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Abstract
Over the last century, there have been considerable variations in the frequency of
use and types of diagrams used in mathematical publications. In order to track these
changes, we developed a method enabling large-scale quantitative analysis of math-
ematical publications to investigate the number and types of diagrams published in
three leading mathematical journals in the period from 1885 to 2015. The results show
that diagrams were relatively common at the beginning of the period under investi-
gation. However, beginning in 1910, they were almost completely unused for about
four decades before reappearing in the 1950s. The diagrams from the 1950s, however,
were of a different type than those used earlier in the century. We see this change in
publication practice as a clear indication that the formalist ideology has influenced
mathematicians’ choice of representations. Although this could be seen as a minor
stylistic aspect of mathematics, we argue that mathematicians’ representational prac-
tice is deeply connected to their cognitive practice and to the contentual development of
the discipline. These changes in publication style therefore indicate more fundamental
changes in the period under consideration.

Keywords Mathematical diagrams · Mathematical practice · Mathematical
representations · Corpus study

1 Introduction

The recent movement towards a practice-oriented philosophy of mathematics has
brought considerable attention to the various representations used in mathematics,
especially non-textual representations such as figures, diagrams, and other types of
visualizations (e.g. Giaquinto, 2007; Manders, 2008; Kjelsen, 2009; Carter, 2010;
Mumma & Panza, 2012; Toffoli & Giardino, 2014; Giardino, 2017; Vold & Schlimm,

B Mikkel Willum Johansen
mwj@ind.ku.dk

1 Department of Science Education, University of Copenhagen, Copenhagen, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-022-03741-8&domain=pdf
http://orcid.org/0000-0003-0454-2678
http://orcid.org/0000-0003-1195-2878


239 Page 2 of 23 Synthese (2022) 200 :239

2020). This work spans almost all aspects of the use of visualizations—from the
epistemology of diagrammatic reasoning to the use of visualizations in ideation and
heuristics—and shows that visualizations play a large and diverse role in mathematics,
both historically and in the contemporary period.

This renewed interest in visualizations stands in contrast to much of the twentieth-
century philosophy ofmathematics, in which logic and foundational issues took center
stage, leaving figures and diagrams tominor and purely heuristic roles. This dismissive
attitude toward figures and diagrams can be traced back to the late nineteenth cen-
tury, when it was discovered that earlier mathematicians’ reliance on visual intuition
and diagrammatic arguments had led to false or unfounded conclusions in several
high-profile cases. These cases included the discovery of gaps and missing axioms
in the Euclidean framework and the implicit assumption that everywhere continuous
functions are differential except in a finite number of points (see Mancosu, 2005).
Discoveries such as these led prominent figures like David Hilbert, Moritz Pasch,
and Hans Hahn to distance themselves from the use of visualizations and instead
recommend a more rigorous axiomatic and formal style.

AlthoughPasch acknowledged that figuresmay play a heuristic role inmathematics,
he clearly saw their epistemic role as limited at best. In his Vorlesungen über neuere
Geometrie, where he gives the first rigorous axiomatization of projective geometry,
he famously states: “If you are not afraid to spend some time and effort, you can
always omit the figure in the proof of any theorem, indeed, a theorem is only really
proved if the proof is completely independent of the figure…[T]he theorem can only
be justified by reference to a specific previously shown theorem (or definition), and not
by reference to the figure” (Pasch & Dehn, 1882, p. 43, our translation). Similarly, in
the introduction to a lecture on the foundation of geometry, Hilbert use a well-known
false figure proof of the (likewise false) theorem that all triangles are isosceles, to warn
against figures “…we will use figures frequently, but never rely on them” (Hilbert,
2004, p. 541, our translation). Along the same line (although slightly more extreme),
Bertrand Russell states: “Formerly, it was held by philosophers and mathematicians
alike that the proofs in Geometry depended on the figure; nowadays, this is known to
be false. In the best books there are no figures at all” (Russell, 1901, p. 93).

For short we will denote the general idea that the epistemology of mathematics
should be based in a rigorous formal approach rather than visualizations as the for-
malistic ideology. It is not the aim of this paper to give an in-depth analysis of this
ideology or to describe the different specific philosophical programs it was part of
(e.g. logicism, various forms of formalism, bourbakism etc.). What is important for
us here is simply to point out that a central idea—namely the idea that visualizations
are not to be trusted and that rigorous, formal deductions should form the epistemo-
logical backbone in mathematical reasoning—emerged and grew popular in the late
nineteenth and early twentieth century.

It should be noted, however, that although Hilbert clearly disapproved of the use of
some types of figural reasoning, he seems to approve of others. In his 1900 lecture at
the International Congress of Mathematicians, he states:

The arithmetical symbols are written diagrams and the geometrical figures are
graphic formulas; and nomathematician could spare these graphic formulas, any
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more than in calculation the insertion and removal of parentheses or the use of
other analytical signs.
The use of geometrical signs as a means of strict proof presupposes the exact
knowledge and completemastery of the axiomswhich underlie those figures; and
in order that these geometrical figuresmay be incorporated in the general treasure
of mathematical signs, there is necessary a rigorous axiomatic investigation of
their conceptual content. Just as in adding two numbers, one must place the
digits under each other in the right order, so that only the rules of calculation,
i.e., the axioms of arithmetic, determine the correct use of the digits, so the use
of geometrical signs is determined by the axioms of geometrical concepts and
their combinations (Hilbert, 1902, p. 443 English translation).

Here, Hilbert is not dismissive of visual elements per se; the decisive feature of a
representation does not seem to be whether it is a visualization or not, but whether it
is part of an axiomatic system and supports syntactic manipulation. Along the same
lines Hilbert, in his famous lecture Über das Unendliche, calls a mathematical proof
“a figure which as such must be accessible to our intuition”(Hilbert, 1983, p. 198). He
goes on to explain that “a formalized proof, like a numerical symbol, is a concrete and
visible object” (Hilbert, 1983, p. 199), thus emphasizing the visual aspects of formal
reasoning.

Hilbert is not alone in noticing this connection. Charles S. Peirce’s functional defi-
nition of iconicity (Stjernfelt, 2007, p. 90) similarly categorizes algebraic or symbolic
deductions like those Hilbert has in mind as diagrammatic, and as a more recent exam-
ple, Marcus Giaquinto points out that “Symbolic thinking typical of algebra, to wit,
rule-governed manipulation of symbols, is just as spatial as geometrical thinking”
(Giaquinto, 2007, p. 241). The distinction between visual and formal thinking may
therefore be less clear from a theoretical point of view than it is from a practical point
of view.

We will return to this distinction again in Sect. 4 and 5 below, but for now we
will set the more theoretical discussion aside and return to the reality of mathemat-
ical practice. Here, there is a very real distinction between algebraic manipulations
and visualizations (such as figures and diagrams), and judging from a recent inter-
view study, contemporary working mathematicians feel subjected to a strong value
of formalizability that restricts the use of diagrams and other visualizations in pub-
lishedwork (Johansen&Misfeldt, 2016). So apparently, the dismissive attitude toward
visualizations formulated in the late nineteenth century remains influential.

Nevertheless, a cursory look at the papers published inmathematics journals reveals
that diagrams and other visualizations have not completely disappeared (as also noted
by Giaquinto, 2020). On the contrary, a comparison between recent publications and
publications from, say, the 1920s gives the impression that visualizations are more
prevalent today than before—and that contemporary diagrams are different from those
published a hundred years ago. These observations, however, are onlyfirst impressions.
We do not have any solid empirical knowledge describing the historical variation in
either the frequency or the types of visualizations being used.

Although the renewed philosophical interest in visualizations has vastly expanded
our understanding of the numerous and varied roles played especially by diagrams
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in mathematical practice, this work is mostly qualitative in nature, building on case
studies and analyses of the function of particular diagram types. In other areas of the
philosophy of mathematical practice, more quantitative methods have successfully
been applied to investigate various aspects of mathematicians’ use of language (e.g.
Inglis & Aberdein, 2015), but to the best of our knowledge, no large-scale quantitative
studies have been performed investigating the use of diagrams and other visualizations.
Consequently, the overall trends and changes in the use of visualizations over time
have not been investigated in a systematic and comprehensive way. Although we may
have the impression that the use of visualizations has changed over time, we do not
have knowledge, and we especially do not know the details of how, when, or why
the changes occurred. Such questions are of vital importance. As recent work in the
philosophy of mathematical practice has shown, visualizations play a central role in
mathematical practice.An understanding of the context and an overviewof the changes
in publication style are indispensable for picking the most relevant examples and cases
to analyze more closely. Most importantly, we argue that changes in mathematicians’
representational practice may also indicate more profound changes in cognitive style
and ideological outlook. Although mathematics has a front and a back, as pointed our
by Reuben Hersh (1991), the two realms are not completely disconnected and in some
cases improved knowledge about the front may facilitate inferences about the back.

To improve our knowledge of the use of visualizations in mathematical publication
practice we conducted a large-scale quantitative investigation. We focused the inves-
tigation on the use of one particular type of visualization: diagrams. The goal of the
investigation was to give an outline of the trends and changes in the use of diagrams
in published mathematical papers throughout the twentieth century. In the following,
we will describe our methods and how we operationalized the research goal (Sect. 2),
present the results of our investigation (Sect. 3), and give an analysis of these results
(Sect. 4). Finally, we will discuss the philosophical implications of our study (Sect. 5).

2 Methods

2.1 Corpus

Although new machine learning tools are in the making, it is currently not possible to
automate the kind of investigation envisioned above1. Consequently, to operationalize
the research goal, we had to compile a corpus of reasonable size and quality. To track
influential twentieth-centurymathematical works without data breach and avoid track-
ing mathematical sub-cultures, we decided on the following three inclusion criteria
for journals:

1. The journal must have been published continuously from at least the end of the
nineteenth century to the present.

2. The journal must have a general scope.
3. The journal must have a high impact.

1 After—and in part building on—the empirical part of this study machine learning tools for detecting,
but not classifying diagrams have been build. For reports on their performance see (Sørensen & Johansen,
2020; Sørensen, 2021).
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Based on these criteria and an estimate of impact from (ScienceWatch, 2008), we
decided to include in our corpus papers from the following three journals: Bulletin
of the AMS, Acta Mathematica, and Annals of Mathematics. Since Acta Mathematica
is based in Europe and Bulletin of the AMS and Annals of Mathematics are based
in the United States, the three journals will encompass some geographic diversity
(although onlywithin the European-American research culture). Furthermore, in terms
of style, the three journals range from long and highly prestigious papers (Annals of
Mathematics) to short research announcements (Bulletin of the AMS). By consulting
with historians of mathematics at University of Copenhagen, we determined that the
only other suitable candidate was Journal für die Reine und Angewandte Mathematik
(Crelle’s Journal). However, Crelle’s Journal is also based in Europe and resembles
Acta Mathematica in its style, so we elected not to include it.

From the three selected journals, we compiled a corpus consisting of all research
papers published in years separated by 5-year intervals beginning in 1885 and ending
in 2015 (except for Bulletin of the AMS, founded in 1891, from which we included
papers from 1895 on). Obituaries, errata, book reviews, and other non-research papers
were not included in the study. In total, 2940 papers spanning a total of 55,446 pages
were included in the corpus. A full overview of the corpus and all the raw data from
the count can be seen in the protocol (available online at https://doi.org/10.17894/
ucph.6e18e1c7-7eef-4445-8d9c-3b4d38949079).

2.2 Coding and classification scheme

All papers in the corpus were coded by hand following a code book developed during a
pilot study on a small subset of the corpus (see Johansen et al. 2018). This meant that a
representation was coded as a mathematical diagram if its two-dimensional structure
was a carrier of information (loosely following Larkin & Simon, 1987). However,
matrices, tables, and diagrams with non-mathematical content (such as pictures of the
author or flowcharts showing a paper’s argument) were not coded as mathematical
diagrams, even if they fulfilled the criterion of two-dimensionality. In other words,
coding considered two-dimensionality as an inclusion criterion and matrices, tables,
and non-mathematical content as exclusion criteria. We will further discuss these
definitional choices in Sect. 5.

In cases where several typographically unconnected diagrammatic representations
were juxtaposed on a page, we treated these as one diagram if there was a clear logical
connection between them (e.g., temporal progression, the same diagram at different
levels of zoom, or before and after the use of an operator), whereas we treated them
as several diagrams if the distinct diagrams contained different information (e.g.,
showing different variations of a parameter or gradually changing to illustrate steps
of inference).

Representations coded asmathematical diagramswere classified as either ‘Unknown’
or as belonging to one of the following three categories of diagrams (following
Johansen et al., 2018):
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Resemblance diagram: Diagrams that have a direct likeness (either geometric or
topological) to the physical objects that the corresponding
mathematical concepts are supposed to model.

Algebraized diagram: Shapes and figures drawn in an algebraized domain.
Abstract diagram: Diagrams that are only meaningful if the mathematical

content they represent is understood through a particular con-
ceptual map.

As further explained in Johansen et al. (2018), resemblance diagrams are representa-
tions that display some sort of geometric shape or recognizable gestalt that resembles
members of the abstraction class of themathematical objects represented. Prototypical
examples of this diagram type are Euclidean diagrams (geometric resemblance) and
knot diagrams (topological resemblance). Algebraized diagrams are representations
in which a geometric shape or recognizable gestalt is presented in an algebraized con-
text. Prototypical examples are drawings in a Cartesian coordinate system, including
graphs of functions, although we use the category quite liberally, incorporating man-
ifolds and diagrams in which the algebraization is only indirectly visible.2 Finally,
abstract diagrams are diagrams that do not resemble the mathematical objects they
represent unless these objects are interpreted through a conceptual map or metaphor.
Prototypical examples are commutative diagrams, in which sets are conceptualized
as locations in space and mathematical maps are conceptualized as paths or fictive
motions between such locations (see also Johansen, 2014).

This categorization seeks to capture the different cognitive roles diagrams can play
in mathematical practice. From a cognitive point of view there is a clear difference
between practices using, say, resemblance diagrams and practices using abstract dia-
grams, as the latter presupposes the use of conceptual maps and similar cognitive tools
(see also Johansen and Misfeldt, 2018, for empirical examples). Another categoriza-
tion could have been chosen—we do not consider this categorization to be the only
right one, and we invite other researchers to try other categorizations of the diagrams
in the corpus. We chose this particular categorization because it might give philo-
sophically relevant information about possible changes and variations in the cognitive
role played by diagrams in the period under investigation. Furthermore, the selected
categories were broad enough to be feasible for use in large-scale hand coding.

The categorization was mainly based on the typographic appearance of the dia-
grams. For practical reasons, we could not analyze in depth all the diagrams we
encountered, but if we were in doubt about the classification of a particular diagram,
we consulted the mathematical context within which the diagram appeared and used
that to inform our decision.

2.3 Procedure

Beginning with the analysis from Johansen (2014), we developed an initial, tentative
version of the previously described classification scheme and tested it in a pilot study
of Annals of Mathematics in which all papers published every tenth year in the period

2 In Johansen et al. (2018) we named this category of diagrams “Cartesian diagrams”, but we have chosen
to change the name to stress that it is a general category and not a particular type of diagrams.
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from 1885 to 2005 were coded and the diagrams classified. The pilot test is described
and discussed in detail in Johansen et al. (2018). Based on the experience from the
pilot study, the code book was adjusted, and the first author of this paper coded the full
corpus of 2940 papers. During this first coding, 178 papers were coded as ‘in doubt’—
for the most part because the coder was in doubt about either the classification or the
number of diagrams in the paper. All 178 papers were discussed between the first and
the second author, and the codebook was adjusted accordingly. Although most cases
of doubt were resolved, the code ‘in doubt’ was kept for a total of 38 papers. These
papers are included in the final data set but clearly constitute a source of uncertainty.3

After the adjustment of the code book, the second author revisited all papers coded
as containing diagrams and adjusted the classification where necessary such that all
codes reflected the final code book. To test the reliability of the coding of papers
containing diagrams, all papers coded as containing diagrams were re-coded by a
prototype machine-learning agent trained to detect diagrams in mathematical texts,
and all discrepancies between the human and the machine coding were inspected (see
Sørensen & Johansen, 2020). This investigation led to the inclusion of 36 additional
diagrams, corresponding to 0.6% of the total number of diagrams detected in the
corpus. To test the reliability of coding for papers not containing diagrams, a random
sample consisting of 100 of the papers coded as not containing diagrams in the first
round of coding was compiled and recoded. Only one of these papers had to be
reclassified as containing one diagram.

3 Results

3.1 Trends and changes in publication practice

In total, we investigated 55,466 pages distributed over 2940 papers. Of these papers,
668 contained at least one diagram, and in total, we coded 6001 representations as
mathematical diagrams (see Table 1). Therefore, there were an average of 0.11 dia-
grams per page in the three journals, and, furthermore, a randomly selected paper had
an 23% average probability of containing at least one diagram.

Nonetheless, these diagrams are not equally distributed in time or type. If we begin
with the distribution over time, the main results shown in Table 1 can be represented
with two different histograms. The first histogram (Fig. 1) represents the development
of the average number of diagrams per page, and the second (Fig. 2) represents the
development of the percentage of papers containing at least one diagram. Both his-
tograms cover the aggregated data from all three journals in the period from 1885 to
2015.

These twoways of presenting the data reveal connected but slightly different aspects
of the trends and changes in the norms governing mathematicians’ publication prac-
tices. Figure 1 reveals the frequency of diagrams in mathematical publications and
thereby tracks the overall prevalence of diagrams in published mathematical work.

3 The ‘in doubt’ code is included in the raw data set available at https://doi.org/10.17894/ucph.6e18e1c7-
7eef-4445-8d9c-3b4d38949079. The reader can thus see which concrete papers we were in doubt about
and how we chose to code them.
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Fig. 1 Average number of diagrams per page in the aggregated corpus

Fig. 2 Percentage of papers in the aggregated corpus containing at least one diagram

This number, however, is vulnerable to outliers in the form of papers containing
unusually high numbers of diagrams. To visualize the development of the number
of diagrams used in individual papers, we produced a bubble diagram (Fig. 3) dis-
playing for every year in the corpus how many papers included a given number of
diagrams. For instance, the bubble diagram shows that more than a third (242) of the
640 diagrams coded in 1980 originated in three papers ((Mandelbaum, 1980) with 109
diagrams, (Jungerman & Ringel, 1980) with 68 diagrams, and (Karoubi, 1980) with
65 diagrams). Similarly, the spike in the frequency of diagrams in 2015 is largely due
to a single paper (Buch, 2015) containing almost 400 diagrams.

The second histogram (Fig. 2) does not have this problem since it does not track the
number of diagrams. Figure 2 instead reflects the likelihood of authors of mathemati-
cal papers to decide to include diagrams in their papers at all. This number may also be
subject to confounding factors. In particular, the average length ofmathematical papers
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Fig. 3 Bubble diagram showing for every year in the corpus how many papers included a given number of
diagrams; the years are indicted on the 1. axis, the number of diagrams on the 2. axis, and the number of
papers containing a specific number of diagrams is indicated with the size of the bubble (only papers with
one or more diagrams are included)

increased during the period we investigated (see Table 2), which might make authors
more inclined to include diagrams, for instance because each individual paper covers
more mathematical ground or simply because authors are allowed more space. How-
ever, statistical analysis shows that there is only a weak positive correlation between
the average length of papers and the percentage of papers containing diagrams (with a
correlation coefficient of 0.50). Of course, other factors besides changes in publication
norms may have influenced the authors’ choices regarding diagrams. We will return
to these factors in the analysis and discussion below.

The results thus show that diagrams were relatively common in the period around
1900—with a peak in 1905 when 27% of all the papers in the corpus included at
least one diagram. In the period from 1910 to 1950, diagrams almost disappeared
from mathematical publications—with 1935 as the global minimum when only 4%
of the papers in the corpus included diagrams. Beginning in 1950, diagrams became
increasingly common, reaching a peak in 2015, when 65% of the papers in the corpus
included at least one diagram. The combination of figures 1 to 3 furthermore shows
that the surge in diagrams in the last half of the twentieth century was sparked by a few
papers relying heavily on diagrams, after which the use of diagrams gradually became
a common feature in research papers; the majority of papers included diagrams but
generally in fewer numbers (with 2015 as the exception). Therefore, the impression
we noted in the introduction that diagrams are more prevalent in recent publications
is correct at least for the corpus we have investigated.

Turning to the changes in diagram type, the main results are shown in Fig. 4, which
displays the relative frequency of the three main diagram categories. As is clear from
the figure, themid-century surge in diagrams that we saw in Figs. 1 and 2 is coextensive
with a radical shift in the types of diagrams being used: whereas abstract diagrams
are rare before 1950 (only 10 abstract diagrams are recorded), they constitute the vast
majority of all diagrams in the period from 1955 to 1970, when a more diverse picture
with all three categories of diagrams present in roughly equal amounts emerges. These
results show that the mid-century return of diagrams is strictly speaking not a return
of diagrams as such but rather the introduction of a qualitatively new type of diagram.
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Fig. 4 Distribution of diagram types

3.2 Exploring abstract diagrams

The three diagram categories used in the coding are broad, and within each, several
sub-categories can be singled out. The category we have dubbed ‘abstract diagrams’,
for instance, covers well-known diagram types such as commutative diagrams, Dynkin
diagrams, directed graphs, trees, and numerous diagram types that do not (to the best of
our knowledge) have a generally accepted name. To explore the internal development
within the abstract diagram category in more detail, we carried out an approximate
count of the various types of diagrams falling under that category in the period from
1955 to 2015 (in 30-year intervals; see Table 3). For simplicity, we only distinguish
between commutative or similar diagrams (e.g., exact triangles and representationally
similar diagrams conceptualizing maps as arrows and sets as locations) and all other
types of diagrams without delving into the specific types of other diagrams (examples
of the ‘other’ types can be seen in Fig. 5, 6, 7, 8, 9, and 10).

The table indicates that themid-century surge in abstract diagramswas largely due to
the introduction of a single type of diagram, namely commutative diagrams (and small
variations thereof). However, after this introduction, the hegemony of commutative
diagrams seems to have been broken, and a larger diversity within the broader category
of abstract diagrams developed. It should of course be noted that this result is only
exploratory; it is difficult to quantify the diversity in diagram expressions beyond the

Table 3 Distribution of diagram subtypes within the category of ‘abstract diagram’ in the period 1955–2015

1955 1985 2015

Total number of abstract diagrams 73 282 271

Commutative (and similar) diagrams 70 (96%) 251(89%) 205 (76%)

Number of subtypes of abstract diagrams 4 10 19
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Fig. 5 An abstract diagram
(reproduced with permission
from (Bishop, 2015, p. 8))

Fig. 6 An abstract diagram
(reproduced with permission
from (Drasin and Pankka, 2015,
p. 224))

Fig. 7 An abstract diagram
(reproduced with permission
from (Buch, 2015, p. 181))

Fig. 8 An abstract diagram
(reproduced with permission
from (Dolgushev et al., 2015, p.
920))

Fig. 9 An abstract diagram
(reproduced with permission
from (Payne, 2015, p. 230))

Fig. 10 An abstract diagram
(reproduced with permission
from (Smith, 2015, p. 443))

overall categories we have used, and a thorough investigation lies beyond the scope
of this paper.

4 Analysis

As noted above, there is a characteristic U-shape in the two histograms (Figs. 1 and
2) indicating first a decline in the use of diagrams, then a period where diagrams
were relatively uncommon (roughly 1910–1950), followed by a resurge in diagram
use from 1950 onwards. The quantitative data available in this study cannot in itself
explain the pattern we see in the data. Consequently, to examine some of the possible
explanations for the development we will in the following examine three contextual
factors connected to the use of diagram.
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The increased use of diagrams in contemporary practice could be ascribed to the
introduction of new technology that hasmade it easier for journals andmathematicians
to typeset diagrams. Throughout the period under investigation there were technolog-
ical development in typesetting of mathematical texts, such as the introduction of the
4-line system in the late 1950’s and the graudual change to phototypesetting tech-
niques during the 1960’s (Knuth, 1979; Wishart, 2003). Although these innovations
may go some way in explaining the mid-century increase in the use of diagrams they
cannot explain the sudden drop we see around 1910. It is also noteworthy that the
contemporary and ubiquitous typesetting system, TeX (and derivates like LaTeX and
AMSTeX), which has made it feasible for working mathematicians to typeset certain
types of diagrams with relative ease, was only introduced around 1980—that is, well
after the initial increase in diagram use during the 1960s. In fact, the frequency of dia-
grams (understood as diagrams per page) seems to have dropped since the introduction
of TeX. If anything, the increasing demand for an easy way to typeset diagrams could
serve as a possible explanation for the success of TeX—not the other way around. Of
course, this timeline does not mean that TeX is wholly unrelated to the variations in
diagram use, a point to which we will return.

Variations in diagram use may also be the result of trends and changes in research
agendas—perhaps agendas that depended more on the use of diagrams simply
went out of fashion in the first half of the twentieth century, while (possibly new)
diagram-dependent fields of research became popular around 1950. This is certainly a
possibility. In connection to the data presented above the introduction of commutative
diagrams in category theory in 1942 and the subsequent rise in interest for the field
is especially worth noting (Krömer, 2007). However, changes in publication norms
and research agendas are deeply interconnected: it would be difficult for a research
area that depends heavily on diagrammatic representations to come into fashion if the
publication norms did not allow the use of diagrams.

This brings us back to the dismissive attitude toward diagrams and other kinds of
visualizations expressed by Hilbert, Pasch, Russell, and others in the late nineteenth
century and early twentieth century. It is clear that the advent of what we have called
“formalist ideology” coincides with the decline in diagram use observed around 1910.
Furthermore, since formalist ideology directly attacks the use of visualizations, such as
certain types of diagrams, there is a clear causal link between the two phenomena. So
although you cannot infer causation from correlation the advent of formalism seems
to be a reasonable partial explanation for the decline in diagram use we see on the
data.

If we turn to the reappearance of diagrams in the 1950s and 1960s, the story is
probably more complicated. As noted above, the mid-century surge in diagram use
was mainly due to a new kind of diagrams: what we have called ‘abstract diagrams’.
Although we should be careful about generalizations since there is much variation
within this category, abstract diagrams in general are removed from sensual content,
and at least some central types of abstract diagrams allow for rigorous, rule-governed
use—or can even be said to be part of a formalism. De Toffoli (2017), for instance,
categorizes commutative diagrams as a ‘hybrid notation’ as the notation shares features
with both textual and (traditional) diagrammatic notations and support both algebraic
and geometric thinking. We believe similar analysis can be extended to other types of
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abstract diagrams, such as Dynkin diagrams, Young Tableaus, and several unnamed
types, although we will not claim that it can be extended to all abstract diagrams
due to the diversity of the category. The point is that a large majority of the abstract
diagrams we see in our material support some form of algebraic thinking, a feature
which indicates that they come closer to fulfilling the formalist requirements for rigor
and emphasis on rule-governed syntactic manipulations of external signs than (most)
other types of diagrams.4 It is especially worth noticing that almost all the abstract
diagrams used in the crucial years following 1950 were commutative diagrams (or
close derivatives) with a clear formal nature. Abstract diagrams, on the other hand, are
still diagrams and allowmathematicians the cognitive economy of visual reasoning, as
well as the possibility of exploring and profit from analogies to everyday experiences
[by activating the conceptualmaps incorporated in the diagramdesign (e.g. Johansen et
al., 2018)]. Thus, the mid-century rise in the use of diagrams was not simply the return
of diagrams as we knew them before formalism, and the rise in diagram use does not
necessarily imply that formalist ideology has disappear. Rather, in our interpretation
the increased use of diagrams was in part the result of the introduction of a new
and distinct type of diagram that allowed a compromise between formalist demands
for rigor and the cognitive needs of mathematicians. The heavy use of commutative
diagrams in the first decades after 1950 furthermore suggests that the development
can also in part be attributed to the introduction of a new research agenda—category
theory—that depended on exactly this type of diagram.

In the decades around 2000, an explosion of variety occurred both within and
between the three main categories of diagrams. Between the categories, resemblance
and algebraized diagrams appeared to grow in number (although more data points are
needed to reach firm conclusions), and within these categories, our in-depth analysis
of abstract diagrams (Table 3) showed a steep rise in the number of distinct types of
diagrams falling under this category. As the instruments chosen for this large-scale
survey made it difficult to quantify this variety in a meaningful way, we have not
estimated the number of different types of diagrams used in the two other categories,
but it is our clear impression that a similar growth in diversity occurred in algebraized
and resemblance diagrams. Several explanations can be given for this surge in diagram
diversity. That diagrams became more normal in the sense that more authors chose
to include diagrams in their papers probably contributed to the increased variety of
diagrams. The adoption of TeX and similar flexible typesetting systems during this
period could also account for the rise in diagram diversity, but it lies beyond the scope
of the methods adopted in this paper to investigate these hypotheses further.

Finally, our analysis of the data can be summarized with the following narrative:
Diagrams were in use in the publications included in our corpus in the late nineteenth
century, but with the advent of formalist ideology at the start of the twentieth century,
they more or the less disappeared. In the 1950s diagrams started reappearing and they
are a relatively common feature of the more contemporary papers in our corpus, with
about two-thirds of the publications containing at least one diagram. The diagrams
that reappeared in the 1950s and 1960s were of a qualitatively different kind than

4 Although there are exceptions. For instance, we consider knot diagrams to be resemblance diagrams due
to the clear topological resemblance with the objects they model, but it can be claimed that such diagrams
can be used for rigorous, semi-syntactic manipulations (e.g. (Toffoli & Giardino, 2014)).
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those that disappeared in the beginning of the century. Most of the new diagrams were
abstract commutative diagrams (or closely related types). It can be argued that such
diagrams live up to the strict demands for rigor imposed by formalism; diagrams in
other words adapted to formalist ideology. Once these new diagrams were accepted
in publication practice, they mutated (to borrow language from epidemiology) and
spread, and in the beginning of the twentieth century we see an explosion of diagram
variety and type, as well as a reemergence of diagrams from the otherwise abandoned
categories of algebraized and resemblance diagrams.

Clearly, many details aremissing from this rough story and, as indicated above, sev-
eral in-depth investigations are required to complete this picture, especially concerning
the development of typesetting techniques. However, as noted in the introduction, part
of the attraction of large-scale quantitative investigations such as this one is precisely
to point out relevant cases and questions for further in-depth qualitative investigation.
With the questions suggested above, we consider this goal to have been reached.

5 Discussion

Taken at face value, these results only concern an isolated aspect ofmathematical prac-
tice: namely, how mathematicians express and communicate their results. To assess
the philosophical significance of the results, it is necessary to begin with a more
general discussion of the roles external representations and notational choice play in
mathematics.

It would be tempting to see representations as neutral tools that merely allow us
to communicate thoughts and ideas that were worked out independently of the repre-
sentations. Such a view, however, would critically underestimate the role played by
representations, as a number of recent studies in philosophy of mathematical prac-
tice have made clear. Not only is our ability to anchor abstract and counterintuitive
concepts, such as complex numbers, in external representations crucial for our ability
to formulate and work with such concepts (Cruz & Smedt, 2013), but the choice of
representation also has consequences for theory choice (Kjelsen, 2009) and concep-
tual development. For instance, in tool-object conversions, representations originally
introduced purely as tools of investigation are turned into objects in their own right
(Steensen & Johansen, 2016), and contingent aspects of the typographical design of a
representation can inspire new concepts or open new avenues of investigation (Carter,
2010; Steensen& Johansen, pted). Representations, in other words, are not just neutral
tools mathematicians use to investigate a pre-given reality but rather co-constitute the
objects under investigation. They are not merely used to record results; they also shape
in multiple ways the ideas and theories that they express. As Barany and MacKenzie
conclude from an observation study of mathematical seminars: “Mathematical ideas
are not pregiven as the universal entities they typically appear to be. The most impor-
tant features of mathematics can be as ephemeral as dust on a blackboard” (Barany &
MacKenzie, 2014, p. 124).

Representations also do not only serve as tools of communication. By allowing epis-
temic actions (Cruz & Smedt, 2013) and by serving as material anchors for conceptual
structures, conceptual blends, and metaphors, they play a crucial role in the individual
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mathematicians’ work process. This importance was exemplified in a recent interview
study with active research mathematicians (Johansen et al., 2018). The study partici-
pants saw mathematical thinking as more or less synonymous with writing (Johansen
et al., 2018, p. 6), and they described how the development of mathematical thought
is done in close interaction with the representational tools available to them. One of
the participants, for instance, said: “I have something in my head, but I need to write
it down in order for it to be concrete and correct; that is, sometimes you have a wrong
picture in your head…What you have in your head is an attempt to structure informa-
tion. Or the beginning of it. And then you start writing it down, and it might not be
exactly what you had expected. You need to change it before it works, or it might not
work. That also happens” (Johansen et al., 2018, p. 8).

Representations thus play a crucial and central role in mathematical cognition and
in the theoretical and conceptual development ofmathematics, and it is in this light that
the results reported in the present study should be understood. In fact, the overall result
of the study confirms the importance of representations. Although our data covers a
relatively short period, we see frequent shifts in representational practice and (since the
1950s) a dramatic development of new diagrammatic forms. It is difficult to imagine
why mathematicians would spend the time and effort it takes to develop and publish
new representations if notational choices were inconsequential and representations
only played a secondary role in mathematical practice.

With the methods chosen for the investigation, we do not have direct access to the
representations mathematicians use in their research practice, only to the represen-
tations they choose to publish. The relationship between public and private aspects
of mathematical practice is not well understood, but there seems to be a discrepancy
between the public and the private, particularly in the sense that mathematicians may
refrain from publishing visualizations they have used in their research practice either
because they feel forced to or because the visualizations are too idiosyncratic for
others to follow. As noted in the introduction, mathematics has a front and a back
(Hersh, 1991). On the other hand, the two spheres are not totally disconnected. There
is a lot of room for representational innovation—and as noted above innovations are
frequently made. Yet, our previous research suggests that mathematicians prefer to
use generally accepted representational forms even in their own practice rather than
making their own (Johansen &Misfeldt, 2016). This is presumably in part because of
the labor involved in creating new notation and in part because the use of completely
idiosyncratic representations would make collaboration with other mathematicians as
well as the use of previously proved results and proof techniques difficult.5 The choice
of representation is thus in part a social choice, and the representational practice of
the individual mathematician is to some extent entangled with publication norms and
the general practice of the field.

In the light of the above we suggest that the trends and changes in publication prac-
tice demonstrated by our data not only reflect trivial changes in typesetting fashion or
similar, but also indicate changes in the underlying cognitive practice of mathematics;
mathematics itself changes when the representations mathematicians use are changed.

5 We are indebted to one of the anonymous reviewers for pointing out the connection between representa-
tions and known results and proof tecniques.
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Seen in this light, the phase shift in diagram types around 1950 is particularly interest-
ing. It indicates a radical change in cognitive practice: a representational tool with new
affordances (such as the improved capacity to support conceptual mapping) suddenly
came to play a central role in mathematics. From our purely quantitative study, we
cannot discern precisely how this change in tools affected cognitive practice, although
it is apparent that something dramatic occurred.

Furthermore, the general development in publication practice is interesting because
of the clear connection to formalism. Ideas have consequences, and the data shows
that formalist ideology directly affected publication practices during the twentieth
century, both in the disappearance of diagrams in the first half of the century and
in the dramatic mid-century surge of a new type of diagrams that (to some extent)
conformed to the ideals of formalism. As argued above these directly visible conse-
quences indicate other, less visible consequences such as changes to mathematicians’
cognitive practices. This episode illustrates how material and cognitive practices cen-
tered around the use of diagrams are intertwined with large-scale social negotiations
and discussions, in this case converging on the advent of formalism. Ideas certainly
matter, and the changes studied here serve as a reminder that careful reflection and
discussion over meta-issues such as which representations to allow are not foreign to
but an integral part of mathematical practice as well as ongoing discussion about the
contentual development of the discipline.

Finally, we may return to the question: What is a diagram? Although this question
was not a part of our original research question, we have had to address it in our empir-
ical design for methodological reasons. We previously discussed how the concept of
mathematical diagrams has been defined in several ways following different crite-
ria. These range from the very inclusive, such as the C.S. Peirce-inspired functional
definition, in which diagrams are defined as representations that make it possible to
infer more information than went into their construction, and the more limited, such
as Larkin and Simon’s definition, in which diagrams are delineated as representations
where information is organized in two dimensions.

For this investigation, Larkin andSimon’s restrictive definition served as our starting
point, as we perceived it to be best aligned with the way the concept is used in math-
ematical practice. We did, however, encounter several problematic representations.
Tables and matrices are clearly two-dimensional, but they are not (in our experience)
typically considered to be diagrams in mathematical practice. We also found a number
of photos [e.g. Sattinger (1980, p. 780); see alsoMorgan (1990, p. 297) for a grey zone
example], which are also two-dimensional representations but not diagrams. However,
these representations raise a good question: where is the line separating diagrams and
illustrations? If a photo is not a diagram, what about a computer-generated image of a
complex surface (e.g. Hoffman & Meeks, 1990)? At the other end of the spectrum, it
is similarly difficult to distinguish clearly between symbols and diagrams. As pointed
out by Hilbert and Giaquinto, even pure symbolic derivations may in some sense be
considered visualizations, andwith the advent of hybrid notations such as commutative
diagrams, the border between symbols and diagrams is difficult to discern.

Furthermore, we also encountered several one-dimensional representations with
obvious diagrammatic appearances. The distinction between exact sequences and
commutative diagrams is minimal, and the fact that one is considered a diagram
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(because it is two-dimensional) and the other is not (because it is one-dimensional)
seems arbitrary. Yet we also encountered examples where all members of a representa-
tional type are considered diagrams, even though some are one-dimensional and others
two-dimensional (e.g., Dynkin diagrams). In sum, the criteria of two-dimensionality
suggested by Larkin and Simon is neither a sufficient nor a necessary condition for a
representation to be a diagram in mathematical practice.

This should not be seen as a criticism of Larkin and Simon. Based on our experi-
ence, we do not believe it to be possible to formulate necessary and sufficient criteria
to describe the concept of a mathematical diagram. In a scientific language it is an
important goal to give clear and distinct definitions of basic concepts, but the concept
of mathematical diagrams does not belong to a scientific language. It belongs to the
everyday language of mathematical practice, and, like other concepts from everyday
language, it is context dependent, governed by prototypes, and open ended: the con-
cept develops with the practice of which it is a part, and, as we saw above, the use of
representations in mathematical practice is in constant flux and development.

For the same reason, wewould not consider definitions that confine diagrams to one
of their function as fruitful. For instance, consider (as a hypothetical extreme) a def-
inition focusing solely on diagrams’ ability to support rule-governed manipulations.
Although such a criterion would explain why, say, photos are not diagrams, it would
also make it difficult to investigate the many actual and possible functions diagrams
play in mathematical practice. Specifically, if diagrams are defined by their capacity
to support syntactic manipulations, the difference between diagrams and symbols dis-
appears, while, for example, some diagrams’ capacity to anchor conceptual blending
becomes difficult to understand and investigate (as argued in Johansen, 2014). The
drastic development we saw in the types of diagrams being published suggests that a
more flexible attitude is advisable.

In our investigation, we tried to keep an openmind about the definition of a diagram,
andwe handled the dilemmas stemming from an open definitionwith a pragmatic com-
promise. As indicated in our methods, we accepted two-dimensionality as a necessary,
but not a sufficient, criterion for a representation to be a diagram. This means that we
do not consider one-dimensional Dynkin diagrams as diagrams (so here we deviate
from mathematical practice), but we also do not consider tables and matrices as dia-
grams (and here we follow the practice and deviate from the abstract criteria). This
was of course a pragmatic choice—one that can and should be debated.

Conclusion

In conclusion, mathematics is not a purely mental activity. Mathematicians and math-
ematical activity depend heavily on and are shaped by external artifacts such as
representational systems. We have used a limited section of current representational
practice—mathematicians use of diagrams—to explore if and how the practice devel-
ops over time. The data shows that the use of diagrams varied heavily in the journals
included in our corpus during the period under investigation, a development that we
argue was influenced by the philosophical and ideological discussions about what
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mathematics were during this time. Mathematicians’ use of diagrams thus constitutes
a vertex where material, cognitive, and social aspects of mathematical practice meet.

Limitations

As described in Sect. 3, tests of the reliability of the coding were performed. Since the
main purpose of this investigation is to track the overall trends and changes in publi-
cation practice and since the conclusions presented do not rely on detailed statistical
analysis, we consider the tests made to be sufficient and the error margin indicated by
the tests to be acceptable for the purpose of this paper.

The sampling of the papers included in the corpus constitutes another clear weak-
ness. The sampling relies on the theoretical assumption that the papers published in
only three journals give a reliable picture of the publication norms in mathematics.
A bigger corpus, a sampling strategy based on random inclusion, or both methods
might have made it possible to construct a corpus that reflected the average papers
published in the field more accurately. Due to the amount of work such a sampling
strategy would require, it was unfortunately not feasible for our investigation. Also,
the question remains open of what constitutes the average mathematics paper, as there
might be enormous differences between the different subfields of the discipline. In the
current investigation, we attempted to avoid this problem altogether by focusing on
‘general’ journals only and avoiding the inclusion of subfields. Another, and perhaps
better, strategy would be to investigate the subfields directly instead of considering
mathematics as a monolith. Such a strategy, however, would be labor intense, although
itmight be feasiblewith the introduction of newdigital tools (as envisioned in Sørensen
and Johansen (2020)).
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