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Abstract
This paper argues that there exists a collective epistemic state of ‘Broad Medical
Uncertainty’ (BMU) regarding the effectiveness of many medical interventions. We
outline the features of BMU, and describe some of the main contributing factors.
These include flaws in medical research methodologies, bias in publication practices,
financial and other conflicts of interest, and features of how evidence is translated into
practice. These result in a significant degree of uncertainty regarding the effectiveness
of many medical treatments and unduly optimistic beliefs about the benefit/harm pro-
files of such treatments. We argue for an ethical presumption in favour of openness
regarding BMU as part of a ‘Corrective Response’. We then consider some objections
to this position (the ‘Anti-Corrective Response’), including concerns that public hon-
esty about flaws in medical research could undermine trust in healthcare institutions.
We suggest that, as it stands, the Anti-Corrective Response is unconvincing.

Keywords Medicine · Ethics · Evidence based medicine · Science communication ·
Trust

Persistent and widespread deficits in medical research create uncertainty about the
effectiveness of many treatments. Meta-research that synthesises and scrutinises
empirical evidence suggests that problems in the conduct and analysis of scientific
studies may producemanymisleading results, including a worryingly large proportion
of false positives. Work from medical researchers, philosophers of science, method-
ologists, and others suggests that uncertainty about the exact effectiveness of many

B Rebecca C. H. Brown
rebecca.brown@philosophy.ox.ac.uk

1 Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK

2 Centre for Culture and Evolution, Brunel University London, London, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-022-03666-2&domain=pdf
http://orcid.org/0000-0001-8023-1092
http://orcid.org/0000-0003-4455-6214
http://orcid.org/0000-0001-9691-2888


  121 Page 2 of 29 Synthese          (2022) 200:121 

medical treatments should be high, and that the structures and incentives operating in
medicine facilitate overly1 optimistic estimates of treatment value.

In this paper we articulate an epistemic position called Broad Medical Uncertainty
(BMU) and explore the ethical consequences of its recognition. BMU results from a
lack of adequate evidence of treatment effectiveness in general as well as the stochastic
nature of treatment effects on different individuals. A position of BMU is warranted
because currently employed estimates of the value of treatments are likely to deviate
meaningfully from the true expected value for many, and perhaps a majority, of med-
ical treatments. This results from systematic problems in the collection, aggregation,
dissemination and translation of medical research. In Part I we describe BMU and the
features of medical research and practice which contribute to BMU and systematically
bias in favour of over-optimism regarding treatment effects. In Part II we consider the
ethical implications of BMU, arguing that, in the first instance, there is an ethical pre-
sumption in favour of openness (e.g. among scientists and healthcare professionals in
their dealings with the public) regarding BMU. We address some possible objections
to this claim.

1 Part I

1.1 Medical Nihilism, medical conservatism, and broadmedical uncertainty

In his 2018 book, Medical Nihilism, Jacob Stegenga argues that “We should have little
confidence in the effectiveness of medical interventions.” (Stegenga, 2018, p. 168)
Such a provocative claim might, he acknowledges, seem unreasonable at first: most of
us can think of numerous examples ofmedical interventions improving and prolonging
our own and others’ healthy lives. Stegenga lists some important advances inmedicine,
including the provision of insulin to type I diabetics, antibiotics for infections, and
inhalers for people with asthma. We might also note the success of treatments for
diseases like HIV/AIDS and some forms of cancer which, thanks to genuine advances
in medical understanding and intervention, have gone from being invariably fatal
illnesses to being curable or turned into chronic conditions that the patient can livewith
for many years. Indeed, so obvious is the importance and effectiveness of some areas
of medicine that listing examples of valuable treatments seems redundant. Hence one
may be inclined to associate Stegenga’s criticisms with those made by fringe groups
such as anti-vaccination activists and naturopaths.

Leading medical and scientific authorities have, however, repeatedly made similar
claims over the past century. Douglas Altman, then statistical consultant for the BMJ ,
argued in 1994 that “huge sums of money are spent annually on research that is seri-
ously flawed through the use of inappropriate designs, unrepresentative samples, small
samples, incorrect methods of analysis, and faulty interpretation.” (Altman, 1994) The
situation was, he argued, a “scandal”. A 2018 essay in the BMJ argued that many of

1 We use the term ‘overly optimistic’ to refer to the inflated expectations people have about the effectiveness
of medical interventions. We consider overly optimistic (rather than simply optimistic) to be appropriate
where expectations of treatment benefits are not justified on the basis of the evidence (and meta-evidence)
available. This is not to say there is something normatively mistaken about adopting an attitude of optimism.
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the fundamental problems identified by Altman continue to undermine cumulative
progress in medicine: the scandal persists (Glasziou & Chalmers, 2018). John Ioan-
nidis, a medical doctor and leading figure in meta-research, has detailed the flaws in
medical and social science research methods, publication practices and treatment of
patients, and has been outspoken regarding the need for reform in empirical research
(Ioannidis et al., 2017; Ioannidis, 2005, 2016b, 2018). In their 2015 book, Ending
Medical Reversal, Vinay Prasad and Adam Cifu highlight the frequency with which
accepted medical treatments are subsequently found to be less effective or more harm-
ful than previous (less intrusive) interventions, and argue for changes tomedical school
curricula and the research and approval processes for medical interventions (Prasad
& Cifu, 2015). Margaret McCartney, a GP, broadcaster and frequent contributor to
debates on evidence-based medicine, has described how the promotion of interven-
tions such as screening programs cause under-appreciated harms and produce little
benefit (McCartney, 2012). In response to these epistemic problems, John Mandrola
and colleagues have outlined a position which they describe as ‘medical conservatism’
(Mandrola et al., 2019, p. 900) which “recognizes that many developments promoted
as medical advances offer, at best, marginal benefits.”

These andother critiques ofmedical research andpractice detail numerous instances
where medical interventions appear to be less effective than is generally assumed.
The critiques propose mechanisms that bring this overestimation about, and suggest
why ineffective (and harmful) treatments persist in being used. Inaccuracy in beliefs
about treatment effectiveness that result from flawed methods of medical research
are exacerbated by numerous ‘pollutants’ in our epistemic environment (Levy, 2018),
including the growth of ‘predatory’ journals with low publication standards (and high
publication fees) that can be hard to distinguish from better quality journals. The result
is a collective epistemic position we call ‘Broad Medical Uncertainty’ (BMU). In the
next section we summarise some of the processes that lead to BMU, whilst in the
remainder of this section we describe in more detail what BMU involves.

Broad Medical Uncertainty refers to a cognitive state comparable to Rumsfeld’s
‘unknown unknowns’ (Graham, 2014). Whilst information about medical treatments’
effectiveness is probabilistic, creating first-order uncertainty about whether any given
treatment is likely to be effective for a particular individual, this does not suffice
to create BMU. It is uncertainty about this uncertainty (further fueled by epistemic
pollutants) that leads to BMU. In other words, systemic problems in how data are
collected and in how inferences are drawn from these data means that we should
expect the true effects of treatment to be outside the range expected by doctors in
many if not most cases; but we cannot be confident about whether this is true in any
particular case, or if it is true, how inaccurate the estimate is.2 In other words, which
treatments and what percentage of treatments are misestimated (and by how much) is
itself a subject of uncertainty; andwewill later argue that the aforementioned epistemic
problems are sufficiently common to justify the assertion of BMU. To better illustrate
what we mean by BMU it may be helpful to first describe and distinguish the concept
from what we might call ‘Narrow Medical Uncertainty’ (NMU).

2 It is known that clinicians’ expectations are optimistic relative to trial data (Hoffman & Del Mar, 2017),
and as we describe, trial data are likely to also be optimistic.
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Imagine a treatment, T, that has been subject to several clinical trials, the aggregated
results of which suggest it is effective about 50% of the time. Across trials, the harms
andbenefits of the intervention are broadly similar (e.g., 45–55%of patients experience
a net benefit along some measured dimension) despite variation in the patient samples
used and in the specifics of the treatment implementation, just as populations of patients
and implementation vary in the real world. Let us stipulate that the trials are unbiased
and not subject to fraud. Hence, while each future patient is uncertain about whether
they themselves will benefit from the treatment, they can have justified confidence
that the trial results will inform them about the probabilities of different outcomes.
In relation to T, we (including patients and their medical teams) are in a position of
narrow medical uncertainty. We can reasonably make an expected value calculation
about undergoing the treatment, perhaps with the assistance of a shared decision-
making tool.3

Now consider treatment T* which has also been subject to several clinical trials,
the aggregated results of which suggest about 50% of patients experience a net benefit.
However, it is unclear if the health outcomes and statistical analyses reported in these
trials were chosen a priori for their rigour and clinical relevance or if they were chosen
based on the results they produce. It is also unclear if additional trials have been
performed and not reported. Moreover each of the trials suggests that a very different
proportion of patients benefit (30% to 70%). It is unclear what explains this variation,
but the differences in how the treatmentwas implemented,which sampleswere studied,
and the measurement of harm and benefit are all plausible explanations. Data from the
trials are unavailable for scrutiny and their integrity is not known.Apatient considering
this treatment would be unwise to predict a 0.5 chance of benefit with any confidence,
but it is unclear how they should correct for these epistemic problems. T* is the sort
of treatment that leads to broad medical uncertainty.

We can describe the uncertainty related to medical interventions as being epis-
temic or aleatory (or some combination) (Fox & Ülkümen, 2011; van der Bles et al.,
2019). Epistemic uncertainty is associated with a lack of knowledge, for instance,
uncertainty about who won the football match yesterday. It can be contrasted with
aleatory uncertainty which emerges from inherent indeterminacy in the world, for
instance, predicting who will win the football match tomorrow. Epistemic uncertainty
is commonly reflected in statements about one’s confidence in a particular claim (e.g.
I’m 90% confident that France is bigger than Spain) and can be resolved through
additional information or expertise. Aleatory uncertainty is attributed to stochastic
behaviour, and cannot be resolved through further knowledge or expertise, though it
can be better quantified (flipping a coin hundreds of times will establish, with little
room for error, how often it lands heads).4 When all epistemic uncertainty has been
resolved (e.g. we know that the coin is fair) then the remaining uncertainty is pure
aleatory uncertainty, sometimes described as risk (Tversky & Fox, 1995).

3 We might further think of treatments which have very high rates of effectiveness—say, 99% of recipients
experience a clear net benefit. These will be rare, creating ultra-narrowmedical uncertainty or even medical
certainty.
4 In a deterministic universe aleatory uncertainty may be reducible to epistemic uncertainty. Whether or
not we live in a deterministic universe, in practice, certain details about the future are not predictable and
for all intents and purposes can be considered aleatory.
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Medical interventions will be more or less stable in their effects: some will act
consistently across groups, and some will act more randomly. The stability of a treat-
ment’s effects will influence how much aleatory uncertainty is associated with its use.
We will also have more or less information about a treatment, including its causal
mechanism(s), evidence regarding how it performs in research trials (efficacy), and
evidence regarding how it performs in the real world (effectiveness). Good quality evi-
dence will reduce epistemic uncertainty, whilst an absence of evidence, or evidence
known to be of poor quality, will increase it. Note that if we have poor quality evidence
but do not realise it is of poor quality, it will not increase epistemic uncertainty. This is
because epistemic uncertainty is subjective: it reflects how confident one is regarding
a claim, rather than how confident one should be about that claim. Poor quality evi-
dence believed to be high quality will make one feel one knows more about treatment
effectiveness, and hence reduce epistemic uncertainty, even though one is mistaken.

Uncertainty about medical treatments results from both aleatory and epistemic
uncertainty. Aleatory uncertainty arises due to the inconsistent effects of treatments
on different individuals within a population. Medical research involves chipping away
at epistemic uncertainty through evidence collection, and better understanding the
parameters of aleatory uncertainty. If this is successful, then we will be in the position
of NMU, as with the case of treatment T. If, however, our methods of collecting
evidence and using it to judge the effectiveness of treatments are often flawed or poorly
executed, or if there is significant inexplicable variation in the effects of treatments,
then we will be in a position of BMU.

We argue that we are in the latter, BMU position. This means that the parameters
of aleatory uncertainty are typically poorly defined, and that we should have relatively
little confidence in our predictions about the effectiveness ofmanymedical treatments.
This does not result from all medical research being flawed, but from there being
sufficient polluting factors in the evidence base (and wider epistemic environment),
and it being sufficiently hard to judge when these are present, to cast doubt on the
effectiveness estimates of many treatments.

Our claim about the extent of BMUhere is somewhat vague. This is, however, partly
the point: in the next section we describe some of the factors which make estimates
of interventions’ effectiveness unreliable, and which tend to exaggerate their benefits.
Yet it is difficult to know the extent to which these factors in fact bias estimates of
effectiveness (and uncertainty regarding effectiveness) in a given case. Whilst some
sources of uncertainty might be better understood by closely evaluating the methods
used in a trial or seeking out unpublished research, others are harder to detect or to
estimate their impact (consider, for example, research fraudwhich is by nature covert).

Suppose there were an oracle we could consult to ascertain the true effects of a
treatment. If medical uncertainty is unexpectedly broad, this oracle would frequently
surprise us since the true treatment effects would be outside our range of expectations.
We don’t have an oracle, but we do have follow-up studies that attempt to rigorously
reexamine new and presumably superior treatments that have become established in
clinical practice. Prasad et al. (2013) reviewed 363 papers reexamining such new
practices published in the New England Journal of Medicine over a ten year period.
40% of the papers found that, contrary to expectation, the newly introduced practice
was no better than pre-existing practices, and 22% were inconclusive.

123



  121 Page 6 of 29 Synthese          (2022) 200:121 

Unpleasant surprises like this will be less common when the epistemic tools typi-
cally employed by medical researchers are well matched to the challenges of drawing
inferences about treatment value. Yet another study of evidence supporting primary
care physicians’ decisionmaking found that 33% of recommendations regarding treat-
ment were based on “consensus, usual practice, opinion, disease-oriented evidence or
case series”, epistemic tools with a poor track record of generating reliable predictions
about future treatment effects (Ebell et al., 2017). Another 39% of recommendations
were based on “inconsistent or limited quality evidence” from RCTs and cohort stud-
ies. Moreover, when guidelines do use widely respected sources of evidence such as,
for example, the Cochrane Systematic Review, the findings are rarely conclusive, with
only 2% concluding that the benefits are clearly understood and no further research is
needed. In 44% of reviews, the authors could not state whether the interventionwas net
harmful or net beneficial (Villas Boas et al., 2013). In related scientific fields like psy-
chology that use similar scientific tools, attempts to rigorously reproduce key findings
have producedmany surprises: about half of replications generated findings outside the
expected range (Open Science Collaboration, 2015). We cannot extrapolate directly
from these studies in order to quantify, with any reliability, the extent of BMU. At
the moment we must accept that we are uncertain about our uncertainty whilst having
justified concerns that warranted uncertainty extends to many treatments.

It seems unlikely that BMU is widely recognised amongst patients, medical
researchers and doctors, althoughwe lack direct insight into their mental states.Whilst
attempts are made to improve the quality of clinical evidence, we are not aware of
guidelines/treatment recommendationswhich explicitly address the tendency formed-
ical research as a whole to overestimate benefits (and underestimate harms) and which
factor this in to the cost–benefit calculations and recommendations that are made.
Moreover, the use of ineffective treatments [as described by (McCartney, 2012; Prasad
& Cifu, 2015; Stegenga, 2018)] suggests that awareness of the tendency for the clini-
cal evidence base to inflate expectations is not widespread. Doctors may also lack the
skills required to critically appraise the quality of clinical evidence (Maggio, 2016;
Smith et al., 2016). Moreover, if the breadth of uncertainty regarding treatment effec-
tiveness is known it is likely that it is rarely communicated to patients. A study of
1057 physician–patient encounters found that uncertainty was only discussed 1% of
the time for basic decisions, 6% of the time for intermediate decisions and 17% of
the time for complex decisions (Braddock III et al. 1999). There have been calls for
better training to address the reluctance or inability of doctors to discuss uncertainty
appropriately, and even to recognise its presence, since:

Much of medical teaching, including case-based curricula, is driven by the goal
of bringing together a constellation of signs, symptoms, and test results into a
unifying solution rather than learning how to manage and communicate uncer-
tainty. (Simpkin & Armstrong, 2019, p. 2588)

123



Synthese          (2022) 200:121 Page 7 of 29   121 

1.2 Sources of BroadMedical Uncertainty

1.2.1 Problems identifying plausible interventions

Medical innovations sometimes come from basic biology and animal studies and, for
a range of reasons, we should expect many of these innovations to be false leads. First,
human physiology is complicated. Disease processes are typically causally dense: they
are determined by amultitude of factors that interact in complex and sometimes unpre-
dictable ways. The animal species used to elucidate these processes often differ from
humans in ways that undermine translation to medicine (Akhtar, 2015; Shanks et al.,
2009). Furthermore, statistical and methodological problems in animal studies, and
basic biology more generally, inflate the importance of chance findings (Fitts, 2011),
leading to a high percentage of non-replicable results (Nosek & Errington, 2017). A
recent attempt to replicate 193 influential cancer biology experiments found that none
reported sufficient information to replicate the studies in the original publications,
and just 50 could be replicated with the assistance of the original authors (Errington
et al., 2021a). In these, the average effect size was 85% lower than the original studies
(Errington et al., 2021b).

Other medical interventions have their origin in cross-sectional and longitudinal
studies of human populations. Although many important advances in public health are
derived from such observational studies—the harms of smoking, for example—estab-
lishing causal relationships from observational data is notoriously difficult. Observed
links between hormone replacement therapy, circulating HDL cholesterol, and cardio-
vascular disease, for instance, have not found support in randomized controlled trials
(Davey Smith & Phillips, 2020).

1.2.2 Problems testing plausible interventions

A basic and epidemiological science that generated even a small proportion of ben-
eficial interventions would be valuable if there were reliable ways to identify these
interventions. However, a large proportion of randomised controlled trials (RCTs),
widely considered to be the ‘gold standard’ for assessing the effects of treatments,
are not reliably conducted in ways that ensure an unbiased estimate of the treatment’s
value. Moreover, of the many RCTs that are conducted, regardless of quality, half of
them have not ultimately been published (Song et al., 2010). Here we outline some of
the main problems with RCTs (and clinical research more broadly).

RCTs are techniques for establishing whether or not something helps more than it
hurts. But often, researchers primarily attempt tomeasure the intended ‘help’ outcome,
without putting as much care into measuring potential ‘hurt’ outcomes, many of which
they may have little ability to anticipate (Stegenga, 2016). Many trials are not powered
to reliably measure negative side effects and observed negative outcomes are often
omitted from trial reports (Singh & Loke, 2012; A Wahab et al., 2013). One study
found that a median of 64% of adverse events recorded in trial documentation do not
get mentioned in the published reports (Golder et al., 2016); another found that the
proportion of systematic reviews with good harm reporting was 0.56 (Zorzela et al.,
2014). Another review of reviews found that reporting of side effects was inconsistent
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and poor across 800 RCTs (Hodkinson et al., 2013). As Bonell et al. (2015) point
out, harms are poorly measured in public health interventions as well as in treatment
evaluations. So in many cases, “absence of evidence” really is no evidence of absence.

Meanwhile, the measures that are used for assessing benefits are not always ade-
quately validated. A low-quality questionnaire will yield low-quality data, its being
included in an RCT notwithstanding. In other words, merely being embedded within
a type of study that, if well-designed end executed, may produce good causal evidence
for certain claims in certain contexts (Cartwright, 2011), cannot transform a faulty
measurement into a good one (Earp, 2016).

Familiar problems with RCTs and other medical studies—even if the design itself
is sound, with good measurements of all relevant variables (something that is rarely,
if ever, achieved)—include selection bias, p-hacking, outcome switching, and pub-
lication bias. These are described in Box 1, along with the measurement problems
described above. In short, attempts to study the effectiveness of medical interventions
incorporate many ‘researcher degrees of freedom’ or ‘malleability’ (Simmons et al.,
2011; Stegenga, 2018, pp. 84–98). These are opportunities for decisions by researchers
to influence the outcomes of analysis—selecting what measures to use, statistical tests
to apply, results to include and exclude, and so on.

Such flexibility could, in theory, cause underestimation of effectiveness as fre-
quently as overestimation. However, the effect of malleability is not random. The
influence of researcher decision-making on what results are generated from medi-
cal trials tends towards overestimating effectiveness. For example, when researchers
describe the effects of an intervention on an outcome that had not been included in
a pre-specified plan, the ‘benefits’ of the intervention are 16% larger than in trials
where the plan was followed and this flexibility is not exploited (Chen et al., 2019).
Researchers’ ability to exploit this flexibility and inflate benefits may explain why
industry funded RCTs tend to generate more positive results (Flacco et al., 2015;
Lexchin et al., 2003; Vlad et al., 2007). The pervasiveness of bias and conflicts of
interest within medical research are key factors in ensuring that malleability leads to
over- rather than under-estimation of medical intervention effectiveness. In Box 1, we
detail a range of processes that should undermine our confidence in results stemming
from RCTs.

Box 1 Description of some of the methodological factors which contribute to the overestimation of the
effectiveness of medical interventions

Selection bias/enrichment strategies Selection bias results from salient differences between control
and experimental groups besides the intervention in a trial,
and may result from ‘enrichment strategies’—the intentional
inclusion/exclusion of participants from a trial in order to
influence the results. Randomisation is intended to mitigate
against selection bias, but is not always used appropriately
(Pildal et al., 2007; Stegenga, 2016)
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Surrogate end points Surrogate end points may be used as proxies to estimate how
effective an intervention is (e.g. the use of HbA1c as a
measure of diabetic control; tumour size as a surrogate for
cancer survival). Although improvement in surrogate
outcomes is often the sole basis for treatment approval and
implementation, these surrogates often fail to reliably track
the outcomes that we ultimately care about, like survival
(Kemp & Prasad, 2017)

Poorly designed instruments Measures have been developed to assess the effects of
interventions on things that we care about—e.g. to see what
effect antidepressants have on people with depression. But
these measures may distort the picture of the effect of an
intervention. Stegenga illustrates this using the Hamilton
Depression Rating Scale which scores people on the severity
of their depression. According to this scale, if an intervention
reduces insomnia but has no effect on the intensity of
depression someone is feeling, it may still be recognised as an
effective treatment for depression (Stegenga, 2018,
pp. 115–117)

P-hacking Flexibility in choice of statistical analyses, participant inclusion
criteria etc. can be exploited to generate statistically
significant findings. If a dataset can be plausibly analyzed in
numerous different ways, researchers sometimes select the
specific analysis that spuriously generates a p-value (the
probability the data would differ at least as much as observed
from a model representing ‘no effect’) below some alpha
threshold (an often arbitrary decisional threshold for rejecting
the no-effect model). Evidence for p-hacking appears in small
industry funded trials (Adda et al., 2020)

Outcome switching Where researchers specify in a trial protocol that they will
measure a particular outcome to judge effectiveness, but after
results have been collected and the trial is written up for
publication, they report a different outcome instead or in
addition (an outcome that typically makes the intervention
appear more effective than the originally specified outcome
does) (Altman et al., 2017). Studies suggest switching is
widespread: 24% of primary outcomes reported in 67 trials in
high impact journals in 2015 were switched while just 40% of
192 trials published in 2013 had “clearly defined,
prospectively registered outcomes that matched the published
outcomes” (Jones et al., 2018; Goldacre et al., 2019)

Passive harm detection Most data on the harms of interventions comes from passive
surveillance and observational studies (contrast this with the
careful design of trials to detect even a small benefit of an
intervention). This means that many harms go un(der)reported
and sometimes ignored
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Publication bias The results of about half of trials have never been reported
(Song, Parekh, et al. 2010, Ross, Mulvey et al. 2009). 33% of
trials on the EU clinical trials register and 29% of trials on
ClinicalTrials.gov contravene requirements to report results
within a year (Goldacre, DeVito et al. 2018, DeVito, Bacon
et al. 2020). Positive results (those showing an intervention to
be effective) are more likely to be published than ‘negative’
results (Song et al., 2010). Positive findings tend to be
regarded as more important/higher impact and thus are more
appealing to the editors of journals. Further, those funding
research (such as pharmaceutical companies) have a greater
incentive to publish evidence that their intervention is
effective than research which shows it to be ineffective or
harmful (DeVito & Goldacre, 2019)

Samples are not representative Trials are often performed on a set of people who are different
from the set of people who end up receiving that treatment.
One big difference is prevalence of multi-morbidity (Fortin,
2006; Barnett et al., 2012). This can mean that the
effectiveness of the intervention is exaggerated in the research
participants relative to the patient group, whilst the harms
experienced by participants are likely to be fewer than those
experienced by patients. The problem can be exacerbated by
shifting definitions of disease—often commercially
motivated—which further expands the set of people who may
be treated (Moynihan et al., 2019; Stegenga, 2018, pp. 40–53)

1.2.3 Problems in evidence synthesis

Systematic review and meta-analysis of multiple RCTs evaluating a treatment are
often used to inform policy. These methods of evidence synthesis cannot make reli-
able estimates of treatment benefits and harms if the trials that they synthesise are
flawed (the so-called ‘garbage in, garbage out’ problem). If, for example, the trial
authors exploit methodological flexibility to inflate treatment benefits or fail to power
a study to detect harmful side effects, the systematic review that summarises this evi-
dence will be unduly optimistic about treatment benefits and harms. Well-conducted
systematic reviews can identify some methodological problems in trials: one review
of Cochrane reviews found that high quality evidence was available for just 10% of
the primary health outcomes examined (Conway et al., 2017). As Roberts et al. (2015)
point out, systematic reviews’ emphasis on including all relevant trials may be mis-
placed when so many trials have fundamental methodological flaws. Indeed, findings
of systematic reviews of multiple weak trials have in the past been contradicted by a
single well-powered and rigorous trial. Like many of the issues outlined here, there
are partial solutions. For example, meta-analysis of individual-level data rather than
of summary estimates may allow for more accurate estimates of treatment value, and
careful screening can be used to identify problematic trials and biased estimates. Our
point is that much of the evidence that comes from systematic reviews as they are
currently practiced is likely to be biased due to problems with the underlying trial data
(Ioannidis, 2016a).
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1.2.4 Conflicts of interest and perverse incentives

Conflicts of interest can bias the results of clinical trials. They can also influence the
actions of patient advocacy groups, systematic reviewers, clinical guideline develop-
ers, regulatory agencies and their advising committees, medical educators, textbook
authors and medical journals (Stegenga, 2018, p. 161; Moynihan et al., 2019). Con-
flicts of interest need not undermine researchers’ integrity to be corrosive. Holman
and Bruner (2017) point out that industry funding flows selectively towards people
that happen to conduct research or hold views that supports funders’ commercial goals
(see also (Howick, 2019). In the absence of strong financial support for other research
approaches, a consensus around the ‘benefits’ of harmful or low-value treatments can
emerge.

Major medical journals play an important role as promoters of biomedical research
and have the capacity to draw attention to and add credibility to certain results.
However, perverse incentives are common in publishing. Major medical journals are
incentivised to publish certain trials because the trial funders purchase tens of thou-
sands of reprints of the articles describing the effects of their treatments: A 2010 study
found that 41% of the Lancet’s income, and 3% of the BMJ’s, came from such reprint
sales (Lundh et al., 2010). Other leading journals declined to provide data to this
study, but the practice appears widespread. The New England Journal of Medicine,
for example, sold 900,000 reprints of an article describing the benefits of rofecoxib
to its developer Merk before the drug was subsequently withdrawn from the market
due to cardiovascular side effects. Publications with large reprint orders are typically
pharmaceutical industry funded trials (Handel et al., 2012). Few leading journals reg-
ulate the contribution of authors who have strong incentives to minimise harms or
maximise benefits in their scientific writing (Lundh et al., 2020). The malign effects
of such conflicts of interest has been noted by editors of leading journals including
Richard Smith, former editor of the BMJ (“medical journals are an extension of the
marketing arm of pharmaceutical companies”) (Smith, 2005), Richard Horton, editor
of the Lancet (“journals have devolved into information laundering operations for the
pharmaceutical industry”) (Horton, 2004) and Marcia Agnell, former editor of the
New England Journal of Medicine (“It is simply no longer possible to believe much
of the clinical research that is published”) (Angell, 2009).

Fraud presents a particularly hard to evaluate pollutant in the clinical research
literature since, by its very nature, it is covert. There have been a number of high
profile cases of fraud relating to medical research, including Paolo Macchiarini, a
surgeon at the Karolinska Institute who transplanted artificial tracheas into patients
and misrepresented the results in publications, including in the Lancet, to suggest the
transplants were a success when in fact many of the patients died (Ritchie, 2020).
Individual cases of dramatic fraud do not tell us much about the pervasiveness of such
practice, however. In the field of microbiology, attempts have been made to evaluate
the frequency with which images of western blots in journal publications are altered
in problematic ways. Bik and colleagues found dishonest techniques had been used
in 3.8% of papers published across forty biology journals (Bik et al., 2016). A meta-
analysis and systematic review of survey data found that 1.97% of scientists "admitted
to have fabricated, falsified or modified data or results at least once”, whilst 14.12%
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said they had personal knowledge of a colleague doing so (Fanelli, 2009). Such surveys
are unlikely to give an accurate picture of the frequency of fraud in scientific research,
but they indicate that it is by no means absent.

1.2.5 Problems translating evidence into practice

Finally, additional reasons for BMU arise in the translation of scientific findings into
practice. Even unbiased trial results can be ‘spun’ inmisleading ways: one study found
23% of 138 anaesthesiology trial abstracts made claimswhich were not justified by the
trial’s results (Kinder et al., 2019). Despite this and the other problems outlined above,
RCTs are often the most effective way to quantify the harms and benefits of medical
interventions. Studies of influential clinical guidelines, for example, suggest that less
than half of recommendations are based on studies capable of providing unbiased
estimates of treatment value (Feuerstein et al., 2014; Lee & Vielemeyer, 2011; Venus
& Jamrozik, 2020). Moreover, if trials strongly suggest treatments to have no net
benefits, it can take years or even decades for them to be withdrawn once they are in
broad usage (Montini & Graham, 2015; Niven et al., 2016).

While there are good reasons to think that medical science overestimates the value
of treatments, Hoffman et al. (2017) found that doctors’ expectations are still more
optimistic, even than the (likely biased) evidence base suggests. A range of factorsmay
drive these beliefs. First, doctors’ judgements of treatment value may be informed by
their own observations of patient recovery, which may mistakenly credit interventions
with benefits that result from simple regression to the mean or natural healing (Morton
& Torgerson, 2005). Word of mouth about treatment effects is strongly biased towards
the positive, meaning that people hear more about successes than average outcomes
(de Barra et al., 2014; de Barra, 2017). Low statistical literacy levels among doctors
and other health care workers may further undermine their ability to translate scientific
findings into beneficial patient care (Wegwarth et al., 2012).

1.3 Existing improvement measures

One obvious solution is to tackle BMU directly. Reducing BMU can operate either
by using more reliable tools for assessing the effectiveness of medical interven-
tions (e.g. improving trial methodology), or developing and using tools to better
quantify uncertainty about medical effectiveness—transform BMU into NMU by
gathering better information about the uncertainty in effectiveness for different
interventions.

Many of the efforts of those working in Evidence Based Medicine are aimed at
this. For instance, the AllTrials initiative campaigns to ensure that all past and present
clinical trials register their methods and publish a summary of their results, in order to
mitigate the effects of publication bias and outcome switching and open the methods
up to scrutiny more generally (AllTrials, 2014). In 2004, the International Committee
of Medical Journal Editors announced registration would be a pre-requisite for clin-
ical trial publication. Research funders, including the Wellcome Trust, the Medical
Research Council, Cancer Research UK and the Bill and Melinda Gates Foundation
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have made further commitments that data sharing should be mandated (Kiley et al.,
2017).

Such efforts doubtless improve transparency and the appraisability of the clinical
research evidence base, but practices like pre-registration comewith a number of chal-
lenges (Nosek et al., 2018) and many trials register retrospectively (Harriman & Patel,
2016). Further, there has been variable uptake and limited enforcement of registration
requirements globally (Viergever & Li, 2015). Even when study protocols are avail-
able, discrepancies in pre-specified and reported outcomes are prevalent, and journals
are often unwilling to publish corrections: Goldacre and colleagues wrote letters to
editors at five high impact journals every time a trial misreported its outcomes over
a six week period. Correction letters were published only 40% of the time, and often
with long delays (Goldacre et al., 2019). Journal policies may also fail to reflect appro-
priate standards of transparency and requirements for disclosing conflicts of interest
(Cashin et al., 2020). Efforts to promote data-sharing have included the provision of
‘badges’ to acknowledge good practice, but this failed to motivate authors of articles
published in BMJ Open to share their data (Rowhani-Farid et al., 2020).

These efforts are laudable and there have been significant improvements in the
reliability of the evidence base, and we can expect more to come. Whilst we whole-
heartedly support these efforts at reform, they have not (and may never) eliminate
BMU and for at least some (perhaps many) interventions NMU may be unachiev-
able. Despite the efforts of many committed reformers, much (seemingly warranted)
epistemic uncertainty still persists (Greenhalgh et al., 2014). Many currently used
treatments pre-date such reforms, and limited uptake and enforcement mean that the
problems we describe with the clinical evidence base persist. Moreover, commu-
nicative practices downstream of evidence collection add further to over-optimism
regarding treatment effectiveness.

2 Part II

2.1 An ethical argument for openness about BMU

Above, we have described some of the contributors to BMUand explainedwhy there is
significant uncertainty regarding the effectiveness of medical interventions, and why
intervention benefits are likely to be overestimated by researchers, physicians and
patients. If this picture is accurate, the current situation is troubling. Money is wasted
on, and people are harmed by, overtreatment and ineffective interventions.

If we are unable to resolve BMU, at least for the time being, through better evidence
and scientific models of disease, then we must manage it via other means. We suggest
that there is a prima facie ethical case for greater openness regarding BMU. We take
openness to mean something close to transparency: making the processes involved
in conducting scientific research and the production of treatment recommendations
visible. But, following O’Neil, we adopt the term ‘openness’ to reflect a need to go
beyondmerely disclosing technical information. ‘Intelligent openness’ requires further
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efforts to make that information meaningful (The Royal Society, 2012).5 Openness
also usefully references themove towards ‘open science,’ and indicates the potential to
better engage patients with the processes of medical research and treatment decisions
(Munafò et al., 2017). Regarding BMU, openness will require active efforts to make
people aware of the limitations and uncertainty of the evidence available regarding the
effectiveness of many medical interventions, and additional humility when reporting
treatment effectiveness and making recommendations. This ethical case is based on
epistemic, professional and instrumental reasons.

2.1.1 Epistemic

It is epistemically valuable to have a more accurate picture of the world. On most
ethical theories it is morally wrong (either defeasibly or non-defeasibly) to deceive
agents via lying,misinformation, omission, or othermeans (Carson, 2010; Saul, 2012).
It may also (depending on further contextual factors) be wrong tomislead people, even
when this is done unwittingly and unintentionally. People’s inaccurate beliefs about
the effectiveness of medical interventions are created and maintained, in part, by the
actions of others (including healthcare professionals and medical researchers). Given
the availability of the evidence described above, this misleading is foreseeable (even
if unintentional), which makes it more likely to constitute wrongful misinforming.

2.1.2 Professional

The actions of medical practitioners and others working in the delivery of healthcare
are guided by professional codes of conduct. These include ethico-legal requirements
to, for instance, respect patient autonomy by ensuring they are provided with suffi-
cient information in a comprehensible form to allow them to make decisions about
the medical treatments they receive. The General Medical Council, which produces
professional guidelines for British physicians, states doctors must “Be honest and
open and act with integrity” (General Medical Council, 2020). Supplying informa-
tion which is misleading or false (for instance, by failing to acknowledge uncertainty
around effect size or likely harms) could constitute a failure of these obligations.

2.1.3 Instrumental

There are likely to be other, instrumental gains to attempting to correct people’s
over-optimistic expectations of medical treatments. For instance, a greater degree
of openness regarding BMU might result in more accurate beliefs about the effec-
tiveness of medical interventions, and further, contribute to better decision making
(where ‘better’ equates to improved health outcomes or greater well-being or similar).
Although speculative, it seems reasonable to assume (in the absence of contradictory
evidence) that people will be better able to make good decisions about their medical
treatment if they have an accurate picture of treatment effectiveness.

5 O’Neil specifies that information must be made accessible, intelligible, assessable and useable.
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We hold, therefore, that greater openness is presumptively warranted to correct
people’s inaccurate expectations of treatment effectiveness and to draw their attention
to BMU. Importantly, this is likely to involve reducing expectations of treatment
benefits (and increasing expectations of no or harmful effects), due to the tendency
for expectations to skew towards optimism. This could involve changes to the way
information about treatment effects is communicated in clinical encounters and public
health information.

Health communication can be challenging, particularly where the information is
complex and recipients have limited health literacy. It has been shown that health-
care providers typically do not communicate uncertainty, and that barriers to doing
so include the belief that uncertainty indicates ignorance or failure, and the fear that
communication of uncertainty may have deleterious consequences (Braddock III et al.
1999; Simpkin & Armstrong, 2019). Research into the communication of risk and
uncertainty can support effective communication, and has been implemented in some
settings (Gigerenzer & Kolpatzik, 2017; Gigerenzer et al., 2007; van der Bles et al.,
2019). There is also a significant empirical and theoretical literature on medical deci-
sionmaking, often focused on clinical encounters and the requirements for information
exchange to meet the standards of informed consent processes and reflect the ideals
of shared decision making (Barry & Edgman-Levitan, 2012; Brock, 1991; Faden &
Beauchamp, 1986). There are well-rehearsed challenges to conceptualising and enact-
ing superior clinical decision making, such as what counts as a ‘rational’ choice and
howmuchweight to give to rationality, as well as defining, teaching and implementing
shared decision making (Brock &Wartman, 1990; Gigerenzer et al., 2007; Wegwarth
et al., 2012; Elwyn et al., 2016).

We call efforts to highlight BMU and correct inaccurate beliefs about medical treat-
ments a ‘Corrective’ response and opposition to such a strategy the ‘Anti-Corrective’
response. Efforts to implement a Corrective Response can draw upon and add to
existing discussions of decision making in medicine, highlighting a greater role for
acknowledging the uncertainty inherent in medical research when considering differ-
ent interventions’ (or non-interventions’) merits. Further, it suggests a need to address
a lack of health literacy, particularly ‘probability’6 or ‘statistical’ literacy, amongst
patients, clinicians and policy makers in order to facilitate ethical decision making
(Gigerenzer & Gray, 2013; McAllister, 2016). Rather than spend the remainder of
this paper discussing how the Corrective Response should be implemented, we will
instead consider some objections to such a response.

2.2 The anti-corrective response: against openness regarding BMU

In this sectionwe discuss two plausible reasons for thinking that a Corrective Response
to BMUwould be inappropriate, unjustified or self-defeating. Of course, a rejection of
the argument for BMU would lead to an Anti-Corrective Response. We set this aside,
and in the following discussion assume that the case for BMU is compelling.

The Anti-Corrective Response proposes that, even if people overestimate the effec-
tiveness of medical interventions, we ought not to seek to correct this misbelief, since

6 Thanks to an anonymous reviewer for this suggestion.
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to do so would result in negative externalities such as an overall reduction in health or
diminished efficiency in healthcare delivery. A weaker version of this argument would
suggest that there is no obligation to adopt a Corrective Response; that although no
harm results from the Corrective Response, there is also no (or insufficient) good that
results from adopting it. Since we believe that there are important ethical reasons for
adopting a Corrective Response, a case needs to be made for failing to do so.

The first iteration of the Anti-Corrective Response we consider is the concern that,
even though people currently overestimate the effectiveness of medical treatments,
they still fail to engage with them sufficiently: people delay or avoid entirely visiting
a doctor when they have a medical complaint for which they ought to seek treatment;
they do not take prescriptionmedications as advised; they adopt unhealthy behaviours,
and so on. Informing people that the effectiveness of medications is often less cer-
tain or less beneficial than they expect might only encourage this (putatively harmful)
avoidance and further reduce the effectiveness of medical interventions. The second
iteration of the Anti-Corrective Response we consider argues that revealing the extent
to which medical research incorporates systematic bias, flawed methodologies and
deep uncertainties could cause a dramatic loss of trust in the institutions of medicine
and science more broadly. Recent concerns about the spread of ‘fake news’ and the
rejection of expertise have increased anxiety around actions that could further under-
mine the authority of science and traditionally dominant sources of information (Chou
et al., 2018; Petersen et al., 2019). We discuss each of these concerns below.

2.2.1 Openness regarding BMUwill reduce engagement with medicine

People sometimes don’t seek medical care despite being sick, and those who do seek
care often fail to adhere to treatment recommendations (Byrne, 2008; NICE, 2009).
For instance, around 50% of patients with chronic illnesses do not take treatments as
prescribed (Brown & Bussell, 2011, p. 304). In addition, many fail to act in accor-
dance with public health messaging (about 40% of adults in England fail to meet
recommended physical activity guidelines (Scholes & Neave, 2017); about a quarter
of adults in Scotland drink at ‘hazardous’ levels [over 14 units a week] (McLean et al.,
2018)). Perhaps increased openness about Broad Medical Uncertainty could exacer-
bate these problems. In response to this concern, we argue that (1) patients’ certainty
in the value of a treatment is unlikely to be the main cause of adherence, (2) mislead-
ing patients (or allowing them to become misled) in order to enhance adherence is
unethical, and (3) in some circumstances, patients should be unwilling to adhere to
treatment recommendations that have uncertain consequences.

There are various reasons why people under-engage with healthcare. Taber et al
(2015) characterise a number of these factors, including: low perceived need for med-
ical care (including the belief that one’s illness will get better on its own); traditional
barriers tomedical care (such as lack of time, or lack of health insurance); unfavourable
evaluations of seeking medical care (including concerns about the quality of care or
expectation of negative outcomes, often rooted in genuine past mistreatment of certain
groups, e.g., racial minorities; (Dovidio et al., 2008)); and self-ascribed personality
traits (such as laziness). A similar range of factors influence treatment adherence,
including patient-, physician-, and health system-related factors, such as a patient’s
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lack of understanding of their disease, lack involvement in the decision-making pro-
cess, high medication costs, poor physician communication, complex drug regimens,
and time constraints on clinical encounters (Brown & Bussell, 2011).

Reduced expectations of medical effectiveness could plausibly exacerbate the
effects of such factors, though it is unclear this would be the case. Even if highlight-
ing uncertainty reduced adherence, this would be insufficient to justify maintaining
widespread false beliefs about the effectiveness of medical interventions. Moreover,
if an explicit decision were made to avoid highlighting BMU in order to encourage
engagement withmedical treatments, therewould be a risk of this deception eventually
being revealed. In such an event there would be a risk of even less engagement in the
longer term, as the public might (perhaps justifiably) feel that they had been duped. As
Levy (2018, p. 138) notes, “When trust is lost, it is difficult to restore, since remedial
measures taken by distrusted institutions are likely to be regarded with a jaundiced
eye”.

Preferable approaches to tackling harmful avoidance and non-adherence could be
targeted towards the upstream causes (e.g. addressing financial barriers). Again, the
inflation of expectations in medical treatment—and likely subsequent disappointmen-
t—may only lead to poorer engagement and adherence long-term.

Further, healthcare avoidance and treatment non-adherence is only a problem if
it would, in fact, be better for individuals to seek healthcare or adhere to treatment.
Those who have problems which healthcare is ill-equipped to address should avoid
healthcare; those whose treatments do not confer valuable advantages or involve high
costs (including unpleasant side effects) should be non-adherent.

Unfortunately, knowledge of BMU cannot tell patients (or their medical teams)
whether or not in their case treatment will be all-things-considered worthwhile. It
only provides information at the general level, with regards to the tendency for treat-
ment effect sizes to be overestimated (and harms underestimated), and uncertainty
downplayed. Given that most patients will have no special expertise regarding their
condition, nor the capacity to read and evaluate the clinical evidence base regarding
their treatment alternatives, it seems unlikely that knowledge of BMUwill put them in
a better position to make treatment decisions than they were in previously. That is to
say, despite all we have said, perhaps patients should just trust their doctors’ treatment
recommendations anyway, notwithstanding BMU?

‘Trust your doctor’ will, indeed, be a reasonable heuristic for many patients. The
difference that awareness of BMU makes is that it may be prudent for patients to
not follow their doctors’ advice in a wider range of cases. Those who are capable of
reading and evaluating the clinical evidence base may come to different conclusions
from their doctors’ advice or clinical guideline recommendations. Even for those
(many) patients incapable of such engagement with the technical literature, BMU
suggests it would be rational to be at least somewhat sceptical about the benefit (and
harm) estimates. If a treatment lies close to the borderline between ‘good enough to
try’ and ‘harmful enough to avoid’, patients might be prudent to select an alternative
treatment or choose no treatment, given BMU, even if this goes against a doctor’s
recommendation. Such patients should not, by dint of their failure to follow a doctor’s
recommendation alone, be considered ‘anti-science’ or conspiracy theorists. Rather,
they may be making rational decisions given reasonable concerns about the quality of
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evidenceuponwhich their treatment recommendations havebeenmade (in conjunction
with any value judgments reflecting their personal preferences or priorities, as we
discuss next).

It is already recognised that different forms of expertise exist, and that there are
varied reasons, including reasonable grounds, for ‘lay’ folk to not defer to ‘expert’
recommendations some of the time (Lengbeyer, 2016; Levy, 2019). This is often
justified on the basis that lay folk have personal value-based expertise which scientists
(including doctors) lack. In other words, they have greater expertise in their own
values. Moreover, doctors are not, by virtue of their training, necessarily better than
all of their patients at drawing logical conclusions from complex premises; some
patients may understand a doctor’s recommendation, and appreciate the reasons for
them, but nevertheless determine that the cited reasons are not sufficient to put much
weight on the recommendation.Medical training andpractice experience donot always
equip doctors with the needed expertise to make good treatment recommendations for
a particular patient. Many generalist doctors lack the time (and perhaps skills) to
assess the clinical evidence base and may be unwilling or unable to critically evaluate
treatment guidelines (Maggio, 2016; Smith et al., 2016).

BMU suggests that patients can be epistemically justified in declining treatment
recommendations from their doctors in a wider range of circumstances than healthcare
professionals might ideally prefer. This should be of concern to those working in the
medical evidence and treatment pipeline, and incentivise renewed engagement with
the reform projects of evidence based medicine in an effort to understand and address
the uncertainty that can epistemically warrant such decisions.

2.2.2 Openness regarding BMUwill result in a damaging loss of trust in medicine
and science more broadly

For most people, it is difficult to discriminate between scientific claims which are
broadly accepted by the majority of experts in a particular area, and those that are
widely considered to be mistaken or fraudulent, since non-experts typically lack the
subject specific training needed to make such judgements (Collins, 2014; Levy, 2018).
For example, most laypeople who assume vaccines to be (sufficiently) safe and effec-
tive do so not on the basis of a careful evaluation of the scientific evidence, but out of
trust in the medical profession which recommends vaccination, and adherence to the
norm within their social group which tends towards vaccinating (Oraby et al., 2014;
Ozawa & Stack, 2013).

This suggests that signifiers of trustworthiness are important to engagement with
(effective) healthcare, such as (some) vaccination programs. Indications of poor prac-
tice, political deception, and conflicts of interest risk undermining people’s inclination
to trust traditional experts (Levy, 2019). Some may instead look to apparently ‘truth-
speaking’ whistleblowers to the Big Pharma-led vaccination ‘conspiracy’ (Larson
et al., 2011; Leask & McIntyre, 2003; Qiu et al., 2016). Again, this reduction in trust
in traditional experts can be, to a degree and in certain respects, rational (Levy, 2019).
Collins describes how, for an ordinary citizen, it is impossible tomake technical judge-
ments about cases where there appear to be conflicting scientific claims being made:
ordinary citizens simply do not have the required (‘interactional’) expertise to judge
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which claims it is reasonable to accept and which ought to be rejected (Collins, 2014,
pp. 102–03). But, Collins offers:

Non-specialists may have enough knowledge of a local situation to understand
that the normal scientific process is being distorted. To know this does not require
specialist knowledge of the science, only the most general knowledge of what
kind of thing science is. (Collins, 2014, p. 103).

This practice Collins describes as ‘local discrimination.’ It is not easy, and not all
‘ordinary citizens’ will be capable of it, but local discrimination offers a way of
adjudicating between conflicting specialist expertise that has relevance for one’s own
behaviour. A greater appreciation of BMU is likely to influence people’s adjudication
between different groups who make claims on expertise, potentially reducing trust in
traditional medical experts such as authors of papers published in leading journals,
people like the UK’s Chief Medical Officer and organisations like the World Health
Organization (WHO).

Openness about BMU provides grist for the mill of those who seek to discredit
these experts and promote harmful behaviors like refusing a genuinely safe and effec-
tive vaccine. For instance, anti-vaccine activists often highlight that pharmaceutical
companies have financial conflicts of interest that may lead them to underplay harms
and overestimate benefits (Crosby, 2010). The fact that industry-funded trails of drugs
and medical devices are more likely to show a positive outcome than trials with other
sources of funding (Lundh et al., 2017) seems likely to add weight to their arguments.
In the context of the challenges caused by the anti-vax movement and the vivid picture
it provides of what can happen when scientific orthodoxy is challenged by spurious
counter-evidence, caution seems reasonable in considering a Corrective Response to
BMU. Highlighting limitations and uncertainties in medical research and treatment
might not merely reduce engagement with medicine and adherence to ostensibly safe
and effective treatments, but could risk a more serious undermining of trust in health-
care institutions broadly, adding to the armouryof anti-vaxxers andotherswhopromote
insufficiently supported claims.

To assess the force of the Anti-Corrective position here, we need to consider (at
least) two questions: (i) Would greater openness regarding the methods of medical
research and the practices of healthcare institutions—including more accurate repre-
sentations of uncertainties regarding the effectiveness of medical interventions—serve
to undermine trust in medicine and sciencemore broadly? (ii) If so, would the prospect
of this loss of trust justify the passive continuation of practices which lead to undue
certainty and optimism about the effectiveness of medical interventions, or even active
efforts to shield people from a fuller understanding of howmedical institutions operate
and the current overestimations of treatment effectiveness?

It is difficult to answer (i).Wecould look to historical exampleswhere poor scientific
practice has been revealed, either via whistleblowers or through voluntary reform,
and seek to assess the wider effects of such events on public trust and behaviour.
One such event, ‘climategate’, involved leaked emails which appeared to show poor
scientific practice amongst climate science researchers (Collins, 2014, pp. 11–14; John,
2018). The result was a public backlash that empowered climate change sceptics, who
depicted the behaviour of the scientists involved as typical of climate science more
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generally, and further claimed that this showed a conspiracy to mislead people about
the dangers of climate change. But this was not a voluntary airing of flaws in research
practices, and needn’t reflect what would be expected if the medical actors themselves
made BMU more widely known.

Another area of relevance is research into how people respond to uncertainty, and
how this relates to trust. The evidence regarding responses to scientific and medical
uncertainty ismixed. It iswell established that people find the experienceof uncertainty
(in the form of ambiguity—the psychological state of being uncertain) to be aversive
(Keren & Gerritsen, 1999). Yet a state of ambiguity need not follow from receiving
information regarding uncertainty. One might be told that the probability of a drug
improving one’s chronic pain is anywhere between 10 and 70% and be quite certain
that one wishes to receive the medication. Further, a dislike of ambiguity need not
deter us from the provision of information likely to provoke uncertainty, since there
may be more at stake than experiencing some unpleasantness in the short term.

Research looking specifically at how informational uncertainty interacts with trust
and other outcomes of interest is somewhat conflicting. Some evidence suggests that
providing uncertain information regarding health risks (for instance, through a range
estimate of those risks) may variously reduce understanding, increase risk perception,
decrease the credibility of the information provider, and decrease patient decision
satisfaction (Longman et al., 2012; Politi et al., 2010). Others speculate that uncer-
tainty regarding environmental safety can make people less trusting of government
interventions and less willing to take environmental action (Johnson & Scicchitano,
2000). However, other research indicates that highlighting uncertainty in environmen-
tal/health risks does not increase risk perception nor reduce trust, and may increase
people’s ratings of the current status of scientific knowledge (Wiedemann et al., 2006).
Van der Bles et al. describe how “it is commonly assumed that communicating uncer-
tainty transparently will invite criticism, can signal incompetence, or even decrease
public trust in science” (Van Der Bles et al., 2020, p. 1). Yet, in a number of studies,
they found little evidence to support this, finding that uncertainty produced only a
small decrease in trust in ‘the numbers’ and in the information source.

It is quite possible that a controlled, voluntary move towards greater openness and
acknowledgement of BMU could harbour trust, rather than erode it. However, as Van
der Bles and colleagues point out, even if communicating uncertainty does lead to
some reduction in trust, this might be appropriate if confidence in ‘the numbers’ was
previously unreasonably high. This brings us to (ii): even if communication of uncer-
tainty does diminish trust (and perhaps also decreases decision satisfaction, patient
experience, or has other ‘negative’ effects), would this justify practices which disguise
BMU and foster overoptimism about the effectiveness of manymedical interventions?

As argued above, there are epistemic, professional and instrumental reasons that
point towards an ethical presumption in favour of greater openness and a Corrective
Response. Such an assumption, however, has been challenged, for instance by John
(2018) who argues that:

Unfortunately, just as publicising the inner workings of sausage factories does
not necessarily promote sausage sales, so, too, transparency about knowledge
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production does not necessarily promote the flow of true belief throughout the
population (and so on for honesty, sincerity and openness)
(John, 2018, p. 75).

John argues that demands for scientists to be transparent (as well as sincere, open and
honest)7 can actively obstruct the promotion of true beliefs regarding scientific claims
amongst lay folk.

There are a number of ways in which those advocating for a Corrective Response
might respond to or incorporate aspects of John’s account. First, John points to cli-
mategate as a “massive experiment in transparency” (John, 2018, p. 75) which reveals
that lay people’s ‘folk philosophy of science’ does not permit the kinds of practices
that are commonplace amongst climate science (and presumably other) researchers to
count as good scientific practice. ‘Transparency’ here (again, not deliberately engaged
in, but ‘forced’ through leaked information, possibly taken out of appropriate context)
only served to undermine trust. Yet, we might still think that norms such as (inten-
tional) transparency and openness have some value, though require nuance in their
application. A more considered release of information than was permitted in the cli-
mategate example, with more opportunity to take care with which and how details
of scientific practices are communicated, would be necessary. Just as bravery ceases
to be a virtue when it involves a reckless and unnecessary disregard for one’s safety,
the manner in which transparency and openness are enacted will determine whether
behaviours appropriately display those virtues.

It may be the case that different areas of science require different norms. The
example used by John, climate science, is a highly contested and politically polarised
area of urgent concern. Some of the instrumentalism John thinks should be permitted
here (in order to achieve valuable ends such as greater commitments to combatting
climate change) might not be necessary or appropriate in other areas of science. If so,
climate science might not provide a particularly helpful model for deciding what our
norms of scientific communication ought to look like in general.

Some areas ofmedicine, however,might share similar features to the climate science
case: debates around the safety of COVID-19 vaccines andmask use involve an urgent,
politically charged area, where scientific uncertainty and expert disagreement risk
undermining public trust and cooperation (Remmel, 2021).8 Indeed, public health
leaders have been accused of instrumentalism in their comments regarding mask use
and COVID-19 vaccination, by making claims about the (lack of) benefits of mask
wearing in ways that are misleading, so as to protect supply (Powell & Prasad, 2021;
Prasad, 2020). Perhaps this is another area where norms of openness need not apply.

Whilst it is at least plausible that a consequentialist case for deploying information
instrumentally (and ignoring norms of openness) could be made, it is unclear howwell
placed we are, in general, to know that this is so. The backlash against the perceived
instrumentalism of Anthony Fauci (as well as the UK government, the WHO and

7 John does not define transparency and openness, but treats the two as sufficiently similar to group together.
As discussed we have used the term openness, to reflect not only the possibility of sharing additional
information with patients and the public regarding treatment effects, but also to reference a move towards
‘open science’ and more active engagement of patients with medical research findings.
8 Thanks to an anonymous reviewer for highlighting this case.
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others) in statements regarding masking and vaccination for COVID-19 suggests a
loss of trust that could be damaging in the long term (Tufekci, 2020). Furthermore,
it may have been unnecessary: at least some research suggests that, for instance,
providing uncertainty information regarding vaccine effectiveness does not change
people’s intentions to vaccinate (Kerr et al., 2021).

Communication about the effectiveness of medical interventions, including about
uncertainty and lack of good quality evidence, will require careful attention to the
way in which those messages are interpreted, and how they interact with people’s folk
philosophy of science. That is, successful communication must be sensitive to peo-
ple’s model of how science should ‘work’: what they perceive as ‘good’, trustworthy
science and what they recognise as corrupt and unreliable. In order to be in a position
where more openness regarding the practices of medical research is feasible without
causing harm, it might be necessary to put significant work into addressing people’s
inaccurate folk philosophies of science, where these are likely to lead to misinterpreta-
tions of scientific evidence. For instance, some research suggests health literacy can be
improved by teaching evidence based medicine as part of school curricula (Chalmers
et al., 2018; Nsangi et al., 2017; Steckelberg et al., 2009). Other tools and decision
aids (such as fact boxes or pictorial representations) might be used in order to better
equip people to judge uncertain medical information they encounter (Gigerenzer et al.,
2007; Smith et al., 2010). Given the emphasis within medical ethics placed on patient
involvement in decision making and the (proclaimed) importance of ensuring patients
are properly informed about prospective treatments, it would be worthwhile investing
in a future where people are aware of BMU and able to judge the relevance of medical
information they are given.

3 Concluding remarks

In this paper, we have described the features of Broad Medical Uncertainty and the
ways in which medical research and communication practices contribute to it. These
practices not only leave us with significant and underestimated uncertainty regarding
the effects of medical interventions, but lead to systematic overoptimism about the
benefits and harms of treatments.

BMU doesn’t imply a thoroughgoing scepticism of medicine in general. Fortu-
nately, there are medical interventions where the benefits are so large as to render
uncertainty, in practice, unimportant. It would seem churlish to quibble over the exact
effectiveness of the smallpox vaccine given its dramatic life-saving benefits. But for
interventions where the benefits are less stark, the harms more uncertain, and the costs
much greater, uncertainty can cloud the difference between an intervention being all-
things-considered worth adopting and it being best avoided.

We have argued that there are ethical reasons based on epistemic, professional,
and instrumental considerations that warrant a presumption for openness regarding
BMU and suggest that a Corrective Response should be adopted. Whilst we have not
described in detail what this would involve, it would centrally require active efforts
to better inform people about the presence of BMU and the likely overestimate of
treatment benefits (and underestimate of harms) embedded in the medical research
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upon which they and their medical team must base treatment decisions. As indicated,
there is a significant literature on health communication, as well as research on how
to promote health literacy and statistical understanding amongst both patients and
doctors, which can guide efforts to inform people about BMU. We have focused on
objections to the argument that a Corrective Response is warranted, including the risk
that it will cause people to under-engage with medical treatments, and that it could
provoke a damaging loss of trust in medical and scientific institutions in general.
We do not consider there is sufficient evidence to support the claim that a Corrective
Responsewould result in such harms so as to uphold theAnti-CorrectiveResponseswe
discuss. Absent further competing evidence to uphold the Anti-Corrective Response,
we therefore consider there to be an ethical obligation to better inform people about
the pervasiveness of BMU.
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