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Abstract
Although number sentences are ostensibly simple, familiar, and applicable, the justifi-
cation for our arithmetical beliefs has been consideredmysterious by the philosophical
tradition. In this paper, I argue that such a mystery is due to a preconception of two
realities, one mathematical and one nonmathematical, which are alien to each other.
My proposal shows that the theory of numbers as properties entails a homogeneous
domain in which arithmetical and nonmathematical truth occur. As a result, the possi-
bility of arithmetical knowledge is simply a consequence of the possibility of ordinary
knowledge.

Keywords Numbers · Plural properties · Platonism of numbers · Antirealism of
numbers

1 Introduction

There are numerous reasons to affirm that mathematical knowledge is possible.
Nonetheless, the feasibility of a satisfactory explanation of mathematical knowledge
has been seriously questioned in the specialized literature. On the one hand, in contrast
to other knowledge domains, mathematics enjoy a high applicability rate. On the other
hand, our perceptual limitations concerning the content of mathematical statements
have induced several difficulties in explaining arithmetical knowledge. An explanation
of why the statement ‘2+2=4’ is true and the statement ‘2+2=5’ is false would justify
our belief that two plus two equals four and not five. Without such an explanation, the
question remains as to how we justify that belief. More generally speaking, what is
the basis for our claim that mathematical knowledge is possible? This paper addresses
this question for the particular case of arithmetic, accounting for the possibility of
arithmetical knowledge.
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The current work is organized into three stages. In §2, I present the problem of
arithmetical truth in the framework of Benacerraf’s dilemma and show in what sense
different theories have addressed it. As I argue, the main drawback of this dilemma
is that it involves theoretical assumptions that can be easily challenged. Rejecting
those assumptions has allowed several answers to appear satisfactory despite failing
to show the possibility of arithmetical knowledge. In §3, I introduce two homogeneity
conditions for truth and knowledge. These conditions result from getting rid of most
of the theoretical preconceptions, preserving the fundamental concerns that underlie
the problem raised by Benacerraf. Namely, the fact that the impossibility of arith-
metical knowledge is a consequence of assuming two different and alien realities, one
mathematical and the other nonmathematical, in which the nature of truth, and there-
fore, of knowledge would be irreconcilably different. To conclude, in §4, I outline
my theory of numbers as properties and show that it lays the groundwork to meet the
homogeneity conditions. In this sense, I offer a language of properties that reveals that
arithmetic and nonmathematical number-sentences admit the same type of construc-
tions. I argue that admitting the possibility of nonmathematical knowledge requires
admitting the possibility of knowledge of properties. If numbers are properties similar
to those regarded in nonmathematical discourse, the possibility of nonmathematical
knowledge entails the possibility of arithmetical knowledge.

While the traditional theories fail to meet the homogeneity conditions, the theory
of numbers as properties succeeds, showing that arithmetical knowledge is possible
and explaining how it is possible.

2 Benacerraf and the traditional strategy

In his most influential work, Benacerraf (1973) claims that, on the one hand, if num-
bers exist, we are causally isolated from them. Since our most familiar knowledge
acquisitions require causal interactions, the realist faces the challenge of accounting
for the possibility of mathematical knowledge. This problem leads him to conclude
that from a realist view, mathematical knowledge is impossible (p.671). On the other
hand, an antirealist about numbers rejects that arithmetical sentences are true in virtue
of facts about the denotations of their singular terms and predicates. Since there are no
numbers, they cannot be the denotations of the arithmetical sentences’ singular terms.
According to Benacerraf, this thesis differs from the explanation of the truth of most
sentences. A satisfactory semantics for mathematical language must not be discordant
with a satisfactory semantics for ordinary language. The conspicuous dilemma is that
either numbers do not exist and the arithmetical semantics is unsatisfactory, or numbers
exist and our epistemology is unsatisfactory for arithmetic. This argument has given
rise to countless works favoring each of the positions involved in the debate. Never-
theless, as I argue, the theories provided do not address the more in-depth concerns
that the dilemma embodies.

Benacerraf’s dilemma has not become obsolete because, in the face of a signifi-
cant number of answers, the same difficulties arise repeatedly. Some widely accepted
theories in the tradition are still a potential target of the original criticisms. For exam-
ple, Shapiro’s structuralism describes natural numbers as a structure—the abstract
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form of a system (Shapiro 1983, p. 74). This idea conflicts with the intuition that
knowledge in everyday life is not primarily about abstract structures of systems. The
contrast suggests that arithmetical knowledge requires a singular epistemology, which
guarantees access to entities that are not frequent (if any) in nonmathematical con-
texts. Unfortunately, the view does not address the critical problem underlying the
dilemma—beyond the particular assumptions of the original formulation, the core of
the problem is that a satisfactory epistemologymust work for all knowable domains. In
other words, the ontology of each of these domains must be in such a way that it appro-
priately admits the best accepted epistemological assessments in order to make the
corresponding knowledge ascriptions. Ultimately, the nature of things determines how
we know them. Admittedly, the structuralist may propose a comprehensive structural-
ist ontology, but this option does not seem to achieve the acceptance of the majority.
On the other hand, fitting structuralism into a causal epistemology requires convoluted
explanations that might not work with everyday knowledge.

The rejection of particular epistemological and semantic theories has become sys-
temic in this debate. A realist may argue that Benacerraf’s argument entails that it
would be impossible to know about anything causally isolated from us (p. 671). After
all, there are many other counterexamples to reject a crude causal epistemology. The
antirealist may perform the equivalent strategy from the other horn of the dilemma.
Benacerraf suggests that Tarski’s semantics counts as satisfactory (p. 667), but this
claim can easily be rejected.

The traditional strategy is based on theories of mathematical truth that reconcile a
particular epistemology and semantics (consider, for example, (Maddy, 1980; Field,
1980; Maddy, 1981; Shapiro, 1983; Field, 1989; Balaguer, 1995, 1998), among oth-
ers). Not surprisingly, as long as there are no conclusive accounts of general truth
and our knowledge of it, traditional strategy theories continue to be discarded. These
theories are usually developed by adopting one of the two conditions imposed by
Benacerraf and rejecting the other. Either way, such explanations imply a commitment
to specific theories of truth and knowledge.1 The debate suggests that the solution to
the problem for a theory of mathematical truth should be free of commitments to
particular epistemic or semantic accounts. To this extent, my argument begins by clar-
ifying the underlying concerns that give rise to the problem raised by Benacerraf. The
analysis entails two conditions that specify a basis ofminimumhomogeneity grounded
in one reality (which may well be populated by entities of a diverse nature). Once we
consider numbers as attributive properties of multiplicity, the dilemma is not resolved
but dissolved.

1 According to (Field 1989, pp. 232–233), his reformulation of the Benacerraf’s problem does not depend
on causal epistemology. However, this formulation seems to presuppose a reliabilist epistemology, which is
nothing but the evolution of causal epistemology (with its own objections). In any case, without explaining
how to determine such reliability, we can assume that Field is again imposing a causal requirement. [See
Clarke–Doane 2017]
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3 Homogeneity conditions

In order to capture Benacerraf’s substantial concerns, I present two homogeneity con-
ditions that aim to eliminate as many theoretical assumptions as possible from the
original formulation. The homogeneity conditions seek to smooth out the common
ground to provide a satisfactory account of arithmetical truth. To this end, addressing
the most relevant considerations of each competing position is imperative. On the one
hand, the antirealist argues that a standard account posits unnecessary entities, thus
sacrificing ontological parsimony. In contrast, the realist claims that a combinatorial
theory2 introduces different theories of truth, sacrificing theoretical economy. Benac-
erraf’s argument reveals that the cost of the antirealist ontological parsimony plus the
realist theoretical economy is unaffordable. In other words, the solution to the diffi-
culty should go through a balance in which the explanatory power of each position
is maximized, reducing its cost. A satisfactory explanation of numbers must meet the
following homogeneity conditions. (As shown in different works, e.g., Clarke–Doane
(2017) and Topey (2020), the tension discussed here arises in varied domains. My
interest is in natural numbers but the homogeneity conditions can also be considered
for other abstract entities.)

3.1 The semantic homogeneity condition

In discussing the example of an anti-Platonist view, Benacerraf addresses combina-
torialism, whose main thesis is that truth-values are to be assigned to mathematical
sentences on the basis of syntactic features about them (where these are usually proof
theoretic). According to Benacerraf, assuming that we have a satisfactory semantics
for nonmathematical sentences, the combinatorialist would have a problem due to the
contrast between the two kinds of accounts. Compare for example:

(1) ‘Aristotle was born in Stagira’ is true iff Aristotle was born in Stagira.

with

(2) ‘2 + 2 = 4’ is true iff certain syntactic facts hold.

In (1), the truth conditions are given in terms of the denotations of the singular terms
and predicates. In contrast, (2) doesn’t seem to preserve the analysis of truth in terms of
‘referential’ concepts of naming, predication, satisfaction, and quantification. Admit-
tedly, the combinatorialist might question whether this kind of explanation provides
satisfactory semantics even for ordinary language. However, this question misses the
point. An explanation in terms of ‘referential’ concepts of naming, predication, sat-
isfaction, and quantification may be rejected, but the relationship between concrete
objects and the true statements about them remains to be explained. An alternative
semantic account must still be offered and the new theory envisioned for ordinary
language would also have to fit the combinatorialist thesis.

2 Benacerraf calls ‘combinatorial’ those theories of mathematical truth according to which “the truth
conditions for arithmetic sentences are given as their [...] derivability from specified sets of axioms".
[p. 665]
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The notion of truth is determined by conditions that may or may not be satisfied by
sentences within a language. Suppose the truth conditions of mathematical sentences
differ entirely from the truth conditions of ordinary sentences.3 Here Benacerraf’s con-
cern takes thewhole place. In that case, we have that the interpretation ofmathematical
statements radically differs from that of nonmathematical statements for semantic or
syntactic reasons. Given that the statements are of the same form in both contexts,
the difference between both interpretations would reflect a more profound difference
in their truth conditions. But what else, if not the truth conditions, determines the
nature of truth itself? The concern arises about how discrepancies in truth conditions
between mathematical and non-mathematical discourses may affect the very concep-
tion of mathematical truth.4.

Intuitively we think that something (perhaps a very minimal aspect) is shared
between what we consider to be true within mathematics and what we consider to
be true outside of it. There may well be differences in our explanations across differ-
ent contexts, but these differences should emerge at the level of the analyses of the
denotations of the singular terms and predicates. Compare: how different can the truth
conditions for sentences about Aristotle be from the truth conditions for sentences
about the Moon? There is just one explanation of truth here, even though there are
different explanations for the truth of ‘Aristotle was born in Stagira’ and ‘the Moon is
384,400kms from the Earth’. Whatever these differences are, they emerge at the level
of the analyses of ‘Aristotle’, ‘born in’, ‘Moon’, ‘kilometer’, etcetera. An equivalent
contrast comes into place for the case of mathematical objects. An explanation of the
mathematical sentences’ truth should tolerate differences in content only to the extent
that it does not clash with our most basic intuitions about truth.

Accepting only one truth (that may well be highly tolerant to variations regarding
particular contexts) sets a standard of minimal homogeneity, which has a cost lower
than the commitments entailed by particular semantics. The following condition cap-
tures this idea:

Semantic homogeneity condition. A satisfactory semantics for mathemati-
cal language must be homogeneous with a satisfactory semantics for ordinary
language.

Despite its particularities, semantics should preserve the intuition that the explanation
of truth for the relevant fragment of language reflects (in some sense) that sentences
contain terms whose function is to select what the sentence is about, setting conditions
to specify how things have to be for the sentence to be true. Consider the following:

(3) The New York Jets won the Super Bowl in 2021.

3 Undoubtedly, different discourses give rise to variations in truth conditions. An illustrative example is
the case of empty names. However, these cases do not fall within the relevant fragment of language that
concerns Benacerraf. Although the statement ‘Tom Sawyer was born in Missouri’ has the same form as
‘Aristotle was born in Stagira’, it is fairly clear that our epistemic relationship with the statements is different
in the relevant sense.
4 Yablo (2014) considers different ways of being true for a sentenceNote that the discussion here is different.
Even if there are different ways of being true, that does not imply that there are different kinds of truth.
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If I complain that (3) is false, I am doing so because I believe that what the sentence
conveys does not correspond to the facts about the Jets and the 2021 Super Bowl (the
Jets did not even make the playoffs),5. Similarly, if I complain that

(4) The square root of 126 is 5.

is false, I am doing so because I believe that what (4) says somehow does not
correspond to some kind of facts about 126 and 5. A homogeneous semantics requires
a language with no fundamental differences between the terms that occur in statements
such as (3) and those in sentences such as (4).

3.2 The epistemic homogeneity condition

Consider the prominent realist position, Standard Platonism. According to this view,
numbers exist. They are abstract, mind-independent objects, and these objects and
their relations are the truthmakers of arithmetical sentences. In order to know whether
arithmetical sentences are true, we need to know something about their truthmakers.
Since we are not causally connected to abstract objects, our explanation of knowledge
of sentences such as

(5) Two is the smallest prime number

differs from that of sentences such as

(6) Pete Townshend is the oldest son of Cliff Townshend

Intuitively, we can know that (6) is true because our causal connections with Pete
Townshend and his family let us realize that the object (Pete) belongs to the class
of things with the property the oldest son of Cliff Townshend. However, this causal
avenue of knowledge is closed off if numbers are abstract objects. So we cannot know
numbers if the Standard Platonist is right. This difference challenges the idea of a
mathematical truth account that meshes with a reasonable epistemology. According
to Benacerraf:

The concept ofmathematical truth, as explicated,must fit into an over–all account
of knowledge in a way that makes it intelligible how we have the mathematical
knowledge that we have. [p. 667]

5 It might seem that, in this example, a correspondence theory of truth is presupposed. However, this use
of ‘correspond’ is not linked to specific semantic theories but rather to speakers’ natural intuition about
the relationship between language and its subject matter. While a correspondence theory of truth typically
asserts that a statement’s truth or falsity is solely determined by its accuracy in describing the world, in
everyday usage, speakers assume a more general connection between language and facts, which is related
to their notions of truth falsehood, lying, misinforming, and so on, without delving too deeply into the
specifics.
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As many have argued,6 there is no reason to assume that the causal avenue is
the only avenue to knowledge. Still, the causal isolation of the standard Platonist’s
numbers appears problematic even without a crude causal epistemology. For instance,
according to Hartry Field, mathematicians are highly reliable about what they believe
in mathematics. If the truths of mathematics were different, what mathematicians
would believe would also be correspondingly different. Since abstract objects are
causally isolated, the realist is unable to explain the reliability of our mathematical
belief-forming processes. That is, if mathematicians are to be reliable, we must deny
the existence of abstract mathematical objects.7.

I do not endorse either Benacerraf’s or Field’s epistemological preferences, for
that matter, any argument that relies on particular epistemologies. There is nonethe-
less something to be gained from Benacerraf’s and Field’s arguments, which can be
presented in the following scheme:

(P1) Nonmathematical knowledge requires condition Q
(P2) Knowledge about numbers cannot meet condition Q
(C ) Arithmetical knowledge is impossible

Benacerraf and Field motivate a requirement Q on knowledge by considering certain
instances of nonmathematical knowledge and treating these as paradigms. Nonethe-
less, there is a gap in the justification that (P1) plus (P2) entails (C). Paradigms such
as the example (6) most clearly support (P1) but do not provide elements to articulate
(P1) and (P2) in such a way that (C) can be drawn as a conclusion. The missing ele-
ment should guarantee that condition Q could be in principle applied to both kinds of
knowledge, and the adequacy of the argument supports the conclusion. Thus, (P1) plus
(P2) will only get us to (C), assuming an additional condition that homogenizes arith-
metic and nonmathematical knowledge and thus adequately articulates the premises.
I suggest the following principle:

Epistemic homogeneity condition. A satisfactory account of mathematical
knowledge must be homogeneous with a satisfactory account of knowledge in
nonmathematical domains.

That is, mathematical knowledge and nonmathematical knowledge must fall under
the umbrella of a reasonable epistemology.

Suppose we add the epistemic homogeneity condition to the argument and assume
that there is knowledge. In that case, there is a condition Q′ that both nonmathemat-
ical and arithmetical knowledge could meet in principle. Benacerraf himself seems
concerned with this sort of homogeneity:

An account of knowledge that seems to work for certain empirical propositions about medium-sized

physical objects but which fails to account for more theoretical knowledge is unsatisfactory. Not

only because it is incomplete, but because it may be incorrect as well, even as an account of the

things it seems to cover quite adequately. [p. 162]

6 Burgess, for example, simply rejects Benacerraf’s problem as inapplicable to Quine’s program, on the
grounds that our beliefs about abstract objects are justified as a whole as part of our best scientific theories,
Burgess (1990).
7 Hartry Field. Realism, Mathematics, and Modality Blackwell, 1989.
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In the end, reality is described by sentences with both mathematical and non-
mathematical contents. A satisfactory epistemology should homogeneously explain
mathematical and nonmathematical knowledge.

In the following sections, I suggest a theory of numbers as plural properties of
multiplicity. After drawing the numbers-as-properties account, I show that such a
theory satisfies the homogeneity conditions. Undoubtedly, opponents of the theory of
numbers as properties may reject this proposal as a solution to Benacerraf’s problem.
If so, they must provide an alternative theory that meets the homogeneity conditions
(which, as shown, set weaker conditions than those imposed by Benacerraf’s original
formulation).

4 Numbers as properties

There is a wide variety of theories that regard numbers as properties (Hodes 1984;
Hofweber 2005; Maddy 1981; Moltmann 2013; Yi 1999, among others). These the-
ories usually explain number properties by traditional definitions. Such definitions
are often introduced by identifying properties that impose additional requirements to
instances of the number-properties in play. In contrast, my proposal does not need to
identify any additional properties to numbers (or, for what matters, to the bearers). In
my view, a number-property is uniquely determined by what can be instantiated by.
Namely, the number n is the property that can be instantiated by arbitrary pluralities
of n individuals as such. This kind of instantiation requires further specification.

The fact that this theory is not founded on defining properties implies that the
requirements for a theory of properties to complement this account are minimal. For
current purposes, it is sufficient to consider that properties exist and can be instantiated.
The present proposal may indeed be challenged from a skeptical view of properties. In
this case, the proponent of such a view iswelcome to provide an alternative explanation
as long as the theory satisfies the homogeneity conditions.

4.1 Plural properties

From a broad conception, properties differ from other entities by a potential relation
with certain objects—properties are susceptible to be instantiated by objects. Refer-
ring to particular results from Yi (1999), I argue that plural properties are properties
that many things can instantiate as such. That is, as being many things. This idea
requires rejecting a common understanding of instantiation. According to a standard
conception, properties are ruled by the following principle.

The principle of singularity: An argument place of a property or relation does
not admit of many things as the property or relation occurs just once. (Yi, 1999,
p. 169)

Consider the following example,

(7) Thelma and Louise are women
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In (7), ‘are women’ is predicated of something that appears to be plural: Thelma
and Louise. Nevertheless, the principle of singularity says that whatever appearance
of plurality there is here, it is only superficial. Fact (7) can be analyzed as:

(8) Thelma is a woman and Louise is a woman

In (8), the apparent plurality has disappeared. Instead of predicating a single property
that holds of a plurality, we have analyzed (7) by saying that the property be woman
occurs twice, once for each individual.

Notwithstanding (8) may be an adequate analysis of (7), examples of properties
that cannot be reduced to individual properties suggest extending our conception of
properties so that facts are explained as the instantiation of properties by many things
as such. Consider, for instance:

(9) Ann, Ben, Carlos, and Danna are performing No Exit

WhenAnn, Ben, Carlos, and Danna are performingNo Exit, none of them performs
the play separately, and none of themcould be.Only pluralities can performNoExit. (In
NoExit there are never less than three characters on stage.) In contrast, while pluralities
can be women, so too can an individual be a woman. The property performing No
Exit admits only pluralities in its argument place8; be woman admits pluralities and
also admits individuals in its argument place. This contrast suggest a difference in the
plural nature of the properties predicated in (7) and (9). This difference is captured by
the following definition.

Definition. Call a plural property strictly plural if its argument place admits
only of pluralities.

According to this definition, Performing No Exit is strictly plural; be woman is not.
Plural properties are backed by multiple systems of plural logic, in which plural

reference, plural quantification, and plural predication are recognized as primitive (see,
for example, Oliver and Smiley (2013); Rayo (2006); Yi (2005)). The development
of plural logic systems responds, among other things, to the limitations imposed by
theories of properties that presuppose the principle of singularity.

4.2 Plural properties of multiplicity

Intuitively, when conveying arithmetical content, we naturally understand ourselves as
using sentences about the denotations of their singular terms and predicates, just as we
do when using ordinary nonmathematical language. Language reflects our attitudes
towards what we speak about. The theory of numbers as properties requires a language
of properties compatible with our attitudes toward ordinary true sentences. (For a dis-

8 The difficulties grounded in singular instantiation are not solved by distinguishing between relations and
properties. The advocate of the principle of singularity assumes that places of arguments in relations are
also singular.Wemay interpret (9) as a relation. Nevertheless, the relation also must be plurally instantiated.
For example, (9) might be the relation between Ann, Ben, Carlos, and Danna (as such) and No Exit. On the
other hand, it is unclear whether (9) is the relation performing No Exit occurring for some individuals. To
begin with, the arity of the relation would be indeterminate, it depends on the individuals in it.
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cussion on the de re attitudes towards numbers, see Kripke (1992), (Gómez-Torrente,
2019, Chap. 4), Vivanco (2020).)

As argued, the non-strictly plural property predicated in (7) is just one property,
which is instantiated by many things as such,

(7) Thelma and Louise are women

In particular, be woman is instantiated by two many things. Assuming that Thelma
and Louise are different, we can infer from (7) that,

(10) Thelma and Louise are two women

In (10), the property be twowomen is instantiated by Thelma and Louise. This property
differs from the property predicated in (7) in the same sense as the property predicated
in (9). Namely, be two women is a strictly plural property while be women is not.
Moreover, the property be two women implies an element of multiplicity (this claim
can be explained, for example, in virtue of the fact that ‘are twowomen’ is the predicate
of felicitous answers to specific How-many questions (Vivanco, 2020, p. 7)). Indeed,
it can be inferred from (10) that:

(11) Thelma and Louise are two

If there are plural properties, then multiplicity properties are among them. Further-
more, since the instantiation of multiplicity properties can’t be reduced to individuals
(neither Thelma nor Louis separately instantiates the property be two women9), the
multiplicity properties are strict plural properties.

The logic of plurals expresses the characteristic of strictly plural properties of
being non-distributive. Once the language of plurals is regimented, properties can be
analyzed so that strictly plural properties, such as be two women, can be decomposed
and non-strictly plural properties can be dispensed Yi [p. 188]. A property such as the
one predicated in (7) is parsed as follows:

WP (αs) ≡d f ∀β[H(β, αs) → W (β)]
where ‘αs’ stands for the plurality ofThelmaandLouise and the superscript P indicates
that W (be women) is not strictly plural. On the right side of the definition, H(β, αs)
expresses that β is an individual of the plurality αs. Since W is a non-strictly plural
property, it can be reduced to a property instantiated by each individual of the plurality.
From this definition, we have that be two women can be analyzed as follows:

Be-two-women(αs) ≡d f Be-two(αs)∧WP (αs)

9 Yi’s technical apparatus allows properties to be described using a language of plurals. In this sense, he
distinguishes between pure and impure plural properties—Impure plural properties are expansions of what
he calls singular bases:

For example, the property that I call be human[s], indicated by ‘is-a-humanP ’,is the plural expansion of be
a human. Now, any plural expansion is distributive, that is, it is instantiated by some things as such if and
only if it is instantiated by every one of them. [p. 187]
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Thus, a plural property such as be two woman can be decomposed into the strictly
plural property be two and the non-strictly plural property be women. The idea is to
show that Thelma and Louise’s being of the same kind is irrelevant to their being
two. As a result of this analysis, Yi provides the following definitions framed in the
language of plurals offered:

Be-one(αs)≡de f ∃β∀δ[H(δ, αs) ↔ δ = β]
Be-two(αs)≡de f ∃β∃γ (β 	= γ ∧ ∀δ[H(δ, αs) ↔ δ = β ∧ δ = γ ])

On the right side of the definitions, H is the relation between an individual δ and its
plurality αs. The number one is identified with the property that the individual of the
plurality is identical to itself. The number two is identified with the property that the
individuals of the plurality are distinct from each other.

As shownby the examples, a strictly plural property differs fromanon-strictly plural
property in that the latter cannot be reduced to properties or relations on individual
arguments. Nonetheless, since both are strictly plural, the difference between a plural
property such as the one in (9) and the property be two remains to be determined.

(9) Ann, Ben, Carlos, and Danna are performing No Exit

Although individuals cannot instantiate the property be performing No Exit, this
can be instantiated (in principle) by pluralities of m individuals with m = 3, m = 4,
and m ≥ 5. In contrast, the property be two can be instantiated neither by individuals
nor by pluralities of m individuals for m 	= 2.

The property be two is a strictly plural property of multiplicity. Indeed, this claim
calls for the current account to spell out multiplicity in terms of plural instantiation.
I then argue that the number n is the property that is susceptible to be instantiated by
arbitrary pluralities of n things as such and cannot be instantiated by pluralities of m
things as such for m 	= n.

Consider P1, P2, . . . , Pm , an arbitrary plurality of m individuals. Just as a strictly
plural property is instantiated by many things as such, meaning that one thing cannot
instantiate the property, the property be n is instantiated by n many things as such,
meaning that be n cannot be instantiated by m things if m < n. That is, be n is not
distributive to any extent. Just as be two women does not admit of an individual as an
argument; be three does not admit two things, nor one individual; be four does not
admit of three things, nor two things, nor one individual, etcetera.

Grammar provides reasons in favor of the non-distributivity of be two:

(12) Thelma is two women

Sentence (12) is not grammatical. However, if n 	= 1, grammar does not provide any
evidence in this respect:

(13) Thelma and Louise are three women

Sentence (13) is grammatical, albeit false. Admittedly, the mere fact that (13) is false
does not imply that be three does not admit Thelma and Louise as an argument.
Nevertheless, it should be noted that the reduction of a multiplicity property to a
plurality of a smaller multiplicity is a consequence of the standard theory, which is
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ruled by the principle of singularity. Once the principle of singularity is rejected, the
instantiation of pluralities as such is allowed, thus limiting the scope of distributivity
between properties. The rejection of such a principle precludes the indiscriminate
distributivity of plural properties. The property be n is instantiated by n many things
as such, therefore, it cannot be instantiated by pluralities of m things if m < n.

Consider now m > n. We can take m!
n!(m−n)! many pluralities of n individuals

from the plurality P1, P2 . . . , Pm . The property be n admits all these pluralities
because it is exemplified by their individuals as such. However, although the plu-
rality P1, P2 . . . , Pm shares individuals with its ‘subpluralities’ of n individuals,
P1, P2 . . . , Pm cannot instantiate be n. To illustrate this point, consider again:

(10) Thelma and Louise are two women

and also:

(14) Louise and Lena are two women

From the truth of (10) and (14) it does not follow that

(15) Thelma, Louise and Lena are two women

In the same way that the rejection of the principle of singularity opens the door to
the instantiation of properties by many things as such, thus blocking the distributivity
of plural properties to individuals, this new perspective allows for the instantiation of
multiplicity properties by n many things as such.

Up to this point, my proposal is consistent withYi’s. However, I object to his charac-
terization of number-properties, and expand on the results of rejecting the principle of
singular instantiation. The proposal of numbers as attributive properties of multiplicity
requires taking the instantiation of pluralities as suchwith absolute seriousness. In my
view, the natural number n is the multiplicity property that can be instantiated by n
many things as such. As I argue later, searching for an internal property that charac-
terizes number properties is problematic. The number n is just the property be n—the
property whose argument places admit arbitrary pluralities strictly of n individuals.

4.3 Arithmetic properties

The path toward semantic homogeneity requires an analysis of the arithmetical state-
ments compatible with the analysis provided up to this point. In this sense, it must be
shown that arithmetic statements can be analyzed in the same language of properties
as nonmathematical statements—just as the term ‘two’ in the sentence

(11) Thelma and Louise are two

stands for the property be two, the term ‘two’ in the sentence

(16) One plus one is two

stands for the property be two. So the term ‘plus’ stands for a relation between prop-
erties. Moreover, in the sentence
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(17) 2 + 2 = 4

the corresponding Arabic numerals stand for the same number property as in (11)
and (16); signs of sum and identity stand for relations among number properties.
(For a comprehensive account of verbal and Arabic numerals referring to properties,
see Gómez-Torrente (2019), pp. 108–139.) These claims must be supported by a
translation of the primitive statements on which arithmetic is formalized.

The translation presented here borrows a fragment fromYi’s plural logic notation.10

I do not provide the whole system but only certain relevant elements introduced to
extend elementary logic to a logic of plurals. Later, I introduce additional notions to
express the arithmetic principles.

1. Primitive terms: In addition to singular constants and singular variables, such as
‘Thelma’ and ‘Louise’, and ‘α’ and ‘β’, we have:

Plural variables. For instance ‘αs’, ‘βs’. (Plural variables correspond to plural
pronouns as used anaphorically in sentences like ‘There are some humans and
they cooperate’.)

2. Term connective: ‘@’ (‘and’) This operator has a collective reading. In this way,
we can build a complex object on which the predication is not distributed as in the
usual conjunction. Consider the following sentence as an illustration:

(18) Pizza and beer cause stomach upset

In a standard (non-collective) reading of the conjunction D(p ∧ c), sentence (18)
amounts to:

(19) Pizza causes stomach upset and beer causes stomach upset: D(p) ∧ D(b)

In a collective reading, pizza and beer constitute a complex object (pizza@beer )
that is formed with a conjunction, but that only admits a collective reading. That is
taking (18) as it is: D (p@b).

3. In addition to singular predicates (logical, such as ‘Is-identical-with’, and nonlog-
ical, such as ‘being-a-woman’, we have plural predicates:

Logical: ‘H ’ (‘Is-one-of’)
Nonlogical: for example, ‘Play-together’, ‘Cooperate’

4. In addition to the sentential connectives ‘¬’ and ‘∧’, and the singular existencial
quantifier ‘∃’, we have:

The plural existential quantifier: ‘�’ (‘There-are-somethings…such-that’)

The universal quantifiers ‘∀’ and ‘�’ (‘Any-thing…are-such-that’) are introduced
via the usual definitions.

To provide a formal reconstruction to formulate arithmetic statements in a language
that expresses numbers as properties, we need to add an extra plural predicate to
express the instantiation relation and a nominalization operator that, when placed in
front of a formula, produces a singular term:

10 The reader interested in the exhaustive formalization can refer to Yi (1999).
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2*. Nominalization operator: ‘ˆ’
Given a predicate F , the term F̂ denotes as a singular term the property referred
by the predicate F . Thus, this operator allows us to convert complex formulas into
expressions of the same kind as singular variables and constants. For example,
formulas such as:

x = x
H(β, αs)

are turned into the singular terms:
ˆ(x = x)
ˆ(H(β, αs))

3*. Plural predicate: ‘I ’ (‘Is-instantiated-by’)

Now we can express the instantiation by pluralities as predication on properties:
I (x, αs) is the instantiation of x by the plurality αs as such.
For the translation of first-order arithmetic sentences, we need to introduce additional
notions:

1. Nonlogical symbols: ‘0’ (as an individual constant whose intuitive meaning is
‘zero’); and S(x, y) (a dyadic individual predicate, with the intuitive meaning ‘y
is the successor of x’).

The term that stands for the property that admits arbitrary pluralities of strictly
zero elements11. That is, ‘0’, translates as

‘ˆ(¬∃β[H(β, αs)]) ’
The term that expresses the property that a numeric property has of being the
successor of another, this is ‘S(x, y)’, translates as

‘y =ˆ(∃β
∑

γ s(I (x, γ s)∧H(β, αs)∧∀δ[H(δ, γ s) ↔ H(δ, αs)∧δ 	= β]))’
That is, the successor of n is the multiplicity property instantiated by arbitrary
n + 1–pluralities, defined as the property such that there is β in αs, where β

is different from the individuals of some plurality γ s that instantiates Be–n as
such, and the individuals of γ s are individuals of βs.

Let us introduce the abbreviation ‘N (x)’ for the expression

‘
∏

γ s(H(0, γ s) ∧ ∀β∀δ(H(β, γ s) ∧ S(β, δ) → H(δ, γ s)) → H(x, γ s))’

The property identified as 0 intuitively satisfies ‘N (x)’—it cannot happen that if
the antecedent of the main conditional in the previous expression is satisfied, the
consequent is not satisfied (one of the conjuncts of the conditional is H(0, γ s)).
Intuitively, we also see that ‘N (x)’ is satisfied by the number-property 1:

1 =ˆ(∃β
∑

γ s(I (0, γ s) ∧ H(β, αs) ∧ ∀δ[H(δ, γ s) ↔ H(δ, αs) ∧ δ 	= β]))
11 The plurality of zero individuals is, as the definition indicates, that which has no elements (of course
there are many concepts that determine this plurality. One of them, for example, is the concept of being
different from itself).
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The property be zero is one of the γ s, and for any number property β (that is part
of the γ s), its successor is also part of the γ s. Since S(0, 1), then H(1, γ s). The
same intuitive reasoning applies to each of the properties we identify with the natural
numbers. The idea is the same as in the explanation of implicit recursive definitions:
the plurality of the numerical properties is the smallest plurality that contains zero.
This plurality is closed under the operation of adding the successor of the previously
contained elements.

2. Provided that we have an arithmetic formula ϕ:

‘∀xϕ’ translates as ‘∀x(N (x) →)’ followed by the translation of ϕ.
‘¬ϕ’ translates as ‘¬’ followed by the translation of ϕ.
‘ϕ ∧ ψ’ translates as the translation of ϕ followed by ‘∧’ followed by the
translation of ψ .

Disjunctions, implications, and existential statements are translated into terms of
the above in the usual way.

The current translation addresses the concern that this theory of numbers as properties
might be incompatible with the uses of numerical terms in formal arithmetic. The
statements taken as primitives in a standard construction of the natural numbers have
an intuitive interpretation under this kind of translation. That is, the translations of the
Peano axioms are intuitively true:

1. N (0): The number–property be zero satisfies the formula ‘N (x)’.
2. ∀x∀y(N (x)∧S(x, y) → N (y)):Anumber–propertybem (where S(n,m)) satisfies

the formula ‘N (x)’ because the number–property be n satisfies the formula ‘N (x)’.
3. ∀x∀y∀w∀z(N (x)∧ N (y)∧ N (w)∧ N (z)∧ S(x, w)∧ S(y, z) → (x = y ↔ w =

z)): If given the properties be n and be m, then be x is the same number–property
as be y, and S(n, x) and S(m, y), then the property be n and the property be m are
the same property.

4. ∀x∀y(N (x) ∧ S(x, y) → ¬ y = 0): For any number–property be m if there exists
the property be n such that S(n,m), then the property be m cannot be the property
be zero (since there is no numerical property x such that 0 =ˆ(∃β

∑
γ s(I (x, γ s)∧

H(β, αs)∧∀δ[H(δ, γ s) ↔ H(δ, αs)∧ δ 	= β]))). This is because, as no plurality
of −1 individuals can be determined, there is no plural property that can be strictly
instantiated by that plurality12.

5. (ϕ(0)∧∀x∀y(N (x)∧ S(x, y)∧ϕ(x) → ϕ(y))) → ∀x(N (x) → ϕ(x)) (Induction
schema): If the property be zero has a property ϕ and given any property be n such
that ϕ(n), then the property be m (where S(n,m)) also has property ϕ, then all
properties that satisfy the formula ‘N (x)’ have property ϕ.

12 Although the notion of property at stake is austere, it has been established that properties are identified
by how they can be instantiated (regardless of whether they are actually instantiated). A plurality of minus
one individuals cannot instantiate any plural property of multiplicity. Certainly, it may be argued that in
the strict sense, there are no pluralities of zero individuals either, thus the property be zero is also not well
defined. The assertion here is that the property be zero can be instantiated by any plurality that does not have
individuals, and we can specify these pluralities. For example, if Be-zero(αs), then αs is the plurality such
that if H(β, αs), then β 	= β. This identification may be controversial under metaphysical considerations,
but it succeeds specifying αs. In contrast, it is unclear how this could be achieved for the property be −1
(while still keeping the simplicity of the plural properties of multiplicity considered here).
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Intuitively, the recursive definitions of sum, product, and exponentiation (where ‘+’,
‘×’ and ‘e’ are triadic predicates) can be introduced by the translation in this language
of properties.

1. Sum: For all x,+(x, 0, x) Given x, y, z, w and v, if S(y, z), +(x, y, w), and
S(w, v), then +(x, z, v)

2. Product: For all x,×(x, 0, 0) Given x, y, z, w and v, if S(y, z), ×(x, y, w), and
+(w, x, v), then ×(x, z, v)

3. Exponentiation: Let α be such that S(0, α). Then for all x, e(x, 0, α) Given
x, y, z, w and v, if S(y, z), e(x, y, w), and ×(x, w, v), then e(x, z, v)

4.4 Semantic homogeneity

Without straying too far from our pretheoretical intuitions, number discourse can be
translated into a language of properties. This translation establishes a minimum basis
that reveals that we speak of the same when we use everyday number sentences and
when we use arithmetic sentences. I do not intend to provide any particular semantics
here; instead, I lay the groundwork for a theory that meets the semantic homogeneity
condition. From the analysis presented above, number-terms in sentences, such as

(11) Thelma and Louise are two

and

(16) One plus one is two

stand for properties regardless of their occurrences.
An account of numbers as properties does not necessarily determine that a position

is realist, nor that it is antirealist. A contrast with paradigmatic realist views and with
some antirealist positions illustrates this point.

4.5 Neo-logicism and numbers as properties

Consider Frege’s classic example:

(20) Jupiter has four moons

(21) The number of moons of Jupiter is four

In hisGrundlagen, Frege (1884) argued that a substantial lesson can be drawn from
the fact that, on the one hand, ‘four’ occurs as an adjective in (20), while in (21), ‘four’
occurs as a singular term. In Frege’s framework ‘The number of moons of Jupiter’ and
‘four’ are singular terms, referring to numbers, regarded as objects by Frege.

As is well known, Frege’s proposal relies on linguistic commitments posited by
his ideas about language, which in turn depended on certain metaphysical preju-
dices. The difficulties faced by the Fregean ontology—consequently, by the formal
systems accompanying it—have been widely discussed by both supporters and detrac-
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tors. Indeed, different authors have considered that aside from the extensions of the
concept be n-equinumerous, Frege’s theory was a theory of numbers as properties
(Chateubriand, 2016; Rayo, 2002). Frege himself, after the exposure of Russell’s
paradox, seems to have been open to that possibility:

Since a statement of number based on counting contains an assertion about a
concept, in a logically perfect language a sentence used tomake such a statement
must contain two parts, first a sign for the concept about which the statement
is made, and secondly a sign for a second-level concept. These concepts form
a series and there is a rule in accordance with which, if one of these concepts
is given, we can specify the next. But still we do not have in them the numbers
of arithmetic; we do not have objects, but concepts. How can we get from these
concepts to the numbers of arithmetic in a way that cannot be faulted? Or are
there simply no numbers in arithmetic? Could the numbers help to form signs
for these second-level concepts, and yet not be signs in their own right?13

Considering the original project’s failure (relative to Frege’s objectives), it is fairer to
contrast the current proposal to the contemporary theories that try to rescue Frege’s
logicist program. In order to make the aforementioned analysis, let us consider neo-
logicism in terms of three central theses: (1) neo-fregeanism—a general conception of
the relation between language and reality; (2) the method of abstraction—a particular
method for introducing concepts into language; (3) the scope of logic—second-order
logic is logic (MacBride, 2003). One of the main advantages of the present proposal is
that (2) is rejected in such a way that (1) is preserved and remains neutral concerning
(3)14.

The proposal of numbers as multiplicity properties that arbitrary pluralities can
instantiate as such shows that complex identification principles for numbers are not
needed. In particular, no abstraction principle of any kind is required; at least not in the
sense that an account of numbers as objects does. The theory of numbers as properties
does not affirm that the property be n is an individual in the Platonist’s strict sense.
That is, it does not require introducing new objects. This is the substantial difference
between traditional Platonism and the present explanation in epistemological terms.
Even seemingly simple defining principles (for example, those suggested by Yi) are
highly implausible when accounting for epistemic access to arithmetical truths. The
epistemology suggested in the subsequent sections plainly marks the difference with

13 Notes for Ludwig Darmstaedter, pp. 366–7
14 The neo-logicist program preserves logicism’s spirit of reducing the truths of arithmetic to logi-
cal statements that can be known without appealing to experience, thus solving the epistemic problem
for arithmetical sentences. Frege’s concerns lead him to draw the axioms of arithmetic from the so-
called Basic law V, which was supposed to achieve the ontology required by his metaphysical program:

(i) BLV: {x : Fx} = {x : Gx} ≡ ∀x(Fx ≡ Gx)
As Russell showed, this principle presupposes that:

(ii) EXT: (∀F)(∃a)(a = {x : Fx})
which is false. The neologicist proposal suggests adopting Hume’s Principle as the abstrac-
tion principle—since it does not presuppose 14—and deriving Peano axioms from it:

(iii) HP: (∀F)(∃a)(a = {x : Fx})
The contemporary debate addresseswhether 14 is a logical principle in such away that it solves the epistemic
problem for arithmetic.
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any logicist-type program: the theory of numbers as properties admits an epistemic
explanation in terms of empirical and linguistic capacities, ruling out the essential role
of principles of logic in an account of arithmetic knowledge. This, of course, does
not imply that determining rules cannot be established. These rules will ultimately be
based on the way in which the number-properties can be instantiated15.

In addition to providing a more plausible solution to the epistemic problem, the
numbers as properties proposal accounts for the relation between language and real-
ity without facing metaphysical problems such as the so-called bad company. Bad
company objections state that if the abstraction method for introducing the concept of
numbers were legitimate, then it should be possible to use it in general. Nevertheless,
the general application of the abstraction method allows for introducing concepts and
associated objects of which we would otherwise be wary. Alternatively, the stipulation
of abstraction principles conflicts with the commitments we have already made (for
a more detailed description, see MacBride (2003)). The view defended here avoids
this kind of objection, still accounting for a relation between reality and language.
Although the conception of numbers as properties involves a notion of abstraction,
identifying that different pluralities of the same multiplicity have the same number-
property (Gómez-Torrente, 2019, p. 132), this abstraction does not imply postulating
any object. Furthermore, the abstraction at stake concerns arbitrary pluralities of n
individuals, which rules out the necessity of additional properties for the pluralities,
particularly when those pluralities are individuals. This point solves the question of
the distinction between a number and Julius Caesar; the number–property of arbitrary
pluralities of multiplicity n is entirely independent of the existence of Julius Caesar
or any other individual.

Leaving aside the imposition of a theory on names, if we assume that the number
four is the property be four, statements such as (20) and (21) do not seem somysterious.
In both cases, numerals stand for a property. With this property, we predicate things
about objects and we can also talk about it conveying the same instantiation with the
instances at play.

There are still things to be said about the possible instantiations of number–
properties and their relations with other existing things in the world. For example,
it is interesting to ask whether these instantiations are also possible for pluralities of
infinite multiplicity or what would happen if the concrete universe was finite. Regard-
ing the first question, although this research focuses on the case of pluralities of finite
cardinality, none of the commitments acquired here closes the door to an extended

15 Many thanks to the referee who suggested the contrast with neo-Fregeans to illuminate and specify the
current proposal. Their comments have been quite insightful. I also thank them for the suggestion of the
following abstraction-like rule:

‘The property ‘be n’ is identical to the property ‘be m’ if and only if for any plurality αs and for any plurality
βs, the αs are n and the βs are m if and only if the αs and βs are equinumerous.

Note that pluralities do not constitute the equivalence class that number would be. The relevant relationship
between equinumerous pluralities is that they both are plural instances of the same property of multiplicity.
As the reviewer remarks, the statement above is true of properties; the process of going from predicate
instantiation to properties is already reasonably widely accepted and at least only as contentious as the
existence of properties is.
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explanation that includes infinite cardinals.16 Lastly, it is worth recalling that the
property be n can be instantiated by arbitrary pluralities of multiplicity n, particularly
by pluralities of properties. Following the rules presented in 4.3, it can be seen that
the number of concrete objects in the universe is not a limitation for the existence of
very large numbers.

A theory of numbers as properties does not have to commit to realist positions.
Paradigmatic examples show that a theory that privileges the adjective uses of numer-
ical terms (typically considered as those that stand for properties) fits into an antirealist
conception. This is the case of the view advocated by Hofweber (2005). According to
Hofweber, the term ‘four’ occurs as a determiner in both (21) and (20). What he calls
plural arithmetical statements (for instance, (20)) are formulated with bare determin-
ers, while in sentences such as (21), the determiner is concealed due to a syntactic
abnormality. If numbers are properties, as I propose, the distinction between the forms
of the determinant is superfluous. The term ‘four’ stands for the multiplicity property
be four. In (21), we are talking about the property concerning the moons of Jupiter
(where the relation is none other than that the moons of Jupiter have the property of
being four). In (20), the property of being four is predicated on the plurality of Jupiter’s
moons.

Another antirealist theory that fits with the present proposal is found in Yablo
(2014). According to Yablo [pp. 177–198], sentences (20) and (21) have the same real
content,17 which states that the moons of Jupiter are four. Thus, the real content of
(21) is about particular concrete objects—the moons of Jupiter—and not about the
abstract object that the number four would be.

But regardless of our realist or antirealist inclinations, the truth is that the properties
we attribute to an object are relevant to the ascriptions of knowledge about it. The
property be four is relevant to the truth of (21) as well as to the truth of (20), even if
the real content of both sentences is about Jupiter’s moons and not about the number
four.

5 Arithmetical knowledge

Day-to-day knowledge of objects involves epistemic access to properties. In particu-
lar, it involves the instantiation relation between a property and its potential bearers.
Ascriptions of knowledge about facts such as

(22) John is tall

depend on the correct attribution of properties such as be tall to objects such as John.
For an epistemology to be satisfactory, the justification conditions for knowledge

16 This question was discussed withMario Gomez-Torrente during theMathematics, Modality and Knowl-
edge Symposium, at the CLMPST, 2023.
17 In Yablo’s framework, the literal content is what the statement would mean, if taken literally; the real
content is what we in fact communicate with the statement. The literal content of “She has butterflies in her
stomach” places various insects in her digestive tract; the real content only claims that she is nervous. The
literal content of “The number of planets is even" says something about a relation between planets and a
certain type of abstract object; the real content says only that the planets are evenly-numbered.
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must account for our access to properties (which, in turn, determines our epistemic
relationship to objects and vice versa). This work does not endorse any particular
epistemology. This proposal aims to show the plausibility of explaining arithmetical
knowledge from the view of numbers as properties.

If n is the plural property of multiplicity be n, knowledge ascriptions regarding n
are founded on the ability of agents to attribute n to any plurality of n individuals. The
fact that pluralities of n individuals strictly instantiate the multiplicity property be n
makes it possible for an agent to correctly attribute the number n to a plurality without
needing to know anything in particular about its individuals (other than that they are
n). Access to the number n requires to be able to correctly attribute it to pluralities of n
individuals. The development of this ability is the starting point to make arithmetical
knowledge possible.

Children acquire basic arithmetical knowledge at an early age from contact with
small pluralities of physical objects (or their representations). This knowledge is
reflected in the assignment of exact measures of multiplicity to identifiable plural-
ities through the linguistic ability of counting, which improves by the management of
numerical notation, such as Arabic or verbal numerals (for detailed linguistic analy-
sis, see Wiese (2003) andWiese (2020)). Several studies in cognitive sciences explain
these arithmetic abilities as starting from the number sense, a pre-linguistic sense,
which has to do with how human and non-human animals can respond automatically
to the numerical features of the world (e. g. Baroody et al. (2003); Dehaene (1997);
Levine et al. (1992); Canobi and Bethune (2008)). Empirical data show that at a very
early age, there are two active representational systems related to the number sense.
These are the approximate-number system and the object monitoring system. The first
includes relations with the property of numerosity itself, and the second, relations with
certain pluralities of physical objects (Gilmore & Spelke, 1992).

The object monitoring system is described as a mechanism for responding to small
multiplicities (3–4 members) of sensory elements by encoding their members with
other mental symbols stored in working memory (the phenomenon of subitization
is a result of this mechanism). The approximate-number system responds to large
multiplicities of sensory elements by representing them as segment-like magnitudes
fluctuating on amental number line. In this sense, the attribution of small numbers (the
first with which we acquire competence) is strongly rooted in sensory contact with
small pluralities of physical objects. Not so the attribution of greater numerical prop-
erties. This ability is founded on the identification of multiplicities through counting.
The ability to attribute numbers to pluralities is implicitly reflected in using numerals
as adjectives. The human cognition of numbers evolves significantly once the general
concept of cardinality is acquired (Feigenson et al., 2004; Carey, 2009).

5.1 Epistemic homogeneity

Several studies in cognitive science support the thesis that the theory of numbers
as properties entails the possibility of arithmetical knowledge. The evidence show
that there is a strong relationship between arithmetical knowledge and the ability to
attribute numerical properties to their corresponding pluralities. Furthermore, these
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abilities are explained in terms of mental numerical dispositions, direct interaction
with small pluralities, and the generalization of concepts through linguistic resources.

Identifying a number property merely by how it can be instantiated endows the
present theory with a significant advantage over other theories of numbers as prop-
erties. Typically, theories search for defining (constitutive) properties of numbers.
However, multiple problems arise from those properties (often arbitrary or not suf-
ficiently well defined). In particular, they do not contribute with a solution for the
epistemic problem. As simple as the definitions may seem, once they are introduced,
the strategy systematically fails to account for arithmetical knowledge, which is char-
acterized by its simplicity and naturalness. As an illustration, Yi (1999) tries to weaken
the defining conditions of a number by specifying only logical properties among the
individuals of the pluralities that bear that number. The simplest example quickly faces
the epistemic problem of identifying the number–properties. Recall the definition of
be two:

Be-two(αs)≡de f ∃β∃γ (β 	= γ ∧ ∀δ[H(δ, αs) ↔ δ = β ∧ δ = γ ])
From this definition, it follows that to know the number two is to know that the
individuals of a plurality that instantiate the property be two are different from each
other. It is unclear whether agents are always in a position to fulfill this condition. For
example, imagine a child who thinks that two unicorns are identical. Her notion of
being identical might not be too sophisticated. To this extent, she might not be able
to specify that the unicorns are different from each other (apart from the fact that the
unicorns are two). Nevertheless, this does not prevent her from correctly attributing
the property be two to the plurality of those unicorns.

Whether the theory regards numbers as objects or properties, the identification
problem is likely to be faced by any attempt to define numbers through more primitive
properties. My proposal rests on the fact that attributions of the property be n can
be made to arbitrary pluralities of n individuals. In this way, the identification of the
number–properties does not depend on anything other than how they can be instan-
tiated. If numbers are the properties described here, an epistemology for arithmetic
will ultimately depend on access to the relations between properties and their poten-
tial bearers. The same access must be considered in ascriptions of knowledge about
nonmathematical facts such as (22).

6 Concluding remarks

The theory of numbers as properties lays the groundwork for a theory of truth to satisfy
the conditions of semantic and epistemic homogeneity. The arguments presented in
this paper show that if numbers are properties, we have a homogeneous domain in
which a semantic theory can account for the contents of number expressions (in both
their adjectival and substantival forms) in the sameway that it accounts for the contents
of terms in ordinary discourse. The translation of ordinary and arithmetic statements
into a language of properties establishes conditions of possibility for homogeneous
semantics.
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The above results imply that arithmetical knowledge is possible, starting from the
bases of the Benacerrafian argument, whose original formulation entails the impos-
sibility of arithmetic knowledge. As argued, traditional theories of arithmetical truth
solved the Benacerraf’s problem. Nevertheless, the original theoretical assumptions
allow for providing solutions to the dilemma without accounting for the possibility
of arithmetical knowledge. In this paper, I argue that a satisfactory arithmetical truth
theory must meet the semantic and epistemic homogeneity conditions. Furthermore,
I have shown that meeting the homogeneity requirements is possible if numbers are
properties. As a result, arithmetical knowledge is possible. Additionally, different
results in cognitive science support the thesis that numbers are properties, providing
evidence of a transparent relation between the ability to correctly attribute multiplic-
ity properties to arbitrary pluralities of individuals and the acquisition of arithmetical
concepts. All this together not only shows that arithmetical knowledge is possible but
also enlightens how it is possible.

The presentwork focuses on arithmetic due to its theoretical, philosophical, and his-
torical relevance. Some traditions, though, attempt to extend explanations on natural
numbers to other numerical structures (see, for example, Hale (2000) on neo-logicism
and Heyting (1959) on intuitionism). The theory of numbers as properties contributes
to various arguments against the foundational role of set theory in arithmetic. How-
ever, since mathematics provides constructions of numerical structures from natural
numbers, this proposal opens the door to frameworks in which properties can be
constructive tools alternative to sets. Once the multiplicity properties are introduced
in mathematical discourse, it makes sense to consider different relations and other
related properties. The results presented here invite further investigation of numbers
as properties.
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