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Abstract
Can Brownian motion arise from a deterministic system of particles? This paper
addresses this question by analysing the derivation of Brownian motion as the limit
of a deterministic hard-spheres gas with Lanford’s theorem. In particular, we examine
the role of the Boltzmann-Grad limit in the loss of memory of the deterministic system
and compare this derivation and the derivation of Brownian motion with the Langevin
equation.

Keywords Statistical and thermal physics · Lanford’s theorem · Memoryless
process · Boltzmann equation · Boltzmann-Grad limit · Indeterminism · Langevin
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1 Introduction

The derivation of the laws of statistical and thermal physics frommicroscopic dynam-
ics is a major challenge for the philosophy of science. There are longstanding
discussions on whether the entropy law can be derived from a microscopic description
of phenomena (e.g., Callender, 1999; Earman, 1986a; Uffink, 2001). In this context,
particular attention has been paid to the derivation of the Boltzmann equation and
the H-theorem (e.g., Brown et al., 2009), and Lanford’s theorem has notably renewed
these discussions by raising the question of whether this major mathematical result for
the kinetic theory of gases can explain “the emergence of irreversibility” (Uffink &
Valente, 2015). By contrast, philosophers have not yet paid attention to the derivation
of another important statistical and thermal physics law that uses Lanford’s theorem:
this is the derivation of Brownian motion from a deterministic classical system of hard
spheres.

Brownian motion has been extensively studied both in physics and mathematics.
It was originally developed for studying the erratic movement of a dust particle or

B Vincent Ardourel
vincent.ardourel@univ-paris1.fr

1 IHPST — CNRS/University Paris 1 Panthéon-Sorbonne, 13 rue du Four, 75006 Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-022-03577-2&domain=pdf
http://orcid.org/0000-0001-8686-7091


29 Page 2 of 15 Synthese (2022) 200 :29

pollen grain in fluid induced by collisions with the fluid molecules. Given that a fluid
can be modelled as a hard-spheres system, the derivation of this random motion has
been identified as “a fundamental problem of statistical mechanics” (Beck, 1990,
p. 324).1 Indeed, at the microscopic scale, the laws of motion and the collisions in the
hard-spheres system are deterministic. However, at a larger scale, the motion of the
target particle, i.e., the Brownian particle, exhibits random behaviour. Accordingly,
the derivation of Brownian motion raises the question of how random evolution might
appear at the macroscopic scale, although all the dynamics at the microscopic scale
are deterministic.

This paper tackles this problem by focusing on the recent derivation of Brownian
motion from the dynamics of a hard-spheres gas provided by Bodineau et al. (2016),
which comes from earlier ideas by van Beijeren et al. (1980). According to Bodineau
et al., their derivation “is the veryfirst result describing theBrownianmotion as the limit
of a deterministic classical systemof interacting particles” (2016, p. 496).Accordingly,
this derivation is worthy of investigation by the philosophy of science. First, it does
not resort to a stochastic force for the dynamics of the Brownian particle. The micro-
dynamics stems only from elastic collisions and deterministic dynamics. Secondly,
this derivation requires different limiting regimes to obtain Brownian motion, such
as the Boltzmann-Grad limit. These limits are essential for this derivation and have
to be carefully investigated to account for the appearance of a memoryless behaviour
from a deterministic system. Finally, as the authors claim, they “provide a rigorous
derivation of the Brownian motion” (ibid., p. 493. My emphasis). This mathematical
derivation is different from the usual physicists’ derivation of Brownian motion with
the Langevin equation. Our analysis might interest philosophers of science concerning
the respective aims of the two derivations and the specific idealizations required in
both derivations.

The overall objective of the paper is to shed light on this mathematical derivation
of Brownian motion based on Lanford’s theorem. For that purpose, we first recall the
usual derivation of Brownian motion from the Langevin equation. We highlight that it
makes use of a stochastic assumption for the dynamics of the Brownian particle, i.e.,
a random force that represents the effects of a huge number of collisions (Sect. 2).
Section 3 then sketches the main steps of the rigorous derivation of Brownian motion
and provides an overview of this derivation. In particular, we emphasize that Bod-
ineau et al.’s derivation does not resort to a random force. It makes use of Lanford’s
derivation of the Boltzmann equation from the Hamiltonian equations of motion of
hard spheres. Furthermore, the derivation of Brownian motion requires two successive
limiting regimes, i.e., the Boltzmann-Grad limit and the diffusive limit, which play
a crucial role in the appearance of Brownian motion. Section 4 first analyses some
salient upshots of Lanford’s theorem for Brownianmotion. Section 5 then analyses the
role of the limiting regimes.More precisely, we clarify the role of the Boltzmann-Grad
limit in the loss of memory of the deterministic system. Finally, Sect. 6 compares the
two derivations of Brownian motion, viz. with the Langevin equation and with Lan-
ford’s theorem, and analyses their respective interests. In particular, we stress that both

1 See also, e.g., Dürr et al. (1981) and Spohn (1980).

123



Synthese (2022) 200 :29 Page 3 of 15 29

derivations rest on a common principle, i.e., memoryless behaviour appears with the
loss of correlations of the deterministic system particles.

2 Brownianmotion with the Langevin equation

This section first recalls a few features in the physical theory of Brownian motion. One
of themain results, notably due to Einstein in 1905, is the equation of themean-squared
displacement.2 In the one-dimensional case, because of the thermal fluctuations of
molecules of the fluid, the position x of a Brownian particle satisfies the relation:

〈
x2

〉
� 2D t (1)

where D is the diffusion constant that equals kBT/(6πμa), with kB the Boltzmann
constant, T the temperature of the fluid, μ its friction constant, and a the radius of
the Brownian particle. This equation states that the mean-squared displacement of
the Brownian particle is linear in time, which is valid, as we will see below, for a
sufficiently long time.

This equation is generally obtained in physics textbooks from the Langevin equa-
tion, a stochastic version of Newton’s second law of dynamics (e.g., Mazenko, 2006,
p. 6; Reif, 1965, p. 560; Wannier, 1987, p. 475). This equation involves two forces,
a friction force and a random force, which represent the effects of collisions on the
Brownian particle:

md2x/dt2 � F f + Fs (2)

The frictional force is described by Stokes’s law Ff � –6πμa dx/dt. The stochastic
force Fs is defined such as its mean value<Fs> equals zero and that<Fs(t1) Fs(t2)
> � B δ(t1,t2), with B the strength of the force and δ the Dirac distribution. In other
words, the value of the random force at any time t2 is uncorrelated to its value at any
time t1.

In order to obtain Eq. (1) from Eq. (2), we first multiply Eq. (2) by the position x,
then take its mean value, apply the property<Fsx > � 0 for the random force, and
make use of the equipartition of the energy relation (see Genthon, 2020, p. 10). After
some algebraic manipulations, we obtain the following equation for the time evolution
of the mean-squared displacement:

d
〈
x2

〉
/dt � 2kB T /(6πμa) + C exp(−(6πμa/m)t) (3)

with C the constant integration. The second term of the right hand side very quickly
decreases to zero, with a time constant of around 10–8 s in real conditions. Only
the first term rapidly becomes non-negligible. Accordingly, we integrate the equation
with time and recover, for a sufficiently long time, the mean-squared displacement

2 For a historical approach to Brownian motion, which is not addressed in this paper, see e.g., Duplantier
(2006), Maiocchi (1990), Genthon (2020).
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law of Brownian motion (Eq. 1). It has to be noticed that this Brownian motion is also
defined and studied in a mathematical context as a Wiener process (see, e.g., Nelson,
2001; Pitman & Yor, 2018, Roger &Williams, 2000). Brownian motion Bt (as written
below �(t)) is defined as a random variable that is almost surely continuous, which
has a Gaussian distribution and stationary independent increments. The discussions
in mathematics and physics on Brownian motion address different kinds of questions
but still pertain to the same memoryless behaviour.

We stress that the derivation ofBrownianmotion from theLangevin equation resorts
to a crucial idealization for the dynamics, viz a random force representing the effect of
a very large number of uncontrollable collisions. On this point, Luczak (2016, p. 406)
provides insightful analysis and argues that this idealization is justified by reflecting
a “collision assumption” at the micro-scale, viz. the assumption that the velocities of
molecules are, at any time, independent of the velocity of the Brownian particle. Given
that the mean-squared relation of Brownian motion (Eq. 1) is experimentally well
confirmed, Luczak then raises the question: “why does the Langevin equation work?”
This question is worthy of investigation and concerns what we call the representation
problem, i.e., why Brownian motion and the Langevin equation adequately represent
the behaviour of a pollen grain inwater. By contrast, the present paper does not directly
address this question. There is another problem regarding Brownian motion, which
we call the derivation problem, to which this paper is dedicated. This is the problem
of obtaining Brownian motion from a genuine deterministic classical system without
resorting to a random force in the dynamics.

Before analysing the derivation problem, we stress a preliminary distinction
betweenwhatwe call empiricalBrownianmotion andmathematicalBrownianmotion.
Empirical Brownian motion is the motion observed in nature, e.g., the erratic motion
of a pollen grain in a glass of water. This phenomenon looks random, but we are
agnostic about its real nature. Mathematical Brownian motion is the representation of
this phenomenon by a memoryless process, as a Wiener process. This paper is mainly
dedicated to this second notion and, to a lesser extent, to the relationship between these
two notions. For the sake of readability, the ‘mathematical’ specification will remain
implicit in the paper except where otherwise specified.

3 The rigorous derivation of Brownianmotion

This section offers an overviewof the rigorous derivation ofBrownianmotion provided
by Bodineau et al. (2016) before investigating some salient features of this deviation
in the remainder of the paper. This presentation is mainly based on Gallagher’s paper
(2019).

Let us consider a system of N hard spheres with a diameter d that evolve and
collide according to the laws of classical mechanics. We describe the dynamics of the
N particles with Hamiltonian equations of motion. In this system, let us focus on one
particle. The other N–1 hard spheres are assumed to be at thermal equilibrium. Under
these circumstances, the main result of Bodineau et al.’s derivation is that, in the limit
N→∞, d→0, and Nd2 →∞, the tagged particle converges to a Brownian motion.
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Liouville equation  
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Fig. 1 Overview of the derivation of Brownian motion. Step 1: The linear Boltzmann equation is derived
from the Liouville equation within the Boltzmann-Grad limit. Step 2: The heat equation and Brownian
motion are derived from the linear Boltzmann equation in the diffusive limit

This derivation involves two main steps, each of them requiring a limiting regime (see
Fig. 1). We sketch these two main steps without going into technical details.

Step 1 goes from a microscopic description of the gas to a mesoscopic one. More
precisely, Step 1 derives a linear Boltzmann equation from the Liouville equation
of the N hard-spheres system. The Liouville equation describes the evolution of the
Hamiltonian system H in the phase space:

Liouville equation : ∂μ/∂t � {H , μ} (4)

This represents the time evolution of the probability density μ of the hard-spheres
system in the phase space. The linearBoltzmann equation represents the time evolution
of the probability density f that a hard sphere is located at the position x with a velocity
v at the time t:

linear Boltzmann equation : ∂ f /∂t + v∂ f /∂x + α L[ f ] � 0 (5)

This first step requires Lanford’s theorem, to which we will return in Sect. 4. This
theorem proves that the solution μ of the Liouville equation tends to the solution f of

123



29 Page 6 of 15 Synthese (2022) 200 :29

the Boltzmann equation in a certain limiting regime, viz. the Boltzmann-Grad limit.
This is the limit where N→∞, d→0 so that Nd2 � α converges to a finite quantity
(see, e.g., Earman, 1986a, p. 230;Valente, 2014;Uffink&Valente, 2015). This quantity
α represents the inverse of the mean-free path of the microscopic particles. Moreover,
since the number of particles per unit of volume Nd3 tends to zero, the Boltzmann-
Grad limit is the limit of infinitely rarefied gas. We will discuss the role of this limit
in more detail in Sect. 5.

For now, it is noteworthy that Bodineau et al.’s derivation involves a linear Boltz-
mann equation, where the collisional operator L[f] is an integral over all the collisions
in the gas for which the N–1 hard spheres are initially assumed to be at the ther-
mal equilibrium. This is a distinctive feature of using Lanford’s theorem to derive
the H-theorem (see Valente, 2014; Uffink & Valente, 2015). The Boltzmann equation
involves a different collisional operation C[f] and describes how the gas approaches
equilibrium. The linear Boltzmann equation is a particular case of the Boltzmann
equation with respect to initial data. In the present case, we are interested in fluctua-
tions of the gas molecules around thermal equilibrium that affect the tagged particle.
Accordingly, the collisional operator L[f] describes a gas at the thermal equilibrium,
and we study the motion of the tagged particle in this fluid.

After that, step 2 derives the Brownian motion from the previous linear Boltzmann
equation (Eq. 5). First of all, the heat equation is derived from the linear Boltzmann
equation:

heat equation : ∂ρ/∂t − κ 	xρ � 0 (6)

where ρ represents the probability density of particles, and κ the diffusivity constant.
The heat Eq. (6) is derived from Eq. (5) by taking the diffusive limit. This is the limit
where Nd2 or α tends to infinity (Nd2 � α). Indeed, in this diffusive limit, “the linear
Boltzmann equation does have the heat equation as an asymptotic regime” (Gallagher,
2019, p. 79). This means that the solution of the linear Boltzmann equation tends to
the solution of the heat equation in this limit. Furthermore, if we focus on the time
evolution of the tagged particle within this limit, one recovers the Brownian motion.
The process associated with the tagged particle indeed converges to Brownian motion:
“In the same asymptotic regime, the process�(τ)� x1(ατ) associated with the tagged
particle converges in law toward a Brownian motion” (ibid., p. 79; see also Bodineau
et al., 2016, p. 503). More precisely, this Brownian motion has a variance κ. One thus
recovers the relationship between the heat equation and Brownian motion since the
solution of the heat equation is a gaussian distribution (with a gaussian distribution
as initial condition. See, e.g., Duplantier, 2006, p. 223). To sum up, the fluctuations
of the N–1 hard spheres gas at the thermal equilibrium leads to the heat equation in
this diffusive limit. Within this fluctuating gas of particles, it is shown that the tagged
particle behaves as a Brownian particle.
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4 Brownianmotion with Lanford’s theorem

This rigorous derivation of Brownian motion is based on Lanford’s derivation of the
Boltzmann equation involved in Step 1. Lanford’s theorem (1975, 1976) is a master-
piece for the kinetic theory of gases. It is “maybe the most important mathematical
result of kinetic theory” (Villani, 2010, p. 100). However, Bodineau et al.’s derivation
of Brownian motion is not a simple application of this theorem. To begin with, we
clarify the relationship between Lanford’s theorem and Bodineau et al.’s derivation
of Brownian motion. After that, we will discuss salient features of this derivation
regarding some limitations of Lanford’s theorem.

First of all, we stress that Bodineau et al.’s derivation of Brownian motion stems
from Lanford’s theorem. Bodineau et al. use several theoretical resources of Lanford’s
theorem, such as the convergence of theBBGKYhierarchy to theBoltzmann hierarchy
in the Boltzmann-Grad limit.3 According to the authors, “our proof is based on the
fundamental ideas of Lanford”(Bodineau et al., 2016, p. 493). However, the deriva-
tion of Brownian motion goes beyond Lanford’s theorem. It extends this work for
some conditions: “the idea is to improve Lanford’s result by considering fluctuations
around some global equilibrium”(ibid., p. 499). This extension arises from studying
a hard-spheres gas for which N–1 particles are at thermal equilibrium. Without going
into technical details, this approach allows them to extend the convergence of series
expansions and, as we will discuss below in this section, extend the time validity of the
derivation of the Boltzmann equation. Moreover, Bodineau et al.’s works involve the
derivation of a particular case of the Boltzmann equation, i.e. the linear Boltzmann
equation. On this point, Bodineau et al.’s derivation of Brownian motion also extends
the works due to van Beijeren et al., (1980), who studied a hard-spheres system at the
thermal equilibrium. “Using Lanford’s result about the convergence of the solutions
of the BBGKY hierarchy to the solutions of the Boltzmann hierarchy”(van Beijeren
et al., 1980, p. 237), these authors obtained several results on the linear Boltzmann
equation.4 Therefore, thank to the original Lanford’s results on the Boltzmann equa-
tion, but also to van Beijeren et al.’s works (1980) on the hard-spheres gas at thermal
equilibrium, Bodineau et al. offer a technical tour de force by obtaining a rigorous
derivation of Brownian motion.

Lanford’s theorem is mostly known for obtaining the H-theorem, which can be
interpreted as the increasing entropy law. It states that a minus H-function, which is a
function of the solution of the Boltzmann equation, increasesmonotonically with time,
like the entropy of an ideal gas.5 Accordingly, for Uffink (2007), “the results obtained
are the best efforts so far to show that a statistical reading of the Boltzmann equation
or the H-theorem might hold for the hard spheres gas” (2007, p. 111). Moreover, for
Earman (1986a, p. 231), it seems “the best way” and “the most fruitful approach”

3 The BBGKY hierarchy (for Bogoliubov, Born, Green, Kirkwood, and Yvon) is a set of N integro-
differential equations that describes the dynamics of the hard-spheres system (see e.g., Lanford, 1975,
p. 85).
4 Gallagher stresses that Bodineau et al.’s derivation “is an extension of the works (in particular, van
Beijeren et al., 1980) where the linear Boltzmann equation was derived for long times”(2019, p. 79).
5 Lanford’s derivation of theBoltzmann equation stems from theGibbs formulation of statisticalmechanics.
On the difference between the Boltzmann and Gibbs approaches to statistical mechanics, see Frigg (2008).
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to tackle the problem of irreversibility. Lanford’s derivation has thus been mainly
discussed concerning the problem of irreversibility (see also Valente, 2014; Uffink &
Valente, 2015; Ardourel, 2017). However, despite its importance for the foundations
of the kinetic theory of gases and the problem of irreversibility, several criticisms have
been addressed to the epistemological consequences of this theorem,mostly because it
involves some drastic limitations. We now discuss these objections and argue that the
derivation of Brownian motion does not in fact suffer these limitations. The derivation
of Brownian motion avoids these limitations because it extends Lanford’s results by
studying hard-spheres gases close to thermal equilibrium.

First, a major objection pertains to the time validity of Lanford’s theorem. Sklar
points out this limitation: “This derivation has the virtue of rigorously generating the
Boltzmann equation, but at the cost of applying only to one severely idealized system
and then only for a very short time” (Sklar, 2015, Sect. 4. Our emphasis). Lanford’s
derivation of the Boltzmann equation is indeed valid for a very short time of the order
of 1/Nd2 (i.e., α–1). This allows only one fifth or so of the particles to collide: “for
realistic gases in standard conditions, it amounts to a few milliseconds” (Valente,
2014, p. 318). Accordingly, it is argued that one should not pay too much attention to
Lanford’s derivation for the problem of irreversibility because it does not provide us
with information on what happens in real gases.6 Be this as it may, this time validity
objection cannot be addressed to the derivation of Brownian motion, which turns out
to be valid for any time. This point is a salient feature of the derivation of Brownian
motion. The time-bound for the Boltzmann derivation comes from mathematical con-
vergence constraints (Valente, 2014, p. 332). More precisely, Lanford’s derivation of
the Boltzmann equation makes use of a formal series expansion for the solutions of
the Boltzmann equation. However, this series expansion can be applied only on this
short time interval of the order of α–1. Nevertheless, this restriction does not hold for
the derivation of Brownian motion. This major difference comes from the fact that
Brownian motion is derived from a linear Boltzmann equation instead of the usual
Boltzmann equation. As Gallagher (2019) emphasizes, “the main achievement con-
sists in deriving the linear Boltzmann equation for an arbitrarily long time (contrary
to the Lanford theorem which only holds for times of the order α−1)” (Gallagher,
2019, p. 79. Our emphasis. See also Bodineau et al., 2016, p. 509). Without entering
into technical details, the point is that the restriction to the linear Boltzmann equation
allows resorting to a mathematical property of the theory of differential equations,
the “maximum principle”, thank to which the time-validity for the convergence of the
formal series can be extended in time. This difference comes from the initial config-
urations of the hard-spheres gas in the case of the linear Boltzmann equation, where
the N–1 particles are assumed to be at the thermal equilibrium. Roughly speaking,
the mathematical constraints that prevent a large time validity for the derivation of
the Boltzmann equation can be overcome here thanks to the linear property of the
Boltzmann equation at stake for the derivation of the heat equation.

6 We could reply that this restriction is only due to mathematical convergence issues, which might be
removed in the future (Valente, 2014, p. 332). Moreover, we might stress that Lanford’s theorem is still
informative from an in-principle point of view (Valente, 2014, p. 319). This paper does not aim at addressing
this debate.
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Another related objection to the scope of Lanford’s theorem concerns the need
for infinitely rarefied gases. As Valente (2014) points out: “A more serious limitation
comes from the appeal to the Boltzmann-Grad limit. […] [D]espite the number of
its particles growing to infinity, the gas becomes infinitely rarefied. This restricts the
domain of applicability of Lanford’s result dramatically, in that it may only apply to
very diluted gases” (Valente, 2014, p. 319). Lanford’s derivation of the Boltzmann
equation indeed holds in the Boltzmann-Grad limit, which involves that the volume
occupied by the hard spheres goes to zero. Again, this derivation might thus be viewed
as non-informative regarding the appearance of irreversibility in real gases. We do not
discuss this objection either, but rather stress that the derivation of Brownian motion
does not straightforwardly face this objection.7 Although this derivation requires the
Boltzmann-Grad limit in step 1 of the derivation, it then resorts to the diffusive limit in
step 2. The use of this second limiting regime is essential to obtain Brownian motion,
and is again a distinctive feature of the derivation of Brownian motion since it avoids
the restriction to infinitely rarefied gases. In the Boltzmann-Grad limit, the quantity
Nd2 �α is constant, and thus the density of particlesNd3 tends to zero. By contrast, the
diffusive limit α→∞ involves that the gas is not rarefied at all. Since the quantity Nd2

can be interpreted as the number of collisions per unit of time, the number of collisions
tends to infinity. As Bodineau et al. claim, “one can think of α as a parameter tuning
the density of the background particles” (2016, p. 503). This second limiting regime
thus makes the derivation of Brownian motion meaningful regarding the huge number
of incontrollable collisions involved in the empirical Brownian motion.

5 How is thememory of the deterministic system lost?

This section now investigates how a memoryless process appears in this derivation.
Section 3 made clear that a random force is not assumed in the dynamics of the
Brownian particle. The loss of memory of the deterministic system has to be found
elsewhere. For that purpose, we argue that the Boltzmann-Grad limit used in step 1 of
the derivation plays a crucial role on this point. Although the derivation of Brownian
motion requires the diffusive limit, and thus that the number of collisions tends to
infinity, the loss of memory for the deterministic system appears before the use of
this limit. It occurs as soon as the Boltzmann-Grad limit is used. The authors of the
derivation clearly raise this point: “In the Boltzmann-Grad limit, the memory of the
system is lost” (Bodineau et al., 2016, p. 543). We thus make the distinction between
the appearance of Brownian motion, which requires the diffusive limit, and the loss
of memory of the deterministic system, which already occurs with the Boltzmann-
Grad limit. This section further analyses this second point. We claim that two different
concomitant reasons explain the loss of memory with the Boltzmann-Grad limit. This
limiting regime indeed comprises two mathematical limits: the limit for which the
diameter d of hard spheres tends to zero and the infinite limit for the number N of

7 In the same vein as the previous footnote, Valente replies that: “in spite of the abovementioned limitations,
the striking point about Lanford’s theorem remains, namely that, for extremely diluted gases contained in
a box, under suitable initial conditions one can derive the irreversible Boltzmann equation […]” (2014,
p. 321). Again, it is outside the scope of this paper to discuss this point further.
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particles. Each of them, and perhaps the two, play a crucial role in the loss of the
memory of the deterministic system.

5.1 Non-deterministic collisions

Let us start by examining the limit d→0. It leads to an important property concerning
the loss of memory of deterministic systems. More specifically, collisions between
two hard spheres become indeterministic in the limit where the diameter d of hard
spheres tends to zero. This property is claimed by Norton (2012) when he investigates
the Boltzmann-Grad limit8:

If two points of the limit state collide (a measure zero event), we can no longer
determine the collision outcome. We need to determine six quantities: three
velocity components for each of the two outgoing points. We have only four
equations: three for momentum conservation and one for energy conservation.
Hence, any collision has become indeterministic. Until we reach this limit state,
collision outcomes can be determined uniquely since we have the added condi-
tion that, when spheres collide, the momentum transfer is perpendicular to the
plane of contact of the two sphere’s surfaces. (2012, p. 219)

The conservation laws completely determine a system of two hard spheres that are
going to collide. As Lanford (1975) himself makes clear, “What happens in a binary
collision is completely determined by the requirements of conservation of (kinetic)
energy and linear momentum together with the condition that momentum transferred
in collisions is orthogonal to the plane of contact” (Lanford, 1975, p. 8). By contrast,
a system of two mass points is no longer determined because the extra constraint to
define a plane of contact is missing.

Let us analyse this point further. For this purpose, let us call ωij the unit vector
between the centres of the two hard spheres labelled by i and j. This vector ωij is
uniquely determined as long as the diameter d of the two spheres i and j is greater
than zero. However, by using the Boltzmann-Grad limit, and thus the limit d→0, the
unit vector ωij tends to a vector ω which is no longer uniquely determined and which
loses the memory of the directions of the particles i and j after the collision. This point
is clear when we pay attention to the passage from the vector ωij to the vector ω in
the derivation of the Boltzmann equation. Before taking the Boltzmann-Grad limit,
the description of collisions appeals to a collision integral defined as a function of
ωij, namely C(ωij). This collision integral is involved in equations that contain all the
information on the deterministic collisions of the hard spheres and are time-reversal
invariant. However, in the Boltzmann-Grad limit, this collision integral tends to C(ω),
for which the directions of particles after collisions become randomly defined. The
mathematician Golse (2014) highlights this point (with our notations):

While d is greater than 0, laws of collisions are reversible because there is a
unique vector ωij with respect to the position of particles i and j. Instead, when

8 Norton discusses the Boltzmann-Grad limit in the context on his analysis of idealizations vs. approxima-
tions. For him, this example shows that the Boltzmann-Grad limit does not support idealization: it “has a
limit system too impoverished to supply an inexact description of the finite systems” (2012, p. 16).
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d → 0, the definition of the collision integral [C(ω][…] requires the vector ω,
analogous toωij, which is now randomly and uniformly distributed on the sphere.
(Golse, 2014, p. 35)9

We find the same kind of analysis in other papers, such as in Degond, 2004 (p. 12).10

In the same vein, Valente (2014) emphasizes that when the diameter of spheres tends
to zero, “the positions qi and qj of the centers of the two particles, and hence the vector
ωij is no more defined. Therefore, the laws of collisions cannot apply in their standard
form in the Boltzmann-Grad limit” (Valente, 2014, p. 319).

To sum up, we suggest that the loss of memory of the deterministic hard-spheres
gas in the Boltzmann equation derivation might come from the fact that the vector
ωij is no longer uniquely determined in the Boltzmann-Grad limit, because of the
limit d→0. Furthermore, this vector is randomly distributed in the Boltzmann-Grad
limit when it is used to derive the Boltzmann equation, meaning that the directions of
particles after collisions are random.

5.2 Vanishing recollisions

Let us now focus on the limit N→∞ within the Boltzmann-Grad limit. We will see
that it also involves a loss of memory for the deterministic system of hard spheres. To
begin with, it is not very surprising that non-deterministic behaviour appear within a
deterministic system by considering the infinite limit for the number of particles. The
philosophical literature provides us with various examples of such cases in other con-
texts. For instance, there are infinite billiards systems (Lanford, 1975, p. 50; Earman,
1986b, p. 39), infinite masses and strings systems (Norton, 2012), or an infinite domi-
nos cascade (Norton, 2017), which reveal that indeterministic behaviours can come
from infinite deterministic systems. However, in the present case we are interested in
a specific property, viz. the loss of memory of the deterministic system, which, as we
will argue below, might arise for a specific reason compatible with the previous one
discussed in Sect. 5.1.

The appearance of memoryless behaviour within the Boltzmann-Grad limit might
be due to the loss of correlations between the hard spheres when one resorts to the limit
N→∞. Our point is that, in the Boltzmann-Grad limit, the number of recollisions
tends to zero. A recollision occurs when two hard spheres that have collided in the past
—even indirectly, “via collisions in chainwith other particles” (Gallagher, 2019, p. 77)
— collide again afterwards. The hard-spheres gas described by the Liouville equation
has recollisions. These recollisions involve correlations between the hard spheres
and thus keep the memory of the deterministic system. By contrast, the Boltzmann
equation and the linear Boltzmann equation derived with Lanford’s theorem does not
involve recollisions, which is of first importance in the mathematical works on the

9 The original notations in Golse’s paper (2014) are a for the diameter d, nkl for ωij , n for ω, and C(f) for
C(ω).
10 Golse and Degond argue that this property contributes to the appearance of irreversibility. We do not
endorse this conclusion, and it is not within the scope of this paper to discuss the problem of irreversibility.
However, we claim that this property is fully relevant to analyse the loss of memory of the deterministic
hard-spheres gas.
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derivation of the Boltzmann equation (see, e.g., Gallagher, 2019, p. 77). By using
the limit N→∞, one eliminates the situations in which particles that have collided
(directly or indirectly) in the past can collide again in the future. This property is made
clear by the authors of the derivation: “for any fixed n [with n <N], the set of initial
configurations with n particles leading to such recollisions is of vanishing measure in
the N→∞ limit” (Bodineau et al., 2018, p. 992). More precisely, a measure-theoretic
argument ensures that, in the N→∞ limit, the set of initial configurations for hard
spheres that would lead to recollisions has a measure zero. This property is crucial
from step 1 of the derivation, i.e., to prove that the Liouville equation tends to the
Boltzmann equation. We leave the mathematical considerations aside, but we point
out that, for the purpose of the present article, the loss of memory in the deterministic
hard spheres system might thus come from vanishing recollisions in the infinite limit.

Let us take stock. We have analyzed two different reasons why a hard-spheres gas
loses the memory of the deterministic system with the Boltzmann-Grad limit. First
of all, the deterministic laws of collisions can no longer apply when the diameter d
of the hard spheres goes to zero. We thus face indeterministic collisions. Moreover,
the recollisions disappear when the number N of particles goes to infinity. Particles
are thus uncorrelated. We do not see why one or the other reason should be ruled
out. Moreover, nothing forces us to choose between the two limits since they are both
required in the Boltzmann-Grad limit. Therefore, although we have clarified the role
of the Boltzmann-Grad limit in the loss of memory of the deterministic system, we
are not in a position to take a stance in favour of one option rather than the other one.

6 Two derivations of Brownianmotion

Let us wrap up. We first introduced the derivation of Brownian motion with the
Langevin equation and then discussed in more detail its derivation based on Lan-
ford’s theorem. This section discusses certain salient upshots regarding these two
derivations.

First, it is noteworthy that the two derivations have different goals and come from
different scientific communities. The derivation with the Langevin equation stems
from a physicist’s perspective. It consists of building a dynamical model that accounts
for the mean-squared displacement formula of a particle in the fluid. The second
derivation comes from a mathematician’s perspective. It aims to show how the deter-
ministic dynamical equations at the microscopic scale, viz. Hamiltonian equations of
a hard-spheres gas, are connected with differential equations at higher scales, viz. the
equations of the kinetic theory of gases and the equation of diffusion of fluid dynamics.
The mathematical techniques used in the two derivations are very specific for each of
the two fields. Although elementary algebraic manipulations are required for the first
one, Lanford’s theorem, series expansions and several convergence proofs techniques
are used for the second one. All in all, the first derivation is framed within a physics
modelling activity, whereas the second one is proof-oriented.

Relatedly, as we mentioned above, the two derivations raise different philosophical
issues. The derivation of Brownian motion with the Langevin equation raises the rep-
resentation problem, i.e., the problem of knowing whymemoryless motion adequately
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describes the behaviour of a particle in a fluid. This answer to this question appeals to
identifying physical ingredients, such as “microphysical facts” (Luczak, 2016, p. 407)
that justify this representation. By contrast, the derivation of Brownian motion with
Lanford’s theorem raises the question of how memoryless behaviour can be obtained
from a deterministic system, which we called the derivation problem. The answer
to this question appeals to clarifying the articulation between differential equations
that describe a hard-spheres gas at different scales, which mostly requires deploying
mathematical techniques, making use of different mathematical frameworks (e.g., the
BBGKY hierarchy and the Boltzmann hierarchy), and providing convergence proofs,
without invoking physical ingredients.

Secondly, the two derivations involve different idealizations according to their
respective aims. The Langevin equation idealizes the effects of many incontrollable
collisions of molecules as a random force in the dynamical model. By contrast, there
is no random force assumed in Bodineau et al.’s derivation. However, the derivation
requires other idealizations, and in particular, the Boltzmann-Grad limit and the dif-
fusive limit, with which the number of particles tends to infinity, their diameter tends
to zero, and the number of collisions per unit of time tends to infinity. These idealiza-
tions allow us to connect the microscopic description of the gas (with the Hamiltonian
equations) to the mesoscopic one (with the linear Boltzmann equation), and finally, to
the macroscopic one (with the heat equation).

Thirdly, despite their respective differences, we maintain that the two derivations
support a common view regarding the appearance of memoryless behaviour. Luczak
(2016, p. 407) argues for a “microphysical fact” that would justify using the idealized
random force in the Langevin equation. It is the fact that “at all times (except perhaps
initially), the velocity of any incoming colliding fluid molecule and the incoming
velocity of the Brownian particle are approximately probabilistically independent”
(2016, p. 406). For him, “it seems reasonable to think, as themicrophysical fact intends
to suggest, that any correlations that form between the velocities of colliding particles
wash out incredibly quickly” (ibid., p. 407). The huge number of collisions in the fluid
would make it very unlikely that correlations between molecules are maintained in
time. As we have seen in Sect. 5, the derivation of Brownian motion from Lanford’s
theorem supports this claim from another perspective. The correlations between the
hard spheres of the gas are lost with the Boltzmann-Grad limit, either because the
collisions in the gas become non-uniquely determined or because recollisions between
particles vanish (or because of both reasons). Accordingly, the crucial idealization
used in the Langevin equation can be connected to the crucial idealization used in
the derivation of Brownian motion with Lanford’s theorem, which both stem from the
loss of correlations between particles of the deterministic system. This is an interesting
case for which mathematics and physics, resorting to very different techniques and
following very different scientific aims, still offer, at some point, a common picture
of physical phenomena.
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7 Conclusion

A fundamental question for statistical and thermal physics is how Brownian motion
can be derived from a deterministic classical system. This paper tackles this problem
by examining its rigorous derivation from the dynamics of a hard-spheres gas, which
is claimed to be “the very first result describing the Brownian motion as the limit of a
deterministic classical system of interacting particles” (Bodineau et al., 2016, p. 496).
We analysed this derivation, which is based on Lanford’s theorem and appeals to
the mathematical tools used to rigorously derive the Boltzmann equation and the
H-theorem. We first show that some limitations in this rigorous derivation of the
Boltzmann equation (e.g., its short time validity) do not apply in the case of the
derivation of Brownian motion. We then examined the role of the Boltzmann-Grad
limit in the loss of memory of the deterministic system of a hard-spheres gas. In
particular, in this limit, particles that have already collided do not collide again. We
thus connected this property with the usual way to derive the Brownian motion with
the Langevin equation by discussing the justifications for the idealized random force,
which also appeal to the loss of correlations of the fluid molecules. We highlight that
these two derivations are very different, both from the standpoint of the scientific
communities (physics and mathematics) but also with respect to their scientific aims.
However, these works show how such radically different approaches to Brownian
motion can contribute to offering a common and complementary picture of it.
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