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Abstract
A widespread view in physics holds that the implementation of time reversal in stan-
dard quantum mechanics must be given by an anti-unitary operator. In foundations
and philosophy of physics, however, there has been some discussion about the con-
ceptual grounds of this orthodoxy, largely relying on either its obviousness or its
mathematical-physical virtues. My aim in this paper is to substantively change the
traditional structure of the debate by highlighting the philosophical commitments
underlying the orthodoxy. I argue that the persuasive force of the orthodoxy can ben-
efit from a relational metaphysics of time and a by-stipulation view on symmetries.
Within such philosophical background, I submit, the orthodoxy of time reversal in
standard quantum mechanics could find a fertile terrain to lay the groundwork for a
more thorough conceptual justification.

Keywords Quantum mechanics · Time reversal · Anti-unitarity · Relationalism ·
Symmetry

1 Introduction

What grounds the claim that a quantum physical system has been genuinely time
reversed? Answers to this question fall in either of two sides. On the one hand, the
overarching attitude (the orthodoxy, henceforth) points out that in order to reverse the
dynamical evolution of a quantum system, an anti-unitary time-reversal operator must
be given. On the other hand, some philosophers have lately argued that such orthodoxy
might be challenged (Albert, 2000; Callender, 2000; Lopez, 2019), which has paved
the way for non-standard representations of time reversal in quantummechanics (QM,
henceforth), in general, in terms of a unitary implementation.
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In one way or another, a thorough response to the opening question amounts to
spelling the notion of time reversal out. This has led to a reinforcement of the orthodoxy
by providing a precisemathematical tailoring of the implementation of time reversal as
well as a more attentive philosophical refinement of its foundations (see, for instance,
Sachs, 1987; Earman, 2002; Roberts, 2017, 2018). The orthodoxy has generally been
defended as the only view that is philosophically and physically viable, centering its
defense in showing that a non-standard implementation of time reversal (i.e., that
provided by a unitary time-reversal operator) fails to deliver a workable mathematical
transformation as well as a conceptually defensible notion of time reversal. So, the
dispute has beenmostly set in terms of a unitary versus an anti-unitary implementation
of time reversal in QM, where the orthodoxy champions the latter, while non-standard
views (or ‘heretic’ views), the former.

Yet, I believe that the dispute between a unitary versus an anti-unitary implementa-
tion of time reversal is just the top of the iceberg in a series of philosophical andphysical
decisions that have to be made in order to conceptualize the idea of time reversal and
to formally represent it. The bone of contention is not whether an anti-unitary imple-
mentation more genuinely represents time reversal simpliciter, but which concept of
time reversal it intends to model mathematically, which are its philosophical assump-
tions, and whether they are tenable. In this sense, much of the persuasive force of the
orthodoxy actually depends upon a philosophical background within which the anti-
unitary implementation of time reversal makes sense more naturally. To thoroughly
comprehend the nature of time reversal in QM is to bring to light such background.

The aim of this paper is to substantively change the traditional structure of the
debate by bringing to the forefront the philosophical background that more straight-
forwardly can support the orthodoxy. My approach to the debate seeks to identify such
background and follow the trail of the series of assumptions that make the orthodoxy
a defensible and attractive approach. This would not only strengthen its legitimacy
but would also provide a more accurate picture of how complex the notion of time
reversal is. Part of this complexity consists in the many unnoticed substantial philo-
sophical assumptions that form the conceptual environment within which it has been
developed. To begin, I will distinguish three steps in building up the notion of time
reversal, both conceptually and formally.

1. The mathematical tailoring, whereby the anti-unitary implementation comes out
as the only fair modeling of time reversing a quantum system.

2. The physical justification, which defends the anti-unitary implementation by stip-
ulating the physical requirements for time reversing a quantum system. This step
sets a physics-based concept of time reversal primarily grounded in the idea of
‘backtracking’.

3. The philosophical background, which lays the philosophical groundwork for such
a physics-based concept of time reversal. This step justifies why the concept of
time reversal is to be understood as the orthodoxy says it must be understood.

I will next show that there are two major arguments that physically support the
orthodox understanding of time reversal in terms of backtracking, namely, (a) the
two-time-evolution argument (or Wigner’s general criterion for time reversal), and (b)
the Hamiltonian’s spectrum argument. The central claim of this article comes in after
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the physical justification is presented. I will argue that the philosophical background
primarily consists in responding the two following questions:

• What do we mean by time?
• What status do we suppose that symmetries have in physics?

Neither of these questions admits a univocal answer. The first question opens a meta-
physical dimension in our understanding of time reversal. At this point, I will argue
that temporal relationalism is a friendly metaphysical environment for the orthodoxy,
motivating a functional reductionist approach to time reversal, whereby time reversal
ought to be functionally reduced to motion reversal. The second question concerns
whether time-reversal symmetry is to be conceived either as a by-stipulation or a
by-discovery symmetry. I will argue that both the physical justification and the math-
ematical tailoring of the orthodoxy can conceptually benefit from taking time-reversal
invariance as a by-stipulation symmetry.

The upshot of the paper is, hence, that the orthodoxy should not be embraced
because it is self-evident or analytically true, but because its persuasive force comes
from a philosophical background that articulates extraordinarily well with the physics
and the mathematics. This claim might be seen as a double-edged sword, since the
philosophical background could now be challenged. Even though it might be seen as a
more thorough justification of the orthodoxy, it might be also welcomed among those
holding a heretic attitude, causing in the sameproportion somediscomfort among those
defending the orthodoxy. It must be made clear, nonetheless, that it is not my intention
to address this controversy here. Although I will occasionally bring the heretic view up
as a counterpoint, I will align myself with the orthodoxy without putting it much into
question. The philosophical exploration I pursue here homes in on why it is reasonable
to side the orthodoxy, instead of showing it wrongheaded.

The structure of the article is as follows. In Sect. 2, Iwill begin by briefly introducing
the mathematical tailoring of the orthodoxy of time reversal in QM. I will also show
here how a non-standard account can come up. In Sect. 3, I will expose in detail the two
major arguments that physically supports the orthodoxy. In Sect. 4, I will provide the
main arguments of the paper by offering the philosophical background the orthodoxy
is framed within. It chiefly consists of two pillars –a metaphysical pillar (Sect. 4.1)
and a heuristic-epistemic one (Sect. 4.2). Finally, concluding remarks.

2 Themathematical tailoring of the orthodoxy

In the Hamiltonian formulation of classical mechanics, the main features of the time-
reversal transformation stem from an analysis of the physics of the simplest cases. So,
the starting point is typically a particle moving on a line in a conservative field force.
The state of the particle is given by two variables: the generalized coordinates qi and
the conjugate momenta pi . A trajectory in the phase space will be described through
a set of functions qi (t), pi (t), which is given by the Hamiltonian:

H = p2

2m
+ V (x) (1)
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As V (x) is constant and independent of time, it plays no role, and we can disregard
it. In their most general expression, the Hamilton’s equations follow from a system’s
Hamiltonian as function of the qi s and pi s

ṗi = −∂H

∂qi
; q̇i = ∂H

∂ pi
(2)

in which way can the time-reversal transformation be implemented? The answer
mostly depends on what time reversing a classical system means, conceptually. Even
though there would be much to say here, the most common answer, and one that is
quite easy to grasp, is that of a film played backward. So, by time reversing a classical
system we mean to generate a transformation that retraces the trajectory of a system
This is the guiding concept that we want to formally implement. Such an implementa-
tion is what I will call the ‘mathematical tailoring’, that is, the process whereby such a
concept is formallymodeled within a theory. To put it more accurately, it is the process
whereby a mathematical representation is given the right sort of properties to capture
what we conceptually mean by ‘time reversing’ within a physical theory. Canoni-
cally, the mathematical tailoring of time reversal in Hamiltonian classical mechanics
involves a transformation T such that reparametrizes the time coordinate, changes the
sign of the pi s, and leaves the qi s unchanged.

T : t → −t; pi → −pi ; qi → qi (3)

in consequence, T transforms the set of all smooth curves (q(t), p(t)) through phase
space. This transformation is directly related to a symmetry property of the Hamilto-
nian

H(qi , pi ) = H(qi ,−pi ) (4)

If a system’s Hamiltonian satisfies (4), then the equations of motion are invariant under
T .

The shift to QM is not straightforward and requires some further formal work.
Even though some features of time reversal will remain (or, better, will be required to
remain), others will significantly change. The mathematical tailoring of the quantum
time-reversal operator, hence, demands a series of assumptions and techniques that
need to be detailed carefully. For this purpose, I will follow the traditional approach
to the topic,1 though my intention is to be crystal clear about the assumptions and
the rationale upon which the mathematical tailoring relies. The justification of such
assumptions is partially mathematical, but also physical and, ultimately, philosophi-
cal. I will exclusively focus on the mathematical aspects here. The physical and the
philosophical aspects will have to wait until the next sections.

1 I will be mainly following Sakurai and Napolitano (2011, pp. 289–293), Ballentine (1998, pp. 380–381),
Gasiorowicz (1966, pp. 25–30) Gibson and Pollard (1978, pp. 179–180). I will also introduce some insights
from Bigi and Sanda (2016, pp. 27–30), Jauch and Rohrlich (1959, pp. 88–91), Sachs (1987, pp. 32–36),
and Messiah (1966, pp. 664–674).
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To begin, most of the introductions to the mathematical tailoring of time reversal
in QM resort on, at least, three interrelated assumptions. Let us use � to denote a
general, still-unspecified time-reversal transformation.

A1 The Hamiltonian of the system is required to remain invariant under time
reversal, �H�−1 = H (see Ballentine, 1998, p. 380).

A2 If the time evolution of a quantum state obeys time-reversal symmetry, then
it is expected that if the state |α, t is a solution of the Schrödinger equation, then
the time-reversed state �|α, t will also be a solution (Ballentine, 1998, p. 280;
Sakurai andNapolitano 2011, p. 290). This alsomeans that the�-transformation
must be such that the time-reversed state belongs to the same unitary function
space (Sachs, 1987, p. 36).
A3 The time-reversal transformation is required to generate a reversal of motion
(Bigi and Sanda 2016, p. 27), which imposes that� fits with the correspondence
principles (Sachs, 1987, p. 34).

Any operator thatmeets these requirementswill be a good candidate for a time-reversal
transformation in QM. However, in order to give the right form of the transformation,
we need to impose some further structure. It is worth stressing that the explicit form
of � will depend upon the basis of the Hilbert space used to represent the state, so it
must be considered separately in each case. To keep things as simple as possible, I will
circumscribe myself to the coordinate representation, but I will occasionally introduce
more general remarks when needed.

One of the most intuitive features that our time-reversal transformation should
possess is that it transforms the time coordinate as t → −t , which might fairly be
seen as representing an intuitive inversion of the direction of time. However, in QM
the association between such a transformation and the inversion of the direction of
time is not so straightforward. To see why let us stick to this intuition to characterize
� and see how far it takes us. Suppose a quantum state in the position basis, ψ(x, t),
whose evolution is given by the Schrödinger equation:

Hψ(x, t) = i�
δ

δt
ψ(x, t) (5)

Suppose, too, that time-reversal is implemented by an operator such that

� : t → −t (6)

� : x → x

If � is a well-behaved time-reversal transformation, then it must satisfy the require-
ments A1–A3. To start, it transforms the terms of the equation as follows:

�Hψ(x, t) = �i�
δ

δt
ψ(x, t) (7)
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� leaves the i and � unchanged. The operator δ
δt will change sign under�, � δ

δt �
−1 =

− δ
δt , since � : t → −t . The wavefunction ψ(x, t) changes to ψ

′
(x, t) �. These

transformations yield the following equation:

�H�−1ψ
′
(x, t) = −i�

δ

δt
ψ

′
(x,−t) (8)

Now, we have to figure out how the Hamiltonian transforms under �. Given A2,
Eq. (8) should be symmetric, which formally amounts to rendering both sides of the
equation equal. Given A1, ψ

′
must also be a solution of the Schrödinger equation.

Both requirements, then, need that the Hamiltonian transforms as follows:

�H�−1 = −H (9)

This suggests that the Hamiltonian should transform its sign under�. In the literature,
there are at least two ways to motivate the transformation [Eq. (9)]. One of them has
been given by Craig Callender (2000). According to him, the Hamiltonian is a first-
time derivative in the Schrödinger equation (in its simplest form), so it is natural (or
logical) that transforms its sign under time reversal.2 The other answer is the one given
in the previous paragraph: in order to keep the equation invariant (i.e., requirement
A2) the Hamiltonian should change sign under time reversal [see Gasiorowicz (1966,
p. 27)], so that both sides on the Eq. (8) have negative signs.

So far, this is formally correct [for amore thorough proof see Sakurai (2011, p. 291),
also, Bigi and Sanda (2016, p. 27)]. But if time-reversal symmetry is to make physical
sense while accomplishing requirements A1–A3, Eqs. (8) and (9) are unacceptable.
The crucial problem here is that they imply that� changes the sign of the Hamiltonian.
And these minus signs on both sides of Eq. (8) necessarily appeared in there because
we started off by assuming that time reversal was represented by �, which, when
looked closely, is unitary and linear. So, the conclusion we have reached can be put in
the following conditional form: if time-reversal symmetry is to make physical sense
while accomplishing requirements A1–A3, then � cannot be unitary (Sakurai 2011,
p. 291). Let us analyze the argument a bit more carefully.

Basically, the argument is a reductio ad absurdum. It begins by assuming that �

exists and satisfies A1–A3. If � is only given by Eq. (6), then it is unitary and linear.
If � is unitary and linear, then we are allowed to eliminate any c-number:

−i H�|〉 = �i H |〉 → −H�|〉 = �H |〉 (10)

Consider now an eigenstate | of the Hamiltonian with eigenvalue Eα . The
time-reversed state of | would be �|. Plugging this into Eq. (10), we obtain

H�|〉 = −�H |〉 = (−Eα)�|〉 (11)

2 This argument is troublesome because it somehow assumes that the Schrödinger equation defines the
Hamiltonian, when in general it “is defined independently as an operator that acts on the x dependence of
a state function” [see Laue (1996) for discussion].
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This means that �|〉 is an eigenstate of the Hamiltonian with eigenvalue −Eα , that is,
with negative energies. This is problematic for many reasons, but the most important
one (which Iwill develop a bit further in the next section) is that it explicitly violatesA1,
conforming to which the Hamiltonian is required to remain bounded-from-below but
unbounded-from-above after the transformation. So, no time-reversal transformation
should change the Hamiltonian’s spectrum from positive to negative. So, the result
that has been reached by assuming that � exists is unacceptable (or “nonsensical”,
to borrow Sakurai’s wording). To put it differently, what this proof shows is that
there exists no unitary time-reversal transformation that satisfies the requirements I
numbered previously (see Jauchs and Rohrlich 1959, p. 88), which strongly suggests
that time reversal must be implemented by an operator that does not generate Eqs. (8)
and (9).

What to do then? We need to formally redefine the transformation that is to imple-
ment time reversal. We can do it by defining an anti-unitary operator, T , which can
be easily done by involving complex conjugation KzK = z∗, where z is a complex
number and z* its complex conjugate.3 If we come back to Eq. (7), but we apply T ,
we see that the right-hand side of the equation becomes

T Hψ(x, t) = T ihT δ

δt
T ψ(x, t)

= T Hψ(x, t) = ih
δ

δt
ψ∗(x,−t)

(12)

T changes the sign of the operator δ
δt as � did, T δ

δt T −1 = − δ
δt . But now T does

transform the sign of i, since it is anti-unitary, T iT −1 = −i . This eliminates the
minus sign on the right side of the equation. Also, T takes the complex conjugate over
the wavefunction, T : ψ(x, t)→ ψ∗(x,−t). We may notice now that, by simplifying
and cancelling the is and the kets, the Eq. (12) suggests that the Hamiltonian should
transform as

T HT −1 = H (13)

To satisfy A1 and A2. Now we are getting somewhere, since Eq. (13) leaves the time-
reversed Hamiltonian bounded-from-below (all its possible eigenvalues will be Ei 〉0).
And this makes perfectly physical sense.

This is, basically, the core of the mathematical tailoring of time reversal in QM,
which comes down to the fact that it must be implemented by an antiunitary operator.
This might be bit a surprise since we are accustomed to associating unitary transfor-
mations with physically interesting symmetry transformations. This is clearly not the
case here where the rationale has led us to an antiunitary time-reversal transforma-
tion. But the reasons are quite strong. On the one hand, the preservation of transition
probabilities allows an antiunitary operator to implement a symmetry transformation.
On the other, if we want time reversal to be consistent with the kinematics and the

3 I am borrowing the notation ‘*’ to refer to complex conjugation from Ballentine (1998), Sachs (1987)
and Gibson and Pollard (1976).
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dynamics of non-relativistic quantum mechanics, it seems we are forced to opt for an
antiunitary implementation (Bigi and Sanda 2016, p. 27).

To complete the section, let me review the requirements A1–A3 for T . As I men-
tioned previously, the explicit form will depend ultimately on the basis of the Hilbert
space, but if we express the Schrödinger equation in the coordinate basis as in Eq. (5),
we deduce from Eqs. (12) and (13) that T delivers the following (time-reversed)
Schrödinger equation

Hψ∗(x,−t) = ih
δ

δt
ψ∗(x,−t) (14)

Which not only satisfies A1 (as previously shown), but also A2. If we look closely at
T in the coordinate representation, we will find that T is just the complex conjugation
for the general equation of a one-particle structureless system [see Ballentine (1998,
p. 381), for a proof, see Sachs (1987, p. 39) and Bigi and Sanda (2016, p. 28)] plus a
re-parametrization of the t coordinate.

T = K0 (15)

Finally, the antiunitary operator T also satisfies A3 since it leads to inverting the sign
of the momentum operator and to leaving the position operator unchanged

T PT −1 = −P

T XT −1 = X
(16)

To sumup, themathematical tailoring of time reversal inQM is guided by the preserva-
tion of some classical features in the transformation, but also by satisfying some formal
constraints (A1-A3) that make time reversal formally well-behaved in QM. Despite the
soundness of the argumentation for an anti-unitary implementation of time reversal,
some philosophers have casted some doubts on it. This “heretic” attitude basically
comes down to a positive defense of a “more natural” way to formally represent time
reversal in physics (see Albert, 2000; Callender, 2000; Costa de Beauregard, 1980
also defends such a view in quantum field theory),4 which would consist in giving a
unitary implementation, like � in Eqs. (6), (7) and (8).

Even though this attitude might seem outrageously absurd from the formal point of
view, I think it should be rightly framed: I do not think that the heretic attitude holds
that there is some formal argument to back its thesis, or that there is some formal
flaw in the orthodox approach. What I believe, and it is a fair point that ought to
be seriously considered, is that its defenders rather want to move the discussion to a
more conceptual terrain by claiming that a non-standard, heretic account would better
capture the idea of time reversal. What they put into question, in brief, is the binding
between the concept of time reversal and its orthodox implementation –even though T
is a well-behaved transformation, it does not implement time reversal, but something

4 Beauregard refers to “Racah’s operator” as opposed to Wigner’s (Costa de Beuregard 1980, p. 524 and
further references therein).
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different. In fact, to a great extent, the persuasive force of the orthodoxy is grounded
in accepting what it means by ‘time reversal’. What I submit is that the assumptions
that the orthodoxy imposes on an implementation of time reversal (like A1–A3) seeks
to define time reversal physically and conceptually in terms of motion reversal, that
is, in terms of retracing a system’s state to the original state. If we now accept this
core idea, then the orthodoxy succeeds not simply because it provides the right sort of
mathematical tailoring, but because such a core idea (once accepted) can successfully
justify the mathematical tailoring on more solid grounds.

My proposal for the rest is to view the orthodoxy as a chain of formal, physical
and philosophical assumptions that articulate very well to yield a coherent view of
time reversal. The mathematical tailoring is just the last link in the chain, which
formally adapts, shapes, and implements a particular conceptualization of time reversal
already at work. This conceptualization consists in construing time reversal in terms
of backtracking (or motion reversal). The mathematical tailoring is sparklingly clean,
providing good and sound reasons for time reversal to be anti-unitary. But, if we do
not want to take this as self-evident or analytically true, we ought to provide a more
careful justification of its assumptions along with the justification of why time reversal
should be construed as motion reversal.

3 The physical justification of the orthodoxy

We know that the orthodox understanding of time reversal seems somehow to be
guided by the idea of backtracking. Yet, it is still unclear what this means exactly
in physical terms within QM, and why the concept of time reversal must be con-
ceived as the orthodoxy claims it must be. Though standard textbooks remain largely
silent about these questions, literature on foundations and philosophy of physics has
addressed them in some detail. Answers to these questions amounts to justifying the
orthodoxmathematical tailoring as well as its binding to the idea of backtracking. This
justificatory task has probably its origins in the work of Eugene Wigner (1932), and
it has been re-elaborated in the last decades [see, for instance, Sachs (1987), Earman
(2002), and Roberts (2017)].

The justificatory task is not simple, though: in general, the justification proceeds in
two steps. The first consists of at least two arguments aiming to show not only how the
idea of time reversal as backtracking should be physically understood, but also that
the mathematical tailoring as presented in Sect. 2 is the right, and the only possible,
implementation. This is the physical justification and I will develop it along this
section. The second step, which, to the best of my knowledge, has not been sufficiently
recognized, consists in the philosophical reasons we might have to conceive time
reversal as backtracking. This is what I call the philosophical background and I will
address it in Sect. 4.

Setting aside any classically rooted intuition on time reversal as backtracking, the
details of what we physically mean by time reversal must be given within a theoretical
framework. There are at least two key arguments upholding the orthodoxy,5 namely:

5 It can be pointed out that there is a third key argument, to wit, that momentum changes its sign under time
reversal. Certainly, this is one of the most salient features of the time reversal implementation in classical
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• The ‘two time-evolution’ argument (or Wigner’s general criterion for time reversal)
• The Hamilton’s spectrum argument

3.1 The ‘two-time-evolution’ argument (orWigner’s general criterion
for time-reversal)

One of the distinctive properties of the time-reversal operator in general is that it is an
involution. Mathematically, this means that when time reversal is applied twice, it is
equal to the identity. Naturally, this is met by any operator that satisfies X2 = I , but
this is not enough to get to the idea of backtracking a system’s state to its initial state.
The locus classicus of this requirement is the work of Eugene Wigner. In his 1932
book,Group Theory and its Application to the QuantumMechanics of Atomic Spectra,
Wigner imposes a general criterion for time reversal stating that it is a transformation
such that, when the following operations are sequentially performed, we obtain the
identity. Informally,

time displacement by t × time reversal × time displacement byt × time reversal = I

and more formally,

T
[
U�t2T

(
U�t1s0

)] = s0. (17)

where s0 is the initial state, and �t1 = t1 − t2 = t2 − t1 = �t2
Wigner’s general criterion for a time reversal implementation evidently supposes

further structure than a simple involution –the time reversal operator is expected to
obtain the original state we startedwith after producing a time evolutionwith t increas-
ing and by producing a (formally identical) second time evolution with t decreasing.
In other words, the time-reversal operator is not only required to give us the same
initial state when applied twice, but also to give us the same initial state after tempo-
rally evolving the system twice. This is a stronger requirement since the time-reversal
transformation is expected to carry out the right sort of transformations to, at least,
generate a time evolution with t decreasing. This twofold time evolution is not triv-
ial and defines what a time-reversal transformation is. To put it into a slogan –to be
a time-reversal operator is to be an operator that yields the identity after two-time
evolutions.

Footnote 5 continued
mechanics. For the most part though, the reasons why the sign of momentum should change under time
reversal in QM follow the lines of the other two arguments. In the particular case of momentum, reasons
swing back and forth from preserving certain smooth continuity between the classical mechanics and QM
to achieving the representation of motion and reversal and appealing to its obviousness. Some authors just
claim that the transformation follows by definition (Messiah, 1966, p. 667; Sachs, 1987; Ballentine, 1998,
pp. 377–378). A more philosophically refined discussion can be found in Callender (2000) and Roberts
(2018). In addition, it can be argued that the transformation of momentum plays a paramount role in the
semi-classical limit, mainly in relation to Ehrenfest’s theorem.However, this argument, and various versions
thereof, does not add anything substantive to the point I want to make in this paper, so I will set it aside.
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Wigner additionally establishes that any candidate for a time-reversal transforma-
tion has to preserve transition probabilities.

|〈ψ |ϕ〉| = |〈T ψ |T ϕ〉| (18)

This requirement intuitively makes senses since, if it were not the case, the second
time evolution would no longer be possible. More specifically, Wigner postulates
that the transition probabilities between two states have an invariant physical sense,
so any symmetry should preserve them. Therefore, if time reversal is a symmetry,
it must preserve transition probabilities. Yet, this justification only follows from the
invariance under time reversal, and not from the time-reversal transformation itself.
That is, if a symmetry holds, then transition probabilities must be preserved by the
symmetry transformation. Clearly, this does not tell us whether a generic time reversal
transformation should always preserve transitions probabilities.6

How does all this relate to an anti-unitary representation of time reversal in QM?
The famous Wigner’s theorem states that a symmetry transformation is represented
either by a unitary or an anti-unitary operator. As the anti-unitary operator is the only
one that satisfactorily meets the general criterion [Eq. (16)] and preserves transition
probabilities, the unitary operator is discarded. However, it has been pointed out that
Wigner’s proof of his theorem was “incomplete” [see Chevalier (2007, p. 429)] and
that a correct proof has been given by Uhlhorn in 1962, who also generalizes the
condition of preserving the probabilities. In a nutshell, Uhlhorn’s proof replaces the
preservation of the transition probabilities by the preservation of orthogonality: any
pair of orthogonal states 〈ψ, ϕ〉 = 0 remains orthogonal under a symmetry transfor-
mation S, 〈Sψ, Sϕ〉 = 0. It follows from this that 〈ψ, ϕ〉 = 〈Sψ, Sϕ〉 [see Chevalier
(2007), Sect. 5, for a proof of Uhlhorn’s theorem]. For Chevalier, Uhlhorn general-
izes Wigner’s proof as he shows that a symmetry transformation preserves the logical
structure of a quantum theory, as Uhlhorn himself states in the Introduction of his
book.

Following the same logic as before, if time-reversal invariance holds, then any
orthogonal pair of states remains orthogonal under time reversal, that is, if 〈ψ, ϕ〉 = 0,
then 〈Tψ, Tϕ〉 = 0. But, once again, the justification hinges upon what we should
expect from time-reversal invariance. Bryan Roberts (2017) notes that Uhlhorn’s the-
orem provides a general answer to why transition probabilities must be preserved
under time reversal and advances a more convincing answer for why the time-reversal
transformation ought to preserve transition probabilities. His argument is quite sim-
ple: orthogonality has nothing to do with time reversal since it simply relates to “what
is possible in an experimental outcome, independently of their time development”
(Roberts, 2017, p. 321). So, why should we expect that something completely unre-
lated to time (as two states being mutually exclusive) be modified by time reversal?

The argument is interesting because it concerns what we should expect from a
time-reversal transformation independently of whether it yields an invariance or not.

6 One could argue that a general time-reversal transformation will never change the sign of the position
operator, because it is not the right sort of transformation that time reversal is expected to carry out. I do
not find any equally stronger argument for transition probabilities, though Uhlhorn’s theorem could, after
some assumptions, do the work (see below).

123



14278 Synthese (2021) 199:14267–14292

It is worth bearing in mind that there is yet an assumption here: such implementation
of time reversal is supposed to transform quantum–mechanical states into quantum
mechanical states. Even though it is true that orthogonality has nothing to do with time
reversal, it does have to do with the notion of state. The time-reversal transformation
is then required to preserve the notion of quantum–mechanical state.7

To sum up the “two-evolution-based argument”. The formal implementation of
time reversal might take two forms: either unitary or anti-unitary. Naturally, we have
a wide panoply of transformations that fills the bill. So, we need to narrow the possi-
bilities down. Wigner’s general criterion is a first step toward such a direction, since
it states that whatever the time reversal comes to be, it is a transformation such that it
delivers the state we started with after a twofold application and two-time evolutions.
As a subsidiary requirement, it is demanded to preserve orthogonality, and thereby,
transition probabilities.

3.2 The Hamiltonian’s spectrum argument

In Sect. 2, I mentioned that one of the main virtues of the anti-unitary representation
of time reversal is that it leaves the Hamiltonian invariant, T HT −1 = H. I will now
expand on this requirement. As pointed out above, this requirement is essential for
upholding the orthodoxy [in addition to references in Sect. 2, see also Sachs (1987,
p. 36)]. As the Hamiltonian represents the energy of the system, its spectrum is sup-
posed to be always positive. Yet, it was shown that a unitary and linear implementation
of time reversal (� in Sect. 2) should bring about a minus sign on the right side of
Eq. (8), in order to accomplish A1–A3. This led us to the following: if |α 〉 is an eigen-
state of the Hamiltonian with energy E , then the temporally reversed eigenstate �|α 〉
should involve negative energies, −Eα , that is, the quantum state would evolve back-
wards displaying negative energies.8 The upshot was that if this is so, the time-reversal

7 From a philosophical viewpoint, I think it is not trivial. Even though most symmetries physicists are
interested in are required at minimum to transform states into states, we could want to leave some room for
metaphysically possible scenarios in which some transformation fails to transform a state into a physical
state. Primitivistswith respect to time could argue that time is fundamental and defines not only the dynamics
of a physical theory, but also is constitutive of its kinematics. Consider, for instance, Maudlin’s argument
about doppelgängers and mental states (Maudlin 2002: 271): if we suppose that time reversal acts in such
a way that the time-reversed mental states are still mental states, we are unjustifiably assuming that the
direction of time does not play any role in making a mental state what it is. How do we know that when
reversing time, we will still end up with something like mental states, and not something completely
different? An analogous argument, I think, can be run here: Why should the substantivalist assume that
time does not play a role in defining what is a physical state? Does the requirement of preserving the notion
of state when time is reversed not discard, from the outset, the notion of time as fundamental? I am not
defending this viewpoint here, but I just want to draw the attention towards the non-obviousness of the
assumption from a metaphysical viewpoint.
8 It is worth clarifying that the predicates “positive” or “negative” for the energy spectrum, or “unbounded
from below/from above” for Hamiltonians are conventional. So, the argument could not hinge upon which
predicate we adopt to describe the system properly. The problem is not exactly whether the Hamiltonian
is unbounded from below. The problem is that if we start with a Hamiltonian unbounded from above (but
bounded from below) and end up with a Hamiltonian unbounded from below (but bounded from above)
after a transformation. A specific Hamiltonian must be bounded (either from above or from below), and
the problem will come up if one adopts a transformation that turns a Hamiltonian unbounded from above
(bounded from below) into a Hamiltonian unbounded from below (bounded from above).
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transformation does notmake sense inQM.But we believe that the time-reversal trans-
formation makes sense in QM. Therefore, � cannot exist. It is clear that the argument
hinges upon the relation between a meaningful notion of time reversal, the spectrum
condition, and the Wigner’s general criterion.

The connection is relatively straightforward. If Hamiltonians must be always
bounded from below, the second time translation with t decreasing must be gener-
ated by a bounded-from-below Hamiltonian. Otherwise, the time translation would
be “physically meaningless” since it would involve eigenstates of the Hamiltonian
whose spectrum is unbounded from below. Putting it drastically, unbounded-from-
below Hamiltonians must not even be considered as quantum-mechanics systems.
Therefore, the implementation of time reversal is demanded not only to generate a
second time evolution with t decreasing, but also to generate a quantum mechanical
second time evolution, which would be generated by a time-reversed H . Otherwise,
Wigner’s general criterion could not be applied since the second time translation could
never be brought about. It is worth noting how this argument strengthens not only A1
in the mathematical tailoring, but also A2 and A3 –the �-transformation could never
transform solutions of the Schrödinger equation into time-reversed solutions, and it
will thereby systematically fail to generate motion reversal. If we implement time
reversal through some operator like �, it follows that the time-reversal transforma-
tion does not make physical sense This just stresses the necessity of relying on an
anti-unitary representation of time reversal.

Roberts (2017) also offers a well-grounded argument for the requirement that the
Hamiltonian’s spectrummust remain invariant under time reversal.Hebegins by claim-
ing that “all known Hamiltonians describing realistic quantum systems are bounded
from below, which we will express by choosing a lower bound of 0 ≤ (ψ, Hψ)”
(2017, p. 326). This can be empirically justified, at least partially: negative energies
would turn matter unstable, but as matter looks reasonably stable, we would have good
reasons to suppose that either negative energies do not exist (at least, within QM), or
they remain undetected. This fact seems to be promoted to a general condition that
a time-reversal operator must meet for its acceptability, meaning that 〈ψ, Hψ〉 and
〈Tψ, T Hψ〉must be both non-negatives, as I specified above. Next, Roberts demands
that there is at least “one realistic dynamical system” that satisfies time-reversal invari-
ance in the sense that satisfies T eit Hψ = e−i t H Tψ . Roberts makes the point that the
time-reversal operator is demanded to be anti-unitary in order to meet these require-
ments, so for reductio, he assumes that such an operator is unitary, that is, that T = �.
This leads to i t H = −i tT HT−1 and thus to THT−1 = −H . What we finally get
is 0 ≤ 〈ψ, Hψ〉 = −〈Tψ, T Hψ〉 ≤ 0, which forces us to either accept that the
Hamiltonian is unbounded from below (what he had previously ruled out) or that the
Hamiltonian is the operator zero, which renders triviality. Therefore, by reductio, the
time-reversal operator cannot be unitary but anti-unitary, T = T .

4 The philosophical background of the orthodoxy

Let me briefly summarize what I have shown so far. First, I outlined the mathematical
tailoring of time reversal in QM according to the orthodoxy. What we learnt from it
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is that time reversal must be given by an anti-unitary implementation. Even though
it differs from how time reversal is thought of in Hamiltonian classical mechanics,
it captures a notion of time reversal that both transformations share –time reversal
is implemented by tracing the state of a system back to the initial state. I claimed
that the justification of the mathematical tailoring could not be purely formal, but it
required some physical and conceptual background. This has been partially carried
out in Sect. 3 by laying the physical foundations of time reversal as backtracking in
QM. Regardless how much satisfactory this justification may be, a question remains:
what entitles us to conceive of time reversal as backtracking in the first place? In other
words, what is the philosophical background upholding the association between time
reversal and backtracking? In this section I will address these philosophical aspects.

In my proposal, the philosophical background is a second step in the conceptual
justification of the orthodoxy in QM. What I will argue is that this philosophical
background mainly consists of two pillars:

• Temporal relationalism, which motivates a functional reductionist approach to time
reversal in terms of motion reversal.

• The by-stipulation view on symmetries, which postulates that fundamental equa-
tions of motion must remain invariant under time reversal.

Before getting into the details, it is worth stressing the role that this philosophical
background plays in the discussion about time reversal in QM as I framed it. My
main claim is that the orthodoxy finds a friendly environment in such a philosophical
background, which sensibly strengths its persuasive force when recognized. To put
it differently, if temporal relationalism and the by-stipulation view on symmetries
are adopted, then the orthodoxy comes out as a natural, and conceptually powerful,
approach to time reversal in QM. The philosophical question that emerges from the
physical justification iswhywe are entitled to call a specific piece ofmathematics ‘time
reversal’. The mathematical tailoring, of course, does not provide such an answer and
the physical justification simply assumes it by stating that time reversal must capture
the idea of backtracking. The philosophical background provides the right sort of tools
to answer this question in a conceptually clean and persuasive way.

Naturally, this does not entail that anyone supporting the orthodoxy ought to
embrace temporal relationalism or the by-stipulation view. Neither does it mean that
the orthodoxy necessarily requires temporal relationalism or a by-stipulation view.
This would be stronger than what I will hold here. To see this more clearly, take
for instance temporal relationalism, which defends the reduction of time reversal to
motion reversal. My claim is that there is a conceptually straightforward way to go
from temporal relationalism to the justification of time reversal as backtracking, and
from here to the orthodoxy’s physical justification. To the contrary, I find that there is
not the same conceptually straightforward way to make the route from temporal sub-
stantivalism, because it is not prima facie obvious that time reversal reduces to motion
reversal in this framework to begin. This, of course, does not mean that temporal sub-
stantivalism ought to reject the orthodoxy, because it can always find the way to relate
time reversal to motion reversal, even though this relation might not be reductive.9 In

9 I thank an anonymous reviewer for this observation.
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any case, if I am right on this, the burden is now on the temporal substantivalist: she
should provide an account that can make sense of the orthodoxy within a temporal
substantivalist framework, by showing which specific relations connect time reversal
with motion reversal. In the end, this might redound to imposing a more complex
structure that can eventually favor temporal relationalism for simplicity.

Then, the philosophical background could well play a twofold role. First, it benefits
the orthodoxy since it provides the right conceptual framework to justify many of its
assumptions. Second, it can be seen as an argument in favor of relationalism and of the
by-stipulation view, since it naturally articulates with the mathematics and the physics
that the orthodoxy develops.

4.1 Leibniz meets time reversal at the Plank scale.

My first thesis is that temporal relationalism lays the conceptual groundwork for a
straightforward philosophical justification of the orthodoxy, since it easily connects
time reversal with motion reversal (i.e., with the notion of backtracking). The key
here to achieve this connection is the functional reduction of time reversal in terms of
motion reversal.

Relationalism was famously championed by Leibniz. In his third letter to Samuel
Clarke (dated February 25, 1716), he claimed that:

what that argument really proves is that times, considered without the things or
events, are nothing at all, and that they consist only in the successive order of
things and events

Our philosophical understanding of time plays a role in our conceptual understanding
of time reversal –Ifwe are said to invert the direction of time, it seems at least reasonable
to suppose that our course of actionswill be different depending onwhatwe understand
by ‘time’. And in this sense our metaphysics of time comes first: It determines not
only what time reversal is but also upon what it is meant to act. The relationalist,
hence, is committed to understanding time reversal in a particular way according to
her metaphysical principles.

There are many different types of relationalist-like views in metaphysics and in
philosophy of physics that, in general, share the idea that time is nothing over and above
temporal relations among events and things (Benovsky, 2010, p. 492), though they can
greatly vary on which it is considered as objective and fundamental in the physical
world (see Sklar, 1974; Earman, 1989; Pooley, 2013, for comprehensive overviews of
the different kinds of relationalisms). To keep things simple, I will consider temporal
relationalism as holding two tenets:

R1 A monist ontology. There are only events or physical bodies in the world and their temporal
relations

R2 A reductionist attitude. Time is nothing but change. The sort of relation between the physical
world and the concept of ‘time’ is that of a Leibnizian representation or a Machian
abstraction: time is an ideal, unreal entity parasitic on events-things’ changing
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According to these tenets, the variable t occurring in most physical theories (set-
ting aside general relativity) is merely an external and unreal parameter, which should
not be taken as representing anything with physical meaning. In this sense, tempo-
ral relationalism implies some reductionist attitude toward temporal predicates. For
instance, any reference to the ‘directionality of time’ should not be taken literally as if
there were some primitive entity exemplifying the property of having a directionality.
Rather, it should be taken metaphorically –the ‘directionality of time’ boils down to
the directionality of the change of a series of temporal relations held by their relata.

One of the lessons we can take from these tenets is that time reversal should not
be taken literally, as if it were a transformation of time itself (whatever it might mean
in physical terms). In fact, the parlance of time reversal in physics and philosophy
of physics is mostly metaphorical (see, for instance, Wigner, 1932, p. 325, Gibson &
Pollard, 1976, p. 177, Ballentine, 1998, p. 377, among many others). The task for the
philosophical reflection on time and time reversal is thus to conceptually articulate the
underlying notions and elements converging into the idea of time reversal as orthodoxly
understood. So, relationalism makes coherent a series of assumptions and elements
that build up the orthodoxy.

By focusing on the second tenet, we see that the t → −t transformation (one of the,
intuitively, most salient features of time reversal) must not be taken too seriously. It
would be naïve, according to temporal relationalism, to take t → −t as performing a
physically relevant action upon dynamical equations. What is really substantive in the
understanding of time reversal is not the transformation of t , but the transformation of
change. This suggests that time reversal should be considered simply as a “shortcut”
standing for dynamically relevant transformations related to the change (or motion) of
a system. To put it in a slogan, when it comes to time reversal, temporal relationalism
holds that time reversal is nothing but change (or motion) reversal. This is the over-
arching concept grounding the physical justification and guiding to a good extent the
mathematical tailoring: the formal representation ultimately seeks to capture the idea
of reversing the change. The mathematical tailoring’s task is then to identify those
elements that represent change within each theory and to transform them in the right
way.

So, we can postulate as a general scheme the following properties of a relational
view on time reversal.

TRel reversal (a) A mere re-parametrization of t by T : t → −t , for any general time

(b) A change of all dynamically relevant magnitudes so as to generate a backward
evolution, which is expressed by extensionally specifying the dynamically
relevant transformations to take a system back to its original state

The physically substantive part is given by the property (b), which genuinely gener-
ates the symmetry transformation. And it is important to highlight that the two physical
justifications I laid out in Sect. 3 are philosophically based on this property: it moti-
vates why certain observable has to transform in a specific way to generate the relevant
symmetry transformation, namely, time reversal as motion reversal.
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The second property can be clarified by proposing a sort of functionalist reduction
of time reversal to motion reversal. Such an analysis will show how motion reversal
realizes time reversal. The literature on functionalism (and, particularly, functional
reduction) is abundant, so I will not get into details here. In general, it has mainly
focused on either the relation between the mental and the physical in philosophy
of mind, or the relations between high-order properties used in special sciences and
low-order properties more frequent in physics. What I propose here is not a strict
functional reduction as the one discussed in philosophy of mind or general philosophy
of science, but a style of reasoning which can quite well capture the metaphysical and
epistemic relations holding between time reversal and motion reversal in physics (for
a functionalist approach in philosophy of physics, see for instance, Knox, 2018).

The overall idea is that motion reversal (and those properties attached to it) realizes
time reversal (and thus all those subsidiary properties attached to it). In particular, the
notion of time reversal is functionally reduced to the idea of ‘backtracking’, in the
sense that ‘time reversal’ refers to dynamical realizers that play the role of retracing
a system’s state to its origin. So, we can rephrase this by saying that if the state of
a system has been “time-reversed”, or that the history of a system has been “time-
reversed”, we have to find the realizers of such a state and such a history in terms
of the dynamical operations that effectively generate a backtracking process. From
an abstract perspective, the notion of time reversal is simply a placeholder, whose
occupants will be those realizers playing the role of retracing a system’s state to its
origin. The problem of working out the right form of the time-reversal transformation
is that of working out the right realizers within a specific physical theory.

The idea could be developed even further by offering the Ramsey sentence of time
reversal, which has the structure

∃X , ∃Y , ∃Z(. . . X . . . Y . . . Z)

What we know is that the notion of backtracking or (change) motion reversal realizes
the notion of time reversal. What we have to do now is to supply the roles of each key
players (X, Y and Z) and to identify which specific transformations within a particular
physical theory play each role. This realizes Ramsey sentence consequently. Then,
in order to apply time reversal properly, we have to provide the ordered n-tuple of
realizers within a physical theory that satisfies the Ramsey sentence for time reversal.

Under this framework, we could either adopt an eliminativist or conservative atti-
tude. The eliminativist will be prone to simply eradicating any temporal predicate and
structure in favor of predicates and structures exclusively referring to change. This
would automatically remove temporal predicates from the physical picture when we
want to be rigorous about what we are really doing when time reversing an equation of
motion or a physical system. The term ‘time reversal’ is just flatus vocis (see Rovelli,
2004 for such a radical attitude with respect to time). The conservative reductionist
will be rather prone to preserving some temporal predicates and structures, though
acknowledging their actual realizers relate to change. This view better preserves the
classical Leibnizian-Machian framework, where durations are relative, time is essen-
tially change, but other traditional temporal structures remain absolute (see Gryb &
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Thébault, 2016 for a defense of this more conservative relationalism in quantum grav-
ity).

When we center in the physical justification of the orthodoxy, we see how the
relational viewon time-reversal can explain in a naturalwaywhywe should understand
time reversal as a two-time evolution, basingWigner’s general criterion. If time reversal
is functionally realized by motion reversal, then any fair formal implementation of it
has to pose the enough structure to represent the reversion of motion. In Wigner’s
general criterion, this is provided by guaranteeing that the time(-motion)-reversal
transformation generates a second time translation that takes the evolution of the state
back to its origin. Otherwise, the implementation of time(-motion) reversal fails to
genuinely capture the idea of backtracking. But what entitles us to metaphysically
relate time reversal to motion reversal is temporal relationalism. This is done by
providing the adequate conceptual framework to articulate the mathematics and the
physics in a coherent approach to time reversal. It is worth emphasizing that the
persuasive force of the orthodoxy does not hinge only upon the mathematical tailoring
(as often argued when discarding alternative implementations of time reversal), but
also upon one’s underlying metaphysics –it is this final step in the justification which
entitles us to draw the right sort of conceptual connections.

The same tenets also ground the Hamilton’s spectrum argument I presented in
Sub-Sect. 3.2. Consider the following counterargument, based on Callender (2000)’s
argument:TheHamiltonian is afirst-timederivativemagnitude, so it is natural to expect
the Hamiltonian to change its sign under time reversal, which would lead to transform-
ing a bounded-from-below Hamiltonian into an unbounded-from-below Hamiltonian
(see fn. 2 for concerns). However, from a relational viewpoint the demand is excessive,
even if formal and physical considerations are put momently aside. Whether physical
magnitudes are canonically defined as first-time derivative does not play any substan-
tive role in defining time reversal, because we are not conceptually interested in t. We
should instead focus on elucidating what role such physical magnitudes play in the
evolution of the state andwhat role they should play if the evolutionwere reversed. The
conceptualization of time reversal at a physical level precisely attempt towork that out.
From a conceptual viewpoint, the real issue is not whether or not it makes sense that
the Hamiltonian changes its sign under time reversal, but whether such a transforma-
tion plays any role in formally implementing time reversal as backtracking. Clearly, it
does not. This explains why the unitary transformation must be discarded, even under
the implausible assumption that they might make mathematical and physical sense.

To emphasize my point. Temporal relationalism offers us a straightforward way to
understand time reversal as conceived and formally implemented by the orthodoxy
–it underpins, in a simple way, the underlying assumption that time reversal is just
to track a system back to its initial state. For the sake of the argument, let us briefly
consider the matter from the opposite view. Suppose now that time is a primitive
substance independent of motion, a lá Newton. Time reversal should hence amount
to a transformation of the intrinsic direction of such a substance. Within this view,
there are no prima facie metaphysical reasons to identify motion reversal with time
reversal, because they are different kinds of things. Therefore, there are no prima facie
conceptual reasons to formally implement time reversal as it was recommended by
Wigner’s criterion. Whoever wants to hold the orthodoxy approach to time reversal
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in QM and temporal substantivalism should then provide us an account that shows
how the justification of the orthodoxy can be achieved. This, I guess, can be done in
different ways, but it would demand imposing further conceptual structure to get the
connection between time reversal andmotion reversal properly justified.Whatwemiss
in changing the metaphysical framework is the straightforward connection between
time reversal and motion reversal we get from temporal relationalism. Without such a
connection, the persuasive force of the orthodoxy sensibly diminishes.

Another virtue of relationalism when it comes to justifying the orthodoxy relates
to the bridge that it builds with the empirical work. The substantivalist could insist on
pointing out that we are still not allowed to call a piece of mathematics, as T , ‘time
reversal’, because it is implementing a different sort of transformation, namely, motion
reversal. In the end, all we were just confused about names and concepts all along
–the empirical information that physicists have been gathering so far in terms of time
reversal has just been information about motion reversal A reply to the substantivalist
could go in the following line. Even though froma strict substantivalist framework such
a situation is possible, she has to accept that when we test time reversal, we always test
motion reversal. And now the substantivalist faces an uncomfortable dilemma: either
she gives us the way to test time reversal independently from motion reversal, or she
declares time reversal untestable. The first option puts the burden on her, and we can
just wait the answer. The second one forces her to provide further reasons of why an
untestable symmetry transformation (i.e., time reversal as independent from motion
reversal) should be preserved in our physical theories. In fact, it is similar to the case
when we find redundant structure in our physical theory. By epistemic reasons (i.e.,
parsimony), we could just eliminate the redundant structure. In the end, the defense
of the independency of time reversal would be self-defeating.

Whether the orthodoxy can be justified in a non-relational framework deserves, of
course, much more work. My aim here is not to be exhaustive about the possible con-
nection, but to show that temporal relationalism can make a case for the orthodoxy in
a natural way. In addition, this also suggest that the orthodoxy might have been guided
by relational intuitions when developing the mathematical tailoring and the physical
justification. The contrast in the previous paragraph just shows some of the difficulties
that an alternative philosophical background could face. If for any reason we reject
any of the relationalist tenets, the physical justification of time reversal loses much of
its persuasive force, dragging naturally down the anti-unitary representation of time
reversal. This emphasizes the relevance of the metaphysical background for the ortho-
doxy –it is not merely an uncommitted defense of a particular mathematical tailoring,
but a well-articulated general view on time reversal. Temporal relationalism is one
of its pillars since it provides the adequate framework to build a robust and powerful
conceptual justification of why time reversal should be thought of as backtracking.

4.2 Time-reversal invariance: by-stipulation or by-discovery

In the previous section, I focused on the metaphysical pillar of the orthodoxy. In
this section, I will focus on the second pillar, which concerns epistemic and heuristic
aspects of time-reversal symmetry in QM. Whereas the first pillar chiefly centered
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in the time-reversal transformation (what we metaphysically and physically mean
by ‘time reversing’), the second pillar rather centers in the status of symmetries in
physics. To be precise, it centers in the epistemic and heuristic aspects that connect
the construction of a time-reversal transformation to the role that the time-reversal
symmetry should play in a physical theory.

There are at least two opposing views on space–time symmetries inmodern physics.
One of them, which I will call by-stipulation, takes symmetries as postulated, being
true independently of the details of the dynamics. The other, which I will call by-
discovery, takes symmetries as a result of the details of the dynamics. In the former
case, symmetries are principles that constrain the dynamics. In the latter, symmetries
are derived from it. As time-reversal is prima facie a space–time symmetry, both views
are also present in this case. What I will argue is that the orthodoxy can benefit from
the by-stipulation view of time-reversal invariance, which offers, to a great extent,
support to the physical justifications of an anti-unitary implementation.

What does justify the distinction between by-stipulation and by-discovery symme-
tries? Katherine Brading and Elena Castellani show that space–time symmetries are
sometimes thought of as guides to theory construction. That is, principles that must be
satisfied whatever the final details of the theory come to be. The mechanism whereby
a symmetry is raised to a must-satisfied principle is that of stipulation –we postulate,
independently of the details of a theory’s dynamics, that a given symmetry holds, then
the dynamics adapts to the symmetries’ constraints. When laying the groundwork for
Bohmian Mechanics, Dettlef Dürr and Stephan Teufel for instance write

A symmetry can be a priori, i.e., the physical law is built in such a way that it
respects that particular symmetry by construction. This is exemplified by space-
time symmetries, because spacetime is the theater in which the physical law acts
(as long as spacetime is not subject to a law itself, as in general relativity, which
we exclude from our considerations here), and must therefore respect the rules
of the theater. (2009, pp. 43-44)

It isworth contrasting this quote to otherswe canfind in the literature on symmetries.
John Earman says

The received wisdom about the status of symmetry principles has it that one
must confront a choice between the a posteriori approach (a.k.a. the bottom-up
approach) versus the a priori approach (a.k.a. the top-down approach). (2004,
p. 1230)

Earman’s distinction goes along with that of Brading and Castellani’s (2007): whereas
some take symmetries as postulated, guiding theory construction, others follow an
opposite trend, according to which symmetries are a consequence of specific laws—
like a discovery (2007, p. 1347). The idea of postulating a symmetry is normative,
suggesting certain degree of necessity: a theory’s dynamics must satisfy the symme-
try principles, even though if the dynamics had been different. This gives symmetry
principles certain modal robustness (or counterfactual robustness, see Lange 2009),
entailed by its normative nature.

Who denies that symmetries have such normative nature is prone to regard sym-
metries as a property of dynamics. In this line, Earman says:
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it would seem that the symmetry transformation could not fail to be a true sym-
metry of nature, contradicting the usual understanding that symmetry principles
are contingent, that is, are true (or false) without being necessarily true (or false)
(1989, p. 121)

We hence come to know which symmetries a theory has by investigating the formal
relations held by the elements in differential equations. Remarkably, this approach
was followed by Isaac Newton in formulating classical mechanics in the Principia as
the relativity principle appears as a corollary of the equations of motion [Corollary 5,
see also Brading and Castellani (2003, p. 6)] and by Joseph Lagrange (1811, p. 241).
In this sense, a space–time symmetry plays a descriptive role, rather than a normative
one.

To write all this out neatly, both approaches can be defined as follows. For a general
space–time symmetry σ :

By-stipulation approach σ -symmetry plays a normative role in a theory’s dynamics and it must
thereby be regarded as a priori and necessary for a theory T

By-discovery approach σ -symmetry plays a descriptive role, and it must thereby be regarded as
a posteriori and contingent for a theory T

It is worth remarking that the epistemic notions of “a priori/a posteriori” should
be understood not in the traditional sense (independent or not of the experience), but
in relation to a theory’s dynamics: whether σ -symmetry is known independently of a
theory’s laws.

Time-reversal invariance can be regarded from both approaches.My claim is that, if
the by-stipulation viewon symmetries is adopted, the orthodoxy is the natural approach
to time reversal in QM. If we look at the orthodoxy closely, we can identify some
assumptions giving support to the by-stipulation view since they play a normative role
in the theory construction as well as in the mathematical tailoring of the time-reversal
transformation. To illustrate this, Robert Sachs says:

In order to express explicitly the independence between the kinematics and the
nature of the forces, we require that the transformations leave the equations of
motion invariant when all forces or interactions vanish (Sachs, 1987, p. 7)

Time-reversal symmetry is required to hold by stipulation in the case of the free
Schrödinger equation, that is, in the evolution of free-interaction quantum systems.
This idea nicely comes alongwith the “theater picture” ofDürr andTeufel: the simplest
systems’ dynamics reflect genuinely the structure of the theater, both its asymmetries
and symmetries. But such a structure is pre-existent and independent of the dynamics,
playing the role of setting the (space)-time background for all models of the theory
and of individuating the nature of forces, interactions, and the various structures (for
instance, asymmetries) they generate.

To strength this point, let us briefly move to a different theory –classical electro-
magnetism. In discussing the mathematical form of the time-reversal transformation,
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Arntzenius and Greaves (2009) claim that a widespread account, which they call ‘the
textbook’s account’, proceeds as follows (see also Peterson, 2015):

Next let us consider the electric andmagnetic fields.Howdo they transformunder
time reversal? Well, the standard procedure is simply to assume that classical
electromagnetism is invariant under time reversal. From this assumption of time
reversal invariance of the theory (…) it is inferred that the electric field E is
invariant under time reversal (…) (Arntzenius & Greaves, 2009, p. 6. Italics
mine)

The same mechanisms, mutatis mutandis, seems to be guiding the orthodoxy in QM.
Indeed, the stipulation of time-reversal invariance is just the assumption A2, which
easily justifies why the implementation of time reversal in QM must be anti-unitary.
This is more evident when we contrast with the unitary implementation: If we pre-
viously presume that time-reversal invariance holds, then the formal implementation
of time reversal cannot be one that make the free Schrödinger equation non-time-
reversal invariant. Such a result would be in fact at odds with Sachs’ quote too: we, for
instance, stipulate that the free Schrödinger equation is time reversal invariant in order
to express the independence between dynamics and kinematics. Hence, its stipulation
plays a heuristic role in our understanding of the theory, which we will be missed
if the unitary transformation is rather adopted. So, everything converges at the same
place: the anti-unitary operator emerges as the right implementation that carries out
the sort of required transformations to keep the free Schrödinger equation invariant
(A2), satisfying the epistemic and heuristic stipulation.

This by-stipulation view on symmetries and the implied justificatory mechanism
can be also regarded from a different angle. The stipulation of time-reversal invariance
also appears as a premise inWigner’s definition of time reversal in Sect. 3. He invokes
two explicit premises:

1. that a suitable time-reversal transformation must be able to restore “the system to
its original state” (1932, p. 326),

2. and that time inversion must flip the direction of momentum to compensate for
the twofold application of T in Wigner’s general criterion.
But there is also one fundamental implicit assumption:

3. for a time-reversal transformation to bewell-defined (and to exist at all), the second
time translation (from t2 to t1) must also be physically possible.

To see how this last assumption works let us suppose that a quantum state |ψ〉 evolves
from t1 to t2, according to the Schrödinger equation (first time translation). At t2, time
reversal is applied upon the Schrödinger equation. If the time-reversal transformation
is well-defined, then the time-reversed state T |ψ〉 should evolve from t2 to t1 also
conforming with the Schrödinger equation (second time translation). And here the
implicit assumption comes in. According to Wigner, the operation to be applied upon
the state at t2 must be of such a kind that yields a quantum–mechanical evolution –the
transformation takes a solution of the free Schrödinger equation and transforms it into
a solution of the free Schrödinger equation This is the standard definition of symmetry
and the state that satisfies is T |ψ〉 = |ψ∗〉, where T = T .
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To complete the argument, suppose now that at t2, we apply a unitary time-reversal
operator, T = �. As remarked above, the free Schrödinger equation will not tempo-
rally translate the system back. But, evenworse, the transformationwill fail to generate
the second time translation, turning a solution of the free Schrödinger equation into
a non-solution. The metaphysical pillar of the orthodoxy shows that such a transfor-
mation is ill-conceived because it fails to represent time reversal as motion reversal.
The by-stipulation symmetry view shows that such a transformation is ill-conceived
because it makes the free Schrödinger equation non-time-reversal invariant, violating
A2. As I commented before, whether we assume the by-stipulation or the by discov-
ery view is motivated by various reasons, mainly concerning epistemic and heuristic
features. Which view to take is not at issue here. What it is at issue is which one
of these approaches can offer a straightforward, or more natural, justification of the
orthodoxy. A commitment to the by-stipulation view imposes some constraints on the
notion of symmetries that more directly leads us to the orthodoxy –the anti-unitary
representation easily suits in such a framework along with the potential theoretical
virtues attached to it.

It might seem, at first glance, that the by-stipulation view arbitrarily declares that
a given dynamics is invariant, without any further justification. This might then be
regarded as a drawback of the by-stipulation view and that the by-discovery view then
flats out win. And if this is the case, then the orthodoxy would have to revise some of
its assumptions in the light of the by-discovery framework. Yet, I think it is not the
case when the role of symmetries in the by-stipulation view is adequately addressed
and considered from a broader perspective. I do not have enough room to develop the
possible epistemic ramifications of adopting the by-stipulation view in detail, but here
goes a hint of what, I think, is happening.

Time-reversal invariance is a property expressed by dynamical equations ofmotion,
either a stipulated or discovered property. If we think of dynamical equations ofmotion
as representing some primitive modality in the world, or at least some modally robust
pattern, one is committed to squaring time-reversal invariance within such a frame-
work. This could lead to consider time-reversal invariance as also expressing a (modal)
property of the world. However, this might sound a bit odd: We come to know some-
thing substantial about the world by means of a stipulation. Further argumentation
would then be required, which would place the by-discovery view in some advantage.
However, this is not the only way to go. Neither is it the best way to go.

Instead of assuming that time-reversal invariance is a stipulated property of dynam-
ical equations that express some laws of nature, we could hold a deflationary view on
symmetries, conforming to which time-reversal invariance is a stipulated property of
scientific laws understood as sentences in an axiomatic system. Therefore, symme-
tries are just theoretical postulates seeking for a better equilibrium between simplicity
and informativeness. So, the motivation of stipulating a symmetry like time reversal
is fundamentally representational and should be judged in such terms: We declare
that general (or fundamental) dynamical equations are time-reversal invariant because
it is a representational advantage to do it so –a time-reversal invariant dynamic just
turns out to be simpler andmore informative than non-time-reversal invariant ones. So,
symmetries so understood square perfectly within the so-called Best SystemApproach
(see Lewis (1973), Ramsey (1978), Loewer, (1996) and Cohen and Callender (2009)],
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which suggests us not to consider scientific laws, and symmetries I would add, as
referring to some primitive modality in the world, but just playing a theoretical role
striving for simplicity and informativeness. If symmetries are considered from this
angle, the by-discovery view does not flat out win, but quite the opposite: the burden
of the proof is on its side, since it has to show that symmetries have a more robust
status in physical theories than the one given by a deflationary view.

5 Concluding remarks

In this paper I have offered novel insights to address the debate on time reversal in QM.
I began by distinguishing three steps in construing the orthodoxy: the mathematical
tailoring (Sect. 2), the physical justification (Sect. 3), and the philosophical background
(Sect. 4). Each stepwas shown to be supported by an underlying one: themathematical
tailoring depends on its physical justification, which in turn relies on a philosophical
background. The general aim was to bring to light the relevance of the philosophical
background as a series of philosophical commitments from which the orthodoxy can
sensibly benefit, once recognized, and made explicit. With respect to this, I have
claimed that the orthodoxy is philosophically supported by two pillars:

• temporal relationalism, which promotes a functionalist reduction of time reversal
in terms of motion reversal

• the by-stipulation view of time-reversal invariance

What this primarily shows is that the orthodoxy is not philosophically neutral, but it
can be successfully articulated, and properly justified, when a series of metaphysical,
epistemic and heuristic commitments are taken into account. These play a major
justificatory role in the anti-unitary implementation of time reversal in QM. Contrarily
to how the debate has developed thus far, the quid of the notion of time reversal in
QM should not be primarily framed in terms of whether it ought to be anti-unitary or
unitary, but ifwehavewell-grounded reasons to call a piece ofmathematics, asT , ‘time
reversal’. This, when we looked at the physical justification, came down to the idea of
thinking of time reversal in terms of motion reversal. Temporal relationalism and the
by-stipulation view on symmetries came in to cement this connection, transmitting
the justification all the way up in the chain.

So, what grounds the claim that a quantum system has been genuinely time reversed
is a well-articulated view that is not simple, but quite complex, involving variousmath-
ematical, physical and, fundamentally, philosophical assumptions. The latter directly
relate to big questions such as the nature of time and symmetries in physics in meta-
physics, around which philosophers and scientist have long been gravitating. And it
is such philosophical complexity what feeds the orthodoxy’s persuasive force, rather
than any seemingly obviousness or self-evident truth.

Acknowledgements I am deeply grateful to Olimpia Lombardi, Michael Esfeld, Karim Thébault, Carl
Hoefer, Bryan Roberts, Christian Sachse and María José Ferreira for so enriching and substantive discus-
sions, criticisms, and suggestions on this manuscript and earlier versions. I also thank to Dustin Lazarovici,
Frida Trotter, Andrea Oldofredi, Federico Benitez, Manuel Gadella, Federico Holik and Sebastián Fortín
for suggestions and comments on some ideas expressed here. Finally, I would like to thank the anonymous

123



Synthese (2021) 199:14267–14292 14291

reviewers: their reports significantly improved the original version. This work was supported by a FRS-
FNRS (Fonds de la Recherche Scientifique) Postdoctoral Fellowship and made possible through the support
of the Grant #61785 from the John Templeton Foundation. The opinions expressed in this publication are
those of the author and do not necessarily reflect the views of the John Templeton Foundation.

Funding This research was partially funded by a FNRS Postdoctoral fellowship, by the Université de
Lausanne, and by the Grant ID# 61785 from the John Templeton Foundation.

References

Abraham, R., & Marsden, J. E. (1978). Foundations of mechanics (2nd ed.). Addison-Wesley Publishing
Company, Inc.

Albert, D. Z. (2000). Time and Chance. Harvard University Press.
Arntzenius, F., & Greaves, H. (2009). Time reversal in classical electromagnetism. The British Journal for

the Philosophy of Science, 60, 557–584.
Ballentine, L. (1998). Quantum mechanics. A modern development. World Scientific.
Barbour, J., & Bertotti, B. (1982). Mach’s principle and the structure of dynamical theories. Proceedings

of the Royal Society A, 382, 295–306.
Benovsky, J. (2010). The relationalist and substantivalist theories of time: Foes or friends?European Journal

of Philosophy, 19(4), 491–506.
Bigi, I., & Sanda, A. (2016). CP violation. Cambridge: Cambridge University Press.
Brading, K., & Castellani, E. (2003). Symmetries in physics: Philosophical Reflections. Cambridge: Cam-

bridge University Press.
Brading, K., & Castellani, E. (2007). Symmetries and invariances in classical physics. In J. Butterfield & J.

Earman (Eds.),Handbook of thePhilosophy of Science, Philosophy of Physics, Part B (pp. 1331–1367).
The Netherlands: Elsevier.

Callender, C. (2000). Is time ‘handed’ in a quantum world? Proceedings of the Aristotelian Society, 100,
247–269.

Chevallier, G. (2007). Wigner’s theorem and its generalizations. In K. Engesser, D. M. Gabbay, & D.
Lehmann (Eds.), Handbook of quantum logic and quantum structures (pp. 429–475). Elsevier Pub-
lisher.

Cohen, J., & Callender, C. (2009). A better best system account of lawhood. Philosophical Studies, 145,
1–34.

Costa de Beauregard, O. (1980). CPT invariance and interpretation of quantum mechanics. Foundations of
Physics, 10, 513–530.

Dürr, D., & Teufel, S. (2009). Bohmian mechanics: The physics and mathematics of quantum theory.
Springer-Verlag.

Earman, J. (1989). World enough and space-time. Absolute versus relational theories of space-time. MIT
Press.

Earman, J. (2002). What time-reversal invariance is and why it matters. International Studies in the Philos-
ophy of Science, 16, 245–264.

Gasiororowicz, S. (1966). Elementary particle physics. John Wiley and Sons.
Gibson, W. M., & Pollard, B. R. (1976). Symmetry principles in elementary particle physics. Cambridge

University Press.
Gryb, S., & Thébault, K. (2016). Time remains. British Journal for Philosophy of Science, 67, 663–705.
Jauchs, J. M., & Rohrlich, F. (1959). The theory of photons and electrons. San Francisco, CA: Addison-

Wesley.
Knox, E. (2018). Physical relativity from a functionalist perspective. Studies in History and Philosophy of

Modern Physics, 67, 118–124.
Lagrange, J. (1811).Mécanique Analytique. Paris: Ve. Courcier.
Lange, M. (2009). Laws and lawmakers. New York: Oxford University Press.
Lewis, D. (1973). Counterfactuals. Harvard University Press.
Loewer, B. (1996). Humean Supervenience. Philosophical Topics, 24, 101–126.

123



14292 Synthese (2021) 199:14267–14292

Lopez, C. (2019). Roads to the past: How to go and not to go backward in time in quantum theories.
European Journal for Philosophy of Science, 9, 27.

Messiah, A. (1966). Quantum mechanics. John Wiley and Sons.
Peterson, D. (2015). Prospect for a new account of time reversal. Studies in History and Philosophy of

Modern Physics, 49, 42–56.
Pooley, O. (2013). Substantivalist and relationalist approaches to spacetime. In R. Batterman (Ed.), The

oxford handbook of philosophy of physics (pp. 522–586). Oxford University Press.
Ramsey, F. (1978). Foundations. Routledge and Kegan Paul.
Roberts, B. (2017). Three myths about time reversal invariance. Philosophy of Science, 84(2), 315–334.
Roberts, B. (2018). “Time reversal” http://philsci-archive.pitt.edu/15033/1/Roberts2018-TimeReversal.pdf.
Rovelli, C. (2004). Quantum gravity. Cambridge University Press.
Sachs, R. (1987). The physics of time reversal. University Chicago Press.
Sakurai, J., & Napolitano, J. (2011). Modern quantum mechanics. San Fransico, CA: Addison-Wesley.
Sklar, L. (1974). Space, time and spacetime. University of California Press.
Uhlhorn, U. (1961). Representation of symmetry transformations in quantum mechanics. Arkiv För Fysik,

23, 307–340.
Wigner, E. (1932).Group theory and its application to the quantummechanics of atomic spectra. Academic

Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://philsci-archive.pitt.edu/15033/1/Roberts2018-TimeReversal.pdf

	The physics and the philosophy of time reversal in standard quantum mechanics
	Abstract
	1 Introduction
	2 The mathematical tailoring of the orthodoxy
	3 The physical justification of the orthodoxy
	3.1 The ‘two-time-evolution’ argument (or Wigner’s general criterion for time-reversal)
	3.2 The Hamiltonian’s spectrum argument

	4 The philosophical background of the orthodoxy
	4.1 Leibniz meets time reversal at the Plank scale.
	4.2 Time-reversal invariance: by-stipulation or by-discovery

	5 Concluding remarks
	Acknowledgements
	References




