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Abstract
Traditional models of mathematical proof describe proofs as sequences of asser-
tion where each assertion is a claim about mathematical objects. However, Tanswell
observed that in practice, many proofs do not follow these models. Proofs often con-
tain imperatives, and other instructions for the reader to performmathematical actions.
The purpose of this paper is to examine the role of instructions in proofs by systemat-
ically analyzing how instructions are used in Kunen’s Set theory: An introduction to
independence proofs, a widely used graduate text in set theory. I use Kunen’s text to
describe how instructions and constructions in proof work in mathematical practice
and explore epistemic consequences of how proofs are read and understood.
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1 Introduction

A mathematical proof is typically characterized as a sequence of mathematical asser-
tions—declarative mathematical statements about mathematical objects and their
properties. In this characterization, a proof of a theorem begins with assumptions and
other accepted assertions, new assertions are deduced from previous assertions, and
ultimately the theorem statement is reached. Because truth flowed from the assump-
tions and accepted assertions to the theoremstatement via deductive reasoning, a reader
of the proof can be assured that the theorem must be true, at least if the assumptions
were true.

In several recent papers, Fenner Tanswell (in press; Tanswell & Inglis, in press)
has demonstrated that in mathematical practice, many accepted proofs deviate from
the description above in an interesting way. Many sentences in proofs are imperatives.
Readers are told to suppose certain assumptions are true, pick objects that satisfy cer-
tain properties, draw auxiliary lines, extend orders, color graphs, and divide intervals.

B Keith Weber
keith.weber@gse.rutgers.edu

1 Rutgers University, 10 Seminary Place, New Brunswick, NJ 08901, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-023-04239-7&domain=pdf
http://orcid.org/0000-0001-8877-1552


34 Page 2 of 17 Synthese (2023) 202 :34

Tanswell was not the first to observe the frequent use of imperatives in proofs (see, e.g.,
Ernest, 1998, 2018; Pimm, 1987; Morgan, 1996; Rotman, 1988, 1993), but Tanswell
(in press) argued that the epistemic consequences of the use of imperatives in proofs
had yet to be explored. In this paper, I consider the use of instructions in mathematical
proofs where the reader is directed to take a mathematical action. Instructions include
imperatives, but also some sentences in which the impersonal “we” is used as the
subject.

The aim of this paper is to deepen our understanding of how instructions are used
in proofs as they appear in mathematical practice. The first goal of this paper is first
to present a typology of the different types of instructions that appear in proofs. The
second goal of the paper is to describe how different types of instructions are coordi-
nated in construction proofs to metaphorically build objects with desirable properties.
I accomplish this by analyzing the proofs that appear in Kunen’s (1980) canonical
graduate textbook on set theory. Finally, I will speculate on the cognitive actions that
a reader is expected to take as she reads the instructions that appear in a proof.

2 Instructions in proofs

2.1 The use of instructions in mathematical proof

In this paper, I consider instructions in mathematical proofs. Instructions typically
come in two forms. The first is in the form of an imperative. For instance, a proof in
Rudin’s (1970) widely used textbook in real analysis contains the following text: “Let
I be an ideal of A. Partially order the collection P of all ideals which contain I (by set
inclusion)” (p. 357, italics are my emphasis). Here, the reader is directed to let I be an
ideal and then told to partially order a set. Rotman (1988) noted the use of imperatives
is common in mathematical writing, including in proofs:

“But proof in turn involves the idea of an argument, a narrative structure of
sentences, and sentences can be in the imperative rather than the indicative.
[…] Mathematics is so permeated by instructions for actions to be carried out,
orders, commands, injunctions to be obeyed — ’prove theorem T’, ’subtract
from y’, ’drop a perpendicular from point P onto line L’, ’count the elements of
set S’, ’reverse the arrows in diagram D’, ’consider an arbitrary polygon with
k sides’, and similarly for the activities specified by the verbs ’add’, ’multi-
ply’, ’exhibit’, ’find’, ’enumerate’, ’show’, ’compute’, ’demonstrate’, ’define’,
’eliminate’, ’list’, ’draw’, ’complete’, ’connect’, ’assign’, ’evaluate’, ’integrate’,
’specify’, ’differentiate’, ’adjoin’, ’delete’, ’iterate’, ‘order’, ’complete’, ’calcu-
late’, ’construct’, etc. that mathematical texts seem at times to be little more
than sequences of instructions written in an entirely operational, exhortatory
language.” (p. 8).
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Others, such as Ernest (2018), Morgan (1996), andWagner (2009, 2010), have echoed
Rotman’s sentiments. Morgan (1996) and Wagner (2009, 2010) have conducted in-
depth semiotic analyses on the role of imperatives in reflecting agency inmathematical
text; my work here will focus on how text is read, understood, and validated.

A second type of instruction in mathematical proofs are sentences with the imper-
sonal “we” as a subject. For instance, instead of using an imperative directing the reader
to partially order a set P, the text may say, “we partially order P”. Halmos (1970)
claimed the “we” in such sentences refers to “the author and the reader” (p. 141).
Krantz (1997) noted that “the custom in modern mathematics is to use the first person
plural, or “we”. It stresses the participatory nature of the enterprise, and encourages
the reader to push on.” (p. 33).1

Using mathematics papers posted in the mathematical ArXiv, Tanswell and Inglis
(in press) conducted a corpus analysis that investigated the use of instructions in
mathematical proofs. They found that instructions were more common in proofs than
in ordinarymathematical prose. Further, while some verbs such as “let” and “suppose”
were especially common as mathematical instructions, there was also a wide variety
of instructions that were used in the corpus.

2.2 The epistemic importance of instructions

Tanswell (in press) argued that imperatives pose a challenge to traditional accounts
about proof. As I previously mentioned, a proof is traditionally viewed as a sequence
of mathematical assertions, where the proof begins with assumptions or assertions
that are taken to be true (e.g., axioms, definitions, previously proven results) and new
assertions are deductive consequences of previous assertions. However, instructions
have different truth semantics than assertions. Imperatives cannot be true or false,
and they cannot be deductive consequences of prior assertions or instructions. For
statements of the form “we X”, the truth of the statement is not in question. It is
presumed that both the author and the reader will carry out the instruction. The concern
is notwhether “weX” is a true or false statement, butwhether the instruction is possible
to obey. Themain point is that the traditional view that truth flows from the assumptions
of the proof to the conclusion by logical deduction does not obviously relate to proofs
that contain instructions. Instructions cannot be carriers for truth.

Tanswell (in press) argued that proofs are analogous to recipes. Recipes instruct the
reader to engage in specific cooking activities to obtain a culinary goal. Proofs instruct
the reader to perform proving activities to obtain the epistemic goal of establishing
and believing a theorem. In this paper, I will argue that constructions in proofs are
frequently used to establish sub-goals in proofs: the reader can believe that a particular
type of object exists because the proof supplies a recipe for building such an object.

1 Not all sentences with “we” as the subject are instructions. For instance, “we want to show” is reflecting
the goal of the forthcoming sub-argument, not directing the reader to desire something. Such sentences are
included in proofs to reveal the plan of the proof to the reader (c.f., Hamami & Morris, 2021).
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3 Instructions in Kunen’s set theory: an introduction to independence
proofs

3.1 The rationale for using Kunen’s text

Philosophers of mathematical practice have long been interested in how the proofs that
mathematicians actually produce deviate from formalist accounts of proving, and the
epistemic consequences that this has for why mathematicians believe theorems (De
Toffoli, 2021; De Toffoli &Giardino, 2014, 2016; Larvor, 2012; Rav, 1999, 2007; Tan-
swell, 2015). Traditionally, these philosophers have used two approaches to analyzing
mathematical text. The first is a close reading, in which the philosopher performs a
modern or historical case study, using a particular proof in a mathematical domain in
which she is conversant to illustrate a particular idea. This approach affords a rich and
contextualized account of a given proof. However, since mathematical practice is het-
erogeneous (Hanna & Larvor, 2020), there is the risk that what the author is analyzing
is atypical and that she is exploring a phenomenon that rarely occurs in mathematical
practice. An alternative approach is an automated linguistic corpus analysis in which
statistical patterns on language usage are systematically analyzed over thousands or
millions of mathematical papers (Mejía-Ramos et al., 2019).2 Such analyses can indi-
rectly document the frequency of a phenomenon occurring in mathematical texts.3

However, as these analyses ignore mathematical context,4 they can provide at best
suggestive trends as to the nature of the phenomenon in question. In general, close
readings and linguistic corpus analyses complement each other in providing a more
robust picture of what is transpiring. Tanswell (in press) used close readings to develop
his recipe model of instructions; Tanswell and Inglis (in press) performed a corpus
analysis to document that instructions were indeed common in proofs in mathematical
practice.

In this paper, I take an approach that lies between close reading and corpus analysis.
I catalog every instruction that appears in Kunen’s (1980) Set theory: An introduction
to independence proofs. There are three benefits to focusing on Kunen’s volume.
First, as Kunen’s textbook is widely used and has been praised for the quality of its
writing (e.g., Baumgartner, 1986), it is reasonable to assume that the proofs in Kunen’s
volume meet accepted standards for rigor and exposition. Second, while one cannot
presume that Kunen’s use of instructions generalizes to other mathematicians (even in

2 Linguistic corpus analyses need not proceed by the automated search for statistical patterns in math-
ematical language. However, so far, this is how most corpus analyses have proceeded in research in the
philosophy of mathematical practice. When I refer to corpus analyses in the remainder of the paper, I mean
the automated corpus analyses of the type described in Mejía-Ramos et al. (2019).
3 I say “indirectly” as those performing corpus analyses must make an inferential leap that the statistical
linguistics trends that they are tracking accurately correspond with the phenomenon they are exploring.
4 For instance, automated corpus analyses often omit the mathematical symbols which appear in the math-
ematical papers (e.g., Mejía-Ramos et al., 2019), which are obviously central if mathematical context is
to be considered. Ignoring context is practically necessary if one is to generalize across all mathematical
writing as we cannot expect any team of researchers to be fluent in all the mathematics covered in a broad
corpus of mathematical text.

123



Synthese (2023) 202 :34 Page 5 of 17 34

the context of graduate textbooks in set theory),5 Kunen’s textbook has been used to
teach the subject to a generation of set theorists, meaning Kunen’s work is of historical
importance that has likely influenced the subject.6 Third, by exploring an introductory
graduate textbook, real mathematics is being investigated, but this mathematics is still
accessible to the author and hopefully many readers of this article. This allows for
nuanced analysis based upon the mathematical content being discussed.

This approach has benefits over close readings of text. By exploring a larger volume,
I can notice trends in instruction use across many proofs.7 Automated corpus analyses
have virtues that my approach does not. Automated corpus analyses are generalizable
and replicable. My analysis is specific to Kunen’s text and involves subjectivity in
classifying whether sentences are instructions or not. However, my approach has the
benefits of increased validity and allows for the content-based and contextual consid-
erations that lend themselves to deeper philosophical inquiry. Consequently, I contend
that close readings, corpus analysis, and textbook analyses are complementary, with
each having strengths that allow them to contribute to a robust understanding of math-
ematical practice.

3.2 Method

When analyzing Kunen’s text, I did not consider section headings, homework prob-
lems, appendices, or numbered assertions (usually axioms, definitions, theorems,
lemmas, and corollaries). I broke the remaining text into two parts. Proof text was the
text that appeared between the word “PROOF” and the square denoting the completion
of the proof. Prose text was everything else, which included a mixture of surveys of
the existing literature on a topic, philosophical commentary, informal descriptions of
set theoretic ideas, and organizational prose about the numbered assertions.

I read through the textbook, noting every time an instruction was given. All imper-
atives were coded as instructions. Sentences of the form “We [VERB]” were coded as
instructions if I believed the text was asking the reader to take a mathematical action.
Not all “We [VERB]” sentences were coded as instructions. For instance, sentences
beginning with “We show” and “We prove” were commonplace in proofs, but were
almost always used as advanced organizers alerting the reader about what will occur
in an argument that follows. Such interpretive judgments potentially reduce the relia-
bility of the coding; another coder might wind up with a different list of instructions
than I did. However, coding by hand in this way produced a more accurate list of

5 For instance, we can compare Kunen’s (1980) text with Jech’s (2000) Set theory, another popular graduate
set theory textbook. Kunen frequently uses imperatives, but Jech rarely does. Instead, Jech’s instructions
are usually given using the impersonal “we”.
6 Anecdotally, occasionally I have heard set theorists complain about how Kunen’s choices in his volume
have negatively impacted set theory. One set theorist who was interested in HOD models (i.e., the class of
hereditarily ordinal definable sets contained in a model of set theory) cited Kunen’s comment that “the non-
constructive nature of OD makes it very difficult to deal with. Most interesting questions about HOD have
answers which are independent of ZFC” (p. 162) as a reason that contemporary set theorists are reluctant
to enter her area of research. If this offhand comment from Kunen in 1980 continues to steer contemporary
set theorists’ research interests, the book has had influence indeed.
7 The cost of this approach over close readings is the time spent analyzing the volume.
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Table 1 The thirteen most
common instructional verbs in
Kunen’s volume

Let (328 occurrences) Note (27) Observe (16)

Fix (122) Suppose (26) Show (11)

Assume (75) Apply (22) Use (11)

See (74) Pick (18) Choose (10)

Define (31)

instructions than could be done by, say, the type of automated corpus analysis that is
popularly done (Mejía-Ramos et al., 2019; Tanswell & Inglis, in press).8

3.3 Instruction use in Kunen’s volume

3.3.1 Overall use of instructions

There were 262 proofs9 in Kunen’s volume. There were 876 instructions that appeared
in these proofs. Overall, 196 proofs (75% of the proofs in the volume) contained at
least one instruction. However, many of the proofs in Kunen’s volume were quite
short. By restricting the analysis to the 151 proofs that were more than four lines long,
143 (95%) of these proofs contained at least one instruction.

The 13 most common instructions that occurred in proofs appear in Table 1. These
13 instructions account for 88% of the instructions that were present in proofs in
Kunen’s volume. (The word “let” accounted for slightly more than one third of the
instructions by itself). Nonetheless, there was considerable diversity in the instructions
being used, with 54 different instructions appearing in proofs. In some cases, the
instructions were specific to the content being discussed. For instance, one proof
contains the instruction, “In all cases, start with M satisfying ZFC + GCH” and then
proceeds to direct the reader to “For (c), force three times and construct M ⊂N1 ⊂N2
⊂N3” (Kunen, 1980, p. 216, throughout the next two sections, the italicized text is my
emphasis on which verbs were instructions). Starting with models that satisfy the ZFC
axioms (and sometimes satisfy other desirable properties as well) and then forcing
over them to construct new models is obviously specific to set theory contexts. Other
infrequent instructions were common colloquialisms on how one should go about
performing verifications. In one proof, Kunen directs the reader “We now simply go
down the list and, usingonly the axiomsZF−—P—Inf, check that the defining formulas
are equivalent to D0 formulas” (p. 120).10 While the types of checks are specific to

8 Following the criteria that Tanswell and Inglis (in press) used for their corpus analysis would have missed
the majority of instructions in Kunen’s volume. A key reason is that to identify imperatives, Tanswell and
Inglis searched for verbs that were capitalized. Most of Kunen’s imperatives were not the first word in the
sentence in which they appeared. (e.g., “Now, define G(α) to be g(α)” (p. 25)).
9 This excludes proofs that appeared in appendices, which as previously noted, were not considered in the
analysis.
10 I briefly note here that Tanswell and Inglis’ (in press) corpus analysis would not have identified the five
instructions in this paragraph. This is not problematic for their purposes since their analysis was primarily
comparative. They wanted to see if instructions were more common in proof text than prose text, so as long
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logical contexts, the notion of going down a list and checking that something holds
for each item on the list could be described in other contexts as well.

3.3.2 Types of instructions used

To form a typology of instructions, I used an open coding scheme11 to create five
categories of instructions where the instructions in each category served a similar pur-
pose within Kunen’s proofs. The five categories were inclusive instructions, exclusive
instructions, inference instructions, observational instructions, and reference instruc-
tions. I elaborate on each below.

I amadapting inclusive instructions fromRotman’s inclusive imperatives,which are
used for creating shared discourse by introducing shared referents, standards, notation,
and nomenclature. Inclusive instructions were instructions that either established a
convention or introduced a new mathematical object that was not defined in terms of
previous objects that were mentioned in the proof. For instance, “For brevity, write
pred(x) and cl(x) for pred (A, x,R) and cl (A, x,R), respectively” (p. 104) is an instance
of the former and “Suppose B were an uncountable chain” (p. 84) is an instance of
the latter. There were 232 inclusive instructions in Kunen’s proofs. The most common
inclusive instruction verbs were assume (72 instances), let (62), fix (51), and suppose
(24).

I am adapting exclusive instructions from Rotman’s exclusive imperatives, which
take shared mathematical discourse for granted and operate within it. By exclusive
instructions, I mean instructions that direct the reader to act on mathematical objects
that have previously been introduced in the proof. Often, this involves defining a new
object in terms of existing objects. As a basic example, to show that there is no upper
bound on the cardinals (Theorem I.10.16), Kunen presents the following short proof:
“Assume α > ω. Let W = {R ∈ ℘(α x α): R well-orders α}. Let S = {type(< α, R
>): R ∈ W}. (S exists by replacement). Then sup(S) is a cardinal > α” (p. 30). The
assume instruction was an inclusive instruction as it introduced an ordinal α. The two
subsequent let instructions were exclusive instructions. R was defined in terms of α

and S was defined in terms of R. It was also common for exclusive instructions to
direct the reader to choose an object that had properties defined in terms of previous
elements (e.g,. “Now, inductively pick x in B for each α < ω1 so that ht(xα , T ) >
sup{ht(f (xβ , T )): β < α}” (p. 81)). Less common were exclusive instructions that
involved the transformation of a given object. An example is “We may assume the list
φ1, φ2, …, φn, is subformula-closed; if the original list is not, we simply expand it to
one that is” (p. 137). Here, Kunen is telling the reader to transform a list of formulas
by lengthening it so that the list is subformula closed. There were 454 exclusive
instructions in Kunen’s proofs. The most common exclusive instruction verbs were
let (265 instances), fix (71), define (30), pick (18), and choose (10). However, there

Footnote 10 continued
as they missed instructions in roughly equal proportion, the results of their analysis will hold. However, the
approach that I am using provides a more accurate sense in the absolute rate of instructions.
11 Using “open coding” involves grouping instructions that were used similarly together until common
broad categories emerged. I did not enter this project with any particular categories in mind. However, my
knowledge of the literature, particularly Tanswell and Rotman’s work, influenced my theoretical sensitivity
and likely impacted the categories that emerged.
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were a wide variety of exclusive imperatives that were used sporadically in the text.
Readers were asked to add elements to a list, build iterated forcing constructions,
force over models of ZFC, map one set to another, modify previous constructions,
and well-order sets. Finally, it is worth noting that in Kunen’s proofs, defining was
usually an exclusive instruction for creating an object that was used specifically for
the purposes of that proof.

Inference instructions directed the reader to make a particular type of inference.
In contrast to exclusive instructions, which acted on mathematical objects, inference
instructions acted upon previous assertions in the proof to form new assertions. In
some cases, the reader is asked to apply a previous fact to reach a desired conclusion.
For instance, the entire proof of Lemma II.2.17 is “Apply Theorem 2.15 with B = C
\ A” (p. 57). In other cases, the reader is asked to write a subproof. (e.g., “For (c),
show by induction that ∪ nA ⊂ T” (p. 99–100)). There were 47 inference instructions
in Kunen’s proofs. The most common inference instruction verbs were apply (16
instances) and show (10 instances).

Observational instructions directed the reader to notice a particular fact, often one
that seems to be relatively straightforward. (e.g., “observe that by GCH, all weak inac-
cessibles are strong inaccessibles” (p. 177)). There were 53 observational instructions
in Kunen’s proofs. The most common instructional verbs were note (26 instances)
and observe (16). In general, Kunen seems to write as if the observational instructions
were a matter of perception. In the cases where Kunen elaborated on an observational
inference, he generally did so by starting with the phrase “to see this”. Reference
instructions occurred when Kunen directed the reader to another part of the text, usu-
ally as a justification for why a particular step in a proof was permissible (e.g., “see
Lemma 3.4” (p. 198)). There were 51 reference instructions in Kunen’s proofs, all of
which used the verb see.

I conclude this section by noting that the same instructional verb can have different
uses. The verb “let” is frequently used as inclusive instruction to assume a particular
object exists and as an exclusive instruction to build a new object from ones that were
previously introduced. Kunen employed the word “use” as an inclusive instruction to
introduce notation (“we use the notation q||ta to abbreviate…” (p. 260)), an exclusive
instruction (“Use the order < L on L(ω2) to define Skolem functions…” (p. 178)), and
as an inferential instruction to explain how to write a sub-proof (“To see that in fact
(2ω2 = ω7)N[H], use the method of Theorem 6.17” (p. 216). This highlights the utility
of checking individual instructions, as context determines how individual instructional
verbs are used.

3.3.3 Comparing proof text to non-proof prose

Instructions were about three times more frequent in Kunen’s proof text than his
prose text. There were 874 instructions in 2,425 lines of proof text, for a ratio of 36.0
instructions per every 100 lines of proof text. In contrast, there were 517 instructions
in 3875 lines of prose text, for a ratio of 13.3 instructions per every 100 lines of prose
text. Table 2 presents the distribution of types of instructions in proof text and prose
text.
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Table 2 The number of
instructions by type for proof
text and prose text

Type of inference Proof text Prose text

Inclusive instructions 232 137

Exclusive instructions 454 46

Inferential instructions 47 3

Observational instructions 53 61

Reference instructions 51 244

Other 37 26

As Table 2 indicates, nearly half the instructions in the prose test were reference
instructions, which often occurred when Kunen presented a survey of what was known
about a particular topic. In these surveys, Kunen would reference both results from
his textbook and the research literature. Another striking feature of Table 2 is the large
difference in exclusive instructions in the proof text and the prose text. There were
454 exclusive instructions in Kunen’s proofs (for a ratio of 18.7 exclusive instructions
for every 100 lines of proof text) and 46 exclusive instructions in the prose text (for a
ratio of just 1.1 exclusive instructions for every 100 lines of prose text).

3.4 Summary

I highlight three findings from the analysis above. The first two echo points established
in Tanswell and Inglis’ (in press) corpus analysis. First, instructions are common in
Kunen’s proofs. Most of his proofs contain them. This implies that any account of
how these proofs were written or should be understood would need to explain the
role that instructions play. Second, there is a wide diversity of instructional verbs,
especially for the exclusive instructions. This suggests that there probably is not a
mechanistic account for how readers handle instructions when they arise in proofs, as
it seems unlikely that readers share precise rules for dealing with so many different
verbs. In particular, I argue against the possibility that reading instruction-based proofs
simply involves the reader first translating the instructions into assertions. Finally, a
particularly sharp difference betweenKunen’s proof text and prose text is the frequency
of exclusive instructions, which were a regular occurrence in proof text and a rare
occurrence in prose text. The use of exclusive instructions is explored more in the next
section.

4 How instructions are used to construct objects in proofs

4.1 Exclusive instructions in proof constructions

In the previous section, I have shown that a key difference between proof text and prose
text in Kunen’s textbook was the prevalence of exclusive instructions. In contrast to
the prose text, Kunen’s proofs frequently directed the reader to form new objects based
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on objects that were previously introduced in the proofs. In this section, I explore why
exclusive instructions appear so often in Kunen’s proofs. I also illustrate how they are
used in tandem with other types of instructions.

Many proofs in Kunen’s volume take the form of constructions, where Kunen
establishes that a certain type of object exists by showing how the object can be
built or constructed from other objects that are assumed to exist. This frequently
occurred even when the lemmas or theorems being proven were not “for all, there
exists” statements. For instance, a key theorem in Kunen’s volume is to show that
the Continuum Hypothesis is consistent with the ZFC axioms.12 To accomplish this,
Kunen assumes that a model M of the ZFC axioms exists and then uses M to build a
new model L in which the Continuum Hypothesis holds. Showing that a Suslin tree
exists in the constructible universe L involved two constructions. Assuming a model L
exists, the first construction shows how to build a diamond sequence in L. The second
construction assumes there is a diamond sequence and shows how to use this diamond
sequence to build a Suslin tree. The main point here is that many of Kunen’s proofs
involve transforming the theorem statement into a “for all x, there exists y” statement,
and then using a sequence of instructions that specify how to use x to build the object
y.

I illustrate how constructions work by considering Kunen’s proof that for any par-
tially ordered set P and any countable collection of dense subsets of P, there is a filter
that intersects each of the dense subsets.13 Kunen’s proof is numbered below to facili-
tate reference, but it is otherwise given verbatim. Again, the italicized instructions are
my emphasis.

[1] Let D = {Dn| n ∈ ω} and
[2] define, by induction on n, pn in P so that p0 is an arbitrary element of P
[3] (since P �= 0) and
[4] pn+1 is any extension of pn such that pn+1 ∈ Dn;
[5] this is possible since Dn is dense.
[6] So p0 ≥ p1 ≥ p2 …
[7] Let G be the filter generated by {pn| n ∈ ω} —i.e., G = {q ∈ P| ∃n (q ≥ pn)};
[8] then G is a filter and for all n, (G ∩ Dn �= Ø).

(p. 55)

This simple example illustrates a format that many of Kunen’s construction proofs
followed. What Kunen shows is that for any countable collection of dense subsets of
P, he can construct a filter that intersects all of these dense subsets. He begins with
an inclusive instruction in [1], labeling the (arbitrarily chosen) countable collection of
dense subsets D. In [2], [4], and [7], Kunen uses a sequence of exclusive instructions
to describe how to build the desired filterG. Of course, not every exclusive instruction
is permissible in a proof. Kunen justifies why [2] is possible to carry out in [3] and

12 Technically, this is a relative consistency result. If ZFC is consistent, then ZFC + CH is consistent.
By Gödel’s Second Incompleteness Theorem, one cannot prove that ZFC is consistent, so one can never
actually show ZFC + CH is consistent. Throughout the paper, for rhetorical simplicity, I write using the
metamathematical assumption that ZFC is in fact consistent, an assumption accepted by nearly all working
set theorists.
13 This will be a central result for Kunen’s development of forcing, in which the theorem will be used to
show that generic filters can be found for partially ordered sets within countable models.
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why [4] is possible to carry out in [5]. Finally, Kunen asserts properties that G has in
[8], where [8] is (implicitly) justified by the process of constructing the filter and the
observation in [6].

In this simple case, Kunen justifies that each instruction is possible to carry out in a
single sentence. Further, the properties of the constructed filter G are simply asserted.
As the proofs become more complicated in the volume, Kunen elaborates on why
instructions can be implemented and why the resultant objects have the properties that
he claims. In some cases, he uses a reference instruction to a prior lemma or theorem
to justify why a step in the construction is possible. In others, he provides a sub-proof
that a particular instruction is possible to carry out or that the constructed object has
the desirable property that Kunen asserts of it. To illustrate a slightlymore complicated
proof, I present the start of Kunen’s proof that if any Suslin lines exist at all, then a
nice well-behaved Suslin line14 exists:

[1] Let Y be a Suslin line.
[2] Define an equivalence relation ~ onY by setting x ~ y iff the interval between

them ((x, y) if x < y, or (y, x) if x > y) is separable.
[3] Let X be the set of ~ -equivalence classes.
[4] If I ∈ X, then I is convex; i.e., x, y ∈ I ∧ x < y → (x, y) ⊂ I).
[5] We totally order X by setting I < J iff some (any) element of I is less than some

(any) element of J .
[6] Note that each I ∈ X is separable.
[7] To see this, let M be a maximally disjoint collection of non-0 open intervals of

the form (x, y) in I.(p. 67).

The proof continues by using M to build a countable dense subset of I .
Much like the previous proof, this one begins with an inclusive instruction, naming

a Suslin line Y . Steps [2], [3], and [5] are exclusive instructions, using Y to construct
a “nicer” Suslin line X. Line [6] contains an observational inference about the result
of this process—that each I is separable. For the remainder of this paragraph, Kunen
supposes the existence of an I in X (although in this case, no inclusive instruction
explicitly posits this I) and, starting in [7], gives a series of instructions for building a
countable dense subset of I .

In summary, in Kunen’s text, many proofs involve showing that sets or models
with desirable properties exist (often modulo the assumption that other sets or models
exist). Kunen establishes the existence of these sets or models by giving the reader a
sequence of exclusive instructions that will construct or build these sets and models.

4.2 How should the reader understand exclusive instructions that appear
in a proof?

According to the standard view of proof (Hamami, 2022), proofs are characterized as
sequences of assertions. When reading a proof, if the reader encounters an assertion
that is not part of her knowledge base, the readermust determinewhy that newassertion

14 Kunen notes that the given definition allows for Suslin lines that could be “very bad”, containing “gaps
or isolated points” (p. 67). The “nicer form” of Suslin lines are Suslin lines that are dense in themselves
and whose non-empty open subsets are never separable.
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can be reached from previous assertions in the proof by applying her known rules of
inference. Hence, as the reader encounters deductive steps that appear in a proof,
she will engage in the cognitive activity of inferring (Hamami & Morris, 2021). Of
course, when a mathematician develops or presents a proof, the deductive steps are not
arbitrary, but are goal-directed. The deductive steps within a proof are chosen exactly
because they help the author and the reader get closer to the goal state of proving the
theorem. Part of understanding a proof involves understanding the rationality of the
deductive steps, which Hamami and Morris (2023) argue consists of seeing how each
step fits into part of a coherent plan to prove the theorem.

Proofs that contain exclusive instructions require an elaboration to Hamami and
Morris’ characterization. As Tanswell (in press) noted, instructions have a different
truth semantics that mathematical assertions. In contrast to assertions, instructions
cannot be true or false, and an instruction cannot be a deductive consequence of
previous assertions or instructions. This raises a question of what a reader is doing
when she reads a construction-based proof and is asked to infer that the object that is
built in the proof exists and has the properties that the proof claims it does.

As a specific example, consider line [6] in the first proof that is presented in this
section—namely that the process described earlier in the proof will yield an infinite
decreasing chain of elements in the partial order P. One possibility is that the reader
would simply be expected to translate all instructions into mathematical assertions,
and then use the accounts of Hamami and Morris (Hamami, 2022; Hamami &Morris,
2021, 2023) to understand the proof. I hypothesize that this is not usually done by a
student or amathematicianwho is reading this proof.Note that the proofmakes implicit
use of the Axiom of Choice,15 which suggests that the reader of the proof translating
the explicit instructions to assertions would need to specify the properties of a choice
function at the outset of the proof.While Kunen’s volume does provide the reader with
the resources to carry out such a translation,16 I hypothesize that readers would not
ordinarily do so. What I speculate instead is that the reader would reason that if one
continually chooses elements of a partially ordered set that are less than the previously
chosen one with respect to the order, one will obviously obtain an infinite decreasing
chain of elements. It is the Axiom of Choice that allows one to continually “choose”
infinitely (or in some other proofs, transfinitely) many elements. There is evidence

15 In step [2], the reader is asked to choose extensions of pn for infinitely many n.
16 Of course, it is central to axiomatic set theory that all the proofs, including proofs reliant on instructions,
can be translated into formal derivations. In the particular case of the first proof, one could use Axiom of
Choice to state the existence of a choice function with the domain of finite sequences of elements of the
partially ordered set P where each {p0, p1,…, pn} is mapped to an extension of pn that is contained in Dn
and then use Theorem I.9.3 from Kunen’s volume to show that this will yield a unique infinite sequence
with the desired properties. Of course, a logician would be able to carry out a translation such as this. To
be clear, my point here is not that readers couldn’t carry out such a translation, but that the typical reader
wouldn’t normally do so, and that they wouldn’t need to do so to find the proof to be compelling. This is
similar to De Toffoli’s (2021) argument that “[i]n some cases,mathematicians don’t accept a proof because
it is formalizable. They accept a proof for other reasons (e.g., visualizations they know to be reliable), and
then they infer that it is formalizable” (p. 1787; italics are the author’s). This raises the question of why
readers of Kunen’s text would find his proofs compelling, even if they did not translate the instructions into
assertions.
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that Kunen himself did not expect all of his readers to formalize his arguments,17 and
Kunen would occasionally argue that unproveable statements were “Platonically true”
by describing procedures for building objects, even when the procedure could not be
formalized within ZFC.18 However, a discussion of these metamathematical issues is
beyond the scope of this paper. How students and mathematicians would actually read
the proofs in Kunen’s volume is an empirical matter that would need to be investigated
in a psychological study.

If my speculation in the previous paragraph is correct, then I suggest that De Tof-
foli and Giardino’s (2014) enhanced manipulative imagination may provide a good
account of how exclusive instructions and Kunen’s construction proofs can be under-
stood and validated by the reader. De Toffoli and Giardino illustrated how in proofs in
low dimensional topology, some claims are warranted by asking the reader to imagine
the outcome of manipulating a manifold in a prescribed way. Mathematicians’ ability
to do this is based on their kinesthetic experience in the real world and enhanced by
one’s experience working in topology. I suggest that in Kunen’s texts (and in other
mathematical domains as well, see Weber, 2022), some claims are justified by asking
the reader to imagine the outcomes of engaging in set theoretic constructions. The
reader is asked to believe the set theoretic construction is possible because the reader
can see how she could execute every exclusive instruction in the process. The reader
will accept some claims about the objects that are produced because the reader can
anticipate the outcome of executing explicit instructions.

Finally, just as the deductive steps in a proof are not arbitrary or planned, the same
is true of exclusive instructions. Kunen’s proofs do not ask the reader to take arbitrary
mathematical actions. Rather each exclusive instruction is part of a coherent plan
to build a mathematical object with certain mathematical properties. Part of seeing
the rationality of Kunen’s proofs and understanding them at a deep level involves
understanding how each of Kunen’s exclusive instructions fit within that plan: How
does each exclusive instruction in a construction guarantee that the final resultant
object will have a desirable property, or how does that exclusive instruction ensure
that it is possible for future exclusive instructions to be carried out?

17 From the onset of the book, Kunen told his readers he would write his proofs from a “platonistic point
of view” (p. 7). He said that “readers who are Formalists and skilled in formal logic” (p. 7) would usually
be able to translate his platonistic proof into formal arguments, and in cases where the translation would
be difficult, Kunen had “elaborated on this in the Appendix” (p. 7). This text suggests that Kunen did not
view producing formal arguments as essential to understanding the proofs in his volume.
18 One example for the specialist: Using ZFC alone, one cannot prove that there is a set that models all the
ZFC axioms. Nonetheless, Kunen argues that it is “Platonistically true” that such a model exists, and he
provides a construction process to produce such a model (see p. 134). However, the construction process
cannot be formalized within ZFC. This illustrates how, at least to Kunen, one can gain conviction from a
construction process, even if that process cannot be formalized.

123



34 Page 14 of 17 Synthese (2023) 202 :34

5 Discussion

5.1 Summary of contributions

The aim of this paper was to build on Tanswell’s work on imperatives (Tanswell,
in press; Tanswell & Inglis, in press) by providing a more detailed account of how
instructions were used in proofs. I did so by conducting a systematic analysis of
the instructions used in Kunen’s (1980) canonical graduate set theory textbook. I
presented a typology of five different ways that instructions were used in proofs. I
corroborated Tanswell and Inglis’ (in press) results that instructions were common
in proofs and a wide variety of instructions were used. I further observed that a key
feature distinguishes proof text from ordinary mathematical prose in Kunen’s volume
is the use of exclusive instructions—i.e., commands to transform objects or build new
objects from other objects that appeared earlier in the proof. Finally, I illustrated how
Kunen frequently used sequences of exclusive instructions to construct new objects
with desirable properties.

5.2 Implications for the analysis of mathematicians’written proofs

As noted earlier in the paper, in the philosophy ofmathematical practice, mathematical
text is usually analyzed by close reading (e.g., Tanswell, in press) or via an automated
corpus analysis (e.g.,Mejía-Ramos et al., 2019). The approach in this paper differed, in
that I individually cataloged each of the instructions that appeared in Kunen’s volume.
In this paper, I highlighted several virtues of this approach. For instance, the typology
that was producedwas developed by identifying trends across a large corpus of text and
hence would be difficult to develop from the close reading of a single proof. Further,
the typology was developed by considering mathematical context. For instance, the
word “use” played the role of an inclusive instruction, an exclusive instruction, and
an inference instruction at different points in Kunen’s volume. For this reason, an
automated corpus analysis would not yield this type of topology.

The weakness of this methodology of this paper is that the analysis was completely
grounded in Kunen’s textbook, so the extent that these findings are specific to Kunen’s
writing style or generalize to mathematical disciplines beyond set theory is unclear
(although this is also a weakness of close readings as well). Given that Kunen’s text-
book is respected and a widely used resource in graduate courses in axiomatic set
theory, it is reasonable to say that Kunen’s style of writing analyzed in this paper is an
acceptable way of writing proofs in mathematical practice, but more work is needed
to see if the phenomena that I identified are common in mathematical practice.

The analysis in this paper can be generative in the following respect. The typology
proposed in this paper is a theoretical tool for other philosophers ofmathematical prac-
tice who analyze mathematicians’ written proofs. The trends I identified in this paper
can be viewed as hypotheses that can be empirically tested. Are exclusive instructions
much more common in proof than in expository text in general? Does this trend hold
in disciplines other than set theory (or even with other set theorists’ writings other
than Kunen’s)? Does this trend hold in research papers or is it specific to textbooks?
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Similar questions can be asked about the other phenomena described in this paper,
such as whether construction proofs often contain sequences of exclusive instructions.

5.3 Implications and future research in the philosophy of mathematical practice

The analysis in this paper can inform future research in two research programs in
the philosophy of mathematical practice. First, many philosophers of mathematical
practice have analyzed the ways in which the proofs that mathematicians actually
write differ from formal accounts of proving, and the epistemic consequences that
this has for how mathematicians understand proofs and why mathematicians believe
theorems (e.g., De Toffoli, 2021; Larvor, 2012; Rav, 1999, 2007; Tanswell, 2015).
For instance, De Toffoli and Giardino (2014, 2016) suggested that proofs in knot
theory and low dimensional topology frequently ask the reader to mentally manipu-
late knots and manifolds which are represented as diagrams. From this observation
and their own experience as mathematicians, De Toffoli and Giardino suggested that
in topological practice, mathematicians use enhanced manipulative imagination to
understand and verify these proofs. I suggest that when reading Kunen’s textbook,
students may also use enhanced manipulative imagination to understand and verify
proofs containing exclusive instructions. I further speculated that enhanced manipula-
tive imagination may generalize beyond performing physical manipulations of three
dimensional objects to building sets and models in set theory. Here I suggest that
enhanced manipulative imagination may help us to understand construction proofs
in other areas of mathematics as well. In my own prior work, I have argued that
enhanced manipulative imagination can be used to understand proofs in real analysis
textbooks (Weber & Tanswell, 2022) and research papers in computability (Weber,
2022). Psychological studies can verify the extent to which mathematicians actually
use enhanced manipulative imagination to understand proofs; philosophers of math-
ematical practice can explore the extent that enhanced manipulative imagination can
(or cannot) account for how proofs are understood in other areas of mathematics.

A second related research program in mathematical practice is exploring how proof
in contemporary mathematics is not a homogenous practice, but varies by community
and discipline (e.g., Larvor, 2012; Rav, 2007). Larvor (2012), for instance, is interested
in inferential actions that are valid or common in some mathematical areas, but not
others. Looking at the instructions that are used in these proofs provides one lens for
seeing how proofs vary by practice. For instance, De Toffoli and Giardino (2016) have
shown how some proofs in knot theory and low dimensional topology ask participants
to manipulate manifold and knots by actions such as drilling holes in the manifolds
or throwing a portion of a knot over one’s shoulder. Some real analysis proofs ask
participants to continually break intervals in half and carefully choose elements of
a sequence (e.g., Weber & Tanswell, 2022). It is likely the case that the types of
instructions that appear in a proof are dependent upon the types of mathematical
objects being studied.
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