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Abstract
Reverse inference is a crucial inferential strategy used in cognitive neuroscience to
derive conclusions about the engagement of cognitive processes from patterns of brain
activation. While widely employed in experimental studies, it is now viewed with
increasing scepticism within the neuroscience community. One problem with reverse
inference is that it is logically invalid, being an instance of abduction in Peirce’s sense.
In this paper, we offer the first systematic analysis of reverse inference as a form of
abductive reasoning and highlight some relevant implications for the current debate.
We start by formalising an important distinction that has been entirely neglected in the
literature, namely the distinction between weak (strategic) and strong (justificatory)
reverse inference. Then, we rely on case studies from recent neuroscientific research
to systematically discuss the role and limits of both strong and weak reverse inference;
in particular, we offer the first exploration of weak reverse inference as a discovery
strategy within cognitive neuroscience.

Keywords Reverse inference · Abduction · Cognitive neuroscience · Justification ·
Discovery

1 Introduction

Abductive inference is reasoning backwards from facts to their possible explanations,
or from effects to their possible causes. It is at play in a wide array of contexts, from
science to everyday life; for instance, when we infer that it rained since the grass
is wet, or when a doctor diagnoses a strep throat from fever and white spots on the
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patient’s tonsils. Starting at least with Peirce, philosophers studied abduction—often
under the label “inference to the best explanation”—both from a logical point of view
and in connection with the methodology of science and of different expert practices.
Despite a decade-long discussion, no consensual view of the nature, role, and signifi-
cance of abductive reasoning has emerged so far. Disagreement has to be registered at
various levels. One central debate concerns whether abduction has a mainly heuristic
function—that of generating new explanatory hypotheses and assisting discovery—or
also a justificatory role, one of evaluating and possibly accepting selected hypothe-
ses. Moreover, some authors even doubt that abduction is really important or needed
in ordinary and scientific inference (e.g., Norton, 2016), and question the idea that
explanatory considerations can have a place within ordinary Bayesian confirmation
theory (for relevant discussion, see, e.g., Niiniluoto, 1999, 2018; Lipton, 2004;Douven
& Schupbach, 2015; Schurz, 2017).

Quite unrelatedly to this philosophical discussion, in the last years working scien-
tists have developed various methods to successfully deal with abductive inference
in a variety of fields, from medical diagnostics to evolutionary theory, to Artificial
Intelligence (e.g., Niiniluoto, 2011, 2018; Schurz, 2017). In this paper, we focus on
abductive reasoning as performed in cognitive neuroscience, i.e., the study of the bio-
logical especially neural processes that underlie cognition and mental activities. In
this area, functional resonance magnetic imaging (fMRI) plays a crucial role in the
exploration of brain activity. This technique is being used in two different ways. First,
neuroscientists build brain maps by studying which regions are activated by different
mental processes (as elicited by different tasks, e.g., face recognition or language pro-
cessing). This is so-called forward inference, from mental processes to their putative
neural correlates. Second, researchers routinely employ the inverse reasoning strat-
egy, inferring from specific activation patterns to the engagement of particular mental
processes. This so-called reverse inference plays a crucial role in many applications
of fMRI, both inside and outside cognitive neuroscience. These include the diag-
nosis of disorders in patients with acquired brain pathologies such as schizophrenia
and Alzheimer’s disease (Costa et al., 2021), the well-known experimental studies of
moral reasoning as pioneered by Greene et al. (2001), and most studies in so called
neuroeconomics (Bourgeois-Gironde, 2010).

In recent years, reverse inference has attracted a great deal of attention, especially
after neuroscientist Russell Poldrack (2006) denounced an uncontrolled “epidemic”
of this reasoning pattern, cautioned against its (improper) use and pointed to its crucial
weakness. In further work, Poldrack and collaborators applied machine learning and
data mining techniques to automatically explore big fMRI data sets to extract relevant
correlations between mental processes and activation patterns to be used in making
reverse inference more robust and reliable (the NeuroSynth project, see Yarconi et al.,
2011). The debate is still open, and the present methodological status of reverse infer-
ence is highly controversial (Glymour&Hanson, 2016;Hutzler, 2014;Machery, 2014;
Nathan & Del Pinal, 2017; Poldrack, 2008, 2011; Weiskopf, 2020). Interestingly, Pol-
drack himself noted in passing that reverse inference could be analysed as an instance
of abductive reasoning, but neither he nor others developed further this suggestion.

In this paper, we offer the first systematic analysis of reverse inference as a pattern
of abductive reasoning. Our central claim is that the first step towards bringing some
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order to the discussion is to formalise an important distinction that has been entirely
neglected in the literature on the methodology of cognitive neuroscience, namely the
distinction betweenweak (strategic) and strong (justificatory) abduction. Emphasising
this distinction allows us to clearly separate different forms of reverse inference—to
which we shall refer to as “weak reverse inference” and “strong reverse inference”,
respectively—that are usually conflated in that literature. As we argue, this theoret-
ical move has two main benefits. First, it allows for a better understanding of how
neuroscientists use fMRI data, as well as a better reconstruction of their reasoning
strategies and methods. Second, it helps in clarifying current debates among cognitive
neuroscientists, who may gain a better appreciation of the potentialities and limits of
reverse inference, and hence improve their theoretical and experimental practices.

Overall, our discussion provides the first attempt to systematically apply the theo-
retical and conceptual tools developed in the philosophical study of abduction to the
analysis of reverse inference in cognitive neuroscience, thus bridging two different
kinds of literature which have been so far largely independent. We proceed as follows.
In the first section, we explore the distinction between weak and strong abduction as
it has been discussed in philosophy. In the second section, we discuss the attempts
made so far to analyse reverse inference in cognitive neuroscience and we introduce
the distinction between strong and weak reverse inference. In the third and the fourth
sections, we rely on case-studies from recent neuroscientific research to systemati-
cally explore the role of both strong and weak reverse inference, and we offer the first
exploration of weak reverse inference as a discovery strategy.

2 Weak and strong abductive inference

Peirce called “abduction” the pattern of reasoning—for which he also used the terms
“retroduction” (CP 1.68) or “hypothesis” (CP 2.623)1—involved in «the operation of
adopting an explanatory hypothesis» for a given piece of evidence (CP 5.189). For
instance: «Fossils are found; say, remains like those of fishes, but far in the interior of
the country. To explain the phenomenon, we suppose the sea once washed over this
land» (CP 2.625). Peirce clearly saw that, even if the truth of the premises is taken for
granted, the conclusion of an abductive argument may be false: in other words, like
induction, and contrary to deduction, abduction is a form of ampliative and uncertain
reasoning. The logical form of an abductive inference, according to Peirce (CP 5.189),
is the following:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

Clearly, the inference “if A then C; but C; therefore, A” is deductively invalid, being
an instance of the fallacy of “affirming the consequent”. However, Peirce noted that a
scientific argument can be logically invalid but still effective in making its conclusion
worth of further consideration (CP 5.192). Accordingly, although their conclusions

1 When quoting fromPeirce’s Collected Papers (CP,Hartshorne et al.1931–1958), we follow the convention
of citing the number of the volume followed by the number of the relevant paragraph.
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are always tentative and conjectural, Peirce argued that abductive arguments provide
a fundamental form of inference both in scientific and everyday reasoning.

During the 1960s, abduction started attracting systematic attention from philoso-
phers of science. Hanson (1958) suggested that Peirce’s schema provides “a logic of
scientificdiscovery” andHarman (1965) argued that “inference to thebest explanation”
(IBE, for short), as he called abduction, is the core of any ampliative or non-deductive
inference. These pioneering contributions made clear that there are at least two dif-
ferent ways –respectively, a “weak” and a “strong” one—of assessing the proper role
of abductive inference. According to the first, weak interpretation, abduction has a
primary discovery (or “strategic” or “heuristic”, see Schurz, 2008, p. 203) function,
that of suggesting or finding promising or “test-worthy” hypotheses which are then
set out to further inquiry or empirical testing. According to the second, strong (or
justification) reading, abduction can be formulated as a rule of acceptance, since it
gives reasons to tentatively accept its conclusion as the “best” explanatory hypothesis
among the available ones.

In different writings, Peirce seems to endorse the weak or the strong view of abduc-
tive inference, or both. In the last decades, there has been a lot of discussion about
the proper interpretation of abduction, both within Peircean scholarship and within
(formal) philosophy of science. On the one hand, contemporary defenders of IBE
have tended to see Peircean abduction as a way of justifying an explanatory hypoth-
esis (see Mcauliffe, 2015). In his influential book Inference to the Best Explanation
(2004, pp. 56–57), for example, Peter Lipton bluntly claims that Peircean abduction is
a conceptual precursor of IBE. On the other hand, it is clear that Peirce also considered
weaker forms of abduction, which will be relevant for our discussion in the following.
According to one of these weaker readings, abduction should be construed as a dis-
covery procedure whose main function is to generate, but not justify, novel hypotheses
(see Minnameier, 2004; Campos, 2011). Abduction, according to Peirce, «strikes out
a new suggestion», and is «the only logical mechanism which introduces a new idea»
(CP 5.590). He also emphasises that abductive conclusions are not always invented ex
novo but can have various degree of creativity. As noted by Anderson (1987), Peirce
actually distinguishes two kinds of abductive novelty, rearrangement and concept cre-
ation: «[t]he first kind of novelty […] is a combination which is different from past
views, but which is grounded in ideas or perceptions we have already. […] The second
grade of novelty, which is not always easy to distinguish from the first, is the creation
of a new concept—that is, of an idea which we have not previously had» (pp. 47–48).

A second function of weak abduction defended by Peirce is not generating hypothe-
ses but rather selecting which of the potential explanations of a given phenomenon are
worthy candidates for further investigation (see Frankfurt, 1958; McKaughan, 2008).
According to this conception, abduction again does not lend any support or justifica-
tion to a hypothesis. As Douven (2017) observes, «[o]n this understanding, abduction
could still be thought of as being part of the context of discovery. It would work as
a kind of selection function, or filter, determining which of the hypotheses that have
been conceived in the stage of discovery are to pass to the next stage and be subjected
to empirical testing». Interestingly, Peirce also notes that sometimes we should prefer
uberty over security, selecting those hypotheses that are risky and a priori unlikely
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but have the potential to open new paths of research that might be fertile (CP 8.384,
1913).

Apart from discussion within Peircean scholarship, and quite independently from
it, abduction has been the focus of an intense philosophical debate over the years—so
intense that Hintikka (1998) famously claimed that this is «the fundamental problem in
contemporary epistemology». Most philosophers have followed Harman in equating
abduction with IBE, discussing it mainly in the context of justification. Is abduction
a reliable method of confirmation? How can abductive arguments be improved? The
“textbook version of abduction” (Douven, 2017) is something along the following
lines: «[g]iven evidence E and candidate explanations H1,…Hn of E, infer the truth
of that Hi which best explains H». This basic formulation raises a number of critical
issues, having to do with the correct explications of the notions of candidate explana-
tions and best explanation. Just to mention one, in the above formulation the notion
of “best explanation” is always relative to a set of available explanations, which is
inevitably restricted at least by the scientists’ imagination and other contingencies. It
is thus possible that the explanation that is actually the best is included within the set
of those explanations that scientists have not considered due to lack of imagination,
time, or other reasons. In short, it is possible abductive reasoning leads us to believe
the “best of a bad lot” (van Fraassen, 1989; see Douven, 2017 for discussion and
Schupbach, 2014 for a rebuttal of van Fraassen’s argument).

Another critical issue about the justificatory status of abduction has to do with the
criteria for deciding which is the best among the alternative candidate explanations
(cf. Lipton, 2004). One immediate suggestion is to identify the best explanation with
that hypothesis Hi that is most probable given the evidence E (i.e., it has the highest
degree of posterior probability), or that is most strongly supported by E (i.e., it has
the highest degree of confirmation). In this sense, as some scholars have suggested
(Salmon, 2001), abduction can be formalised using Bayes theorem or one of the
measures of probabilistic support studied within Bayesian confirmation theory (see
Crupi, 2020; Niiniluoto, 2018). However, the relation, and even the compatibility,
between abduction and Bayesian reasoning is quite controversial, for there is no direct
and clear connection betweenprobabilistic and explanatory considerations in assessing
hypotheses (see Douven, 2017 and Sprenger & Hartman, 2019 for discussion). Thus,
some scholars have even argued that either abduction is reducible to Bayesian theory,
or it is epistemically irrelevant (Roche & Sober, 2013). Other scholars reached similar
pessimistic conclusions about abduction based on different considerations, such as
its weak evidential role (van Fraassen, 1989) or its lack of unity (Norton, 2016).
According to Norton (2016), for example, abduction as IBE is an «overrated argument
form» (p. 200).

At the same time, other philosophers have followed Hanson in exploring the weak
functions of abduction in the context of discovery rather than justification. As observed
by Paavola (2006), «[i]n Hanson’s view, abduction is a weak form of inference that
relates to the first phase of inquiry. This “weakness” means that abduction is supposed
to give plausible candidate hypotheses, not necessarily true explanations, which then
have to be verified and tested by other means» (p. 97).Magnani (2001, 2009) discusses
a similarlyweakconceptionof abduction, distinguishing creative abduction (abduction
that generates new hypotheses) and selective abduction (abduction that merely selects
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fromagamut of pre-stored hypotheses). Selective abduction inMagnani’s terms should
not be confused with IBE, for «all we can expect of our “selective” abduction, is that it
tends to produce hypotheses for further examination that have some chance of turning
out to be the best explanation» (2009, p. 97–98). Similarly, in discussing his fine-
grained taxonomy of patterns of abduction (2008; see also 2017), Schurz advocated
weak abduction by arguing that the «crucial function of a pattern of abduction […]
consists in its function as a search strategy which leads us, for a given kind of scenario,
in a reasonable time to a most promising explanatory conjecture which is then subject
to further test» (2008, p. 205).

In sum, although the distinction between weak and strong abduction is usually
acknowledged in the literature, it only plays a marginal role in most discussions. The
reason is that many contributors to the debate tend either to acknowledge only one of
the two concepts as legitimate, thus discarding, more or less explicitly, the other one;
or to propose reconstructions of abduction that attempt to incorporate both its weak
and strong form within one single model, with the risk of conflating them.2

Admittedly, a categorical differentiation between weak and strong abduction is
probably not possible, nor useful, since, as for instance Niiniluoto (1999, p. 442)
points out, «abduction as a motive for pursuit cannot always be sharply distinguished
from consideration of justification». Indeed, several scholars doubt that questions
of justification can be neatly separated from questions of discovery in general (see,
e.g., Schickore, 2018): as Schurz (2008) puts it, «[a]ll inferences have a justifica-
tional (or ‘inferential’) and a strategical (or ‘discovery’) function, but to a different
degree» (p. 203). For instance, selective abduction is defended by Magnani (2001)
as a procedure for discovery; however, justificatory considerations clearly intervene
when competing hypotheses are assessed as more or less plausible given the available
evidence. While we concur that neatly separating the strategic and the justificatory
function of concrete cases of abductive inferences in science is possible, we also
believe that the two moves mentioned above (overlooking one of the two functions
and trying to unify them) are unwarranted. In particular, we believe that the distinction
between weak and strong abduction highlights a clear, underlying contrast between
two fundamental functions of abductive reasoning, which are both legitimate objects
of study and should be carefully distinguished in the philosophical analysis. Thus,
we depart here both from fully “compatibilist” accounts of abduction—which tend
to conflate the two functions of abduction into a single concept—and by “unilateral”

2 Tomention but a few examples of the first tendency, the entry on “Abduction” in the Stanford Encyclopae-
dia of Philosophy by Douven (2017) only focuses on the “modern” (i.e., strong) sense of abduction, IBE,
confining the discussion of the “historical” (i.e., weak) sense to a short supplement. On the opposite side,
scholars such as Minnemaier (2004), Campos (2011), and Mcauliffe (2015) have argued against the ten-
dency to equate Peircean (weak) abduction and IBE, claiming that only the first concept can be legitimately
called “abduction”. As for the second path mentioned above, for instance Lipton argues for a «version of
IBE thus includes two filters, one that selects plausible candidates, and a second that selects from among
them» (2004, p. 64) as a unified model of weak ad strong abduction. Similarly, Schurz (2017) explicitly
equates abduction with IBE (p. 152) but, at the same time, he carefully analyses the strategic function of
abduction, concluding that «the justificatory function of abduction is minor» (p. 153). A minority of schol-
ars avoids overlooking the distinction between weak and strong abduction. For instance, Paavola (2004)
explicitly distinguishes between what he calls “Hartmanian abduction” (IBE) and “Hansonian abduction”
(weak abduction) even if, following Lipton (2004), he then discusses Hartmanian abduction more as a
“method of discovery” than as an instrument for justification.
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accounts—which try to discount one of the two functions as immaterial or irrelevant.
To be sure, it is not the primary aim of this paper to defend the distinction between
strong and weak abduction on theoretical grounds. Instead, in the following, we shall
attempt to show the usefulness of such a distinction within a specific field of scientific
research, namely cognitive neuroscience.

3 Reverse inference as abductive reasoning

The above discussion of weak and strong forms of abductive reasoning will be instru-
mental, in the rest of the paper, to understand and assess current methodological
discussions within cognitive neuroscience. To this aim, it is crucial, as we argue, to
introduce a novel distinction between what we shall call “weak” and “strong” reverse
inference. Before coming to this, however, a closer look at how reverse inference is
actually performed and analysed is in order.

3.1 Reverse inference in cognitive neuroscience

In cognitive neuroscience, neuroimaging techniques like fMRI play a crucial role.
Roughly, fMRI allows researchers to find systematic correlations between cognitive
processes plausibly engaged in experimental tasks and the increased activation, as
measured by the BOLD activity in the relevant areas, of specific brain structures. As
an example, participants in a typical fMRI experiment may be given tasks eliciting
mental imagery or fear that, in turn, would be associated with increased activation of
structures like the human precuneus or the amygdala, respectively (see Poldrack &
Yarkoni, 2016). In this context, two different patterns of reasoning can be usefully
distinguished.

Forward inference generally refers to reasoning from the (putative) engagement of
a given cognitive process (e.g., fear) to the expected increased activation of a given
structure of the brain (e.g., the amygdala).3 In slightly more formal terms, forward
inference concerns the probability p(ACT |COG) of activation of some neural structure
given the engagement of a given cognitive process. Such probabilities can be extracted
by traditional meta-analysis of neuroimaging data, which highlight the regions of the
brain that are more consistently associated with different cognitive processes. For
example, suppose that the vast majority of studies involving a task (e.g., reading
concrete words) that provoke an intense experience of mental imagery have found
increased activation in the precuneus. From this, one may reasonably expect that, in
a new task involving mental imagery, the increased activation of the precuneus will
also be observed.

The second reasoning pattern is called in the neuroscientific literature reverse infer-
ence, since it is in a sense the inverse of forward inference. For example, from the
data just considered above, we might be tempted to conclude that precuneus activity
is a good marker, or predictor, of mental imagery. Thus, when we observe precuneus

3 See Henson (2006) for a partly different characterization of forward inference. For a philosophical discus-
sion of forward (and reverse) in reverse in correlation with neuropsychological data, see Machery (2012).
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activity in a new data set, we might be inclined to conclude the engagement of men-
tal imagery processes. Note that reverse inference involves the (inverse) probability
p(COG|ACT ) that a given cognitive process is engaged when increased BOLD activity
in a certain brain region is observed.

Although clearly related to each other, forward and reverse inference play cru-
cially different roles, and their methodological status is also significantly different.
As Poldrack (2011) notes, forward inference is «[t]he classic strategy employed by
neuroimaging researchers», constituting «the basis for a large body of knowledge that
has derived from neuroimaging research» (p. 692). In comparison, and despite its
widespread use in many experimental studies using fMRI, reverse inference is much
more problematic, as emphasised again by Poldrack in his seminal 2006 paper.4 There
are at least two reasons for this. The first is that reverse inference clearly instantiates
a case of abductive, and hence non-deductive, reasoning, thus inheriting all problems
and weaknesses of this kind of inference. Indeed, we can use the Peircean schema to
rephrase reverse inference as follows:

Activation pattern ACT is observed;
But if process COG were engaged, ACT would be a matter of course,
Hence, there is reason to suspect that COG is engaged.

Of course, as a form of abductive reasoning, reverse inference «is not deductively
valid, but rather reflects the logical fallacy of affirming the consequent» (Poldrack,
2006, p. 60). The second reason why reverse inference is highly controversial is that,
even when a strong correlation between a given cognitive process and some brain area
is found via forward inference, this doesn’t license, in general, comparatively strong
reverse inferences. As noted by Yarkoni (2015a), the main epistemic weakness of this
latter kind of inference becomes clear by construing reverse inference as a probabilistic
argument:

[…] by observing that the probability of a particular pattern of brain activity
conditional on a given mental state is not the same thing as the probability of a
particular mental state conditional on a given pattern of observed brain activity
[…]. For example, if I know that doing a difficult workingmemory task produces
activation in the dorsolateral prefrontal cortex (DLPFC) 80%of the time, I amnot
entitled to conclude that observingDLPFC activation in someone’s brain implies
an 80% chance that that person is doing a working memory task. To see why,
imagine that a lot of other cognitive tasks—say, those that draw on recognition
memory, emotion recognition, pain processing, etc.—also happen to produce
DLPFC activation around 80% of the time. Then we would be justified in saying
that all of these processes consistently produce DLPFC activity, but we would

4 Indeed, this does not mean forward inference is immune to epistemic risks, as observed by Poldrack &
Yarkoni (2016, pp. 589–590). In neuroimaging experiments, the subtraction method is generally used to
identify which brain regions are activated by specific cognitive function. This consists in using carefully
designed experimental conditions that are supposed to differ only with respect to one process of interest.
The subtraction method is problematic because it relies on what has been called the “assumption of pure
insertion”, which has been subject to intense criticism in neuroscience (see Poldrack & Yarkoni 2016 for
discussion).
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have no basis for saying that DLPFC activation is specific, or even preferential,
for any one of these processes.

To make this problem precise, Poldrack (2006) proposes a Bayesian reconstruction
of reverse inference along the following lines:

p(C OG|ACT ) = p(ACT |C OG) · p(C OG)

p(ACT )

Here, the posterior probability of the engagement of process COG given the acti-
vation of area ACT is computed, through Bayes theorem, in terms of the likelihood of
COG (i.e., the probability of ACT given COG) and its prior probability given the task
at issue. As usual, we can rewrite the denominator of the above formula as follows:

p(C OG|ACT ) = p(ACT |C OG) · p(C OG)

p(ACT |C OG) · p(C OG) + p(ACT |not − C OG)p(not − C OG)

This rewriting makes clear that the posterior probability p(COG|ACT ) crucially
depends, as emphasised by Poldrack (2006), on the selectivity of the neural response.
In other words, it depends on how likely the activation of the neural region in question
is both in the presence and in the absence of the relevant cognitive process—i.e.,
both given COG and not-COG. According to Poldrack, the selectivity of the neural
response is the greatest determinant of reverse inference: «[i]f a region is activated by
a large number of cognitive processes, then activation in that region provides relatively
weak evidence of the engagement of the cognitive process; conversely, if the region
is activated relatively selectively by the specific process of interest, then one can infer
with substantial confidence that the process is engaged given activation in the region»
(2006, p. 32).

3.2 Neuroinformatics at the rescue

As the above quotationmakes clear, reverse inference has been discussed from the very
beginning in the context of justification rather than in the context of discovery. The
main questions under investigation have been: How justified are reverse inferences?
Can we systematically rely on reverse inferences in neuroimaging research? How can
reverse inference be improved? These questions gave rise to an intense theoretical
debate in philosophy and cognitive science (for a review, see Nathan & Del Pinal,
2017).5 While the methodological debate developed, working neuroscientists devised
more direct strategies to improve the reliability of reverse inferences in their daily

5 Contributors to the debate have proposed quite different approaches to the issue of how to improve strong
reverse inference. One sees the main problem in the fact that our cognitive ontology, namely our traditional
taxonomy of mental functions and tasks, is outdated and intrinsically defective. The low selectivity of many
brain regionsmight improvewhen cognitive functions are characterized at a higher level of abstraction (Price
& Friston, 2005), or in more precise terms (Poldrack & Yarkoni, 2016). This approach, sometimes labelled
“cognitive ontology revision” (Anderson 2015), has motivated the emergence of several computational
approaches to mental functions taxonomies, such as the Cognitive Atlas (Poldrack et al., 2011), with the
aim of systematizing and improving our ontology of mental concepts and tasks. A second approach tends
to question the Bayesian reconstruction originally proposed by Poldrack (2006). Machery (2014), for
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routine. To this purpose, they followed a main strategy that can be again traced back to
Poldrack (2006). As seen above, the crucial problem of reverse inference is to assess
the selectivity of brain regions, which is generally estimated on a purely informal
basis (i.e., by means of manual search and qualitative reasoning on previous fMRI
literature). In his paper (2006), Poldrack proposed to address this issue by using one
of the several databases of fMRI results available on the Internet, such as BrainMap.6

Poldrack’s proposal promoted a big expansion in the use of databases of fMRI data and
machine-learning techniques to formally quantify the strength of reverse inference,
which has later become part of so-called cognitive neuroinformatics (see Poldrack &
Yarkoni, 2016).

One of the first advancements in this field was the introduction of NeuroSynth
(Yarkoni et al., 2011), an online platform that allows the synthesis of big datasets
of neuroimaging results using an almost completely automatised method of search.
Differently from BrainMap or similar databases, NeuroSynth exploits relatively sim-
ple text mining algorithms to automatically extract from the published articles two
pieces of information: figures containing brain activations maps and specific terms of
interest used at high frequency (more than 1 in 1000 words) in the text and referring to
brain regions (e.g., prefrontal cortex), mental functions (e.g., working memory), and
experimental tasks (e.g., delayed response task). This approach produces an extensive
database of term-to-coordinates mappings, which is currently covering results from
more than 14.000 studies. In line with a policy of open science and data sharing,
the NeuroSynth database is made freely available through a web-based portal (www.
neurosynth.org).

Using the web-based portal, it is possible to perform automated meta-analysis
(forward inference) of hundreds of individual psychological concepts—such as vision,
audition,working memory, pain, and so on—or psychological “topics”, that is, clusters
of semantically-related terms. Critically, the system can compute, for any given voxel
V in the brain and any given term T in the database, the probability that V was
reported as activated in a paper conditional on its mentioning or not T . By using T
as a proxy for the engagement of the corresponding process COG, such probabilities

Footnote 5 continued
instance, argues that RI should be reformulated in purely “likelihoodist” terms, thus avoiding the tricky
issue of assessing the prior probability of the hypotheses under examination. Others have proposed to
conditionalize all probabilities in the Bayesian reconstruction of RI on the specific task used in the study
(Del Pinal&Nathan, 2013;Hutzler 2014).A third proposal suggests that reverse inferencemay be improved,
and the selectivity issue mitigated, by shifting the focus of the analysis from isolated brain regions to entire
networks of regions (Glymour & Hanson, 2016; Klein, 2012). Finally, the use of multivariate neuroimaging
techniques, such as multivoxel pattern analysis (MVPA), has been suggested as a fourth strategy to improve
reverse inference, in line with the idea that inferences based on “pattern-decoding” can overcome the
problems of more “local” ones (Nathan & Dal Pinal, 2017).
6 In his paper (2006), Poldrack proposes to address this issue by using one of the several databases of
neuroimaging results available on the Internet, i.e., BrainMap (www.brainmap.org), which at that time
(Sept. 2005) contained data from 3222 experimental comparisons in 749 published papers. Looking at pairs
of experimental comparisons and coordinates of activations included in this database, Poldrack manually
calculated the probability of the engagement of language function conditional to the activation of the
“Broca’s area” (BA 44) using Bayes theorem. He later compared the posterior probability thus obtained
(0.65) to the prior probability of language processes being engaged in a task, conventionally fixed at 0.5,
and finally calculated the relative Bayes Factor (2.3) as a proxy of the strength of the reverse inference,
resulting in a «positive but relatively weak increase of confidence» (p. 62) in the conclusion.
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Fig. 1 A schematic representation ofNeuroSynth’smain functions.Modifiedwith permissions fromYarkoni
et al. (2011)

provide an estimate of the likelihoods p(ACT |COG) and p(ACT |notCOG). Then, at
least in the intentions of its developers, NeuroSynth should apply Bayes theorem to
compute the final posterior probability p(COG|ACT ), by assuming a default uniform
prior (0.5) for p(COG). These automated computations allow one to rank all relevant
cognitive processes (i.e., psychological terms like working memory) by their posterior
probability relative to any given coordinate of brain activation. Such “reverse inference
maps”7 allow, in turn, researchers to perform so-called quantitative reverse inferences
(Yarkoni et al., 2011), where the strength of reverse inference is measured in terms of
the automatically computed posterior probabilities. In the next section, we shall see
how such a system can be used to make very strong claims about brain functioning
(Fig. 1).

3.3 Reverse inference as abductive reasoning

What is critical for our purposes is that, despite Poldrack’s initial remarks, these
recent developments completely neglected the claim that reverse inference is a form
of abductive reasoning. As a consequence, no attempt was made to apply the con-
ceptual instruments developed in the philosophical literature to the case of cognitive
neuroscience: most notably, the distinction between strong and weak abduction has
been fully disregarded. In our opinion, this oversight has at least two critical con-
sequences for the debate on reverse inference as it currently stands, which we shall
analyse in detail in the next two sessions of this paper.

The first consequence is that, in general, scholars that have defended (or criticised)
“strong reverse inference” as a form of justificatory abductive reasoning, have not
properly appreciated its logical form. In its strong interpretation, reverse inference
should be formulated as a rule of acceptance, that gives reasons to tentatively accept
its conclusion as the “best” explanatory hypothesis among the available ones. This

7 Note that “reverse inference maps” have been recently renamed “association tests” on the web-based
NeuroSynth platform (https://neurosynth.org/faq/).
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formulation of strong reverse inference as a form of IBE is hardly encountered in
current debates; as we shall claim in Sect. 3, however, it is very useful to assess some
of the most representative uses of fMRI data found in the neuroimaging literature, as
well as the discussion that these representative uses have generated. Construing reverse
inference as a form of IBE may help in evaluating the different comparative criteria
for assessing competing cognitive explanations of activation patterns, a crucial issue
that attracts the attention of neuroscientists but that still needs much philosophical and
methodological work.

The second—and maybe more critical—consequence of overlooking the abductive
nature of reverse inference is that what we called “weak reverse inference” has been
virtually ignored in both philosophical and scientific discussion. This is problematic
because, as we shall see in detail in Sect. 4, taking into account the strategic or dis-
covery function of reverse inference is crucial to make sense of current neuroscientific
practice. In many cases, reverse inference is indeed employed as a search strategy that
tells us which hypotheses about the cognitive interpretations of a given brain activa-
tion we should set out for further inquiry and/or as a tool for making new hypotheses
and assist discovery. Thus, exploring the nature and limits of weak reverse inference
remains an important open task. Interestingly, the idea that reverse inference could be
interpreted as a weak form of abductive reasoning was somehow foreshadowed in his
2006 paper by Poldrack himself, who noted that, «[v]iewed as a means to generate
novel hypotheses, […] reverse inference can be a very useful strategy, especially if
it is based on real data […], rather than an informal reading of the literature» (2011,
p. 696). Despite occasional claims like this one, however, the strategic function of
reverse inference has never been explored in detail so far. In the following, we shall
fill this gap and offer the first comprehensive discussion of both weak and strong forms
of reverse inference.

4 Strong reverse inference

As anticipated, the theoretical debate on reverse inference just surveyed has mainly
focused on the justificatory role of reverse inference. Nevertheless, the nature of strong
reverse inference as IBE has never been fully appreciated. To illustrate this point,
we shall discuss first a representative case, which has generated an intense debate in
cognitive neuroscience but has been completely ignored in the philosophical literature.
Then, we will draw some lessons for the debate on reverse inference.

4.1 Strong reverse inference as a form of IBE

In a 2015 paper, neuroscientists Matthew Lieberman and Naomi Eisenberger used the
NeuroSynth database to claim that the dorsal anterior cingulate cortex (dACC), a brain
region that has been associated with several different cognitive functions, is actually
selective for pain:

Using Neurosynth, an automated brainmapping database, we performed quan-
titative reverse inference analyses to explore the best general psychological
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account of the dACC function P (� process | dACC activity). Results clearly
indicated that the best psychological description of dACC functionwas related to
pain processing—not executive, conflict, or salience processing (2015, p. 15250).

Lieberman and Eisenberger used NeuroSynth to study the correlation between
the activation of the dACC and four cognitive processes (including pain), known
to be associated with the dACC. Their conclusion was that «whereas psychological
processes and tasks related to pain, executive processes, conflict, and salience all
reliably activate the dACC, the only psychological phenomenon that can be reliably
inferredgiven the presence of dACCactivity is pain» (2015, p. 15,522).More precisely:

[a]lthough forward inference analyses reproduced the findings that many pro-
cesses activate the dACC, reverse inference analyses demonstrated that the dACC
is selective for pain and that pain-related terms were the single best reverse infer-
ence for this region (p. 15250).

Remarkably, their study relied on NeuroSynth as the only source of neuroscientific
evidence. In particular, as evidence for the above claim, Lieberman and Eisenberger
presented a comparison among the reverse inferences concerning the four different
processes considered, andmeasured their relative strength relying on the statistics (i.e.,
posterior probabilities and associated Z-scores) for the four terms of interest across
eight foci in the dACC (Fig. 2). Statistical analyses revealed that the Z-scores for pain
were significantly greater than the Z-scores for each other terms of interest across all
foci. Further analyses revealed that pain-related Z-scores across all foci of the dACC
were greater than those related to each of the other terms in the NeuroSynth database
(> 3000).

For our purposes, Lieberman and Eisenberger reasoning constitutes a spectacular
example of what we call strong reverse inference: that is, a reverse inference whose
conclusion is presented as strongly justified, or even as true, given its being the “best” of
a series of alternative candidate hypotheses. This reasoning instantiates the “textbook
version” of strong abduction (IBE) as presented by Douven (see Sect. 2), where the
dACC activity represents the evidenceE that should be explained, while the alternative
psychological processes associated with the dACC activity represent the different
candidate explanations H1,…Hn of E. As observed by Wager (2015), Lieberman and
Eisenberger’s statement appears very strong and provocative, «as it implies that we
can use these results to infer that dACC activity implies the presence of pain. After
all, if the best “label” is pain, it seems like a reasonable inference».

The publication of Lieberman and Eisenberger’s paper immediately triggered a hot
debate, which has lasted a couple of years, with highly critical blog posts by ), the
creator of NeuroSynth, Alex Shackman (2015), Tor Wager (2015), and Lieberman
himself (2015, 2016). After these informal exchanges, several influential names in
the neuroimaging community published a commentary in PNAS (Wager et al., 2016)
followed by a reply by Lieberman et al. (2016). In our opinion, this discussion is
particularly representative of the kinds of difficulties that strong reverse inference,
be it NeuroSynth-based or not, might encounter. Critically, many critiques advanced
against the paper followcloselywell-knownphilosophical objections to IBE ingeneral.
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Fig. 2 Comparison of reverse inference effects throughout the dACC. Reproduced with permissions from
Lieberman & Eisenberger (2016). See the text for further details

As an example, Yarkoni (2015a) focuses on the comparative analyses proposed
by Lieberman and Eisenberger and criticises it as follows: «perhaps the most obvious
problem is that it is largely based on comparison of pain with just three other groups of
terms», thus possibly leading the authors to choose the hypothesiswhichwas the best of
a “bad lot”.More importantly, Yarkoni (2015a) criticised the statisticalmethod used by
L&E to assess the relative strength of alternative reverse inferences. According to him,
the authors correctly extracted from NeuroSynth the posterior probabilities associated
with each term of interest, but then compared the associated Z-scores rather than the
posterior probabilities themselves. This is a gross mistake because, from a Bayesian
point of view, only posterior probabilitiesmatter: «Z-score do not provide ameasure of
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strength of effect, they provide (at best) a measure of strength of evidence» (Yarkoni,
2015a).

Another critical worry is that terms in the NeuroSynth database have different base
rates, since some cognitive processes are studied more frequently than others. For
instance, pain occurs in only 3.5% of the neuroimaging studies, while memory occurs
in 16% (Yarkoni et al. 2015b). As we have seen, NeuroSynth does explicitly account
for frequency by setting the Bayesian prior for every term in the database to 0.5 (that
is, the system uses uniform priors as default, rather than empirical priors). This default
setting makes it possible to compare terms with significantly different frequencies in
the database, but it does so by artificially masking the great variability in the base rates.
In principle, it is possible to use the “core tools” of NeuroSynth to set the priors of the
various terms to reflect the actual empirical frequency in the database. Nevertheless,
we have no reason to assume that the empirical estimates of term frequency we can
derive from NeuroSynth actually reflects the “real world” empirical priors ().

Based on this and similar criticisms, Yarkoni (2015a) concluded that NeuroSynth
cannot be used to make strict comparisons between different candidate hypotheses
and, more critically, to justify strong conclusions about the cognitive interpretation of
a certain pattern of brain activity. To the extent that NeuroSynth is «one of the best
tools we have at the moment» for justifying reverse inference, this seems to imply that
strong reverse inferences (NeuroSynth-based or not) are never fully justified:

NeuroSynth provides no license for saying much stronger things like “the dACC
is selective for pain” or suggesting that one canmake concrete reverse inferences
about mental processes on the basis of observed patterns of brain activity. If the
question we’re asking is what are we entitled to conclude about the presence of
pain when we observed significant activation in the dACC in a particular study?,
the simple answer is: almost nothing.

4.2 The prospects of strong reverse inference

The discussion between Lieberman and Eisenberger, on the one hand, and Yarkoni, on
the other, has been limited to these first semi-formal 2015–2016 exchanges. However,
Yarkoni’s conclusions above have helped to bolster a widespread scepticism over
reverse inferences in the fMRI community. Also influenced by Poldrack’s pioneer-
ing work, many cognitive neuroscientists now regard reverse inference in general as
something that should be treated with much caution, or even as something that should
be simply discarded (e.g., Anderson, 2010). Consequently, neuroimaging researchers
applying reverse inferences are quickly criticised for committing the “fallacy of reverse
inference”, suggesting that this form of reasoning should always be avoided.

We believe that Yarkoni’s pessimistic verdict is unwarranted. As we have argued,
the Lieberman-Yarkoni exchange should be conceptualised as a discussion concerning
the appropriate way of performing IBE in cognitive neuroscience; more precisely, as
a discussion on how to compare the relative strength of alternative reverse inferences
in the Bayesian framework underlying NeuroSynth (or similar database). If this is
true, it is easy to understand that a proper debate on such an important issue is still
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very much at a preliminary stage, and no explicit proposal has been made at the
theoretical level. More critically, working cognitive neuroscientists are often not fully
aware of the multiplicity of possible ways of theoretically addressing the problem; in
actual practice, they tend to implicitly use different criteria for assessing competing
explanatory hypotheses, which might easily lead to conflicting interpretations of the
same experimental results.

For instance, as we have seen, Yarkoni suggests that the correct method for assess-
ing the strength of reverse inference is to select the cognitive hypothesis with the
highest posterior probability as computed from the NeuroSynth dataset. However,
both Poldrack in his original theoretical analysis (2006) and other cognitive neuro-
scientists in actual experimental studies (e.g., Cauda et al., 2020), have proposed the
Bayes factor as a criterion for selecting the best hypotheses in concrete reverse infer-
ences. No explicit methodological discussion about the relation between these two
measures can be found in the neuroscience literature. Interestingly, these two pro-
posals in principle are not equivalent. As the discussion in philosophy of science has
made clear (Sprenger & Hartman, 2019; Crupi, 2020), the former proposal amounts
to construe evidential confirmation as “firmness” (how highly probable is COG given
ACT); the latter instead defines confirmation as “increase in firmness” (how higher is
p(COG|ACT ) than p(COG)). Critically, these two strategies of hypotheses assessment
can lead to inconsistent results; in general, one can have high posterior probability
without (incremental) confirmation, and vice versa. Thus, assessing the strength of a
reverse inference using the posterior probability or the Bayes factor is not theoretically
equivalent.

Moreover, posterior probabilities and the Bayes Factor are not the only options for
assessing competing cognitive explanations of activation patterns. Indeed, philoso-
phers have developed a number of formal measures for both the confirmation provided
to competing hypotheses by a piece of evidence and for the explanatory power of these
hypotheses (see, for instance, Schupabch & Sprenger, 2011). In principle, nothing
prevents the implementation of such measures as comparative criteria within Neu-
roSynth or similar databases, although this possibility has never been explored so far.
Importantly, however, neither Bayesian confirmation measures nor explanatory power
measures are in general “ordinally equivalent”. This means, roughly, that assessments
of evidential favouring of one hypothesis over the other may be crucially sensitive
to the choice of the underlying measure. As a consequence, assessing the strength of
reverse inference will be always relative to the choice of the relevant measure: to our
knowledge, however, no discussion of this point, which is both legitimate and urgent,
appears in the literature.

Finally, even the Bayesian analysis which inspires the automated calculations per-
formed by NeuroSynth is not without problems. One classical problem in Bayesian
reasoning in general (Spenger & Hartman 2018), i.e., how to choose the prior prob-
abilities to be used in Bayes’ formula, is here especially serious. As we have seen,
NeuroSynth assumes a flat distribution on the priors (in order to avoid selection bias
from the current literature), but this assumption is arguably unsatisfactory without
further justification. Although some suggestions for dealing with this problem have
been recently advanced in the neuroscience literature (Costa et al., 2021), much work
remains to be done. Moreover, this crucial issue adds to other known limitations of the
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current version of NeuroSynth, such as the poor sensibility of the algorithm for terms
and coordinates extraction (Yarkoni, 2015a).8 Still, in our opinion, nothing prevents in
principle that future developments of the database—like the NeuroSynth 2.0 system,
whichwill be implemented in themore comprehensive platformNiMare9—might par-
tially overcome these limitations. Furthermore, in recent years, it has been increasingly
common to combine a NeuroSynth-based analysis with a discussion of independent
evidence from patient data, TMS, and other techniques (e.g., Lieberman et al., 2019)
and this may improve the prospects of such an approach to strong reverse inference.

To be sure, it is not our purpose in this context to discuss a method for making
strong reverse inference in a correct way. Our only claim is that construing reverse
inference as a form of IBE makes clear that strong reverse inference requires precise
comparative criteria for assessing competing cognitive explanations of activation pat-
terns. Thus, even if we believe that Yarkoni’s pessimistic conclusion is not justified
at the present state of knowledge, this crucial issue surely needs much philosophical
and methodological work.

5 Weak reverse inference

As we argued in the foregoing section, the debate developed around Lieberman and
Eisenberger’s paper clearly shows that neuroscientists do rely, at least implicitly, on a
strong understanding of reverse inference as IBE in their research. Indeed, we believe
that the idea of strong reverse inference surely captures some representative case
studies in the neuroimaging literature, even if not most of them. Focusing only on
this strong reading of reverse inference (as it has been done until now), however, is
arguably mistaken, for at least two reasons. First, as suggested above, this risks to fuel
unwarranted scepticism toward reverse inference in general, as based on a (sound)
criticism of strong reverse inference only. Second, we believe that many instances
of reverse inference as actually performed in current neuroscientific research should
not be construed as cases of IBE, but instead as attempts to discover new promising
hypotheses to be assessed in further experimental studies. Such cases require a different
kind of analysis, based on a weak notion of reverse inference, that has never been
attempted so far. As a step forward in this direction, in the following we discuss
in turn three representative case studies from recent neuroimaging research. As we
argue, each of them clearly instantiates a case of weak abductive reasoning; together,
they offer a fairly comprehensive view of the different functions that weak reverse
inference may usefully perform in experimental studies. Interestingly, these functions
reflect quite closely those attributed by philosophers to weak abduction in general (as
discussed in Sect. 1). Such an analysis is thus interesting both on a theoretical and a
practical level: indeed, neuroscientists rejecting the use of strong reverse inferencemay

8 It is known that the automated lexical algorithms NeuroSynth is based on are not able to extract fine-
grained information from texts (e.g., distinguishing different types of memory). Similarly, the algorithms
extracting the coordinate of brain activations cannot make basic distinctions such as distinguishing between
activations and deactivations (but see Yarkoni et al., 2011).
9 See https://nimare.readthedocs.io/en/latest/.
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still appreciate the role of weak reverse inference as an essential inferential strategy
in cognitive neuroscience.

5.1 Weak reverse inference as selective abductive inference

As a first case study, consider Xenophontos and colleagues’ examination of the effects
of altered sex chromosome dosage (SCD) on brain functioning (Xenophontos et al.,
2020). Altered SCD is a pathological dysfunction that characterises certain genetic
disorders, for example, sex chromosome aneuploidy (SCA) syndromes. To identify
the regions that are more affected by altered SCD, Xenophontos and colleagues tested
301 subjects affected by SCA and looked for regions with abnormal (i.e., increased or
decreased) cortical thickness. Using structural MRI, the authors found that mounting
SCD increased cortical thickness in the rostral frontal cortex (among other regions),
bilaterally, and decreased cortical thickness in the lateral temporal cortex and in the
temporal-parietal junction (among other regions). Finally, they relied on NeuroSynth
to identify «cognitive and psychological terms that frequently cooccur in the literature
with functional activations similar to the observed pattern of SCD effects on cortical
morphology» (Xenophontos et al., 2020, p. 2219).

The authors compared the distribution of SCD effects on cortical thickness with the
reverse inference maps (now “association maps”) for each of 50 “topics” (clusters of
semantically-related terms) included in the NeuroSynth database and then selected all
the topics maps that showed a special correlation (|r| of 0.1 or greater) with the SCD
maps. Results of this reverse inference analysis indicated that regions where, in SCA
individuals’ brains, cortical thickness increases as a function of mounting SCD are
associated in the NeuroSynth database with emotion, pain, and inhibitory processing.
Conversely, regions where cortical thickness decreases as a function of mounting
SCD have been associated with visual, motor, arithmetic, and attentional processing.
Since it is known that socioemotional and attentional processes are generally impaired
in SCA individuals, the authors conclude that these «findings […] elucidate potential
anatomical substrates for cognitive and behavioral alterations across SCA syndromes»
(p. 2224).

Critically, these conclusions are not presented by the authors as strongly justi-
fied hypotheses, but rather as mere suggestions for further experimental research. As
Xenophontos and colleagues recognise, «[m]ultimodal neuroimaging studies will be
required to systematically assess the degree of overlap between structural and func-
tional brain changes in SCA» (p. 2224). In other words, reverse inference is not used
here to justify strong conclusions about brain functioning but only to generate a set of
hypotheses (about the cognitive processes associated to the regions mostly lesioned in
the SCA syndromes) that should be tested with other techniques to be empirically con-
firmed. According to some scholars, such as Tor Wager (2015), this is essentially the
function of NeuroSynth: «NeuroSynth is a wonderful tool for hypothesis generation
and for getting a rough idea of what a brain map related to a psychological topic might
look like, but it was never intended to justify strong inferences about the psychological
meaning of activation».
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In the terminology introduced in Sect. 1, the study under examination is an example
of selective abductive inference,whereNeuroSynth is used as an artificial substitute for
what Schurz (2017) calls probabilistic elimination techniques, suggesting a «short and
promising (but not necessarily successful) path through the search space of possible
explanatory hypothesis» (p. 153). Importantly, weak reverse inference is here used
to suggest a restricted set of worthy candidate explanations for further experimental
investigation, but not to generate a completely new hypothesis about the cognitive
functions underpinned by the brain regions examined. In other words, it is a case of
selective but not creative abductive reasoning in Magnani’s sense.

Prima facie, one might doubt that NeuroSynth or similar meta-analytic tools can be
of any help in generating truly creative weak abductive hypotheses. In fact, these sys-
tems strictly depend on already formulated cognitive hypotheses codified in published
articles and previous neuroimaging literature. Consequently, the objection goes, they
cannot foster new hypotheses about the cognitive functions associated to a given brain
region. Nevertheless, we believe that this first impression is misleading. Indeed, Neu-
roSynth or similar tools might assist the discovery of associations between cognitive
functions and brain structures that are present but still undetected in the neuroimaging
data, as the next case-study shows.

5.2 Weak reverse inference as creative abductive inference (i)

As an example, consider Pauli and colleagues’ investigation of the functional spe-
cialisation of the human striatum, a subcortical region that has been traditionally
associated with emotion regulation and reward-related processes. In their study (Pauli
et al., 2016), the authors first relied on NeuroSynth to identify distinct functional sub-
regions in the striatum. Based on this analysis, they were able to identify five distinct
striatal zones that exhibit discrete patterns of coactivation with distal cortical regions:
ventral striatum, anterior and posterior caudate nuclei, anterior and posterior putamen.

Then, to identify which cognitive functions are more regularly associated with each
striatal zone in the literature, Pauli and colleagues relied on NeuroSynth-based reverse
inference. For each psychological term, the authors calculated the likelihood ratio as
the «ratio of the number of studies reporting activation in a striatal sub-region when
the term was vs. was not used in the article» (p. 1909). Results revealed some well-
known associations between striatal regions and low-level cognitive functions, such
as the association between ventral striatum and reward processing (i.e., with terms
such as rewards, losses, or craving; p. 1909). However, the analysis also showed some
associations that had not been highlighted in previous literature, thus «extend[ing]
previous knowledge of the involvement of the striatum in reward-related decision-
making tasks» (p. 1911):

[…] because we followed an unbiased, data-driven approach, we also identified
associations between striatal activation and other psychological functions that
have often been considered to be primarily cortical. In particular, cognitive func-
tions, such as working memory and arithmetic, were associated with activation
in the [posterior caudate], and social functions, such as language and empathy,
were associated with activation in the [anterior putamen] (p. 1910).
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According to the authors, the associations betweenhigher-order psychological func-
tions and striatal regions have gone undetected in previous literature because «the
majority of studies investigating these psychological functions report activity pref-
erentially in cortical areas, except for studies investigating reward-related and motor
functions» (p. 1909). The specialisation of the posterior caudate for executive functions
was particularly novel and unexpected, since these functions were «often considered
the exclusive domain of the frontoparietal cortical circuits» (p. 1907).

For our purposes, this case illustrates well how data mining using meta-analytic
tools such as NeuroSynth or BrainMap can be a tool of discovery. One might object
that, in the example discussed above, the abductive reverse inference possesses a degree
of novelty that is still too low to be considered a genuine case of creative abduction. In
these kinds of abductions, according to Schurz, the «underlying abduction operation
constructs something new, for example, a new theoretical model or a new theoretical
concept» (2017, p. 158). In the context of cognitive neuroscience, a case of genuine
creative abduction in this sense might be represented by an inference introducing a
novel psychological concept, that is, a new entity in our scientific domain of cogni-
tive functions, or cognitive ontology (see Sect. 2). This novel psychological concept
might be a cognitive operation or sub-operations that has never been isolated before,
such as a new type of memory. Alternatively, it might be a new general function sub-
suming most or all of the cognitive functions previously associated to a certain brain
region—as in the case of the “sensorimotor integration” operation postulated by Price
and Friston (2005) to explain why left posterior lateral fusiform is active in a vast
range of behavioural domains. Nevertheless, the objection goes, NeuroSynth or simi-
lar tools cannot foster these classes of inferential operations. At most, these tools can
sustain conceptual rearrangement but not concept creation in Peirce’s terms (see Sect.
1). Again, we believe that this first impression is misleading.

5.3 Weak reverse inference as creative abductive inference (ii)

In a recent paper, Genon et al. (2017) investigated the connectivity patterns and the
functional organisation of the left dorsal premotor cortex (PMd). As a result of their
analysis, they identified five functionally distinct sub-regions of PMd: rostral, central,
caudal, ventral, and rostro-ventral. Then, Genon and colleagues relied on the Brain-
Map database (Laird et al., 2005) to characterise the functional profile of each of the
PMd sub-region. Relying on Bayes theorem for a quantitative reverse inference anal-
ysis, they calculated which were the most likely cognitive domains (i.e., “behavioural
domain” in the Brain Map’s terminology) and the most likely experimental tasks (i.e.,
“paradigm class”) conditional on the activation in each sub-region of PMd. Reverse
inference across behavioural domains and experimental paradigms revealed that PMd
is a highly multifunctional region, with different classes of cognitive processes asso-
ciated with distinct sub-regions of PMd (Fig. 3).

Critically, in order to explain the specific functional profile of a particular sub-
region of PMd, i.e., the rostro-ventral PMd, Genon and colleagues introduced a novel
psychological entity that was never discussed before. In the BrainMap database, the
«rostro-ventral PMd was associated with tasks related to explicit long-term memory,
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Fig. 3 A schematic representation of the quantitative reverse inference on the BrainMap database by Genon
and colleagues (2017). Reproduced with permissions from Genon et al. (2018)

object or scene imagination, and deception paradigms» (p. 410). Based on such results,
the authors speculated that such region underpins an abstract cognitive process, a «core
computational function»,which grounds all these behavioural associations but remains
latent and is not directly observed. In a subsequent paper (2018), Genon and colleagues
better characterised the abstract cognitive operation underpinned by the rostro-ventral
PMd introducing the concept of “sequential processing”:

[w]e can speculate that this abstraction property reflects the use of sequential pro-
cessing (spatial or temporal) in the PMd for various types of predictions beyond
the current framework, in line with the Bayesian brain hypothesis (p. 357).

Interestingly, Genon and colleagues’ reasoning fits quite well with what Schurz
calls “hypothetical (common) cause abductions”, a kind of abduction that postulates
a new entity or property to explain a set of empirical phenomena that were previ-
ously considered as unrelated (in this case, the set of behavioural tasks associated to
activation in the ventro-rostral PMd). According to Schurz (2017), «this is the most
fundamental kind of conceptually creative abduction», which is driven by «the search
of explanatory unification» (p. 162). As a consequence, the author’s hypothesis has
the potential to trigger a cognitive ontology revision (see Anderson, 2015), devising
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an entirely new cognitive kind. In turn, suggesting a more risky but potentially fruit-
ful line of research, their abductive inference complies with the Peircean dictum of
preferring “uberty” over “security”.

It is important to note that, as recognised by Genon and colleagues, these kinds
of observations are only possible when neuroimaging researchers rely on quantified
reverse inference with NeuroSynth, BrainMap, or similar meta-analytic tools, which
allow for the integration activations across thousands of different tasks and behavioural
domain:

[a]s illustrated in [these examples], the patterns of associations across a wide
range of tasks can foster new hypotheses, approximating as much as possible the
core role of the region (and thus its operation-function), beyond the behavioural
ontology of the original studies or the database (Genon et al., 2018, p. 357)

Genon and colleagues’ reasoning is not an isolated case in the neuroimaging liter-
ature. For instance, different studies employing the NeuroSynth database have shown
that the anterior insula is engaged in a wide range of fMRI tasks; on this basis, it has
been suggested that this area supports a novel generic function, i.e., “task engagement
maintenance” (see Poldrack, 2011). In these and other similar cases, we can construe
reverse inference as a form of weak abducting reasoning that can suggest radically new
hypothesis about the cognitive function associated to a given brain region. When suc-
cessful, this kind of reasoning seems to support what Peirce called “concept creation”,
thus showing that NeuroSynth or similar tools can also be applied for performing
weak, creative forms of reverse inference.

6 Conclusion

In this paper, we offered the first comprehensive discussion of reverse inference as a
formof abductive reasoning in cognitive neuroscience. Relying on previous philosoph-
ical discussion, we first introduced a distinction between two forms of this inferential
strategy, i.e., weak and strong reverse inference. Then, we argued that distinguishing
between these two functions of reverse inference—i.e., a justificatory (strong) and a
strategic (weak) one—is crucial both to make sense of current neuroscientific practice
and for assessing themethodological debate on reverse inference in general. In support
of this, we provided the first systematic exploration of both the justificatory and the
strategic function of reverse inference.

The main results of our discussion can be summarised as follows. On the one hand,
strong reverse inference as a form of IBE clearly plays a role in some of the boldest
attempts of deriving conclusions about the engagement of cognitive processes based
on fMRI data found in the neuroimaging literature. Accordingly, looking at this pattern
of reasoning as a form of strong abduction can surely advance the discussion on the
justificatory role of reverse inference, especially forwhat concerns precise comparative
criteria for assessing competing cognitive explanations of activation patterns. At the
present state of research, however, such a discussion is absent from the neuroscientific
debate, and this has fuelled an undue pessimism on the reliability of reverse inference
in general.
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On the other hand, the weak function of reverse inference has been virtually ignored
in both the philosophical and neuroscientific literature. Still, weak reverse inference
is indeed performed in current neuroscientific research and, as our discussion reveals,
instantiatesmost of the strategic functions that philosophers have traditionally assigned
to abduction. In particular, we examined three case-studies, illustrating both the selec-
tive function of weak reverse inference (i.e., individuating a restricted set of plausible
hypothesesworth of further empirical testing) and its creative function (i.e., suggesting
a partially or radically new psychological interpretation of a given brain activation).
Acknowledging the role of weak reverse inference in current research practice thus
sheds new light on its methodological role and may mitigate the scepticism that
presently surrounds reverse inference within the community.

Of course, the present paper has provided just the beginning of a more systematic
exploration of the role of abductive reasoning in cognitive neuroscience; the spirit of
the paper, hence, is programmatic. Indeed,webelieve that the distinction betweenweak
and strong reverse inferencemight shed new light on the debate on reverse inference as
it currently stands, clarifying some important issues and even opening new directions
for methodological reflection in the field. To this purpose, a more detailed study of
both the justificatory and the strategic function of reverse inference, as well as of the
role of NeuroSynth and similar tools in supporting such functions, is surely needed.
With the present contribution, we hope we provided a general framework to rigorously
address such problems in future research.
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