also change the artificial sensors from which neurons receive
inputs. Here, I will ignore this complication for the sake of simplicity.
19 More on this point below.
20 One could object that motor homunculus is not a good example, because it is not at all clear how the
primary motor cortex represents our body and its movements (cf. Piccinini 2020a; Thomson and Piccinini
2018). This, however, is more a problem for the defender of NSRs than for me: how can they claim that the
motor homunculus is a NSRV if they do not know what it is structurally similar to?
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neuroscientific picture, neurons and neural maps contribute to an agent’s behavior in
virtue of their information-signaling properties; roughly, their input–output profile.
Their input output behavior is determined by a number of features, including a neu-
ron’s sensitivity to stimuli, their baseline firing rate, the connections they have with
other neurons and the nature of such connections (excitatory or inhibitory) and other
features. Spatial features, however, do not influence their input–output profile. So,
they don’t contribute to an agent’s behavior. Hence they can be varied ad libitum,
creating arbitrarily large (b)-violations, without influencing an agent’s behavior and
its odds of success. And this, of course, means that they do not play the action guiding
role required by (2).

Notice that I’m not claiming that the topographic organization of cortical maps does
not play any relevant functional role. Not all functional roles of neuronal structures
must be representational or cognitive (Haueis, 2018). Perhaps the topographic orga-
nization of cortical areas minimizes wiring, speeding up neural signaling (cf. Blauch
et al., 2022).21 Maybe it reduces metabolic costs (cf. Sterling & Laughlin, 2015).
Or perhaps it is just a side effect of certain relevant evolutionary or developmental
constraints—or maybe it is due to all three, and perhaps even more, factors simul-
taneously (Cf. Graziano & Aflalo, 2007, p. 239). I’m not denying these (or similar)
claims. I’m only denying that the topological organization plays the representational
role (2) captures. This is entirely compatible with it playing other biological—or even
cognitive—roles (cf. Graziano, 2011). To deny a car’s brakes makes it accelerate is
not to say brakes are useless!

One could retort that the argument above is not fully general. In the case of the
spatial map in the rat hippocampus, for example, what matters are not the spatial
relations amongst neurons, but rather the relation of inducing activation. If neuron VA
tends to induce the activation of VB, then TA is close in space to TB (cf. Moser et al.,
2008). This is a functional relation, the changing of which changes the way in which
inputs are turned into outputs. Hence (2) seems to obtain, and the argument provided
above does not apply. And, perhaps, some similar functional relation might similarly
rescue the neural maps discussed above. For example, the motor homunculus might
not underpin a NSR of our body, but rather a NSR of our action (cf. Graziano, 2016). If
that were the case, my focus on somatotopicity might just have distracted from some
other functionally relevant structural similarity.

Even if that were the case, however, there would still be a significant problem. In
general, neurons (including the neurons of cortical maps) do not respond to just one
stimulus. Sure, they respond most strongly to their preferred stimuli, but it makes
sense to say that neurons have preferred stimuli only because they respond to many
different stimuli. Moreover, the response profile of neurons is typically influenced by
multiple parameters of a stimulus. For example, MT neurons are not just sensitive
to motion direction, but also the retinal position of the stimulus, its size, the speed
of motion and its binocular disparity (Born & Bradley, 2005, P. 164). Hippocampal
place cells do not respond only to place, but also to odors, tactile inputs, recognizable
chunks of experiences, and the relative timing of certain events (Itskov et al., 2011;

21 Though others suggest that wiring length minimization does not strongly correlate with topographic
organization (cf Yarrow et al., 2014).
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Kraus et al., 2013; Sun et al., 2020; Wood et al., 1999, 2000). Even the neuronal cells
constituting the “cortical homunculi”, probably the most well known and the most
intuitively compelling NSRs, do not always code for single bodily parts (see Penfield
and Brodley 1937; Penfield and Rasmussen 1957; Woolsey et al., 1952; Kwan et al.,
1978;Wasserman et al. 1992; Schieber, 2001; Aflalo&Graziano, 2006). Indeed, some
neurons of the “motor homunculus” appear to code (and control) complex whole-
body configurations, in a way that clearly stands in the way of (1) (Gordon et al.,
2022): if these neurons are vehicle-constituents of the NSRV representing our whole
body, they can’t be representing our whole body without violating (1)! All these are
significant and systematic (a)-violations of the relevant structural similarity. So, in
general, the neat one-to-one mapping from discrete and well-identified “bits” of the
neural map to discrete and well-identified bits of the world is a huge idealization of
the neurobiological reality.22 As far as neuroscience shows us, (a)-violations are the
rule, not the exception, in cortical maps. So it seems that, as a general rule, (a) fails to
obtain. A fortiori, (1) does not obtain too.23

One could claim that these data pose no threat to (1), as they only show that NSR
are much messier than textbook philosophical examples lead us to suppose (thanks
to Jonny Lee for this objection). But these data do not “just” complicate the picture.
They complicate the picture in a way that directly threatens the obtaining of (1) by
showing that the relevant vehicle constituents do not map onto target constituents in
the desired manner. They don’t show that (1) obtains, but in a much messier manner
than textbook examples indicate. They show that (1) does not obtain.

One could further claim that these data pose no threat to (1) because structural
similarities between vehicles and targets need not be perfectly accurate nor total.
Imperfect, partial, distortive similarities are sufficient to satisfy (1) too (cf.Williams&
Colling, 2017; Shea, 2018, pp. 140–142).And indeed, sometimesdistortive similarities
might be more functional than non-distortive ones: think the way in which maps
of underground metros are way more readable when they do not display the actual
distance holding between the various metro stations. I think this is an important claim
that gets something right. However, I still think that, in the present context, it is
insufficient to rescue (1).

For, appealing to approximate similarities allows (1) to tolerate local (a)-violations
and/or (b)-violations, global (a)- and/or (b)-violations can’t be tolerated. A map can
tolerate a (a)-violation (e.g. representing Rome and Paris with a single point) only if
it correctly represents other places (e.g. because it represents Lyon and Florence as
two distinct points, the former north of the latter). Else, it ceases to be a map in any
recognizable sense. And the same goes for (b)-violation. Thus, (a)- and (b)-violations
cannot be global. In the case at hand, however, the (a)-violation seems to be if not
global at least extremely widespread. Neurons responding (and mapping to) single
targets, if they exist, are rare exceptions—so rare, indeed, that, to my knowledge,
they’re yet to be found.

22 Penfield was explicit on this point. He considered his homunculus as “a cartoon of representation in
which scientific accuracy is impossible” intended to be used as an “aid to memory” (both quotes from
Penfield and Rasmussen 1950, p.56).
23 As an aside, notice that the same state of affairs prevents us from considering these neurons and neuronal
regions indicators in any straightforward and intuitive way.
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Perhaps one could argue that, unlike cartographic maps, cortical maps might tol-
erate global (a)- and/or (b)- violations. After all, neural representations have unique
properties, and public representation offers only a limited, andmostly analogical, guid-
ance to the understanding of neural representations (thanks again to Jonny Lee for this
objection). Whilst this objection, if successful, would rescue (1), I’m not entirely sure
that it makes sense; and I think that even if it were sensical, it could not be accepted.

I’m not sure that the objection is sensical because I’m not sure that there is a
real difference between something that satisfies (1) while allowing for systematic (a)-
and/or (b)-violations and something that simply fails to satisfy (1). I really don’t have
the faintest idea of how that difference could be spelled out and articulated—prima
facie, something allowing for systemic (a)- and/or (b)-violations is simply something
that does not satisfy (1). If there is a difference between the two, I challenge the
objectior to spell it out in a clear manner.

One may further argue that the data I have shown does not really pose any threat to
(1). After all, (1) requires only a one-to-one correspondence between (at least some
of) the vehicle constituents of V and (at least some of) the target constituents of T.
But nothing obliges the relevant correspondence to be causal in nature, or to rest on
a form of response selectivity. Indeed, such a focus on response factors may suggest
that I’m inadvertently shifting towards an indicator view of representation. Consider,
in contrast, a paradigmatic structural representation such as a cartographic map. The
various points on the map are in no obvious sense caused by what they stand for; and
their correspondence does not seem to hold in virtue of any response of the map to
the environment. Rather, points on the map correspond to various locations partially
in virtue of their position in the map, and partially in virtue of certain representational
conventions. So, the fact that neurons in cortical maps respond to many environmental
stimuli does not entail that such neurons map onto many target constituents in the
relevant sense of mapping at play in (1).

The objection above makes a valid point: the relevant one-to-one correspondence
in (1) does not need to be causal, or grounded upon response-related factors.24 More
generally, the content of structural representations does not metaphysically depend
on causal, correlational or response-dependent factors. This is one important feature
that (supposedly) tells apart structural representations from indicators (cf. Cummins,
1996). Yet, as valid as this point is, it fails to provide any compelling reason to reject
my line of reasoning. On the one hand, the fact that the one-to-one correspondence in
(1) need not be grounded in causal factors does not exclude that it can be so grounded.
On the other hand, I don’t need to claim that that correspondence is grounded in
causal factors—and, by extension, that the content of structural representations is
even partly metaphysically dependent on causal factors. All I need for my arguments
to work is that the one-to-one mapping required by (1) can be discovered appealing to
causal factors. And this is not just an assumption that neuroscientists and philosophers
do make (see references given in this paragraph); it is also an assumption that it is
safe to make. For, as reminded in Sect. 3, we have good reasons to take neuronal
responses to targets to be vehicles representing these targets. Given this safe and
reasonable methodological procedure to investigate neural representations, the fact

24 For an exception to this general rule, see (Isaac 2013).
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that bona fide constituents of NSRV respond to many different targets suggests that
they do not map one-to-one onto their targets as imposed by (1). So, to repeat: in the
case of structural representations, the content metaphysically depends on a structural
similarity holding between a vehicleV and a target T. The similarity requires a one-to-
onemapping from the vehicle constituents of V to the target constituents of T (cf. point
(1) in Sect. 2 above). When it comes to neural structural representations, the standard
methodology to discover such a mapping is that of looking at response properties (i.e.
causal/correlational factors). And here response properties suggest, pace (1), that no
one-to-one mapping obtains.25

Now, concede (for the sake of discussion) that (1) obtains. The representationalist
would still be swamped by problems. For, (a) and (b) partially determine the semantic
properties of structural representations, and so their global violation yields degenerate
semantic properties—which impede cortical maps to be counted as NSRs, for their
possession is incompatible with the semantic transparency that characterizes structural
representations. Worse still, these degenerate semantic properties make cortical maps
unable to play the causal role that characterizes structural representations. So, we can’t
really coherently accept thatNSRVs can allow for systematic (a)- and/or (b)-violations.
Let me unpack.

Recall (Sect. 2): each vehicle constituent of a structural representation represents
the target constituent onto which it maps. Further, relations holding among vehicle
constituents represent relations holding among target constituents: (VA,VB) repre-
sents that �(TA,TB). But actual neural responses “map onto” more than one target
constituent—neurons do not respond only to their preferred stimuli. So, in the case
at hand, VA does not map only onto TA, it maps also onto T@. But then, what does
(VA,VB) represent? �(TA,TB), �(T@,TB) or some mixture of the two? Defenders

of NSRs are unable to answer this question in a satisfactory way: all answers fail to
deliver contents with the requested semantic transparency.Moreover, since the content
lacks the desired semantic transparency, it is unclear when V representsT. Hence it is
unclear whether V is able to play the action guiding role imposed by (2). Since (4) is
entailed by (2), (4) is in danger too.

To see why this is the case, suppose, first, that (VA,VB) represents only
�(TA,TB)—or�(T@,TB).Notice that this is a fairly substantial supposition: it amounts
to supposing thatV actually satisfies (1) and so has the required semantic transparency.
But even with a substantial supposition in place, it is not yet determined whether it
is represented �(TA,TB) or �(T@,TB). The supposition is that only one of the two is
represented—but now it is necessary to determine which one is represented. Yet, what
V represents is determined by the relevant structural similarity V bears to some tar-
get—which does not discriminate between �(TA,TB) and �(T@,TB). So, V’s content

25 Notice an objector cannot deny this latter methodological point without thereby granting my point
that NSRV have not been observed. For, in the case of neuronal maps (and other bona fide NSRV), it is
standardly claimed that the relevant mapping has been discovered through such means. But, if these means
were inadequate to observe NSRVs, then it clearly follows that we’ve not observed them—and this is exactly
my point!
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is indeterminate: Sure, V represents one and only one target T, but which individ-
ual target T is represented is left entirely open.26 V is thus semantically transparent
in name only. Further, since T is indeterminate, whether (2) and (4) obtain is left
entirely unclear. If we don’t know what V is structurally similar to, we can’t deter-
mine whether increasing (or decreasing) that similarity increases (or decreases) the
agent’s chance of success. V would thus be a vehicle of a structural representation
in name only. Moreover: the fact that neurons commit systematic (a)-violations is
functionally relevant—it improves the way in which our neurocognitive mechanisms
work (Chakrabarty & Martin, 2000; Martin et al., 2005). If the way in which such
mechanisms function really is best explained representationally, a representational
explanation should should be expected to emphasize that fact, rather than hiding it
under the carpet assigning these representational vehicles a single representational
content by fiat.

So, in the case at hand, a representational explanation should not choose one
between �(TA,TB) and �(T@,TB)—it should find a way to say that both are rep-
resented. Suppose, then, that (VA,VB) represents both �(TA,TB) and �(T@,TB).
So, (VA,VB) has a composite content, which might be expressed by {�(TA,TB) &
�(T@,TB)}. But clearly such a content is not semantically transparent in the desired
way. But the desired semantic transparency seems entailed by (1), and so now it seems
that (1) is not the case. This conclusion generates a contradiction—in fact, we’re try-
ing to determine what would V’s content be, supposing that (1) obtains in spite of
the various (a)-violations it suffers from. And even leaving this problem aside, there
would be problems with (2) and (4). Suppose that an agent is using the representation
V (including (VA,VB)) to guide their behavior in respect to a T such that�(TA,TB) is
the case but �(T@,TB) is not the case. Here, it is legitimate to expect the agent to non
accidentally succeed: (VA,VB) carries information about �(TA,TB) which the agent
can “use” to appropriately orchestrate their behavior. But if (VA,VB) actually repre-
sents {�(TA,TB) & �(T@,TB)}, then it is false (or extremely non-accurate). The truth
value (or degree of accuracy) of V no longer correlates with the agent’s behavioral
success, and so (2) fails to obtain. Given that (4) is entailed by (2), (4) fails to obtain
too. Of course, one could solve this specific problem by arguing that the composite
content is something that could be best expressed by {�(TA,TB) or �(T@,TB)}. But
now the content of V is plainly disjunctive, and falls prey to the disjunction problem
in its various forms (cf. Neander, 2017). And notice that, since the original assumption
was that systematic (a)- (and (b)-)violations are admissible, the disjunction here seems
unrestrained.

26 A tempting and obvious solution to this problem is that of resorting to a form of informational (or
information-based) semantics; that is, claiming that each neuron “maps onto” the stimulus about which
it carries the most information (cf. Wiese 2017, pp. 219-223, also (arguably) Piccinini 2020b). However,
such informational linkages seem unable to ascribe determined contents (Artiga & Sebastian 2018; Rosche
& Sober 2019). More generally, theories of structural representations interact poorly with informational
accounts of content (cf. Facchin 2021a). A second solution is that of appealing to the agent’s actual context
(Ramsey 2007). But this solution can only work in some cases of successful online behavior. If the relevant
vehicle is used in a decoupled manner, in service of offline cognition, then there is nothing in the agent’s
context that can discriminate between �(TA,TB) and �(T@,TB)—else, the agent’ would not be decoupled
from at least one of them. So, the solution does not generalize and fails to appropriately restore content
determinacy. Other solutions are far less obvious, and thus cannot be considered here.
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Taking stock: that the neurons of neural maps do not map in a neat one-to-one
fashion onto stimuli is a serious problem for the defender of NSRs. The absence of the
required one-to-one mapping may be enough to claim that neural maps fail to satisfy
(1). And, even accepting that the absence of such a map is no reason to deny that
(1) obtains, there would still be significant problems with (2) and (4). It would be at
best unclear whether neuronal maps guide their “users” actions in the way structural
representations are supposed to carry out their action guiding duties.

Defenders of NSRs might then be tempted to abandon (2) and (4) to secure the
status of cortical maps as NSRVs. But this is unwise. Recall why NSRs are central
in the “cognitive neuroscience revolution”. They are central because they allow for
the happy marriage of mechanical and representational explanations (Sect. 1). NSRs
allow for this marriage because their NSRVs—the causally efficacious bits and pieces
that operate within our neurocognitive mechanisms—are imbued with content: their
physical shape has important semantic properties in a way such that these semantic
properties are allowed to play an active causal role within our neurocognitive systems
(Sect. 2). In the case of NSRVs, then, the semantics itself does the pushing and pulling
required by mechanistic explanations. But, assuming that representational accuracy is
conducive to pragmatic success, this view entails (2): the degree of accuracy between
vehicle and target must be reflected in the agent’s odds of pragmatic success. So,
abandoning (2)means either (i) abandoning the view that representational accuracy is
conducive to pragmatic success or (ii) abandoning the view that the content of NSRs
plays a causal role compatible with it being a part of mechanistic explanations. Both
options are unattractive to the defender ofNSRs.Denying (i) is tantamount to admitting
that representations are conducive to success regardless of their truth or accuracy
value—which is clearly false. But denying (ii) amounts to conceding that the relevant
semantic properties ofNSRVsdonot play anymechanistically relevant causal role—de
facto undermining the theoretical attractiveness of NSRs for cognitive neuroscience
in general and mechanistic cognitive neuroscience in particular (cf. O’Brien, 2015;
Williams & Colling, 2017).

In spite of their appearance, then, neural maps are not NSRVs—the structural simi-
larity that they so obviously boast (to our eyes) might not even be really present. And,
even if it were present, it would not play the required representational role.

3.3 Activation spaces

Thus far, I’ve in an important sense considered only single responses, either of indi-
vidual neurons (Sect. 3.1) or of multiple neurons topographically organized in neural
maps (Sect. 3.2). Some defenders of NSRs would claimmy focus has been too narrow.
To see NSRVs one should look atmultiple responses from a single neuronal structure.
For, the relevant (i.e. NSR-underpinning) similarity does not hold between a single
activation and a target. Rather, it holds among the structure’s entire activation space
(i.e. set of all possible responses) and the entire target domain (i.e. the set of all targets
the structure is sensitive to). As far as I can see, there are two different arguments for
this claim.
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The first—and more widespread—variant is ultimately based on the analysis of
the behavior of a large class of neurocomputational models (cf. Churchland, 1995;
O’Brien and Opie 2004; Grush, 2004; Shagrir, 2012; Williams, 2017; Wiese, 2016,
2017).27 Shagrir (2018) usefully expresses the idea common to all these arguments in
terms of input–output modeling. Let f be the function relating the inputs and outputs
of a neurocomputational model. In Shagrir’s view, such a model is a model of a target
domain T if, when VA and VB are in the relevant input–output relation specified
by f , then the corresponding elements in the target domain (TA and TB) stand in a
relation mathematically described by f too. Consider, for example, a model M that
takes as input velocities and yields as outputs space traveled in aminute at that velocity.
According to Shagrir, M is an input–output model of its target domain T just in case
it multiplies the input value by 60—given that s = vt and here t = 60 s. When this
happens, the activation space ofM—that is, the set of allM’s input–output pairings—is
clearly structurally similar to the target domain, in a way that seemingly vindicates (1).
What, then, about (2)-(4)? The argument to the effect they obtain vary from account
to account—but here I will ignore them, as they won’t play any role in my argument
below.

The second—and less widespread (to my knowledge, is made only by Williams
& Colling, 2017)—argument is based on a technique to analyze neuroimaging data
known as representational similarity analysis (RSA, see Kriegeskorte et al., 2008).
RSA belongs to the family of “neural decoding”—or, more soberly, multivariate pat-
terns analysis—techniques. These techniques operate on various types of imaging data
to investigate neural representations (e.g.Haxby et al., 2001).28 RSA typically operates
on voxels—think of them as three dimensional pixels “making up” the images—and
their activation levels. Each activation is treated as a vector of voxels activation lev-
els, so as to compute the distance (i.e. dissimilarity) between each pair of vectors.
Based on these distances, the activations are arranged in a representational dissim-
ilarity matrix: an activation space expressing the dissimilarity between each pair of
activation as a scalar quantity (i.e. a single number; see Kriegeskorte & Kievit, 2013
for an accessible introduction to RSA). Importantly, the pattern of similarities and dis-
similarities between neuronal responses revealed by the representational dissimilarity
matrix “mirrors” the pattern of similarities and dissimilarities expressed by subjects
in their similarity judgments (cf. Connolly et al., 2012; Ritchie et al. 2014; Carlson
et al., 2014). So, if two responses are similar (i.e. (VA,VB)), then their two targets
are similar (i.e. �(TA,TB)), in a way that seemingly vindicates (1).

Sadly for the defender of NSRs, however, none of these two arguments establishes
that (1) obtains. Although both arguments show a structural similarity holding, they
show it holding amongst thewrong sorts of things—at least, given the characterization
of structural representations they endorse (Sect. 2).29

Condition (1) requires a structural similarity to hold between a representational
vehicle V and a represented target T . But the structural similarities shown above do

27 See also (Rutar et al., 2022) for a more nuanced—and less structural-representationalist—treatment.
28 Pitched at this level of generality, the claim is importantly contested (cf. Ritchie et al., 2019; Gessel
et al.2021). These critical arguments, however, do not apply to RSA, and so I will ignore them here.
29 I will make a more general point about this issue in the post scriptum of this paper.
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not hold amongst individual representational vehicles and individual targets. This is
especially obvious in the case of the first argument based on input–output modeling.
In that case, the structural similarity holds between a computational process pairing
inputs and outputs and a certain environmental process. But whilst environmental pro-
cesses can be represented targets, computational processes can’t be representational
vehicles. Indeed, on a number of standard accounts of physical computation, compu-
tational processes are perspicuously (i.e. informatively, non-circularly) defined over
representational vehicles (cf Fodor 1981; O’Brien & Opie, 2009; Maley, 2021a).30

This clearly implies that computational processes and representational vehicles are
distinct: the representational vehicles are the primitives used to define computational
processes, and computational processes consist in the (rule-based) manipulation of
vehicles. Compare: shuffling is a process we can define over certain primitives (for
example, the cards of a deck) whereby such cards are manipulated (chiefly, by modi-
fying their placement within the deck in a quasi-randommanner). Just like the process
of shuffling is distinct from the cards it is defined over, so too computational processes
are distinct from the representational vehicles they are defined over. Thus, even if
input–output modeling were observed in the brain (something that, to my knowledge,
defenders of the “cognitive neuroscience revolution” haven’t yet argued for), that
would not be equivalent to observing any NSRV. For, although in this case a structural
similarity would be observed, that structural similarity would not hold among a single
representational vehicle and its target, and so it would not satisfy (1).

RSA suffers from a similar problem, though in an attenuated (and less obvi-
ous) form. As pointed out by (Davis & Poldrack, 2013; see also Coraci, 2022 for
a philosopher-friendly analysis) it is not entirely clear whether the structural similar-
ity RSA reveals depends on the representations involved within a cognitive process or
on the cognitive process being run during the experimental trial. Consider, for instance,
the neuronal representation of a male face smiling and the neuronal representation of
a female face smiling. These two neuronal activations are likely similar because they
represent similar things. But now consider the neuronal activation involved in repre-
senting a smiling face and a puppy. These neuronal activation might be similar—but,
if so, their similarity would not be due to the similarity of their contents, but rather to
the fact of a same cognitive process (say, judging both the smiling face and the puppy
good and having a positive affective response to them) operates on them both. These
two scenarios can be disentangled with certain appropriate experimental procedures.
But the need to disentangle themweakens any inference from the structural similarities
shown by RSA and the claim that (1) obtains.

Worse still, even when the structural similarity revealed through RSA techniques is
due to the similarity of the representations (rather than the processes), that structural
similarity still fails to support the claim that (1) obtains. For, the relevant similarity
holds between a representational dissimilarity matrix and various targets. But repre-
sentation dissimilarity matrices are not neural vehicles: not only do they abstract away
from the spatiotemporal information that is needed to identify vehicles (see Haxby
et al., 2014, p. 439; Kriegeskorte & Diedrichsen, 2019, p. 418). They’re not realized

30 Or non-representational computational states more generally (cf. Piccinini 2015).

123



Synthese (2024) 203 :7 Page 23 of 42 7

by neurons and their activities, nor are they tokenized in our heads. They’re not what
vindicating (1) requires in this context.

Defenders of NSRs could plausibly object that, whilst I’m correctly pointing out
that computational processes and representational dissimilaritymatrices are not neural
vehicles, they still reveal something important about our neural vehicles, and can be
plausibly and fruitfully used as proxies of the latter (Roskies, 2021).

This objection gets an important point right: the structure of computational pro-
cesses and analysis techniques such as RSA do reveal important pieces of information
about our neural activations and neural vehicles (if they exist). But still, to correctly
interpret the information they reveal, we should first grasp clearly what they are and
how they operate. And doing that, I submit, prevents us from claiming that any struc-
tural similarity they reveal satisfies (1). For example, whilst RSA reveals that activation
spaces are structurally similar to the stimulus space, it is only amodel of neural activity.
And in this model, the bona fide neural vehicles are the individual points that populate
the space, rather than the space itself:

“The dominant theoretical underpinning of representational analyses in most
content areas of fMRI research is that stimulus representations can be thought
of as points in an n-dimensional space. This characterization of neural repre-
sentations in terms of n-dimensional spaces follows from influential work in
cognitive psychology on how psychological representations can often be char-
acterized as points in a representational space and how a variety of cognitive
processes, such as stimulus generalization, categorization, and memory, can be
modeled as geometric operations on these representations.” (Davies & Poldrack
2013, p. 109, emphasis added).

Thus, a proper understanding of RSA prevents us from using any structural sim-
ilarity it eventually reveals to substantiate claims to the effect that (1) obtains. An
isomorphic point could be made in regards to computational processes. Computa-
tional processes are (standardly) defined over representations. And so, any structural
similarity between computational processes and targets is by definition unsuitable to
vindicate (1).

But can’t defenders of the “cognitive neuroscience revolution” somehow claim
that entire activation spaces (or entire computational processes) are representational
vehicles, so at allow (1) to obtain?

No, they cannot. The reason is simple. Activation spaces and representational dis-
similarity matrices show us that—for example—if two neuronal responses are similar,
then their targets (i.e. what these responses are responses to) are similar too. Rewriting
this in the notation used throughout the paper, the result is: (VA,VB) → (TA,TB).31

The same notation applies to computational processes: if VA and VB stand in a math-
ematical relation described by a function f , so too do TA and TB. Again, (VA,VB)
→ (TA,TB). Note that, in both cases, individual neuronal responses (and individual
computational states) are treated as the material constituents of some larger vehi-
cle—the entire activation space, or the entire computational process. The problem,

31 Notice that I’m writing “ (TA,TB)” for the relation upon which the structural similarity is based is the
same on both sides of the mapping.
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however, is that they can’t be material constituents of a larger vehicle, especially not
in a mechanistic framework. As Kirchhoff (2014, 2015) has aptly noticed, material
constitution is typically taken to be a synchronic relation holding between the con-
stituents and the constituted entity. The mechanistic conception of constitution agrees,
and actually relies on it to tell apart constitutive from merely causal relations within
mechanisms (see, e.g. Krickel, 2018; Baumgartner et al., 2020).32 So, if vehicle con-
stituents VA…VN constitute vehicleV at time t, then VA…VN must all be present at t.
Yet, in the case at hand, we haven’t observed the vehicle constituents being all present
at the same time. And indeed, they can’t be present at the same time. In implemented
computational systems, inputs precede in time their outputs for a quite obvious rea-
son: the presentation of the input must cause (together with the relevant computational
internal states) the tokening of the output at a later time step.33 And when it comes to
activation spaces, it is important to notice that they chart various different activations
of a single neural region of interest. But a region cannot tokenize different activations
at the same time. It can only tokenize them in sequence, at different times. As a conse-
quence, neither the individual neuronal responses “making up” an activation space nor
individual computational states can be rightfully considered as material constituents
of a larger vehicle.34 Notice also how this observation ties a loose end hanging from
(Sect. 3.1). At the end of that section, I argued that, even if the increasingly popular
view that indicators are structural representations were correct, that wouldn’t entail
that individual responses of individual neurons are representational vehicles struc-
turally similar to their targets. At best, they are vehicle constituents—or so I conceded
back then. It is now possible for me to retract that concession. Different individual
neuronal responses of individual neurons can’t be tokenized at the same time, and so
they can’t be material constituents of a larger neural vehicle. Thus observing them in
no way amounts to observing a NSRV.

At this juncture, a defender of NSRs may claim that my arguments overlook the
fact that many allow for structural representations to be “made up” by more than a
representational vehicle. For example, Shea (2018, p. 118) defines structural repre-
sentations as: “A collection of representations in which a relation on representational
vehicles represents a relation on the entities they represent”. So do other defenders
of structural representations, including Swoyer (1991), Ramsey (2007) and, arguably,
Cummins (1989). So, (1) need not be narrowly defined in terms of single vehicles, as
I did in (Sect. 2). And if so, then the structural similarity shown by activation spaces
and representational dissimilarity matrices can satisfy (1).

32 In all fairness, some philosophers try to elaborate a diachronic account of constitution (see. Leuridan &
Lodewyckx 2021; Kirchhoff and Kiverstein 2021; Kiverstein and Kirchhoff 2023) which may be used to
counter my point. I’m skeptical about these accounts, and I would wedge against them a modified version
of Krickel’s (2023) objection. But I can’t articulate it here. So, I will only notice that defenders of the
“cognitive neuroscience revolution” do not seem to be interested in such accounts, in a way that makes their
view vulnerable to my objection.
33 Of course, the same may not be true of non-implemented (purely mathematical) computational systems.
But looking at such abstract entities could hardly allow us to observe neural representational vehicles.
34 As a reviewer noticed, this also prevents defenders of the “cognitive neuroscience revolution” from
categorizing inner simulations as structural representations, as they arguably should. A problem more for
the cognitive neuroscience revolution.
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This move, however, is unwise. As (Cummins, 1996) noticed, in the case of struc-
tural representations, the individual material constituents are not representations in
their own right. Their representational status of the parts depends on the status of
the whole. A vehicle constituent VAdoes represent TA—but only because it is a part
of a larger vehicle V representing T. The representational powers of VA thus piggy-
back on the representational powers of the entire V. A definition (or characterization)
of structural representations in terms of multiple representations obscures this fact,
and should thus be resisted. Worse still, the move would generate problems with
mechanistic explanations. For, suppose that structural representation can be made up
by “collections” of individual representational vehicles. What would these complex
representations be, in the case at hand? They would be abstracta: sets of neuronal
responses (or computational states) that are structurally similar to sets of worldly
stimuli (or states). But sets—and abstracta more generally—cannot be components
of mechanisms. Mechanisms and their components are always concrete (cf. Craver,
2007). So, redefining structural representations in terms of multiple vehicles does not
actually help the cause of the “cognitive neuroscience revolution”.

Am I suggesting that the structural similarity displayed by activation spaces and
(some) computational processes is necessarily representationally idle?Not necessarily.
I’m only denying it holds between vehicles and targets so as to underpin NSRs. But
it can still have some relevant representational role. For example, it might determine
the content of some other type of representation. There are various theories of content
based on structural similarity (e.g. Cummins, 1996, O’Brien and Opie 2004)—and
while these theories often focus on the structural similarity between individual vehicles
and targets, nothing prevents us from applying the same idea to multiple vehicles
and target domains.35 On this view, individual vehicles would get their content in
virtue of the structural similarity holding between a set of different vehicles and a
target domain. Each vehicle would thus represent what it represents in virtue of its
overall role in the similarity. This intuition could be refined in a full-blown theory of
content—but doing so is a task for another paper to carry out. But notice that, even
if such a theory of content were provided, it would not lend support to the claim
that activation spaces/neural dissimilarity matrices/multiple neuronal responses are
structural representations. There is a clear and obvious difference between a set of
vehicles being structurally similar to a set of targets and individual vehicles being
structurally similar to individual targets. The former just isn’t what (1) requires.

3.4 Alternative neural vehicles

Whilst neuronal responses are the main neuronal vehicles cognitive neuroscience is
interested in, they’re not the only vehicles cognitive neuroscience is interested in. So,
what about those? Do they underpin NSRs? No they don’t, and for fairly obvious
reasons.

35 Indeed, Churchland’s (1992) original structural similarity-based account of content was explicitly
focused on multiple vehicles.
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Neuronal connections have often been considered representational vehicles. Indeed,
connectionists have long argued that connections between neurons may encode infor-
mation, functioning as our long-term semantic memory (cf. McClelland et al., 1986).
However, it is commonly accepted that if connections encode information, they do so
in a highly distributed way: single connections store multiple “bits” of different con-
tents, and single contents are “spread over” many connections (see Van Gelder, 1991;
Grush & Mandik, 2002). But if this is the case, if really multiple contents are simul-
taneously encoded by many overlapping connection, then clearly the mapping from
vehicle constituents to target constituents ismany-to-many; and so (a)—and, a fortiori
(1)—fail to obtain for reasons connected with systematic (a)-violations explored in
Sect. 3.2 (see also Facchin, 2021a for a different argument to the same effect). So,
if connections are representational vehicles (which is disputable, see Ramsey, 2007),
then they’re not NSRVs.

Some neuroscientists have recently suggested that global brain states are neural
vehicles that represent the agent’s overall state (Kaplan & Zimmer, 2020; Westlin
et al., 2023). As far as I can see no one has ever claimed that global brain states are
NSRVs. And it is indeed hard to see how they could underpin NSRs: there’s clearly no
decoupling from an agent’s current state! So, global brain states clearly fail to satisfy
(3).

Lastly, Chemero (2009) and Martinez and Artiga (2021) have argued that neuronal
oscillations (i.e. patterns of time-locked neuronal activity, see Buzsaki, 2006) are rep-
resentational vehicles. Are they NSRVs? To my knowledge, no one has yet articulated
this view. So, I can’t provide a detailed analysis of it. However, there are potent prima
facie reasons to provide a negative answer. Firing patterns instantiated in different
times can’t be constituents of a single vehicle (see Sect. 3.3), and this seems to pre-
vent many neuronal oscillations from qualifying as NSRVs. Further, the individual
neuronal responses “making up” the oscillations would still fail to map on individual
targets as seen in (Sect. 3.2), generating all the problems discussed in that section.

Are there other potential neural vehicles? Not to my knowledge. Sometimes neuro-
scientists talk about entire neural structures representing (e.g. the fusiform face area
is sometimes said to represent faces) but it seems clear that it is a metonymic way
of speaking: what neuroscientists most plausibly actually mean is that the responses
or activations in various structures represent things. And, there seems to be no other
candidate vehicles. Of course, I cannot exclude that new, more sensitive experimental
techniques will reveal functionally salient neuronal aggregations between the level of
the single neurons and that of neuronal maps, or below the level of individual voxels.
These may qualify as NSRVs. But surely such vehicles have yet to be identified—so,
we can neither observe them right now, nor can they provide a reasonable ground for
the “cognitive neuroscience revolution” right now.

3.5 Neural representations unobserved

Time to take stocks, and summarize this long section. I have argued that NSRVs have
not been observed or manipulated.
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In (Sect. 3.1) I focused on individual neuronal responses. I argued that the claim that
individual neuronal responses are NSRVs is ambiguous, as it admits three different
readings. No such reading, however, allows neuronal responses to break down into
interrelated constituents in the desired manner; and indeed the claim that a constituent
of an individual neuronal response represents a constituent of the response’s target
would be a reductio of the idea that individual neuronal responses count as NSRVs.
Individual neuronal responses, I suggested, are more plausibly interpreted as indicator
representations.

But aren’t indicators a special case of structural representation, as some philoso-
phers argue? I am officially neutral on this issue (at least in this paper). Yet I have
noticed that, even if they were, that would not “turn” individual neuronal responses
into NSRVs. So, even in this case, NSRVs remain unobserved—at least at the level of
individual neuronal responses.

In (Sect. 3.2) I focused on neuronal maps, claiming that they are not NSRVs. First,
I have argued that the topological structural similarity holding between neuronal maps
and their target domain does not satisfy (2). Contrary to what (2) requires (a)- and (b)-
violations of that structural similarity do not decrease an agent’s odd of non-accidental
success. I also considered other possible structural similarities tying together neuronal
maps and their targets, which, not being based on their apparent topological similarity,
would be impervious to the argument above. I then ruled this possibility out based
on the fact that individual neurons (that is, the relevant vehicle constituents) do not
map one-to-one onto their targets as required by (a), and so, (1) systematically fails
to obtain.

In (Sect. 3.3) I focus on activation spaces. I claimed that, whilst such spaces actually
are structurally similar to their target domains, that structural similarity does not satisfy
(1). In fact, (1) requires a structural similarity holding between individual vehicles and
targets—but activation spaces just cannot be coherently considered to be individual
vehicles.

Lastly, in (Sect. 3.4) I considered a number of other alternative neural vehicles that
might underpin NSRs, showing that none actually underpins them for fairly obvious
reasons.

A final word of clarification. Above, I have considered a relatively small number
of case studies. One might thus worry that my arguments are fueled by little data to
inductively support my conclusion that NSRVs have not been observed. Fair point,
but my arguments here are not inductive arguments. I’m not claiming that individual
neuronal responses, neural maps, and activation spaces all likely fail to satisfy (1)-(4)
because many of them fail to satisfy them. Rather, my arguments show that these
entities cannot satisfy (1)-(4) for various principled reasons, and thus that they can’t
in principle qualify as NSRVs.

4 Objections and replies

Supporters of the “cognitive neuroscience revolution” will no doubt wish to resist my
conclusion. Here I consider some intuitive objections to resist it, showing that they do
not really work.
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Objection #1: The arguments in (Sect. 3) have focused on various types of neuronal
responses. But when it comes to discussing NSRs, that focus is misguided. For, the
structural notion of representation has been crafted as an alternative to the indicator,
response-based one (cf. Cummins, 1996; Ramsey, 2007; Williams & Colling, 2017).
According to the structuralist view of representation, neural structures function as
representations not because they selectively respond to something else, but because
they model, or provide a “map” of, something else. According to this objection, then,
I have systematically looked at the wrong sort of neural structures. No wonder I have
failed to observe NSRVs!

Response: There is something to the objection. Even if some philosophers dispute
that there is an actual difference (see Sect. 3.1) structural representations and indicators
are typically presented as alternatives. It is also true that, unlike indicators, structural
representations are supposed to function as representations not because of how they
respond, but because of how they model or “map” some target. That being said,
as already hinted at in (Sect. 3.2), nowhere in this paper I have claimed that the
structures examined in Sect. 3 are representations because of how they respond to
their targets. Sure, I have discussed various cases in which the structural similarity
between a (candidate)NSRVand its targetThas beendiscovered thanks to the response
properties of the candidate vehicle. But that modus operandi is entirely compatible
with the claim that the candidate NSRV acquires its representational role not because
of how it responds to T, but because of how it models T. In other terms, one can
accept that looking at the response properties of a candidate vehicle V can be used to
“discover” the structural similarity tying it to T without thereby having to commit to
the claim that V represents T because of how it responds to T. And indeed, condition
(3) of the definition offreded in Sect. 2 avoids precisely such a commitment: since
structural representations must be able to function offline, the response profile can’t
be what makes something into a structural representation. This, however, clearly does
not exclude that structural representation can be used online, and tokenized by means
of neuronal responses!

As a further point in response to this first objection, notice that, even if the objection
were not misguided, it would not really hinder the claim I’m defending here. For, as
noticed at the beginning of Sect. 3, looking at neuronal responses is the standard way
to try and observe neural representations (structural or otherwise). Even defenders of
the “cognitive neuroscience revolution” adopts this procedure to claim that NSRs have
been observed (cf. Piccinini 202a; Thomson & Piccinini, 2018). So, if this procedure
were unable to make us observe NSRs, it follows that, well, we can’t have observed
them yet—and so that we haven’t observed NSRs yet. But that is exactly my claim!
So, even if objection #1 were on the right track, we would not be left with a refutation
of the claim I’ve been defending here. We would be left with the need of finding new,
more promising ways to try and observe neural representations. A need, I submit,
whose satisfaction falls squarely on the objector’s shoulder.

Objection #2: The account of structural representations in Sect. 2 is too demanding.
A less demanding account would reveal that NSRVs are not just present in our brains,
but that they have indeed been observed.

Response: Twopoints in reply. First, we lack an alternative, less demanding, account
of NSRs. The account in Sect. 2 is widely used (see, for example, Wiese, 2016, 2017;
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Williams, 2017; Lee, 2019), and the (few) alternative ones are not less demanding—in-
deed, they’re often more demanding, as they adopt a stronger reading of (1) in terms
of homomorphisms. Lacking any less demanding alternative, the objection is pretty
toothless.

Secondly, it’s hard to even imagine the shape of a less demanding alternative.
Presumably, the alternative should discard or weaken at least one condition among
(1)—(4). But my reading of (1) is already the weakest one acceptable, and (1) cannot
be discarded without thereby discarding the very idea of a structural representation.
My reading of (3) is also the weakest reading of decouplability on offer (cf. Chemero,
2009, pp. 55–65; Gładziejewski, 2015); and (3) cannot be discarded either, as decou-
plability is an essential feature of representations (Haugeland 1991;Orlandi, 2020). (2)
could be weakened and discarded—but doing so would hinder the causal relevance of
content, in a way that hinders its relevance in mechanistic explanations. Defenders of
NSRs can’t thus rely on this move—at least, not without abandoning their mechanistic
commitments. And since (2) entails (4), (4) seems off limits too.

Objection #3:NSRs are action-oriented representations (Piccinini, 2022;Williams,
2017).36 So, they don’t represent the world objectively, but in action-salient terms.
But what can “representing the world in action salient terms” mean, if not that the
world is represented in a somewhat distortive way, which emphasizes action-relevant
features at the expense of action-irrelevant ones? But if the world is represented in
such a distortive way, the representation must be somewhat false or inaccurate—in
a way that is nevertheless conductive to an agent’s behavioral success (cf. Tschantz
et al., 2020 for a proof of concept). But this clearly runs counter to (2)—for (2)
establishes that there’s a direct proportionality between the accuracy (or truthfulness)
of a representation and the agent’s odds of behavioral success. As a consequence, (2)
should be discarded—and with it, all the arguments above that hinged on (2) failing
to obtain (cf. Section 3.2). So, NSRVs have been observed, after all.

Response: The objection misconstrues the sense in which action-oriented repre-
sentations are distortive. Sure, they do not represent the world “as is” (whatever this
means)—but that’s not to say that they represent it falsely or inaccurately. They rep-
resent it through a pragmatic lens, and what is represented through such a lens can be
either accurate/true or inaccurate/false. If I represent a 6 kg stone as throwable, I’m
accurately representing the stone in an action oriented manner. If I represent a 666 kg
stone as throwable, I’m inaccurately representing it in an action-oriented manner.
Compare: if, by looking through red glasses, I see clouds being red, I’m not mis-
perceiving—I’m accurately perceiving through red glasses. Thus, the action-oriented
nature of NSRs does not force a rejection of (2)—or of the “bits” of my arguments
based on (2) failing to obtain.

Objection #4: The argument in (Sect. 3.2) is a bit too quick in establishing that
individual neurons map onto many targets in a way that poses a problem for (1).
Neurons need not represent each target to which they respond. Taking a page out of
Dretske’s (1988) book, one could argue that individual neurons have the function to
represent only one target, plausibly their preferred one. That might be enough (or at

36 On the concept of action oriented representations, see (Clark 1997). Curiously, Clark’s original example
of an action oriented representation is that of Mataric (1991) “spatial map”—a robotic replica of the “spatial
map” in the rat’s hippocampus. So, it seems that action oriented representations were NSRs all along.
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least a substantial step towards) solving the problem with (1), in a way that also avoids
the problems with (2) neurons mapping onto many targets generated.

Response: Whilst taking a page out of Dretske’s book would solve these problems,
the defender of NSRs can’t rely on Dretske’s solution. Dretske assigns functions only
after a learning period, which stabilizes the function (i.e. determineswhat the neuron is
“supposed to” represent). But real brains have no learning period separate from a non-
learning period.Neurocognitive networks are constantly re-organizing and can quickly
learn to operate in very odd conditions. As enactivists have repeatedly pointed out,
our sensorimotor system can learn to operate even in conditions under which sensory
and motor signals have been dramatically altered—for exemple, due to one’s usage of
“inverting goggles” (Hurley, 1998; O’Regan, 2011). Surely a neuron’s learning phase
should be over well before the subject is old enough to take part in psychological
experiments involving the usage of “inverting goggles”!More generally, it is extremely
tricky to assign well-defined, individual functions to neuronal areas. Neural functions
appear to be multiple, multidimensional, not well-determinate and extremely context
dependent (cf. Anderson, 2014; Burnston, 2016; de Wit & Matheson, 2022)—and so
will be the contents they ground. Yet, as seen in (Sect. 3.2), NSRs require reasonably
well-determinate contents to function.

Objection #5: My objections to NSRs were hyper-focused on the features of their
vehicles. Yet structural representations need not reside at such an “implementational”
level of abstraction. They may reside at a higher, “algorithmic” level, and dangle
free of implementational details37 Cummins (1989), for example, situated them at
the level of program execution. Johnson-Laird (1983) thought of his mental models
as existing roughly at the same “algorithmic” level of abstraction. Similarly, Danks’s
(2014) suggestion that cognitive representations are graphical models sits at a level of
abstraction more akin to that of program execution than the implementation level. My
arguments are silent about these structural representations and their neural vehicles.
So, it fails to rule out NSRs at higher levels of abstraction.

Reply: My reply is simple. Given the relevant characterization of structural repre-
sentations defenders of cognitive neuroscience revolution accept (Sect. 2), structural
representations are characterized in terms of their vehicle properties; that is, in terms of
the concrete material thing doing the representing. And such a concrete, material thing
presumably sits at the “implementation” level. So, if one’s structural representations
“dangle free” from any implementational details—or leave them unspecified—then
they are not structural representations in the relevant sense, and their existence, even
if proved, would not support the cognitive neuroscience revolution. This shouldn’t
be surprising. Mechanistic account of neuroscience have always argued that the “al-
gorithmic” and “computational” level of explanations are not autonomous from the
nitty–gritty implementational level, and that these levels of explanation provide at best
sketches of mechanisms in which the implementational details still have to be filled in
(Piccinini & Craver, 2011; Van Bree, 2023).

37 But seeMaley (2021b) for an argument to the effect that, in the case of analog representations (including
structural ones) the difference between implementational and algorithmic level collapses.
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Fig. 3 A graphical model
capturing the statistical
dependency relation of some
random variables. Drawing by
the author

Of course, thisdoes notmean that structural representationsmust be characterized at
the finest possible grain of neurological detail (e.g. in terms of the release of single neu-
rotransmitter molecules). They may be identified at higher levels of abstraction—say,
for example, at the level of individual neuronal responses (Sect. 3.1), cortical maps
(Sect. 3.2) or at the level of multiple responses (Sect. 3.3). And they may even be
identified on the basis of an algorithmic (or even computational) description of such
levels of abstraction. But to reveal genuine structural representations—at least given
the characterization in (Sect. 2)—these higher levels of abstraction must somehow be
mapped onto the physical vehicle doing the representing. Else, we risk wrongfully
considering non-structural types of representations as structural representations only
becausewemodel these representations using an iconic format. Consider, for example,
the graphical model in Fig. 3

Figure 3 represents a simple “Bayesianmodel” (i.e. a directed acyclic graph), which
can be used to model a target phenomenon T. Now, the model—as it is presented to
us—surely seems a structural representation of T: the nodes a-h map one-to-one on
aspects of T, and the pattern of arrows “recapitulates” the statistical dependencies in
T. But notice that the arrows and nodes we see are not the vehicle underpinning the
model—the vehicle is a complex series of voltages (at the level of the implementation)
or “0”s and “1”s (as a higher level) somewhere in my computer.38 And there is no
guarantee (nor any reason to believe) that these voltages (or “0”s and “1”s) will be
structurally similar toT. Further, the impression of iconicity can be easily dispelled by
visualizing themodel of Fig. 3 in a less graphical (pun intended) format—for example,
as the probability distribution p(a, b, c, d, e, f, g, h)= p(g|e) p(h|e, f) p(e|d, c) p(d) p(c|a,
b) p(a) p(b). We’re no longer tempted to see this formula as a structural representation
(even if the pattern of statistical dependencies it expresses is the same). We’re more
naturally inclined to see that just like a series of “0”s and “1”, or a series of electric
discharges in my computer—something we have no reason to even remotely suspect
is structurally similar to any target T one is trying to model.

38 Or a series of ink marks when the article will be printed.
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5 Conclusions: a dilemma for the cognitive neuroscience revolution.

Supposemy arguments are on the right track: NSRVs have not been observed and there
is no easy way to avoid this conclusion. This is ill-news for defenders of the “cognitive
neuroscience revolution”: NSRs are absolutely central to their account (Sect. 1). So,
the question now is: what could revolutionaries do to save their explanatory project?
Not much, I fear.

They could try to substitute NSRs with a different type of representation. But this
move is unpromising. According to a popular account, there are three basic represen-
tational kinds—icons, symbols and indices (c.f. Peirce 1931–1958; von Eckart 1996).
Now, icons represent by similarity—so neural icons just are NSRs, and thus icons
are clearly not an option. Symbols represent by stipulation—and so it is not clear if
neural symbols can exist: surely no one has stipulated the content of our neurons. And
even allowing stipulative or stipulation-like processes to take place in the brain (say,
as the upshot of a neural signaling game, see Skyrms, 2010) the vehicles of neural
symbols, being arbitrary, do not allow their content to play any causal role within
neurocognitive mechanisms. Thus, symbolic representations have no place in mech-
anistic explanations. Lastly, indices represent in virtue of certain causal relation with
their targets—they are indicators. Now, neural indicators surely exist, see (Sect. 3.1).
Yet, it is far from clear they qualify as representations in any robust sense—they seem
to function as mere causal mediators in our neurocognitive systems (Ramsey, 2003,
2007).

Should then the mechanistic approach to cognitive neuroscience be purged of rep-
resentational commitments? Some claim this is the case (Kohar, 2023). This, however,
would be an extremely painful revision of our current neuroscientific practices. Cog-
nitive science is ripe with representational talk, and cognitive neuroscience is no
exception. A non-representational mechanistic cognitive neuroscience would thus
force us to revise and reinterpret a huge mass of experimental data. It would also
force us to find a novel, non-representational lexicon with which to express and com-
municate the relevant cognitive-scientific findings. This surely is a tall order—one that
proponents of the “cognitive neuroscience revolution” do not seem willing to execute.

The only way I see to avoid that non-representational revision, however, seems to
be by foregoing one’s realistic commitments to NSRs (or at least to NSRVs). The
talk of neural maps and models, then, should not be interpreted as referring to real,
neurally realized, map- andmodel- like structures. Rather, neural maps andmodels are
just convenient linguistic tools to understand, track, or make sense of our neurocog-
nitive activities (see Sprevak, 2013; Egan, 2020; Coelho Mollo, 2021; Cao, 2022 for
similar views of representations).39 But to adopt such a construal of NSRs or NSRVs
amounts to abandoning one’s mechanistic commitments, at least insofar mechanistic
explanations are ontic explanations. But the commitment to mechanism is a core part
of the “cognitive neuroscience revolution”, and so abandoning it seems to abandon
the “cognitive neuroscience revolution” project.

39 See (Ramsey 2020) for acute criticism of some such accounts.
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It seems, then, that defenders of NSRs face a dilemma: they either have to let go
of their commitment to representationalism to keep their commitment to mechanistic
explanations, or vice versa. The choice is theirs.
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Appendix: on distinguishing types of structural representations
(and why it matters)

During the review process, a reviewer (which I thank) has met many of the claims
here with a number of reasonable observations on how structural representations are
understood in the literature. And whilst (at least insofar this paper is concerned) the
reviewer and I seem to have agreed to disagree, there is something to their obser-
vation—something that, I believe, points to the fact that, in the literature, the term
“structural representation” is systematically ambiguous. Whilst this is not the place
where to dispel this ambiguity,40 I wish to point it out—if anything, to address a
number of potential objections to my claim or misunderstandings of this paper.

Throughout the paper, I have relied on Gładziejewski’s (2015, 2016) account of
structural representations. Such an account is explicitly guided by the image of a car-
tographic map: a single vehiclewhose constituents are enveloped in a web of relations

40 I have an in-progress paper on this matter whose preprint can be consulted onmy private website (https://
marcofacchinmarcof.wixsite.com/site). Thanks to this anonymous referee for having motivated me to write
it!
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that mirror the web of relations of the constituents of a target, thereby making the
former a representation of the latter. On such a—hopefully by now familiar—view of
structural representations, the constituents of the whole vehicle are—in a way—repre-
sentations too, whose representational status derives from the representational status
of the whole vehicle (cf. Cummins, 1996). Given the popularity of Gładziejewski’s
(2015, 2016) account, and the fact that it is constantly referred to in the cognitive
neuroscience revolution literature, it is reasonable to treat this as the standard under-
standing of structural representations (at least in that corner of philosophy). This is
understanding of structural representation has been the target of my attack, and I won’t
comment any further on it—if not to notice two things: (a) the account spells out a
specific “functional profile” for structural representations—telling us that they func-
tion as representations by functioning as maps (see Gładziejewski, 2015)41—and (b)
that such an account is markedly anti-csymbolic. Thusly understood, structural repre-
sentations can’t be arbitrary symbols, for they can’t be arbitrary: their very physical
shape connects them to their targets (cf. Williams & Colling, 2017). Insofar “clas-
sic”, rule-and-representation based cognitive science is symbolic, then, this account
of structural representations is anti-classical.

As the reviewer correctly noticed, however, entities satisfying the description above
are not the only referents philosophers grace with the title of structural representations.
William Ramsey (2007) and, more recently, Matej Kohar (2023) used the term to refer
to what I’ll here call (for reasons that will soon be manifest) carriers of structural
contents.42 According to their usage, the term “structural representation” refers to
individual vehicles belonging to a set of vehicles, the relations amongstwhich “mirror”
the relations holding amongst the elements of some target domain. So, both according
tomy (andGładziejewski’s) usage and the structural content usage, the term “structural
representation” refers to an individual vehicle.Yet, inmyusage the structural similarity
holds amongst an individual vehicle and its target, whereas in the structural content
usage the similarity holds amongst the set each individual structural representation is
part of, and some target domain. These are clearly different things.

Why call the entities satisfying the description above “carriers of structural con-
tents”? Because what this account gives us is an account of why each individual
vehicle of the set represents what it represents. Each vehicle represents what it repre-
sents because it is part of a set of vehicles, the relations amongst whichmake the whole
set structurally similar to a target domain. Such a view of structural representations
assigns a content to each vehicle based on its “place” in the overall similarity, but it
remains utterly silent about its functional profile (which is left undefined) and their
physical shape. Indeed, the vehicles carrying structural contents can be arbitrary—at
least to the extent to which their arbitrary physical shapes do not interfere with them
standing in the appropriate relations with each other.

Carriers of structural content can thus be coherently mashed with classical, sym-
bolic, rules-and-representations based cognitive science. To see why this is the case, it

41 This shouldn’t be read as entailing that it spells out only the functional profile. Presumably, the content
of such structural representations is in fact grounded in the similarity they bear to their targets.
42 Carriers of structural contents surfaced in many places in the argument I developed in the paper, esp in
(§§ 3.1 and 3.3). In all these cases, I argued that they are not structural representations in the relevant sense
at play—that is, they don’t satisfy Gładziejewski’s account.
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is sufficient to notice that Cummins’s (1989) account of content for classical cognitive
science is a particular incarnation of what I’ve been calling structural contents.43 In
the view Cummins originally proposed, computational states (the symbols of classical
cognitive science) represent what they represent in virtue of the fact that the compu-
tational state transitions holding amongst them “mirror” certain relevant relations in a
target domain. So, these vehicles represent what they represent in virtue of the fact that
certain computational relations (mirroring the relevant relations of a target domain)
hold among them. On some accounts, then, classical, symbolic representations can
be structural contents—and can thus be called structural representations according to
one usage of the term—which, however, it is not (and indeed cannot) be the relevant
usage of the term made by defenders of the cognitive neuroscience revolution.

Similarly, indicators and detectors can qualify as carriers of structural contents—at
least given the arguments offered by (Facchin, 2021b; Nirshberg & Shapiro, 2020).44

On such views, individual indicators represent what they represent (and indicate what
they indicate) in virtue of a specific structural similarity holding between the set
of indicator states and the indicated target: indication is a special case of structural
similarity (at least, if Facchin, Nirshberg and Shapiro are correct). Since—as argued in
(Sects. 3.1 and 3.3) individual indicator states can’t be constituents of a larger vehicle,
we’re seemingly forced to interpret them as individual vehicles of structural contents.
So, indicators and detectors too can be said to be structural representations in one sense
of the term, though not in the sense relevant to the cognitive neuroscience revolution.

Such a distinction between structural representations and carriers of structural con-
tents, I believe, can be mobilized tomake sense of why structural representations seem
both to be everywhere and to systematically elude our gaze (as I argued above).

Consider first neuronal responses—both individually and collectively (as they are
considered, for example, in representational similarity analysis, see Sect. 3.3) Individ-
ual neuronal responses are naturally classified as indicators (cf. Section 3.1), and so
as carriers of structural contents (at least, if Facchin, Morgan, Shapiro and Nirshberg
are on the right track). Sets of neuronal responses are also naturally read as carriers of
structural contents—at least insofar the structural similarity holds between the entire
set of responses and some target domain (cf. Section 3.5). So, whilst both are structural
representations in some sense, they’re not structural representations in the relevant,
cognitive neuroscience revolution validating sense.

Consider now inner simulations and emulations. Such representations are often
invoked in cognitive neuroscience (e.g. Csibra, 2008; Grush, 2004) and are taken as
bona fide cases of structural representations. And indeed, they are carriers of structural
contents: individual states of the simulation or emulation need not structurally resem-
ble anything—only the entire process must. And since the process can’t plausibly be
considered an individual vehicle (cf Sects. 3.1 and 3.3), then we’re left with carriers of

43 And indeed, (Cummins 1989) is the account that Ramsey (2007) refers to when introducing structural
representations in the context of classic, rule and representation based theories of cognition. For another
example, see Kosslyn’s (1983) “quasi-pictorial” representations.
44 Though the two might be distinct. See the preprint I mentioned in footnote 40.
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structural contents.45 Again, simulations and emulations are structural representations
in some sense, but that sense is not the one relevant for the cognitive neuroscience rev-
olution. This, as the reviewer noticed, is a big problem for the cognitive neuroscience
revolution. Arguably, their theoretical commitmentsmake them unable to capitalize on
(and are actually incompatible with, see below) the most widespread type of structural
representation in the current neuroscientific literature.

Consider lastly the fact that I’ve hunted for structural representation roughly at the
implementation level, looking at the actual neural machinery (allegedly) doing the
representing. Can’t structural representations be found at higher, roughly algorithmic,
levels of abstraction? Yes, but only in the sense that carriers of structural contents
can be found at such levels of abstraction.46 For, in this case, the physical shape
of the vehicles is not relevant to their being structural representations (i.e. carriers
of structural contents)—only their relations are. In contrast, in the case of structural
representations in the relevant sense, the physical shape of the vehicles is essential
to their status as a structural representation. Their implementation matters for their
representational state. Hence, they should be found at the implementation level.

The distinction between structural representations in the relevant sense and carriers
of structural contents, then, allows us to make sense of both the seemingly omnipres-
ence of structural representations (indeed, carriers of structural contents appear to be
widespread) and their actual disappearance on closer inspection (nothing seems to
satisfy Gładziejewski’s account). A natural question, at this point, is whether the cog-
nitive neuroscience revolution may ditch Gładziejewski’s structural representations in
favor of carriers of structural contents. The answer, I think, is negative. For, carriers of
structural contents are entirely compatible with classic cognitive science. By adopting
them, the cognitive neuroscience revolution would stop being a revolution. Worse still,
the contents carried by carriers of structural contents is independent from their vehicle
properties. So, it can’t play the relevant causal role played by the content of structural
representations (Sects. 1 and 2). As such, the contents of carriers of structural con-
tents are not explanatory assets defenders of the cognitive neuroscience revolution can
count upon.

Does this mean that structural representations, in the relevant sense discussed here,
will never be observed? Not necessarily. Perhaps, as the reviewer suggests, we might
be able to observe them thanks to a methodological shift—diverting our attention
from neuronal responses (which, at best, carry structural contents) from spontaneous,
endogenous and “decoupled”, non-stimulus-driven neural activity. Whilst such a shift
in attention faces some methodological challenges (see Sect. 3), it might be possible
to face them, and observe structural representations in the relevant sense.

Even in this case, however, neural structural representation (in the relevant sense)
would remain unobserved—they may populate our brains, but we have not seen them
yet.Whatwe’re leftwith, then, are some thorny issues for the defenders of the cognitive
neuroscience revolution to solve, together with the need to disentangle various distinct

45 At least unless defenders of the cognitive neuroscience revolution are willing to significantly modify
and complexify themechanisticmetaphysics grounding their view, allowing for non-synchronic constitutive
relations.
46 Emulators and inner simulations may be one such case.
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senses of the term “structural representations”. And the latter is definitely a task for a
different paper.
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