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Abstract
While the predominant focus of the philosophical literature on scientific modeling
has been on single-scale models, most systems in nature exhibit complex multiscale
behavior, requiring new modeling methods. This challenge of modeling phenomena
across a vast range of spatial and temporal scales has been called the tyranny of
scales problem. Drawing on research in the geosciences, I synthesize and analyze a
number of strategies for taming this tyranny in the context of conceptual, physical,
and mathematical modeling. This includes several strategies that can be deployed in
physical (table-top) modeling, even when strict dynamical scaling fails. In all cases, I
argue that having an adequate conceptual model—given both the nature of the system
and the particular purpose of the model—is essential. I draw a distinction between
depiction and representation, and use this research in the geosciences to advance a
number of debates in the philosophy of modeling.

Keywords Multiscale · Modeling · Simulation · Conceptual model · Physical model ·
Mathematical model · Scale · Dynamical scaling · Geosciences · Geomorphology ·
Geohydrology · Representation · Thresholds · Adequacy for purpose · Hierarchy ·
Similitude · Reductionism · Emergence · Universality · Tyranny of scales

1 Introduction: the tyranny of scales

The tyranny of scales problem is the recognition that many phenomena of interest
span a wide range of spatial and temporal scales, where the dominant features and
physical processes operating at any one scale are different from those operating at both
smaller (shorter) and larger (longer) scales. This physical fact then poses the following
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Fig. 1 Evolution of a sandy
coastline involves a vast range of
spatial and temporal scales.
Ripples (A) that form from
sand-grain motions on the order
of seconds influence the
formation of sandbars and
channels (B) on the order of
days, which over time adds up to
a net alongshore movement of
sand that shapes coastline
evolution (C) on the scale of
years to millennia. The larger
scales then set the context in
which the smaller-scale
dynamics must operate (dashed
arrows). (From Murray et al.,
2009, Fig. 4, with permission
from Elsevier.)

methodological problem: How does one go about modeling such a phenomenon of
interest, especially when that phenomenon can be causally influenced by—and in turn
influence—the entities and processes at the scales both above and below it?

Consider, for example, the evolution of a sandy coastline. As those who live by
the coast are often painfully aware, coastlines are not static, but rather are continually
changing—eroding in some areas and accreting in others. There is thus great scien-
tific and practical interest in better understanding how coastlines dynamically evolve.
But how should one go about modeling the evolution of a sandy coastline? If one
examines the problem at the smallest (fastest) scale, sand grains respond to waves on
the timescale of seconds; this leads to small bedforms like ripples over hours. These
ripples then influence the development of sandbars and channels in the surf zone,
which form on the timescale of days. Channels and sandbars influence the movements
of sediment over the timescale of weeks, and the net transport of sediment along the
shoreline shapes coastlines over years to millennia.1 To further complicate the situa-
tion, the shape of the coastline sets the context and causally influences the dynamics of
sandbar and channel formation; and those channels and sandbars then set the context
and causally influence the formation of ripples (see Fig. 1). In short, attempts to model
and understand coastline evolution are plagued by the tyranny of scales.

The tyranny of scales problem, though widespread across the sciences, has only
recently begun to attract scientific and philosophical attention. The scientific document
often credited with naming the problemwas a 2006 National Science Foundation Blue
Ribbon Panel on Simulation-Based Engineering Science, chaired by J. Tinsley Oden.
In this report, the panel notes the following:

1 I am grateful to Brad Murray (personal communication) for this example.
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[Researchers] have run into a formidable roadblock: the tyranny of scales. . .
. [C]onventional methods . . . cannot cope with physical phenomena operating
across large range of scale [e.g., 10 orders of magnitude]. . . . Confounding
matters further, the principle physics governing events often changes with scale,
so that the models themselves must change in structure. (Oden, 2006, pp. 29–30;
emphasis added)

As the panel goes on to note, these problems, which bedevil scientific research span-
ning from atomic physics to astrophysics, require that new modeling approaches be
developed.

Although the tyranny of scales problem is often taken to be intuitively clear from
the description provided by Oden et al. above, it is helpful to explicitly draw out
three components that typically characterize the tyranny of scales problem: First, it
concerns phenomena that span a wide range of spatial and/or temporal scales. Second,
these phenomena involve fundamentally different entities and processes operating at
different scales. In other words, the effective dynamics (or “principle physics” to use
Oden’s phrase) dominating at one scale will be different from the effective dynamics
that dominate at a different scale. Finally, the third component of the tyranny of scales
problem is that there can be complex dependencies or feedbacks between the entities
and processes operating on these different scales. Although any given phenomenon
will manifest these three aspects to varying degrees, collectively they define what is
meant by the tyranny of scales problem. Moreover, this phrase can be used to describe
the physical features of a system themselves, or the challenges that these features give
rise to in the context of modeling.

In the philosophical literature, there has been a growing interest in the implications
of tyranny of scales problem for modeling specifically. In his Oxford Handbook entry
on “The Tyranny of Scales” Robert Batterman argues that

much philosophical confusion about reduction, emergence, atomism, and antire-
alism follows from the absolute choice between bottom-up and top-down
modeling that the tyranny of scales apparently forces upon us. (Batterman, 2013,
p. 257)

Batterman argues that the purely reductionistic, bottom-up approach is naive and
unsupported by the actual modeling approaches of scientists. He emphasizes instead
the importance of mesoscale structures, which “provide the bridges that allow us to
model across the scales” (p. 285). More recently, Mark Wilson has also highlighted
the tyranny of scales problem and the emergence of multiscale, or what he calls multi-
scalar, modeling. Using the example of modeling the material properties of a steel bar,
he notes the problem is not just managing the large number of parameters required to
describe the system, but also dealing with what he calls the problem of the “syntactic
inconsistency” between models used to describe the system at different scales (Wil-
son, 2017, pp. 225–226). The tyranny of scales problem has also been recognized to
pose an obstacle to reductive explanations in biology (Green & Batterman, 2017). As
these papers note, there remains much philosophical work to do in understanding the
implications of the tyranny of scales for scientific modeling methodologies.
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In this paper I expand philosophical discussions about multiscale modeling to
include new examples from the geosciences, and show how this work in the geo-
sciences points to new strategies for taming the tyranny of scales. Before turning to the
geoscience examples, however, a couple of preliminary remarks are in order to situate
my philosophical approach to scientific modeling. First, although the models-as-tools
(e.g., Currie, 2017; Knuuttila, 2005) andmodels-as-representations (e.g., Giere, 1999)
views are often juxtaposed, there is not as much opposition between these views as one
might be led to believe. Indeed, on the view I will adopt here, models are both: they
are representational tools (Parker, 2010). Second, the use of non-veridical elements
in modeling (e.g., fictional properties, states, processes and entities) does not render
such models non-representational. In keeping with my account of fictional models
(2009, 2011) and the eikonic conception (2016, 2018), a scientific model doesn’t need
to be a veridical representation of its target in order to be a good scientific represen-
tation;2 it can be a non-veridical representation that nonetheless captures the relevant
dependencies and licenses the relevant correct inferences.3

In order to drive this point home, I introduce a terminological distinction between
representation and depiction: I use representation in its broad sense to mean simply
one thing standing in for—or being about—another.4 By depiction I mean a veridi-
cal, or nearly veridical, representation that tries to mirror as closely as possible its
target.5 This distinction will be important when it comes to the discussion of the dif-
ferent—often conflicting—representations that can be simultaneously deployed in a
multiscale model. Recognizing that not all successful representations are depictions
reorients the methodological strategies used in multiscale modeling. The aim of sci-
entific modeling need not be to produce as detailed or as fundamental of a veridical
depiction as is, say, computationally feasible; rather the aim is to construct a repre-
sentation that is adequate to the purpose that the model will be used for (e.g., Wimsatt
[1987] 2007; Murray, 2013; Parker, 2020).

The central sections of the paper will be organized around three different classes
of models: conceptual, physical, and mathematical. Section 2 will focus on con-
ceptual models, which have received little attention from philosophers of science.
I will highlight three strategies for taming the tyranny of scales at the level of
conceptual modeling, namely, attention to thresholds, hierarchy theory, and adequacy-
for-purpose. In Sect. 3, I turn to physicalmodeling,where the tyrannyof scales problem

2 This element of my view has often been misunderstood: Both Massimi (2019) and Frigg & Hartmann
(2020) havemistakenly assumed that the examples of fictionalmodels I discussmust be a case of “targetless”
modeling (2019, p. 870) or a “non-representational“ account ofmodel explanation (2020). As amore careful
readingmakes clear, this is not the case: one can have a fictional representation of real entities and processes.
3 A striking example of this from the history of science is James Clerk Maxwell’s (veridical) inference that
light is electromagnetic radiation from his fictional (non-veridical) vortex-idle wheel model (see Bokulich
2015 for a discussion).
4 There is, of course, a huge literature on representation in scientific modeling, a review of which would
take us too far beyond the scope of this paper. For an overview of some prominent philosophical approaches
to representation, see Stephen Downes (2009), who offers a cogent argument that there is no one unified
account of representation for scientific modeling.
5 In the context of art, ‘depiction’ is used tomeanpictorial representation, though there are debates regarding
precisely what that means (see Shech 2016 for a philosophical discussion). I am instead using the term to
signal a veridical, rather than specifically pictorial, representation.
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typically manifests itself as scale effects. I will examine the conditions required for
dynamical scaling to hold, and discuss four different strategies for dealing with the
problems that arise when dynamical scaling fails. The philosophy of science litera-
ture on multiscale modeling has focused predominantly on mathematical multiscale
modeling, which is the topic of Sect. 4. However, what has not been adequately appre-
ciated is that there aremany different types ofmultiscale behavior in nature—involving
different spatial and temporal dependencies between the scales—which require fun-
damentally different kinds of multiscale models.

2 Taming the scales in conceptual modeling

Although there are many different ways one could taxonomize the wide variety of
types of scientific models, in the context of the geosciences it is helpful to distin-
guish the following three broad categories: conceptual models, physical models, and
mathematical models. The vast majority of the philosophical literature on scientific
modeling has been about mathematical models, with physical models coming in a
distant second, and conceptual models receiving comparatively little philosophical
attention. In the geosciences, one might argue that conceptual models are the most
important category: in addition to being an important class of models on their own,
they typically underlie, and are a prerequisite for, both mathematical and physical
modeling.

2.1 Conceptual models

A conceptual model, as the name implies, is an abstract (and typically idealized and
incomplete) conceptualization of the target system that involves specifying what the
key entities, processes, and interactions are operating in that system. It can be conveyed
in narrative form or as a diagram. Conceptual models in the geosciences, just like other
models, must contend with the tyranny of scales problem. However, there are certain
strategies that modelers can make use of at the level of the conceptual model to help
tame this tyranny of scales. There are three such strategies I want to highlight in
this section: these involve attention to thresholds, hierarchy theory, and adequacy-
for-purpose. To illustrate these central philosophical points about conceptual models,
and how the tyranny of scales affects them, I will draw on examples from fluvial
geomorphology, which is the study of the processes and morphology of rivers in their
associated landscapes.

One of the most well-known conceptual models in fluvial geomorphology is Emory
Lane’s (1955) “stable channel balance” model of a river channel. This conceptual
model relates in a qualitative way four variables: amount of water discharge, the
sediment supply, the grain size of the sediment, and the river slope, thereby describing
how a river channel will either degrade (i.e., erode or incise into the river valley) or
aggrade (i.e., fill in the river valley through the deposition of sediment). Although
Lane originally conveyed this conceptual model purely descriptively, in 1960 another
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Fig. 2 Diagram of the Lane-Borland stable channel balance conceptual model, from Borland (1960), illus-
tration by James Vitaliano (US Bureau of Reclamation)

civil engineer, Whitney Borland, portrayed Lane’s model with a diagram of a scale
balance (Fig. 2).

The ruler on the beam has increasing sediment grain size going to the left and
increasing stream slope to the right; the amount of sediment supply is in the left
balance pan, and the amount of water discharge is in the bucket on the right. As
the balance shifts, the indicator needle will point to the amount of stream channel
degradation or aggradation. This simple conceptualmodel conveys how a river channel
will respond to changing environmental conditions: If climate change leads to drought,
then the river channel will aggrade; if vegetation slows hillslope erosion, reducing the
sediment supply to system, the river will degrade; if the sediment source changes to a
finer sediment, that will also cause the channel to degrade. The conceptual model here
identifies what the relevant ontological elements, processes, and causal dependences
are that are needed in order to understand (or explain, or qualitatively predict, etc.)what
will happen to the system of interest (e.g., whether there will be channel degradation,
aggradation, or stability).

Although conceptual models on their own are conveyed only narratively or via a
diagram, more often in the geosciences today, conceptual models will be turned into
either physical models or mathematical models. Despite these different realizations,
however, the underlying conceptualmodel remains an important part of that physical or
mathematicalmodel. Thuswhen a physical ormathematicalmodel fails, it is important
to ask whether it was due to the underlying conceptual model, or just its particular
implementation in a system of equations, or in a computational algorithm, or in a
particular table-top hardware set up.
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2.2 Thresholds in conceptual modeling

With this better understanding of conceptual models in hand, we can now turn to
how the tyranny of scales problem is manifested in conceptual models, and the first
strategy to manage it: thresholds. In the geosciences, the importance of thresholds
for taming the tyranny scales was first recognized by the geomorphologist Stanley
Schumm. In a landmark paper written with Robert Lichty in the mid-1960s, Schumm
calls attention to the tyranny of the scales problem in geomorphology, its implications
for understanding cause and effect in geomorphic systems, and the need for better
conceptual models to reflect this. Although they don’t use the phrase “tyranny of
scales” (which is a twenty-first-century label), it is clearly this problem that motivates
their discussion of how to investigate andmodel river channelmorphology. Theywrite,

The distinction between cause and effect in the development of landforms is a
function of time and space . . . because the factors that determine the character of
landforms can be either dependent or independent variables as the limits of time
and space change. During moderately long periods of time, for example, river
channel morphology is dependent on the geologic and climatic environment, but
during a shorter span of time, channel morphology is an independent variable
influencing the hydraulics of the channel. (Schumm & Lichty, 1965, p. 110)

They are here calling attention to the fact that river channels involve a wide range of
spatial and temporal scales, and importantly that the relevant processes to be mod-
eled—and how they are to be modeled—can change as different spatial and temporal
scales are considered.

To aid in the development of more adequate models, they describe how the rela-
tionships between the variables of a river system change as different temporal scales
are considered. In particular, they consider three different time scales: geologic, mod-
ern, and present; and three statuses that river variables can take: indeterminate (i.e.,
unmeasurable), dependent, and independent (Table 1).

The first time scale they call “geologic,” which is on the order of ten thousand
to a million years, and begins during the Pleistocene Epoch when glacial discharges
established the width and depth of many river valleys, which on this time scale are
considered the dependent variables. The second time scale they call “modern,” which
encompasses the last 1000 years. During this time span, river valley width and depth
shift from being dependent variables to independent variables, since they are “in-
herited” from the paleohydrology of geologic time. The mean water and sediment
discharges go from being indeterminate (unmeasurable) to being measurable and the
relevant independent variables. It is these independent variables that determine chan-
nel morphology, where channel morphology is now a dependent variable. Finally, for
the shortest time scale (the “present”), which is on the order of a year, channel mor-
phology changes from being a dependent variable to being an independent variable,
and the observed (as opposed to mean) water and sediment discharges now go from
being indeterminate (unmeasurable) to being the dependent variables.

In a subsequent paper, Schumm (1979) brings together these insights about the
importance of multiscale considerations in the conceptual modeling of fluvial sys-
tems with a discussion of thresholds. A threshold can be understood as a marked
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Table 1 The status of river variables (rows) during time spans of decreasing duration (columns) redrawn
after Schumm and Lichty (1965), Table 2

River variables Status of variables during designated time
spans

Geologic Modern Present

1. Time Independent Not relevant Not relevant

2. Geology (lithology and structure) Independent Independent Independent

3. Climate Independent Independent Independent

4. Vegetation (type and density) Dependent Independent Independent

5. Relief Dependent Independent Independent

6. Paleohydrology (long-term discharge of water
and sediment)

Dependent Independent Independent

7. Valley dimension (width, depth, and slope) Dependent Independent Independent

8. Mean discharge of water and sediment Indeterminate Independent Independent

9. Channel morphology (width, depth, slope,
shape, and pattern)

Indeterminate Dependent Independent

10. Observed discharge of water and sediment Indeterminate Indeterminate Dependent

11. Observed flow characteristics (depth, velocity,
turbulence, etc.)

Indeterminate Indeterminate Dependent

transformation of state or behavior as a result of an incremental, ongoing process. A
threshold crossing can be precipitated by an external process (extrinsic threshold) or
by an internal process of the system (intrinsic threshold); it can be abrupt or transi-
tional; and it can be transitive (reverse crossing restores original state) or intransitive
(e.g., Church, 2017). Schumm argues that an adequate conceptual modeling of rivers
requires recognizing that rivermorphology doesn’t change continuously, but rather has
two critical thresholds: “[T]here is not a continuous change in stream patterns with
increasing slope from straight through meandering to braided, but rather the changes
occur essentially at two threshold values of slope, or stream power” (Schumm, 1979,
p. 491). Rivermorphology can be classified into essentially three types: straight, mean-
dering, or braided. The importance of these thresholds for an adequate understanding
of rivers can be seen in Fig. 3.

As Grant and colleagues note,

Adding the concept of thresholds introduces . . . new conceptual models. . .
.[T]hese newer conceptualmodels that explicitly recognize a hierarchy of control
acting over different timescales with the potential for abrupt changes in system
behavior offer hope that future states of the river can be predicted. (Grant et al.,
2013, p. 13)

Traditionally geomorphology, like paleontology, was thought to be restricted to being
a purely historical and idiographic discipline, that is, confined to “the description
of unique, unrepeated events” (Gould, 1980, p. 113). However, with Schumm’s and
other’s work developing new conceptual models that incorporate thresholds within a
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Fig. 3 Threshold diagram for river morphology. (From Church, 2002, Fig. 4, reproduced with permission
from John Wiley & Sons.)

multiscale framework, the promise of geomorphology as a nomothetic and predictive
science began to be seen as within reach.

2.3 Hierarchy theory in conceptual modeling

A second strategy for taming the tyranny of scales at the level of conceptual modeling
draws on what is known as hierarchy theory. Hierarchy theory was first developed
in the context of ecology as a method for studying complex, multiscale ecological
systems (Allen & Starr, 1982). The basic idea is to develop a conceptual model that
locates the phenomenon of interest within a hierarchy of levels. Using the reference
scale of the phenomenon of interest, the hierarchy should include the relevant higher
levels at a larger spatial or longer temporal scales above it, and the relevant lower
levels at a smaller or shorter scale below it. Hierarchy theory focuses attention more
specifically on the ways in which the higher (larger or slower) levels act so as to
constrain the dynamics of the phenomenon of interest at the target level.

Before further elaborating this strategy for taming the tyranny of scales in con-
ceptual modeling, it is worth pausing to briefly address some common philosophical
worries about the notion of a hierarchy of levels. As Potochnik and McGill (2012)
argue, many difficulties plague the “classical” notion of a universal set of discrete
ontological levels. In particular they rightfully target the classical series of levels built
on simple mereology or “composition.” As they note, this does not, however, mean
that no hierarchy of levels can be constructed, and they point to scale and causation
as the appropriate basis from which to construct a hierarchy of what they call “quasi”
levels. They draw on thework of Rueger andMcGivern (2010), who point to a different
notion of a hierarchy of levels:
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When physicists talk about levels, they often do not have in mind a mereological
ordering of entities. Instead, what they describe is best understood as a strat-
ification of reality into processes or behaviors at different scales. (Rueger &
McGivern, 2010, p. 382)

As Potochnik and McGill clarify, the focus is on the scales at which particular causal
processes are operating, rather than composition. I will largely follow these philoso-
phers of science in identifying this as the relevant notion of level to be used in hierarchy
theory.6

The strategy, on this approach, is to use observations of the different timescales on
which processes unfold to identify the functionally relevant scales and to organize the
hierarchy. As Brad Werner explains, “variables with disparate intrinsic time scales,
when nonlinearly coupled, can develop an asymmetrical relationship: Fast variables
become... [tied]7 to slow variables and lose their status as independent dynamical
variables” (Werner, 1999, p. 103). The variables and processes operating on these
slower time scales (the higher level) thus set the context and constraints within which
the phenomena of interest operate, while the variables and processes at faster time
scales (at lower levels) are abstracted, providing the effective dynamics underlying
the phenomenon of interest. These hierarchies do not need to be nested (Allen & Starr,
1982); a non-nested hierarchy is one in which the higher, constraining level is not
an aggregation of (composed of) the lower levels. Recall the example of the sandy
coastline in the first section: the sand bars are not composed of the ripples, but they
set the dynamical context (or constraints) in which the ripples must form and evolve.

Hierarchy theory helps tame the tyranny of scales by focusing attention on the
functionally relevant scales. Which scales are functionally relevant is not universal,
but depends on the question you are trying to answer. Asking the right question at the
wrong scales is what the landscape ecologist Kevin McGarigal describes as a “type III
error” (2018). Saying that it is purpose-relative, however, does not mean that it is not
objective. The facts that determine which scales are functionally relevant for a given
purpose (hence which levels have to be modeled), which processes and variables are
the “effective” ones operating at those scales, and the causal relations between those
relevant scales and variables is something that has to be discovered empirically. Since
we will discuss hierarchical modeling further in the section on mathematical models,
let us turn now to the final strategy to be discussed for taming the tyranny of scales in
conceptual modeling, namely the importance noted above of paying attention to the
purpose of the model.

2.4 Adequacy for purpose in conceptual modeling

Before building or selecting amodel, one of themost important questions to ask iswhat
purpose you want that model to serve. As Ron Giere cogently argues “[t]here is no
best scientific model of anything; there are only models more or less good for different
purposes” (Giere, 2001, p. 1060). The central idea is that it is better to have a plurality of

6 There are just a few points on which my account will diverge slightly from theirs.
7 The problematic traditional term ‘slaved’ has here been replaced with ‘tied’.
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different models of a system of interest, each tailored to answering a particular cluster
of questions or performing a particular subset of tasks, rather than trying to construct
a single model that is supposed to do it all.8 What has not, perhaps, been adequately
recognized is that this also has implications for the nature of the representations used in
the models. The presumption that one can construct a single model that will answer all
questions about the system of interest and perform all tasks is bound up with the idea
that a model needs to be as accurate and detailed a representation as possible—i.e.,
what in Sect. 1 I called a depiction. Rejecting this presumption of a single model then
opens up the possibility of using multiple models, each with different (and perhaps
incompatible) representations of a system, that is, representations that are not perfectly
accurate but are nonetheless tailored to be adequate for a specific purpose.

This notion of designing and evaluating models as fit for particular purposes has
been worked out in greatest philosophical detail by Parker (2010, 2020). Whether or
not a model is adequate for purpose depends on more than just the target phenomenon
being modeled. She elaborates as follows:

[F]or a model to be adequate-for-purpose, it must stand in a suitable relationship
. . . with a target T, user U, methodology W, circumstances B, and goal P jointly.
(Parker, 2020, p. 464)

She collectively refers to this as a problem space, which is constituted by the problem
(P) and constrained by the target, user, methodology, circumstances. The model is
then designed (or selected) so as to be a “solution” in this problem space (p. 465).
Depending on the problem space, different modes of representation that are more or
less veridical9 may be called for. Consider themost familiar liquid on the planet: water.
If you are working in biology on molecular simulations, then the classical atomistic
(“tinker-toy”) model of water may be adequate. If you are trying to understand the
high surface tension of water, then a quantum–mechanical model of water might be
more appropriate. On the other hand, if you are studying how water flows through an
aquifer (within the context of geophysical fluid dynamics), then you must use must
use a continuum representation of water; both the classical atomistic and quantum
representations of water will be inadequate.10

The key point is that the tyranny of scales problem is exacerbated by attempts
to construct what we might call the “one-best-depiction” model of a target system,
which strives to answer any question about the target that one might pose by making
the model as realistic a depiction as possible. This one-best-depiction model approach
is often attempted in a “reductionistic” manner by trying to model even largescale (or

8 Some have argued that there is a necessary tradeoff in modeling purposes, such as Richard Levins classic
(1966) paper arguing that there is a necessary tradeoff between the modeling goals of generality, realism,
and precision. For a discussion of this issue in the context of geomorphology see Bokulich (2013) and
references therein.
9 The issue of veridicality is arguably nontrivial here. At one end of the spectrum of interpretation, veridi-
cality means a representation that uses the ontology of our best current fundamental theory of that domain.
Though at the other end of the spectrum, James Nguyen (2020) argues that a prima facie fictional represen-
tation can be interpreted as veridical if there is an appropriate translation key.
10 I elaborate this example of different representations of water, discussing how some of them do a better
job of allowing researchers to answer certain kinds of questions than others, and arguing that the most
“veridical” representation is not always the best in Bokulich (2016).
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long timescale) phenomena by beginning with a detailed small spatial scale and short
timescale description of the ontology and dynamics.11 So, for example, even if one
is trying to understand how regional coastlines evolve over centuries, the one-best-
depiction approach would try to do so by beginning with how individual grains of
sand are moved in the fluid.

In this context of coastal geomorphology, Jon French and colleagues argue against
this one-best-depiction approach, and in favor ofwhat they call appropriate complexity
modeling. They write,

It should be fundamental to any modelling endeavour to match the level of
mechanistic understandingwith the scale of the problem. In the context of under-
standing and managing coastal change, that scale of interest is often as much
determined by applications and stakeholder needs than by any intrinsic organisa-
tional property that the geomorphological systems involved are dependent upon.
(French et al., 2016, p. 14)

Here French and colleagues are calling attention to the importance of what Parker
describes as the problem space of the modeling endeavor, and how that problem space
determines the way in which the particular coastal geomorphology system is to be
modeled. Their notion of appropriate complexity modeling captures this emphasis on
adequacy for purpose.

Interestingly French and colleagues also allude to the other two strategies we have
described here for taming the tyranny of scales in conceptual modeling: thresholds and
insights from hierarchy theory. They write that models should be “formulated with a
view to resolving critical state changes” (p. 3), that is, the dynamical or behavioral
thresholds in the geomorphic system.Theynote thatwhile “reductionist” approaches to
modeling are often able to resolve incremental changes in the system, they are ill-suited
to capturing the qualitative changes of state characteristic of thresholds that emerge
at mesoscales. They also emphasize that modeling coastal geomorphology on the
coastal tract cascade approach is developed with explicit reference to hierarchy theory
(p. 8). The concept of a “coastal tract” was introduced by Peter Cowell and colleagues
as a “new overarching morphological entity” (2003, p. 813), with the corresponding
notion of a coastal-tract cascade as a way to formalize concepts for separating coastal
processes and behaviors into a scale hierarchy. They explain,

The purpose of the cascade is to provide a systematic basis for distinguishing,
on any level of the hierarchy, those processes that must be included as internal
variables in modeling coastal change, from those that constitute boundary con-
ditions [at larger scales], and yet others that may be regarded as unimportant
‘noise’ [at smaller scales]. (Cowell et al., 2003, p. 825)

The concept of a coastal tract thus provides a framework for aggregating processes
into mesoscale models. As we will see in Sect. 4, this “aggregating” is not a flat-footed
averaging, but rather a synthesist approach that focuses on identifying the emergent
variables or effective degrees of freedom.

11 The label “reductionistic”modeling iswidespread in the geomorphology literature and is often contrasted
with what is called “reduced complexity” modeling. For a philosophical discussion of these types, see
Bokulich (2013).
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To summarize, we have examined three strategies for taming the tyranny of scales
at the level of conceptual modeling: First, the importance of identifying the relevant
dynamic thresholds in the system where there are qualitatively discontinuous changes
in the system’s behavior. Second, the deployment of hierarchy theory, which identi-
fies the functionally relevant scales given the application of interest, as well as the
constraints coming from the higher levels of the hierarchy. Third, the exhortation to
develop models with a focus on their adequacy for particular purposes (or more gen-
erally their suitability to a particular problem space), rather than develop models as
all-purpose, realistic depictions of their target systems. I have spent considerable time
on conceptual models because, in addition to being an important (yet neglected) class
of models in their own right, they also underlie the other two broad classes of models
we will discuss (viz., physical models and mathematical models). With this deeper
understanding of conceptual modeling in hand, let us now turn to the second-least
philosophically discussed category of models: physical models.

3 Taming the scales in physical modeling

Physical models have long played a central role in the geosciences. Physical models
are known by many names, including table-top models, concrete models (e.g., Weis-
berg, 2013), material models (e.g., Frigg&Nguyen, 2018), and hardwaremodels; they
are typically either a scaled-down version of the system of interest, hence are often
referred to as scale models (e.g., Bokulich & Oreskes, 2017), or they are analogue
physical systems, hence also sometimes referred to as analog models (e.g., Sterrett,
2017b). Physical modeling in the geosciences faces several dimensions of the tyranny
of scales problem. First, many geoscience systems of interest, such as river valleys,
coastlines, and mountain ranges, develop over large spatial and long temporal scales;
and moreover, the forces that shape these geological systems also can involve pres-
sures and temperatures beyond our reach. These conditions make the investigation of
such systems difficult and their manipulation nearly impossible.12 To overcome these
limitations, scale physical models are developed using dynamical scaling and the for-
mal theory of similitude (discussed below). However, true scaling is often difficult, if
not impossible, to achieve in all the relevant respects; hence, researchers often must
make do with what are called “distorted” scale models. Such distorted scale models
exhibit “scale effects,” which are artefacts of the modeling process due to problems of
scale, and these can lead the behavior of the model system to deviate from the behavior
of the target. As we will see, recent scaling studies in the geosciences have revealed
opportunities for addressing some of these tyranny of scales problems in physical
modeling. Each of these scale issues in physical modeling will be discussed in turn,
beginning with a brief introduction to the formal theory of similitude and dynamical
scaling.

12 I say ‘nearly’ because human activity through dam-building, extensivemining, deforestation, and climate
change are manipulating geomorphic systems, though these projects are not typically undertaken with the
aim of advancing scientific knowledge. Most of the experimentation that takes place in the geosciences
is what we might call process-based experiments which focus on understanding individual geological
processes, such as wind-tunnel studies of sand abrasion on different types of rock.
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In general, simply shrinking down a system into a smaller scale physical model
will not be informative about the target system. In order to have a model that is
scientifically useful, one typically needs to design a physicalmodel that has the relevant
similitude. There are three key notions of similitude. The first is geometric similitude.
Intuitively, two systems are geometrically similar if they have the same shape. More
precisely, geometric similitude obtainswhen the length ratios ofmodel and target along
every dimension have the same linear scale ratio (λ), which implies that all angles
preserved. Susan Sterrett (2021) gives the example of a common school exercise to
indirectly measure the height of a tree by measuring the length of its shadow, along
with measuring your own height and shadow. Since the angle of the sun is the same,
the ratios of heights to shadows should be the same; thus by knowing three quantities
in the equated ratios one can calculate the fourth quantity. The two triangles formed
by object height, shadow length, and light ray have geometric similitude.

The second notion of similitude in formal scaling is kinematic similitude. Here the
physical model and target systemmust have the same displacement ratios and velocity
ratios at their respective homologous points. The third, and often most important,
notion of similarity is dynamic similitude, which will be the focus of our discussion
below. When dynamic similitude can be established between the physical model and
target system, one can be confident that the investigations carried out on the physical
model will be a reliable guide to inferences drawn about the target system.

The subtleties of dynamic similitude and scaling were first recognized by Galileo
and were the subject of the first two days of his Dialogues Concerning Two New
Sciences.13 Galileo writes,

[Y]ou can plainly see the impossibility of increasing the size of structures to
vast dimensions either in art or in nature; . . . it would be impossible to build up
the bony structures of men, horses, or other animals so as to hold together and
perform their normal functions . . . for this increase in height can be accomplished
only by employing a material that is harder and stronger than usual. (Galilei
[1638] 1991, p. 130)

Galileo’s insights on scaling seem to have not been widely known or appreciated, and
it was not until the late 1930s that the geologist M. King Hubbert would introduce
the quantitative theory of dynamic scaling into the geosciences, citing Galileo as his
inspiration.14

Hubbert’s groundbreaking work on scaling was motivated by the need for a new
approach to physical modeling in the geosciences. His two key papers laying this
foundation are “Theory of Scale Models as Applied to the Study of Geologic Struc-
tures” (1937) and “Strength of the Earth” (1945). Hubbert’s latter paper begins with

13 Galileo’s theory of scaling, discussed in relation to the strength of materials, is the first of the “two new
sciences.” For an interesting account of his discovery of scaling principles that locates the inspiration for
his insights in his lectures on the spatial dimensions of hell in Dante’s Inferno, see Peterson (2002). For a
more complete history of physical similitude modeling, see Sterrett 2017a.
14 Hubbert cites Galileo in his landmark (1937) paper on scaling and in his AIP oral history interview
(Hubbert 1989, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/5031-5). In the con-
text of biology, Haldane ([1926] 1985) had resurrected Galileo’s insights on scaling a decade earlier in his
paper “On Being the Right Size”.
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the following puzzle: “Among the most perplexing problems in geologic science has
been the persistent one of how an earth whose exterior is composed of hard rocks
can have undergone repeated deformations as if composed of very weak and plastic
materials” (Hubbert, 1945, p. 1630). He notes, citing John Hutton, that it is not that the
forces in the past were any more ”spectacular” than the geologic forces experienced
today. He then shows that a proper accounting of scale differences, through the formal
theory of dynamical scaling, can resolve this paradox: “By means of the principles
of physical similarity it is possible to translate geological phenomena whose length
and time scales are outside the domain of our direct sensory perception into physically
similar systems within that domain” (p. 1630). Reducing spatial scales down to 1 to 10
million (reduction ratio of 10−7) and temporal scales down to 1min to 10million years
(reduction ratio of 10−13), he calculates that the corresponding reduction ratio for the
viscosity of the Earth would be 10−20, making the hard rock of our experience compa-
rable to that of “very soft mud or pancake batter” (Hubbert, 1945, p. 1651). The theory
of dynamical scaling not only resolves this puzzle, but shows how one can construct a
physical model such that it bears the relevant physical similarity (dynamic similitude)
to the system of interest, thus providing a critical tool for taming the vast scales of
geologic phenomena and bringing them within the reach of scientific investigation.

Dynamic similitude is the idea that the dynamics that govern one system are equiv-
alent to the dynamics that govern another system, which implies that the two systems
will behave the same way. The standard way to secure this dynamic similitude is by
making sure that for all relevant forces, the ratio of forces in one system is equal to
the corresponding ratio of forces in the other system. Examples of force ratios that are
relevant when fluid dynamics are involved include the ratio of the inertial force to the
gravitational force (known as the Froude number “F”), the ratio of the inertial force to
the viscous force (known as the Reynolds number “R”), the ratio of the inertial force
to the force of surface tension (known as the Weber number “W”), and the ratio of
the inertial force to the elastic compression force (known as the Cauchy number “C”).
When any of these ratios is satisfied, the model and target are said to have the corre-
sponding similarity, such as “Froude similarity.” To achieve full dynamic similitude,
all of these ratios in the model would need to take on the same values as the ratios in
the real-world target system.

Although the theory of dynamical scaling may be clear, the challenge is that, in
practice, it is highly nontrivial to get all the force ratios in the physical model to have
the same values as the force ratios in the target system. Indeed, if one is using the
same fluid in the physical model as in nature (e.g., water) then complete dynamical
similarity is nearly impossible, because the viscosity of water cannot be appropriately
reduced.15 In such cases, only one of the force ratios can be satisfied and the modeler
has to choose which one is the most important for a given study.

AsValentinHeller (2011) explains, for phenomenawhere gravity and inertial forces
are dominant, Froude similarity is the most important to satisfy in the physical model;

15 Few liquids have lower viscosity than water, though isopropyl alcohol and even air have been used
as substitutes in models to help achieve similarity. However, such substitutes will often lose similarity in
another respect (e.g., air models can recover viscosity effects, but will fail to reproduce gravity effects
(Heller 2011, p. 301)). The gravitational force is another example of a quantity that is difficult to scale,
though some physical models have done so by placing the apparatus within a centrifuge.
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for phenomena where viscous and inertial forces are dominant, Reynolds similarity
is the most relevant. As we saw in the context of conceptual modeling, a key strategy
when perfect similarity between model and target is impossible is to try to make the
model adequate to the particular purpose for which it will be used—a point to which
we will return below.

When force ratios in the model are not the same as in the target, then scale effects
occur. Scale effects are an important class of artefacts in the modeling process, arising
from differences of scale that cause the behavior of the model to deviate from the
behavior of the target.16 Scale effects can occur when forces that are not relevant in
the target system, such as surface tension or cohesive forces, become dominant at the
scale of the physical model. Following the terminology introduced above, physical
models that are Froude similar, will have scale effects arising from the inequivalent
Reynolds, Weber, and Cauchy numbers, while physical models that are Reynolds
similar will have scale effects arising from inequivalent Froude, Weber, and Cauchy
numbers, and so forth.

It is important to recognize that scale effects are one manifestation of the tyranny of
scales problem.Recall thatwe identified three aspects of the tyranny of scales problem:
first, the systems involve a wide range of spatial and temporal scales; second, the
processes or dynamics dominating at one scale will be different from those dominating
at a different scale; and, third, there can be complex dependencies between entities
and properties operating at these different spatial and temporal scales. Scale effects,
as we’ve seen here, arise when the effective forces that dominate the system at the
scale of the physical model are not the same as the effective forces that dominate at
the scale of the target system (e.g., when cohesive forces dominate at the scale of the
physical model, but are not significant at the larger scale of the target system).

Although scale effects are a manifestation of the tyranny of scales problem that
can invalidate the inferences drawn from physical scale models, there are a number
of strategies for managing such effects. However, successfully managing scale effects
requires first understanding the magnitude and direction of their influence on the vari-
ables of interest. If one is dealing with a very simple system that is theoretically well
understood, then onemight be able to calculate the influence of the scale effects a priori.
Typically, however, the complexity of systems in the geosciences makes this impossi-
ble, and the detection and influence of scale effects must be investigated empirically.
An ingenious strategy for determining the influence of scale effects experimentally is
to construct what is called a scale series of physical models.

A scale series is a sequence of several physical models for the same target system,
with each one constructed at a different scale in order to investigate the influence of
scale effects as the model is shrunk down. An example from the geosciences is the
work Heller and colleagues who studied how landslides and avalanches can generate

16 Scale effects are just one subset of artefacts that can arise in the physical modeling process. There are also
more general “model effects” which can, for example, arise from modeling a 3D system as 2D, or artefacts
arising from the boundary conditions of the model, etc. Heller discusses a third category of artefacts, which
he calls “measurement effects” that arise from different measurement and data sampling techniques being
used in the model and the target system (2011, p. 293).
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large impulse waves, such as the 1958 landslide into Lituya Bay in Alaska that gener-
ated a megatsunami with a wave height of 524 m (or 1,720 feet).17 Heller et al. (2008)
constructed a series of seven different scale physical models (using a pneumatic land-
slide generator and wave channel tank) all of which were Froude similar (meaning the
ratio of inertial force to gravitational force was essentially the same in both the Lituya
Bay landslide and in the scale models). Because the physical models used water, it
was not possible for the other force ratios (Reynolds, Weber, and Cauchy numbers)
to simultaneously be satisfied.18 The failure to satisfy these other force ratios means
that scale effects will influence the behavior of the model, making it deviate from the
target system. The key insight behind using a scale series is to investigate how those
scale effects manifest themselves in a sequence of scale models so their influence on
various variables of interest can be determined.

Once one has a quantitative understanding of the relevant scale effects and their
influence on various quantities, then there are various strategies one can deploy toman-
age them. Heller (2011) groups these strategies into three categories, which he labels
avoidance, correction and compensation. The first strategy of avoidance takes advan-
tage of two key strategies highlighted in the context of conceptualmodeling: thresholds
and adequacy for purpose. Although scale effects cannot be entirely avoided, one can
design the scale model such the scale effects are within a regime where their influence
on the variable of interest (i.e., for a particular purpose) is negligible. For example,
Heller’s scale series of Froude similar models was used to define threshold values
of Reynolds and Weber numbers for which scale effects impacting the maximum
wave amplitude can be neglected. He writes, “considering all seven scale series, scale
effects are negligibly small (< 2%) relative to the maximum wave amplitude am if RI

� g1/2h3/2/v ≥ 300,000 and WI � ρgh2σ ≥ 3,000” (Heller, 2011, p. 299).19 In other
words, if the Reynolds and Weber numbers are above a certain threshold, then their
associated scale effects for wave amplitude can be neglected. These threshold studies
give rise to various “rules of thumb” for how to construct a scale model such that the
impact of scale effects on the variables of interest is minimized. As Heller explains,
however, whether various threshold values will be adequate depends on which feature
of the target one is trying to draw inferences about:

If one parameter, such as discharge . . . is not considerably affected by scale
effects, it does not necessarily mean that other parameters, such as the jet air

17 This case is also discussed in Pincock 2020, as will be mentioned below.
18 Chris Pincock has argued such models are essentially idealized, by which he means that “there is no
knownway to develop a concretemodel... without having thatmodel generate some known falsehoods about
its intended target” (2020, p. 12). Some comments on Pincock’s notion of ‘essential’ are in order here: first,
the inability to satisfy all the force ratios is predicated on the assumption that the same fluid (water) is used,
and as noted above different fluids can be used to improve the Reynolds and Weber numbers. However,
more generally I would argue that all models are “essentially idealized”, since no model is identical to the
target and hence there will always be some way to generate a falsehood about the target using the model.
Models in science typically have an implicit or explicit set of guidelines for what kinds of inferences are—or
are not—licensed about the target system on the basis of the model, though determining which category a
particular inference falls into can sometimes be a substantive scientific question requiring further theoretical
or empirical investigation.
19 The subscript I onR andW refers to the impulse Reynolds and impulseWeber numbers, g is gravitational
acceleration, h is the still water depth, is kinematic viscosity, is density and is the surface tension of water.
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concentrations, are also not affected. Each involved parameter requires its own
judgement regarding scale effects. (Heller, 2011, p. 296)

That is, the avoidance strategy for managing scale effects in physical models requires
paying attention not only to key thresholds, but also to the particular purpose for which
that scale model will be used. It cannot be assumed that satisfying the thresholds that
render a physical model adequate for one purpose, will also make that model adequate
for other purposes. There will not typically be “one best” scale physical model, from
which all inferences of interest about a target system can be drawn.

Chris Pincock has analyzed Heller’s avoidance strategy for scale modeling in terms
of James Woodward’s notion of conditional causal irrelevance (Woodward, 2021).
Pincock’s adaptation specifies that “a set of variables. Yk is irrelevant to variable E
conditional on additional variablesXi each exceeding [or falling below] some specified
threshold” when the Xi and Yk sets of variables are both unconditionally relevant to E,
butwhen theXi exceed (or fall below) the threshold, then changes toYk are irrelevant to
E (Pincock, 2020, p. 18). So for the effect variable am (the maximumwave amplitude),
when R andW exceed the above thresholds, the “mismatch between model and target
with respect to causal consequences of ν [kinematic viscosity] and σ [surface tension]
can be discounted as their actual values are conditionally causally irrelevant [to am]”
(Pincock, 2020, p. 18). Strictly speaking, to call them conditionally causally irrelevant
is misleading because the scale effects arising from the inequivalent R andW numbers
(related to the viscous force and surface tension force respectively) do in fact causally
influence the value of the variable of interest—in this example the maximum wave
amplitude (am)—they just don’t change its value by more than 2%, as noted above.
Given Heller’s aim, this inaccuracy in the value of the effect variable (arising from
these scale effects) is not enough to thwart the purpose of the study, though there could,
of course, be other scientific projects for which this 2% difference (arising from these
residual scale effects within this threshold regime) is relevant.

Heller identifies two other strategies for taming the tyranny of scales in physical
modeling that Pincock does not discuss; these are correction and compensation. If one
is able to quantitatively determine the influence of the scale effects on a given variable,
then one might be able to correct for them mathematically after the data is collected. I
have elaborated this sort of approach in my philosophical discussions of model-based
data correction (Bokulich, 2018, 2020; Bokulich & Parker, 2021). The idea here is to
try to control scale effects, not physically during the construction of the model, but
rather vicariously during data reduction; this is an extension of Norton and Suppe’s
(2001) notion of vicarious control from their general context of experimentation to
the present case of scale effects in physical modeling. Correction is, I argue, a central
tool for taming tyranny of scales in physical modeling.

An example of the correction approach for managing scale effects in physical
modeling is found in the work of Cuomo et al. (2010). They are concerned with
studying wave impact pressures on sea walls and the scale effects that arise for their
Froude-scaled physical models. They note that such models overestimate the impact
pressure in the target system and set out to develop a scale correction factor, drawing
on theoretical and experimental work from the 1930s by the geomorphologist Ralph
Bagnold. They determine a quantity called the Bagnold number that can be calculated
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for both the scale physical model and the target system in the world. Using these two
Bagnold numbers as the axes, they construct a correction factor graph that determines
the amount by which the impact pressure of the wave in the model needs to be adjusted
in order to infer the correct value in the real-world scenario. Thus despite the inability
to construct a physical model that preserves the relevant similitude, they nonetheless
are able to use the imperfectly scaled physical model plus correction factor to draw
correct inferences. This approach can only be used, however, if there is a sufficient
theoretical understanding of the scale effects and how they influence the quantities of
interest—knowledge that can be nontrivial to obtain.

The third category of strategies for taming the tyranny of scale effects is known as
compensation. On this approach one intentionally gives up on one aspect of physical
similarity in order to achieve a greater degree of physical similarity in another respect.
In fluvial geomorphology, for example, although one could construct a physical scale
model of a river where geometric similarity is preserved, geomorphologists will often
intentionally distort the geometry of the river. This is because a geometrically down-
scaled river model will exhibit increased fiction effects, making its flow behavior
deviate from that of a natural river. By giving up perfect geometric similitude, and
making the river width and height scale factor larger than the length scale factor,
the friction scale effects can be compensated for and the similarity in flow behavior
improved. Compensation is particularly useful in those situations where the strategy
of avoiding scale effects is difficult to implement and the more complete theoretical
understanding necessary for the strategy of correction is lacking.

So far we have been discussing successful physical modeling in terms of achieving
dynamic similitude or a full physical similarity. As we have seen, this is not always
possible, but nonetheless modeling can still be successful with partial or “incom-
plete” similarity, or even a distorted similarity (sometimes called affinity) that can be
corrected or compensated for either physically or vicariously. When it comes to phys-
ical modeling in the geosciences, the requirements for formal scaling can rarely be
achieved. This might lead one to be pessimistic about the utility of physical modeling
in the geosciences. A review by Chris Paola and colleagues argues this pessimism
is unfounded. In their paper “The ‘Unreasonable Effectiveness’ of Stratigraphic and
Geomorphic Experiments” they write,

The principal finding of our review is that stratigraphic and geomorphic
experiments work surprisingly well. By this we mean that morphodynamic self-
organization in experiments creates spatial patterns and kinematics that resemble
those observed in the field. . . [despite the fact that they] fall well short of sat-
isfying the requirements of dynamic scaling. . . . Similarity in landforms and
processes in the absence of strict dynamic scaling is what we mean by the
‘unreasonable effectiveness’. (Paola et al., 2009, pp. 33–34)

The reference here, of course, is to Eugene Wigner’s classic 1960 paper “The Unrea-
sonable Effectiveness of Mathematics in the Natural Sciences,” and the analogous
point is that improperly scaled physical models in the geosciences, which should not
be able to generate the relevant patterns found in nature, nonetheless seem to be able
to do so. However, the key question, as they note, is whether this pattern similarity is
indicative of a broader underlying process similarity that could support other scientific
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Fig. 4 Left: Sierpinski triangle illustrating self-similarity. Right: Braided river exhibiting idea of statistical
self-affinity

inferences. Determining the answer to this question suggests yet another approach to
taming the tyranny of scales in physical modeling: scale independence.

The approach taken by Paola and colleagues is to search for aspects of natural
phenomena that are scale independent over a certain scale range. They write, “our
goal is to refocus the discussion of geomorphic experimentation away from formal
scaling and toward the causes,manifestations, and limits of scale independence” (Paola
et al., 2009, p. 34). They go on to identify three different ways that a limited kind of
scale independence can arise in a physical system: these can be labeled self-similarity,
convergence, and decoupling. Self-similarity is the idea that a part of a system can bear
a certain similarity to the whole. A Sierpenski triangle is an object that has an exact
self-similarity—the object looks the same whether you zoom in or out (see Fig. 4).
More often in nature, self-similarity is not exact, but rather is statistical. Statistical self-
similarity holds when the “statistical properties of the phenomenon at one scale relate
to the statistical properties at another scale via a transformation which involves only
the ratio of the two scales” (Sapozhnikov & Foufoula-Georgiou, 1996, p. 1429). One
can also relax the notion of self-similarity to self-affinity, meaning the system scales
differently along different dimensions. In a series of papers Sapozhnikov andFoufoula-
Georgiou (1996, 1997) quantitatively show that braided rivers exhibit statistical self-
affinity. They further show that this statistical self-affinity was not just morphological
(a small part of a braided river spatially resembles (in a statistical sense) a larger part
of the river) but also dynamical (a small part of a braided river evolves in a statistically
identical way to a larger part of the river). Paola et al. note that these studies of self-
similarity in fluvial geomorphology have important implications for modeling.20 They
contrast self-similarity, which they call internal similarity, with external similarity,
by which they mean that “a small version of a large system is similar to the large
system” (Paola et al., 2009, p. 34). They argue that internal similarity is an indicator of
external similarity, meaning that systems in nature that exhibit internal similarity (such
as braided rivers) are able to be successful investigated with smaller-scale physical

20 See also Murray (2007b) for a discussion of implications of self-similarity for modeling.
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models. Although they take internal similarity to imply external similarity, they note
that the reverse is not the case: systems that exhibit external similarity need not exhibit
internal similarity. This is because there are other ways to achieve external similarity,
or what we more generally call (limited) scale independence.21

A second way to achieve scale independence is through what has been called con-
vergent physics. In their study of alluvial rivers,22 Eric Lajeunesse and colleagues
note that because turbulent flows are ubiquitous in such rivers, it has been assumed
that the rhythmic bedform morphologies (ripples, subaqueous dunes, etc.) of such
rivers are caused by turbulence. They show, however, that such morphologies can
also be formed by laminar flows. This is surprising because laminar flows—that is,
orderly streamline flows where flow properties remain constant at each point in the
fluid—are dramatically different from turbulent flows, which undergo mixing and
chaotic changes in flow pressure and velocity, including the formation of vortices.
The transition from laminar to turbulent flow is an important threshold, marked by a
disparity in Reynolds numbers. Thus “laminar-flow analogues of turbulent-flow mor-
phologies cannot... be expected to satisfy dynamic similarity in terms of all the relevant
dimensionless parameters” (Lajeunesse et al., 2010, p. 1). Nonetheless, despite this
failure of dynamic scaling, “microscale experiments with laminar flow... create ana-
logues of morphodynamic phenomena that also occur in turbulent flow at field scales“
(p. 2). They are careful to note that this does not imply that turbulence is irrelevant to
the formation of these features—both the timescales of development and the spatial
scales of expression differ “because laminar and turbulent flows obey different friction
relations, one is Reynolds dependent and the other is not” (p. 21). The reason that the
same bedform morphologies form in the laminar flow of the physical model and the
turbulent flow of the real river is that there is what they term a convergence of the
physics. As Paola et al. explain in more detail,

the relation between shear stress and topography, and that between shear stress
and bedload flux—is similar enough that the morphodynamics is surprisingly
consistent across thismajor, scale-dependent transition. (Paola et al., 2009, p. 36)

Thus convergent physics is another way to achieve the “external similarity” neces-
sary for successful physical modeling, without satisfying the formal requirements of
dynamical scaling, and without a system exhibiting self-similarity.

Yet a third way to achieve the external similarity needed for physical modeling is
through a decoupling of the scales. Decoupling of scales occurs when the dynamics
at the scale of interest is insensitive to the details of the behavior at smaller scales.
As Paola et al. note, “[t]he fluid and sediment processes that are the focus of clas-
sical dynamical scaling occur at the fine-scale end of most landscape experiments,
so insensitivity to fine-scale dynamics translates into scale independence” (p. 36). In
other words, there is a decoupling of the large scale dynamics of interest from the
underlying details of smaller-scale processes, so getting those small-scale processes

21 For amoremathematical discussion of the relationship between scaling and self-similarity see Barenblatt
(2003).
22 Alluvial rivers are just rivers whose channels are formed by moveable sediment.

123



14188 Synthese (2021) 199:14167–14199

“right” is not as critical.23 This is because some features of landscape evolution are
only sensitive to general properties of the flow that can be multiply realized in a wide
variety of ways at the micro-level.

The “unreasonable effectiveness” of small-scale physical models in successfully
representing large-scale stratigraphic and geomorphic systems is thus explained by the
much wider variety of ways in which external similarity can be achieved, beyond the
confines of strict dynamic scaling. They thus lay out an alternative research program
for taming the tyranny of scales in physical modeling that involves refocusing “the dis-
cussion geomorphic experimentation away from formal scaling and toward the causes,
manifestations, and limits of scale independence” (Paola et al., 2009, p. 34). The three
paths to scale independence outlined here, namely self-similarity, convergence, and
decoupling are an important step in that direction.

4 Taming the scales in mathematical modeling

So far we have discussed methods for taming the tyranny of scales in multiscale
systems in the context of both conceptual modeling and physical modeling. Here we
turn to multiscale approaches in mathematical modeling and simulation, which has
been the dominant focus of the philosophical literature. By and large, philosophical
discussions have tended to lump all multiscale models together, without recognizing
that there is a plurality of multiscale methods. My aim here is both to draw apart some
of the different approaches to mathematical modeling in the geosciences (Sect. 4.1)
and to show how different kinds of multiscale systems in nature (Sect. 4.2) require
different kinds of multiscale models (Sect. 4.3).

4.1 Reductionist, universality, and synthesist approaches

There is a variety of approaches to mathematical modeling in the geosciences,
which have been usefully grouped into three general categories: the ‘reductionist’24

approach, the universality approach, and the synthesist approach (e.g., Murray, 2003;
Werner, 1999).25 The first, so-called reductionist modeling approach tries to remain
firmly grounded in classical mechanics, invoking laws such as conservation of mass,
conservation of momentum, classical gravity, and the like. In a field like aeolian geo-
morphology (which studies howwind-driven sand dunes and dune fields evolve) these
conservation laws may be applied to the motion of individual grains of sand and how
they bounce, impact, and roll (saltate) along other grains of sand as they are moved
by the wind. This approach moreover seeks to represent in the model as many of the
physical processes known to be operating in the target system and in as much detail as
is computationally feasible. The reductionist approach to modeling fits nicely with the

23 I will return to this idea in Sect. 4.2, given its central role in hierarchical modeling.
24 As will become clear, geomorphologists are using the term ‘reductionist’ in way different from philoso-
phers of science.
25 These three approaches are conceptually useful to distinguish, even though they are something of an
idealization, with a continuum of cases graduating between them.
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view (discussed in Sect. 2) that models should be depictions of their target systems.
Traditional climate models (e.g., GCMs—global circulation models) can also be seen
as an example of this approach to modeling. One concern with reductionist modeling
is that, as the complexity of the model approaches the complexity of the target system,
the model becomes almost as opaque as the real-world system you are trying to under-
stand. Moreover, as Brad Murray notes, “[w]hen modeling large-scale behaviors of
multi-scale systems, explicitly representing processes at much smaller time and space
scales unavoidably runs the risk that imperfections in parameterizations at those scales
cascade up through the scales, precluding reliable results” (Murray, 2007a, p. 189).
In other words, in some cases a reductionist approach may result in a worse model
than a model that represented the effective variables and processes at a higher level of
description.

At the other end of the spectrum is the universality approach, which tries to find
the simplest model that belongs to the same universality class as the target system of
interest.Such models are devoid of the physical details that distinguish one type of
system in this class from another. Batterman and Rice (2014) have described these
sorts of models as minimal models. The notion of a universality class was developed
in context of condensed matter physics to describe why very different fluids all behave
the sameway near their critical points, and has since been extended to other fields, such
as biology and the geosciences. Universality modeling has the advantage of simplicity,
but is often at a level of abstraction too far removed for predicting the behavior of the
sorts of real-world systems one finds in the geosciences, and hence of limited value.

A third approach to modeling in the geosciences has been termed synthesist model-
ing, which is often deployedwithin a hierarchical modeling framework. The synthesist
approach focuses attention on the emergent variables, orwhatmight better be described
as the effective degrees of freedom of the system at the scale of interest. Paola intro-
duces the synthesist approach as follows:

The crux of the new approach to modelling complex, multi-scale systems is that
behaviour at a given level in the hierarchy of scales may be dominated by only a
few crucial aspects of the dynamics at the next level below. . . . Crudely speaking,
it does not make sense to model 100% of the lower-level dynamics if only 1%
of it actually contributes to the dynamics at the (higher) level of interest. (Paola,
2001, p. 12)

Of course, not even the reductionist can model 100% of the lower level dynamics, so a
key question is how one should go about reducing the degrees of freedom. The reduc-
tionist and synthesist differ not just in the amount detail they include in their respective
models, but also in how they arrive at what detail is included. The reductionist typ-
ically tries to reduce the degrees of freedom through a straightforward lumping or
averaging procedure. This is sometimes called traditional upscaling, where one posits
a microscale model and then invokes a formal averaging procedure, such as volume
averaging or homogenization to arrive at a macroscale model (Scheibe & Smith, 2015,
Sect. 2.1).
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The synthesist, by contrast, tries to identify emergent structures.26 Paola illustrates
this difference as follows:

[W]hat I termed ‘synthesism’ really does represent a major departure from tradi-
tional reductionism. . . . [S]ynthesism as I understand it is not the same as lumping
or averaging—for instance, the Reynolds and St. Venant equations are certainly
not synthesist in either letter or spirit, although they represent two successive
levels of averaging. For instance, a synthesist approach to turbulence might not
involve formal averaging at all, but instead centre on coherent structures as the
crucial emergent feature of the dynamics. (Paola, 2001, p. 43)

In the context of turbulence, such coherent structures might be things like quasi-stable
ring vortices or hairpin vortices. In the context of aeolian geomorphology, emergent
coherent structures could be things such as pattern “defects” in a field of ripples or
even sand dunes themselves, which can maintain a structural coherence even as they
move for miles, exchanging sand.27 The synthesist idea is to describe the dynamics
of the system in terms of the evolution and interaction of these larger-scale coherent
structures, ormore generally in terms of emergent variables and dynamics, rather than a
simple averaging of the lower-level dynamics. This synthesist approach of identifying
emergent structures at different levels of the dynamics can then be combined with a
hierarchical or multiscale approach to modeling.

4.2 Behavior across the scales and hierarchical modeling

The recognition of the many different manifestations of the tyranny of scales in the
geosciences has led to the development of many different multiscale approaches to
mathematical modeling and simulation. Before engaging in mathematical modeling,
however, it is important to ask what kind of hierarchical or multiscale behavior your
system of interest is exhibiting. Physical systems can exhibit multiscale behavior in
spatial dimensions, temporal dimensions, or both. And the sort of multiscale behavior
within each of these dimension can vary too.

Timothy Scheibe and colleagues have developed an analysis platform for dis-
tinguishing various types of multiscale behavior within hydrogeological systems.
Although developed in the context of the geosciences, their conceptual taxonomy is
muchmore widely applicable. They note that a systemmay have an evolving sequence
of characteristic length scales. Consider an effective parameter, γ, which in a hydroge-
ological context could represent a field quantity such as porosity (the average amount
of pore space in a volume of rock or soil). They illustrate two different possible mul-
tiscale behaviors for γ in Fig. 5 below.

There are different thresholds (in increasing r) for different key length scales: sub-
pore, Darcy scale, mesoscale, and field scale. Consider curve (1) in Fig. 5: at the
sub-pore scale, measures of γ will be constant (because one is sampling within a

26 ‘Emergent’ is here being used in the sense of weak emergence (see, e.g., Chalmers 2006 for this dis-
tinction). One could also call them effective dynamical structures.
27 On defect dynamics in ripples seeWerner&Kocurek (1999), and for a philosophical discussionBokulich
(2018); for dune dynamics see, for example, Kocurek et al. (2010) and Worman et al. (2013).
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Fig. 5 Two different kinds of hierarchical or multiscale behavior for some quantity γ (e.g., porosity). Curve
(1) is a classical discretely hierarchical system. Curve (2) shows a system with mixed behavior, exhibiting
discretely hierarchical behavior at small scales and continuously evolving or fractal behavior at larger spatial
scales. (From Scheibe et al. 2015, Fig. 2, with permission from John Wiley & Sons.)

pore, for example); as one increases the length scale (increasing r) variations in the
measurement of γ will be recorded until finally a new threshold is reached, the Darcy
scale, which is the smallest averaging volume where measurements of γ will again
reach a constant value (this is called a representative elementary volume or REV).
As one further increases the length scale, however, the measured value of γ will once
again begin to fluctuate as one reaches the scale at which geological heterogeneity is
sampled, and so on. The system described by curve (1) is discretely hierarchical, with
a clear separation between the characteristic length scales.

Contrast this with a different system described by curve (2): this system has one
regime where it is discretely hierarchical and another regime (at larger length scales)
where it is continuously evolving. This kind of behavior or system, they explain,

has been recognized comparatively more recently, corresponding roughly with
the discovery of fractal or power law structures in nature. . . . For such systems
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there may be arbitrarily-long space and time correlation structures in the subsur-
face materials; thus, the behavior at any point in the system, may, in principle, be
a function of the time-space behavior at all other points in the domain. (Scheibe
et al., 2015, pp. 40–41)

For the sort of systems described by curve (2), conventional upscaling will not work
and more sophisticated multiscale modeling methods will have to be used, such as
multiscale hybrid models.

4.3 Many kinds of multiscale models

As we saw in the previous sections, many complex systems are plagued by the tyranny
of scales problem, insofar as they have many critical processes simultaneously oper-
ating across a vast range of spatial and temporal scales. This multiscale behavior can
thwart traditional modeling methods, requiring the development of more sophisticated
multiscale models. Amultiscalemodel can most broadly be defined as any model that
attempts to represent a particular system at two or more scales within a single model-
ing or simulation framework. Multiscale models are, of course, to be contrasted with
single-scale models, where one attempts to model a complex system by considering
a single scale only, such as the most “fundamental” scale (as in reductionistic model-
ing) or even a single high-level scale. While single-scale models have been the norm
throughout most of the history of scientific modeling, since the turn of the twenty-
first century there has been an explosion of new multiscale modeling approaches.
Multiscale models can involve representing multiple spatial scales, multiple temporal
scales, or both—and they can invoke different, even strictly incompatible, theories to
describe each of these different scales.

Because of thewide variety ofmultiscale behavior in nature,mathematicalmodelers
need to develop a variety of different kinds of multiscale simulation models. One can
distinguish different types of multiscale models depending on the nature and degree
of coupling between the processes at different scales. Scheibe and colleagues have
developed a multiscale analysis platform (MAP) that classifies the different multiscale
simulation model approaches into a set of motifs. Before discussing more complex
multiscale models, it is helpful to begin by thinking about cases where there is a
separation of spatial or temporal scales.

As we saw in Sect. 2.3, within geomorphology and ecology, hierarchical models
are defined as a special kind of multiscale model, where the component models are
decoupled: “A model can be constructed across a broad range of temporal scales as a
hierarchy of dynamically uncoupled models, ordered by characteristic time” (Werner,
1999, 103). Here we will refer to these as discrete hierarchical models. These sorts
of models work when the macroscale phenomenon is insensitive to the details of
the microscale processes (where ‘macro’ and ‘micro’ are being used to describe any
two levels in a scale hierarchy). Philosophers sometimes describe these as situations
where themicrolevel is ‘screened-off” from themacrolevel, themacrolevel is ‘multiply
realized’ by the microlevel, or the macrolevel exhibits a kind of ‘universality’.28

28 There are of course subtle distinctions to be made among these terms, but they are not relevant here.
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One can ask, however, what is it that actually allows one to replace the enor-
mous number degrees of freedom at the microlevel with a smaller number of effective
parameters at the macrolevel? The answer is that one must assume—or empirically
determine—that certain physical facts hold, which Brian Wood calls scaling postu-
lates (Wood, 2009; Wood & Valdés-Parada, 2013).29 Scaling postulates allow you to
filter out redundant—or low value—information. For example, in the familiar exam-
ple of the ideal-gas model, the relevant scaling postulates are that (i) inter-particle
potential energy can be neglected relative to kinetic energy, (ii) all valid microstates
are equiprobable, (iii) statistics of the system are spatially homogeneous, and (iv)
some kind of ergodic principle holds. As Wood explains, in “adopting these scaling
[postulates] one can... reduce the roughly 54 × 1023 degrees of freedom down to
essentially 1 degree of freedom (the pressure)“ (Wood, 2009, p. 724). Turning to the
hydrogeology example of mass transport in a heterogeneous porous media, there are
six scaling postulates to consider: (1) influence of boundaries on the representative
elementary volume (REV), (2) the statistical homogeneity of parameter fields, (3)
separation of macro and micro length scales, (4) quasi-ergodicity, (5) smallness of the
variance of the parameter fields, and (6) separation of the macroscopic and averaging
volume length scales (Wood, 2009, p. 724). Importantly, scaling postulates are not just
a mathematical trick of averaging, but rather require appropriate conceptual modeling
of the system—both in terms of the empirical facts of the system and the purposes of
the modeler.

When such scaling postulates do not hold, then one needs a multiscale model that
allows for coupling between models at different scales. In some cases there may be a
loose coupling between scales, in which case one might use a simple parameterization
and upscaling. One example is the use of cloud-resolving models within the subgrid
elements of a global circulation model (GCM) in climate science. Strictly speaking,
however, “the local processes (e.g., cloud formation) depend on larger-scale driving
forces... which often invalidates the closure approximations intrinsic to the param-
eterizations“ (2015, p. 8). Instead of conventional parameterizations, which do not
respond to changes in global forcing, one might use, for example, a 2D subgrid model
of cloud physics to simulate (statistically sample) a portion of the 3DGCMgrid space;
this results in a ‘super-parameterization’ that allows for a two-way coupling between
the different models (Randall et al., 2003).30

More generally, when there is a tight coupling between a macro- and microscale,
then one needs a proper multiscale model simulation. Recall that a multiscale model
is defined as one that combines two or more models defined at different length
scales—each typically having different ways of representing the relevant physical,
chemical or biological processes—into a single simulation framework over the same
spatio-temporal domain. Examples of using two different representations of the same
target are discussed, for example, in my eikonic approach (Bokulich, 2018). What is
novel in the context of multiscale modeling is that this plurality of representations

29 In his earlier work, Wood calls these scaling ‘laws’, but his later term scaling ‘postulates’ is more apt
and will be used here.
30 As Randall et al. note, although this approach is 102 to 103 times more computationally expensive, than
standard GCMs with conventional parameterizations, it is still less than a global cloud system resolving
model (CSRM) would be at 106 times more computationally expensive.
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is being used simultaneously, such as when a single multiscale simulation combines
both molecular dynamic and continuum mechanics representations. This underscores
again the point made in Sect. 1 of seeing models not as depictions, but as more general
representations.

As noted above, Scheibe et al. (2015) provide a nice taxonomy for capturing the
different kinds of multiscale models depending on the nature and degree of spatial
and temporal coupling, which we follow here. If the microscale conditions rapidly
equilibrate to changes in the macroscale conditions, then there is an effective temporal
scale separation that can be exploited. These multiscale models use short bursts of a
microscale simulation to inform the macroscale simulation over the large time step.
This approach can be further divided into two scenarios: those situations where there
are formal equations defined at the macroscale (leading to a “top-down” multiscale
approach) and those contexts where no such macroscale equations exist (requiring a
“bottom-up” approach).

If on the other hand there is no temporal scale separation, such as when the
microscale behavior equilibrates slowly relative to the timescales over which the
macroscale conditions change, then one might look for ways to restrict the spatial
domain of the microsimulation to just those limited locales where the conditions for
decoupling break down. These lead to concurrent multiscale models that perform
simultaneous microscale and macroscale simulations over different spatial subdo-
mains, which are then linked with a “handshake” at the boundaries or areas of overlap.
Winsberg (2010) provides an insightful discussion of these sorts of multiscale simula-
tions and handshaking algorithms in the context of crack propagation in nanoscale
solids. An alternative to the concurrent multiscale approach is the “gap-toothed”
approach, with microscale simulations taking place in the teeth with boundary condi-
tions derived from the macoscale solutions at the boundaries of each tooth. As they
explain, “the gap-toothedmethod enables ‘large space, small time’ simulations through
‘small space, small time simulations’ (Scheibe et al., 2015, p. 11). This approach is
useful when no macroscale equation exists.

My aim has not been to give a comprehensive taxonomy and discussion of all
the different kinds of multiscale models, but rather to highlight that a wide diversity
of multiscale modeling approaches in fact exists and continues to be developed. In
all cases, it is important to have an adequate conceptual model of the system at all
the functionally relevant scales for the phenomenon and purpose of interest. This
conceptual modeling can involve representing systems in ways we know they are not
(such as continuum mechanics representations of discrete systems) and can involve
the use of different—and indeed strictly incompatible—theories and representations
in the different levels of the hierarchy. In arriving at a model representation at any
scale, there are different approaches one can take: a bottom-up reductionist modeling
approach with a straight averaging or lumping, a top-down universality modeling,
or a synthesist approach that relies on identifying relevant emergent structures when
possible. Moreover, as we saw in detail, there are then substantive questions about
how these multiple models at different scales are to be linked in a simulation or other
theoretical framework, depending on the degree of coupling (or lack thereof) between
the different spatial and temporal scales.
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When modeling multiscale systems, it is important to remember that uncertainties
can arise at every scale; these uncertainties should be quantified and communicated
to the extent possible. Returning for a moment to the example of multiscale transport
models in hydrogeology, Scheibe et al. note that at the pore scale (recall Fig. 5)
uncertainty can arise from unknown pore geometry and rate constants; and at the
Darcy scale “uncertainty can be due to variable properties of porous media (e.g.,
permeability, porosity, dispersion coefficients) and insufficient data” (2015, p. 13).
Thus multiscale models can present more challenges to uncertainty quantification
than single-scale modeling, though potentially involving less overall uncertainty. The
topic of uncertainty quantification in modeling is an important one, worthy of more
philosophical attention, but would take us beyond the scope of this paper.

5 Conclusion

The vast majority of work in the philosophy of scientific modeling has been focused
on single-scale models, with only a handful of papers on multiscale modeling and the
tyranny of scales problem. This problem is pervasive in the sciences, however, and
poses formidable challenges, which scientists have only recently begun to learn how
to address. Here I have focused on methods for taming the tyranny of scales in the
geosciences, which must manage spatial scales ranging from grains of sand to entire
planets, and temporal scales from seconds to billions of years. These scale challenges
arise not only in mathematical modeling, but also in the context of conceptual and
physical modeling.

As I argued in Sect. 1, one of the first steps in creating an adequate multiscale
model is recognizing that models need not by realistic depictions, but rather should be
thought of as representational tools. Multiscale models often need to invoke different
theories with different ontologies at different levels in the scale hierarchy; hence they
typically involve different, and even strictly incompatible, model representations of
their target. For example,multiscalemodels can combine bothmolecular dynamics and
continuum mechanics representations. Freeing oneself from the veridical-depiction
view of models can thus allow one to develop more successful multiscale models.

In Sect. 2, I called attention to the critical role that conceptual models play in
scientific practice, whether they are ends-in-themselves or a prelude to a physical or
mathematical model. I argued that even at the level of conceptual modeling, there are
several strategies one can adopt to help tame the tyranny of scales. The first is paying
attention to the various dynamical thresholds in the target system; second, utilizing
hierarchy theory to identify the functionally relevant scales; and third, tailoring the
multiscale model to be adequate for particular purposes. The intended purpose will
determine which levels, features, and processes are essential to include in the model,
and which can be neglected.

When it comes to the context of physical modeling, the strategies become more
complex. In this context the tyranny of scales problem typicallymanifests itself as scale
effects, which arise because the force ratios in the model are not the same as the ratios
in the target system. The strategy first designed to address this problem is the formal
theory similitude, or dynamical scaling, which gives the instructions for designing
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a physical model whose force ratios match those in nature. Strict dynamical scal-
ing is often difficult—if not impossible—to achieve, and hence other strategies must
be deployed. Here we examined three strategies for addressing incomplete dynamic
similitude: avoidance, correction, and compensation. Yet a fourth strategy involves
identifying those aspects of natural phenomena that are scale independent within a
certain range, and I discussed three ways this scale independence can be achieved:
self-similarity, convergent physics, and decoupling of scales.

Finally, we turned to mathematical modeling in Sect. 4. Here we defended the
synthesist approach to climbing the scales, which involves reducing the degrees of
freedom by identifying the relevant emergent structures and variables that arise from
the collective behaviors of the smaller-scale degrees of freedom, rather than simply
lumping or averaging. These emergent structures are useful in identifying the function-
ally relevant scales to include in the multiscale model, in accordance with hierarchy
theory. A central lesson here is that there are many different kinds of multiscale behav-
ior in nature, which can involve hierarchies in both spatial and temporal dimensions,
with a variety of dependence relations between the levels. Thus an adequate conceptual
model, given both the nature of the system and a particular purpose, is a prerequisite
for building a successful mathematical multiscale model.

Geoscience research, ranging from hydrogeology to geomorphology, has been at
the forefront of multiscale-modeling efforts to develop the conceptual, physical, and
mathematical tools needed to tame the tyranny of scales. Although the examples dis-
cussed here are drawn from the geosciences, many of these methodological strategies
arewidely applicable to other sciences. In particular, I have tried to showhow thiswork
gives us deeper insight intowhat it means to be amultiscale system, involving different
behaviors at different scales, and how it reveals the variety of possible dependencies
(or lack thereof) between those various scales. These insights also have implications
for traditional questions in metaphysics related to reduction and emergence, which,
though outside the scope of this paper, have their foundation laid here. Finally, this
paper shows that the project of taming the tyranny of scales is not quite as hopeless
as one might have first supposed.
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