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Abstract
Bernoulli’s 1713 golden theorem is viewed retrospectively in the context of modern
model-based frequentist inference that revolves around the concept of a prespecified
statistical model Mθ(x), defining the inductive premises of inference. It is argued
that several widely-accepted claims relating to the golden theorem and frequentist
inference are either misleading or erroneous: (a) Bernoulli solved the problem of
inference ‘from probability to frequency’, and thus (b) the golden theorem cannot
justify an approximate Confidence Interval (CI) for the unknown parameter θ , (c)
Bernoulli identified the probability P(A) with the relative frequency 1

n

∑n
k�1 xk of

event A as a result of conflating f (x0|θ ) with f (θ |x0), where x0 denotes the observed
data, and (d) the same ‘swindle’ is currently perpetrated by the p value testers. In
interrogating the claims (a)–(d), the paper raises several foundational issues that are
particularly relevant for statistical induction as it relates to the current discussions on
the replication crises and the trustworthiness of empirical evidence, arguing that: [i]
The alleged Bernoulli swindle is grounded in the unwarranted claim θ̂n(x0) � θ∗,
for a large enough n, where θ̂n(X) is an optimal estimator of the true value θ∗ of
θ . [ii] Frequentist error probabilities are not conditional on hypotheses (H0 and H1)
framed in terms of an unknown parameter θ since θ is neither a random variable nor
an event. [iii] The direct versus inverse inference problem is a contrived andmisplaced
charge since neither conditional distribution f (x0|θ ) and f (θ |x0) exists (formally or
logically) in model-based (Mθ(x)) frequentist inference.
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1 Introduction

James (Jacob) Bernoulli (1713), in Part IV of his book entitled "The Art of Conjectur-
ing" derivedwhat he called the ‘golden theorem’ (theorema aureum). This theoremwas
particularly influential for subsequent developments in both probability theory (espe-
cially limit theorems) and statistical inference (frequentist vs. Bayesian inference);
see Hald (1998), Gorroochurn (2012). Since then, the golden theorem has become
a topic of recurring disputes relating to its importance, interpretation and implica-
tions for inference, which are motivated by several of its unique features, including
(i) Bernoulli’s own motivation and interpretation, (ii) its direct link to his numerical
example aiming to illustrate it, (iii) its inferential interpretation in terms of the inverse
versus direct inference, and (iv) its interpretation, and implications for a finite sample
(n < ∞) and its asymptotic (n → ∞) renderings.

In an attempt to narrow the scope of the discussion, the paper focuses on Diaconis
and Skyrms (2018) that summarizes a widely-held perspective on the golden theorem
as follows:

“Bernoulli’s motivation for his golden theorem was the determination of chance
from empirical data.”(p. 64).

“What does it mean to determine chances a posteriori from frequencies? The ques-
tion is, given the data—the number of trials and the relative frequencies of success in
those trials—what is the probability that the chances fall within a certain interval? It
is evident that this is not the problem that Bernoulli solved. He solved an inference
from chances to frequencies, not the inverse problem from frequencies to chances.
The inverse problem had to wait for Thomas Bayes.” (p. 65).

“Bernoulli argued that he had shown thatwith a large enough number of trials, it will
be morally certain that relative frequency would be (approximately) equal to chance.
But if frequency equals chance, then chance equals frequency. So, the argument goes,
we have solved the problem of inference from frequency to chance. This is Bernoulli’s
swindle. Try to make it precise and it falls apart.” (p. 65).

“To be explicit, Bernoulli’s conditional probabilities are probabilities about fre-
quencies given chances, rather than probabilities about chances given frequencies.”
(p. 66).

It is important to note at the outset that Bernoulli (1713) viewed θ � P(X � 1)
as probability a priori (chances) and xn � 1

n

∑n
k�1 xk, based on binary data x0 :�

(x1, x2, . . . , xn), as probability a posteriori (relative frequencies), which should not
be conflated with the modern Bayesian interpretation of these terms.

Diaconis and Skyrms (2018) also argue that current p value testers routinely perpe-
trate Bernoulli’s swindle by conflating P(H0|D) with P(D|H0): “The untutored think
they are getting the probability of effectiveness given the data, while they are being
given conditional probabilities going in the opposite direction.” (p. 67).

The above quotations include several different but interrelated claims:

(a) Bernoulli (1713) solved the problemof inference ‘fromprobability θ to frequency
xn’, but the inverse problem was addressed by Bayes (1764), because:
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(b) Bernoulli committed a swindle by identifying the probability (θ ) with relative
frequency (xn) as a result of conflating ‘direct’ inference based on f (x0|θ ) with
‘inverse’ inference based on f (θ |x0), and thus:

(c) the golden theorem does not justify an approximate confidence interval for θ , and
(d) the same swindle permeates current frequentist testing whose error probabilities

fail to distinguish between P(H0|x) and P(x|H0).

Claims and criticisms similar to (a)–(d) are repeated by most Bayesian statistics
textbooks (O’Hagan, 1994, and Robert, 2007), as well as philosophy of science books
on ‘probability and evidence’ (Howson & Urbach, 2006; Sober, 2008).

Viewing Bernoulli’s (1713) golden theorem retrospectively in the context of mod-
ern model-based [Mθ(x)] frequentist inference, the claims in (a)–(d) are called into
question as grounded inmisconceptions. Their interrogation brings out several broader
foundational problems that are particularly relevant for the current discussions on the
replication crisis and the trustworthiness of empirical evidence, including:

[i] misapplying/misconstruing limit theorems (as n → ∞) in inference,
[ii] misinterpreting the p value, type I and II error probabilities and the power as

conditional on H0 or H1,
[iii] the alleged ‘swindle’ is a special case of a well-known unwarranted claim,

θ̂ (x0) � θ∗ for n < ∞, where θ∗ denotes the true value of θ , θ̂ (x0) is the
estimate corresponding to an optimal estimator θ̂ (X) of θ, which is routinely
committed by effect size users, and not by frequentist testers, and

[iv] the direct versus inverse inference criticism is not just misplaced, it is moti-
vated by a misguided attempt to justify a dubious crosscut in vindicating Bayes’
formula by reimagining the distribution of the sample f (x; θ), x ∈ R

n
X , as con-

ditional on θ , i.e. f (x|θ ), x ∈ R
n
X ,which is meaningless in frequentist statistics;

see Spanos (2010).

2 Statistical induction

2.1 Induction by enumeration

The problem of induction boils down to justifying an inference from particular
instances to potential realizations (generalizations), or from past to future instances.
Hume (1748) argued that no rational justification of induction based on experience
can be invoked since the argument that ‘a regularity that has held in the past will
or must continue to hold in the future’ is circular and question-begging in the sense
that it presupposes a belief in the ‘uniformity of nature’ that has no rational defence
in reason. Instead, it reflects custom of the mind or habit. Hume’s stance has been
bedeviling philosophy of science since then; see Henderson (2020).

Induction by enumeration: if (m/n) is the relative frequency of event A from a
sample of n realizations, infer that:

P(A) � m
n , (1)

i.e. the ‘long-run’ relative frequency is (m/n); see Salmon (1967), p. 50.
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This is widely viewed in philosophy of science as the quintessential form of
statistical induction, and von Mises’s (1928) frequentist interpretation of proba-
bility as providing the link between the empirical relative frequencies (m/n) �
1
n

∑n
k�1 xk and the corresponding mathematical probability P(A) using the notion

of a collective: an infinite sequence of outcomes {xk}∞k�1, xk �
{
0 not A
1 A

, via

limn→∞
( 1

n

∑n
k�1 xk

) � P(A), with this limit being invariant to place selections,
i.e. limn→∞

( 1
n

∑n
k�1 ϕ(xk)

) � P(A), where ϕ(.) is a mapping of admissible place-
selection sub-sequences {ϕ(xk)}∞k�1.

Hacking (1965), p. 261, questions Salmon’s claim: “Reichenbach equated induction
with acceptance of a certain estimator, the straight rule: If m of the n observed A are
B, estimate the long-run frequency of B among A as m/n. Salmon and Reichenbach
maintain that if long-run frequencies exist, the straight rule for estimating long-run
frequencies is to be preferred to any rival estimator. Other propositions are needed
to complete their vindication of induction, but only this one concerns us. Salmon
claims to have proved it. This is more interesting than mere academic vindications
of induction; practical statisticians need good criteria for choosing among estimators,
and, if Salmon were right, he would have very largely solved their problems, which
are much more pressing than Hume’s.”

The key feature of inductive inference is that it is ampliative in the sense that
it goes beyond the observed data (m/n) to the unknown θ � P(A), enhancing our
knowledge about the underlying set-up that gave rise to the observed data. As argued in
the sequel, when this claim is viewed in the context of model-based induction where
Mθ(x) provides the inductive premises of inference, Hacking is right to question
Salmon’s claim since (1) is a special case of a more general unwarranted claim:

θ̂n(x0) � θ∗, for a large enough n < ∞, (2)

when θ̂n(X) is an ‘optimal’ estimator of the unknown true parameter θ∗; (1) assumes
the simple Bernoulli model in (5). Viewing Hacking’s “Other propositions needed to
complete their vindication of induction” in the context ofMθ(x) in (5), they include (i)
the validity of the inductive premises [Independent and Identically Distributed (IID)]
for data x0, which ensures the reliability of inference, as well as (ii) the optimality of
the estimator θ̂n(X) � 1

n

∑n
k�1 Xk , which secures the effectiveness of the inference.

The reliability and effectiveness of inference lie at the core of inductive (statistical)
inference: how we learn from data about phenomena of interest.

2.2 Model-based frequentist inference

Fisher (1922) recast Pearson’s descriptive statistics into model-based induction that
revolves around the concept of a prespecified parametric statistical model, generically
defined by:

Mθ(x) � {
f (x; θ), θ ∈ � ⊂ R

m}
, x ∈ R

n
X , n > m, (3)
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where f (x; θ), x ∈ R
n
X denotes the joint distribution of the sample X :�

(X1, . . . , Xn), Rn
X denotes the sample space and � the parameter space, specifying

(explicitly) the inductive premises of inference. The revolutionary nature of Fisher’s
recasting stems from the fact that Mθ(x) aims to describe the stochastic mechanism
that gave rise to data x0, and not to summarize/describe x0, and thus transforming
descriptive statistics into statistical induction.

Example 1 Consider the simple Normal model:

(4)

Xt ∼ NIID
(
μ, σ 2

)
, xt ∈ R, E (Xt ) � μ ∈ R, V ar (Xt )

� σ 2 > 0, t ∈ N :� (1, 2, . . . , n, . . .) ,

where ‘NIID’ stands for Normal, Independent, and Identically Distributed (IID), and
for simplicity we assume that σ 2 is known.

Example 2 Consider the simple Bernoulli model, specified by:

Xk � BerIID(θ, θ(1 − θ)), xk � 0, 1, E(Xk) � θ, 0 < θ < 1, k ∈ N, (5)

where ‘Ber’ denotes the ‘Bernoulli distribution’ with θ � P(Xk � 1).

The primary objective of frequentist inference is to use the statistical information,
as summarized by f (x; θ), x ∈ R

n
X , in conjunction with data x0, to narrow down � as

much as possible, ideally, to a single point θ∗—the ‘true’ value of θ in �—which is
shorthand for saying that the generating mechanism M∗(x) � {

f
(
x; θ∗)}, x ∈ R

n
X ,

could have generated data x0; see Spanos and Mayo (2015).
The evaluation of the effectiveness (optimality) of an inference procedure is

calibrated in terms of the relevant error probabilities that revolve around the sam-
pling distribution, f (yn ; θ), ∀yn ∈ R, of a statistic (estimator, test, predictor)
Yn � h(X1, X2, . . . , Xn) derived via:

Fn(y)�P(Yn ≤ y) �
∫ ∫

· · ·
∫

︸ ︷︷ ︸
{x: h(x)≤y}

f (x; θ)dx, ∀y ∈ R (6)

The parameter θ is viewed as an unknown constant whose values in (6) in deriving
the sampling distribution, f (yn ; θ), ∀yn ∈ R, are always prespecified and based on
two different forms of reasoning:

(i) factual (estimation and prediction): presuming that θ � θ*, whatever that value
happens to be in �, and

(ii) hypothetical (hypothesis testing): various hypothetical scenarios based on θ tak-
ing different prespecified values under H0: θ ∈ �0 (presuming that θ ∈ �0)
versus H1: θ ∈ �1 (presuming that θ ∈ �1),where�0∪�1 � �,�0∩�1 � ∅;
see Spanos (2019), p. 576. Note that neither form of reasoning involves condi-
tioning on θ, since the latter makes nomathematical or logical sense; see Sect. 2.5
for further discussion.
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It is important to emphasize that the reliability and effectiveness of statistical
inference depend crucially on statistical adequacy: the validity of the probabilistic
assumptions comprising the prespecifiedMθ(x) For example 1, the invoked assump-
tions are NIID and their validity should be evaluated using mis-specification (M-S)
testing before any inference is drawn; see Spanos (2018). When any of these assump-
tions are invalid for data x0, the actual error probabilities associated with the invoked
inference procedures are likely to be very different from the nominal (assumed based
on Mθ(x)) ones. Applying a .05 significance level test when the actual type I error
(due to statistical misspecification) is closer to .9, will lead that inference astray; see
Spanos and McGuirk (2001).

Example 1 (continued). For the simple Normal model in (4):

(7)

(i) Xn � 1

n

n∑

i�1

Xi ∼ N

(

μ,
σ 2

n

)

,

(ii) s2 � 1

n − 1

n∑

i�1

(
Xi − Xn

)2 ∼
(

n − 1

σ 2

)

χ2 (n − 1) ,

and (iii) Xn is independent of s2, implies that (Lehmann & Romano, 2005, p. 156):

τ(X;μ) �
√

n
(
Xn − μ

)

s
∼ St(n − 1), (8)

where St(n − 1) denotes the Student’s t distribution with (n − 1) degrees of freedom.
What is not obvious is how to interpret (8), since it is not apparentwhy E(τ (X;μ)) � 0.
A simple answer is that it follows from the fact that Xn is an unbiased estimator of μ,
i.e. E

(
Xn

) � μ∗. Using this unbiasedness in conjunction with the independence in
(iii), one can show (Williams, 2001, p. 101) that under factual reasoning:

E

(√
n
(
Xn − μ

)

s

)
μ�μ∗� E

(
Xn − μ∗) · E

(√
n/s

) � 0, for any E
(√

n/s
)

> 0.

Hence, a more transparent way to specify (8) is:

τ(X;μ∗) �
√

n
(
Xn−μ∗)

s

μ�μ∗
∼ St(n − 1), (9)

despite the cumbersome notation that overuses ‘*’ to elucidate it.

It is interesting to note that when the von Mises ‘collective’ {xk}∞k�1 is viewed from
themodel-based (Mθ(z)) perspective, it becomes clear that an infinite realization of an
IID Bernoulli process {Xt , t ∈ N} is a non-operational concept. What operationalizes
the idea behind the collective is to view the data x0 � {xk}n

k�1 its initial segment that
constitutes a realization of the sample X; see Spanos (2013a).
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2.3 Estimation (point and interval)

For estimation and prediction purposes the underlying reasoning is factual.

Example 1 (continued). For the simple Normal model in (4) with σ 2 known, the
Maximum Likelihood (ML) estimator of μ is θ̂M L(X) � 1

n

∑n
i�1 Xi . Its optimality

revolves around its sampling distribution evaluated using factual reasoning:

θ̂M L(X)
μ�μ∗
∼ N

(

μ∗, σ 2

n

)

. (10)

where θ̂M L(X) is unbiased, sufficient, fully efficient, and strongly consistent; note that
these properties hold only when the model assumptions ‘NIID’ are valid!

As Fisher (1922) points out, the statistics literature until the 1920s conflated the
sample X :� (X1, X2, . . . , Xn) with the sample realization x0 (the observed data), as
well as the estimator θ̂ (X), the estimate θ̂ (x0) and the unknown parameter θ .

What is often insufficiently appreciated by the effect size literature (Cohen, 1988)
is that an optimal (consistent, unbiased, fully efficient, sufficient) estimator θ̂n(X) of
θ does not justify the inferential claim in (2).

Example 1 (continued). TheML estimator θ̂M L(X) � 1
n

∑n
i�1 Xi ofμ enjoys all opti-

mal properties, but that does not underwrite the claim θ̂M L(x0) � μ∗, since θ̂M L(x0)
represents a single value from the range of possible values of θ̂M L(x) associated with

its sampling distribution f
(
θ̂M L(x); θ∗

)
, x ∈ R

n, as in (10). What (10) implies is that

V ar
(
θ̂M L(X)

)
� σ 2

n decrease to zero as n → ∞. Therefore, invoking the strong con-

sistency of θ̂M L(X) does not address the problem sinceP
(
limn→∞θ̂M L(X) � θ∗

)
� 1

pertains to what happens at the limit (n � ∞), and not at any n < ∞; see Spanos

(2013a). That is, as n increases f
(
θ̂M L(x); θ∗

)
concentrates around θ∗, but it is defined

over an unknown interval for any n < ∞. As shown in Sect. 5.1, this interval can be
approximated using bounds provided by the Lawof Iterated Logarithm; seeBillingsley
(1995).

The unwarranted inferential claim in (2) was a primary motivation for Neyman
(1937) to go beyond point estimation to propose the method of Confidence Intervals
(CIs) that takes into consideration the uncertainty that relates to the point estimate as

described by its sampling distribution f
(
θ̂M L(x); θ∗

)
, x ∈ R

n
X .

Example 1 (continued). For (4), the (1 − α) CI takes the form:

P

(

Xn − c α
2

(
s√
n

)

≤ μ < Xn + c α
2

(
s√
n

)

; μ � μ∗
)

� 1 − α, (11)

where c α
2
is derived from the distribution of τ(X;μ∗) in (8). Having said that, it should

be emphasized that the observed CI,
(

xn − c α
2

(
s√
n

)
≤ μ < xn + c α

2

(
s√
n

))
, where
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xn is the estimate of μ, cannot be assigned the probability (1 − α) post-data; it either
includes or excludes μ∗, but it is invariably unknown which one holds. The length
of the observed CI does, however, provide some additional information about the
uncertainty relating to the estimate xn .

2.4 Neyman–Pearson (N–P) testing

Example 1 (continued). Consider testing the hypotheses:

H0 : μ ≤ μ0 vs. H1 : μ > μ0, (12)

where the framing of H0 and H1 constitutes a partition of R. For statistical inference
purposes, all values of μ are of interest, irrespective of whether only a few values are
of substantive interest. Using hypothetical reasoning one can evaluate the sampling

distribution of τ(X) �
√

n
(
Xn−μ0

)

s under H0 and H1 yielding:

(i)τ (X) �
√

n
(
Xn − μ0

)

σ

μ�μ0∼ St(n − 1), (ii)τ (X) �
√

n
(
Xn − μ0

)

σ

μ�μ1∼ St(δ1; n − 1), (13)

where δ1 �
√

n(μ1−μ0)
σ

, for μ1 > μ0, is the noncentrality parameter.

More generally, N–P testing is based on hypothetical reasoning using prespeci-
fied values of μ that could ‘approximate closely’ μ∗, in the sense that the difference
||μ∗ − μ0||, where ||.|| denotes a distance function (norm), is statistically insignifi-
cant/significant (negligible/substantial). The primary role of the error probabilities is
to operationalize the concepts of ‘statistically significant/insignificant’ as it relates to
||μ∗ − μ0||. The test statistic τ(X) reflects the difference ||μ∗ − μ0||, in the sense
that (i) μ∗ is replaced by its best estimator, and (ii) τ(X) increases monotonically
with this distance. For instance, the test Tα in (14) uses τ(X) � [√

n
(
Xn − μ0

)
/s

]
, a

standardized distance between Xn (best estimator of μ∗) and μ0.
For the hypotheses in (12), anα-significance levelUniformlyMost Powerful (UMP)

test is defined by:

Tα :� {τ(X) �
√

n
(
Xn − μ0

)

σ
, C1(α) � {x : τ(x) > cα}}, (14)

Lehmann and Romano (2005, p. 58). The type I error probability and the p value
are evaluated using (i) in (13):

P(τ(X) > cα; μ � μ0) � α, P(τ(X) > τ(x0); μ � μ0) � p(x0). (15)

The power of Tα is evaluated using (ii) in (13):

P(μ1) � P(τ (X) > cα;μ � μ1), for all μ1 > μ0. (16)
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The power of a test measures its generic (for any x ∈ R
n) capacity to detect

discrepancies from H0. As argued next, none of the above error probabilities (type I,
II, power, p value) are conditional on values of μ. Hence the use of the notation ‘;’
instead of ‘|’ to separate the observable random variable τ(X) from the unknown (and
unobservable) constant θ to avoid confusion.

Particularly important for the current discussions on replicability are two crucial
preconditions proposed by Neyman and Pearson (1933) which relate to the framing of
H0 and H1 to secure the effectiveness of N–P testing: [i] H0 and H1 should constitute
a partition of �, in a way that renders [ii] the type I error probability as the more
serious of the two to ensure that the framing of H1 includes the potential range of
values around θ∗. Precondition [i] is needed to eliminate the scenario where θ∗ lies
outside�0∪�1, and [ii] to ensure that the test has power where is needed for effective
learning from data.

Example 2 (continued). For the simple Bernoulli model let the framing be:

H0 : θ � θ0 vs. H1 : θ > θ0, (17)

and consider the case where θ0 � .5, n � 20, xn � .2. This framing ensures that

a UMP N–P test for the hypotheses in (17) based on Tα :� {d(X) �
√

n
(
Xn−θ0

)

√
θ0(1−θ0)

,

C1(α) � {x: d(x) > cα}} for α � .05 yields d(x0) � −2.683, which indicates that
the relevant range of values for θ∗ lies outside�0 ∪�1. d(x0) � −2.683 gives rise to
‘accept H0’ with a p value p(x0) � .996! This absurd result stems from the ill-chosen
framing in (17) that disregards both N–P preconditions [i]–[ii] and ensures that the
(implicit) power of this test in detecting all relevant discrepancies (θ − θ0) < 0 is
less than α. Such absurd testing results are easily preventable by adhering to the N–P
preconditions.

Hence, when no reliable information about the potential range of values for θ∗ is
available, the N–P test will be more appropriate with a two-sided partition of �:

H0 : θ � θ0 vs. H1 : θ �� θ0. (18)

When such information is available, the appropriate framing is one-sided (direc-
tional) with H1 framed to include the relevant range of value for θ∗. In the case of the
above example, the framing would be H0: θ ≥ θ0 versus H1: θ < θ0, which would
have rejected H0 with a p value p(x0) � .004!

Regrettably, such ill-chosen framings of H0 and H1 are routinely used to (mislead-
ingly) criticize N–P testing as inherently problematic when in fact the framing in (17)
runs afoul one or both preconditions [i]–[ii]!

2.5 Error probabilities cannot be conditional on�

To shed light on why conditioning on θ makes no formal or logical sense in frequentist
inference, one needs to return to the basic axiomatic approach (Kolmogorov, 1933)
where probability theory is erected on a probability space (S,�,P(.)),with S denoting
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the set of all (logically) possible distinct outcomes, � the set of all events (A ⊂
S) of interest and related events that enjoys the mathematical structure of a sigma
(σ )-field-� is closed under the set-theoretic operations of union, intersection, and
complementation –, and P(.): � → 0, 1] assigns probabilities to events (elements) in
�. Kolmogorov (1933, p. v) points out that the concept of a σ -field played a key role
in the axiomatization of probability through Lebesgue’s measure theory (Shiryaev,
2016, p. 187). Random variables are defined relative to � in the sense that a function
X(.): S → R is said to be a random variable if its pre-image ((X(s) ≤ x) � X−(x),

for all s ∈ S and x ∈ R) defines events in � ensuring that X defines a subset of events
σ(X) of � known as the minimal σ -field generated by X .

To make the case that error probabilities are conditional on θ , one needs to demon-
strate the mathematical meaning of f (h(x)|θ ), for any statistic h(X), and defined by
(Williams, 2001, p. 258):

f (h(x)|θ � ϑ) � f (h(x), θ � ϑ)

f (ϑ)
, ∀x ∈ R

n
X (19)

for a particular value ϑ in �. Given that, in frequentist inference, θ is not an event
or a random variable defined relative to σ -field � of the probability space (S,�,P(.))

underlying Mθ(x), (19) makes no mathematical sense. That is, (19) does not exist
as a probabilistic concept since there is no well-defined joint distribution f (x, θ) to
determine the numerator f (x, θ � ϑ), or the denominator f (ϑ) � ∫

x∈Rn
X

f (x, ϑ)dx.

This is not just a matter of ‘inept’ terminology, but a crucial issue that concerns the
non-existence of the two concepts f (x|θ � ϑ), ∀x ∈ R

n
X and f (θ |X � x0), ∀θ ∈ �,

in the context of frequentist inference. Even when viewed at a more intuitive level,
factual (presuming that θ � θ∗) and hypothetical (presuming that θ � θ0) reasoning
do not entail probabilistic conditioning since the latter pertains to ‘information that an
event A in � has occurred’. Hence, invoking the misleading set phrase ‘given H0’ as
bespeaking mathematical conditioning is ridiculous. What makes mathematical and
logical sense is to define f (h(x); θ � ϑ), ∀x ∈ R

n
X , for prespecified values of θ and

derived it via (6) using factual or hypothetical reasoning.
As a counter-argument to the above case, one might hazard the counter-claim that

θ can be transformed into a special random variable that relates to two events A � {θ :
θ � θ0} and A � {θ : θ �� θ0}, with the relevant σ -field of interest being F �{

S,∅, A, A
}
, and P(A) � 0, or P(A) � 1. Regrettably, this idea crumbles instantly

since the two random variables X and θ can only be related as in (19) when they are
both defined on the same probability space, (S,�,P(.)), whose σ -field � is required
to include all possible unions, intersections, and complementations of all the events
relating to both! Worse, the mapping θ(s) � θ0 for all s ∈ S defines a degenerate
(constant) random variable which, by construction, is independent of every other
random variable X defined on (S,�,P(.)) (Renyi, 1970, p. 201), i.e., there is no joint
P(x, θ) or conditional P(x |θ ) probability to be had.

More astounding is the impossibility of constructing a σ -field � that includes all
the joint events associated with θ and X even when θ is a proper random variable
with its own prior distribution π(θ), ∀θ ∈ �. That is, this problem lies abeyant at
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the very foundation of Bayesian statistics. The traditional derivation of Bayes theorem
circumnavigates this problem by reimagining the frequentist distribution of the sample
f (x; θ) as (somehow) conditional on θ, i.e. f (x|θ ), ∀x ∈ R

n
X . This finessing enables

Bayesians to define—without any intellectual effort—the (contrived) joint distribution
by f (x, θ) � f (x|θ ) · π(θ), ∀θ ∈ �, ∀x ∈ R

n
X ; see Sect. 6.2.

3 Bernoulli’s golden theorem in retrospect

Assuming the simple Bernoulli model in (5), Bernoulli’s golden theorem asserts:

P
(∣
∣Xn − θ

∣
∣ < ε

) ≥ 1 − δ, for ε > 0, δ > 0, and all n ≥ N . (20)

The retrospective view of this theorem is guided by Le Cam’s (1986) perspective
on limit theorems encapsulated by the following quotation: “… limit theorems ‘as n
tends to infinity’ are logically devoid of content about what happens at any particular
n. All they can do is suggest certain approaches whose performance must then be
checked on the case at hand. Unfortunately, the approximation bounds we could get
were too often too crude and cumbersome to be of any practical use.” (p. xiv).

3.1 Bernoulli’s law of large numbers

Themost pivotal way Bernoulli’s golden theorem influenced probability and statistical
inference arose from its implications as n → ∞ (Hald, 1998, 2007). When placed in
the context of model-based frequentist inference, the statistical model underlying the
result is the simple Bernoulli model.

3.1.1 Bernoulli’s WLLN

For a Bernoulli IID process {Xk, k ∈ N} in (5):

lim
n→∞P

(∣
∣Xn − θ

∣
∣ < ε

) � 1, for ε > 0, (21)

where Xn � 1
n

∑n
k�1 Xk . (21) follows from (20) and (25) since δ � θ(1−θ)

ε2n
→n→∞ 0;

see Billingsley (1995), p. 5.
The result in (21) provided the first formal justification for the frequentist inter-

pretation of probability of an event A as the limit of the ‘stable long-run relative
frequency’ xn � 1

n

∑n
k�1 xk, in the context of the statistical model Mθ(x) in (5).

This was the first limit theorem known as the Weak Law of Large Numbers (WLLN).
Almost two centuries later, Bernoulli’s WLLN was strengthened by Borel in 1909 in
the form of a Strong Law of Large Number (SLLN).
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3.1.2 Borel’s SLLN

For an IID Bernoulli process {Xk, k ∈ N} in (5):

P

(
lim

n→∞ Xn � θ
)

� 1. (22)

That is, as n → ∞ the process {Xn}∞n�1, converges to θ � E(Xk) with probability
one, or almost surely (a.s.); see Billingsley (1995), p. 8.

3.1.3 Probabilistic versus mathematical convergence

It is important to distinguish between the above forms of probabilistic convergence
(21)–(22) from the mathematical convergence invoked by von Mises (1928):

lim
n→∞ xn � θ, (23)

where xn denotes the values of Xn, since neither (21) nor (22) entails (23). As argued
by Williams (2001), p. 25, any attempt to make rigorous the mathematical conver-
gence limn→∞xn � θ is ill-fated for purely mathematical reasons which can only be
circumvented using measure theory. Historically, the line between probabilistic and
mathematical convergence limn→∞xn � θ was blurred by von Mises’s (1928) notion
of a collective,whichwas defined in terms of infinite realizations {xk}∞k�1 whose partial
sums {xn}∞n�1 converge to θ . This has led to the widespread confusion that lingers on to
today between probabilities and relative frequencies by misidentifying the frequentist
interpretation of probability with the long-run metaphor; see Spanos (2013a).

3.2 Bernoulli’s golden theorem versus his numerical example

From today’s perspective, Bernoulli’s golden theorem amounts to a finite sample
approximation to the WLLN in (21). Bernoulli (1713), derived the Binomial (Bin)
distribution for

∑n
k�1 Xk using the homonymous expansion in his discussion of propo-

sition 12 of Part I. He used this result in Part IV, to derive the first finite ‘sampling
distribution’ of the sum:

Y :� nXn �
n∑

k�1

Xk � Bin(nθ, nθ(1 − θ); n). (24)

In retrospect, his derivation of (20) was based on approximating the Binomial tail
areas, which today is better approximated using Chebyshev’s inequality:

P
(∣
∣Xn − θ

∣
∣ ≥ ε

) ≤ θ(1 − θ)

ε2n
, (25)
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which implies that since θ(1 − θ) ≤ 1
4 , for δ � P

(∣
∣Xn − θ

∣
∣ ≥ ε

)
(20) holds for any:

n ≥ N � θ(1 − θ)

ε2δ
≤ 1

4ε2δ
. (26)

3.2.1 Bernoulli’s example

In discussing the golden theorem’s interpretation and implications for inference, it is
important to distinguish between the above generic results in (24)–(26) andBernoulli’s
numerical example based on θ∗ � .6, ε � .2 and δ � .001 since the example has
often been misinterpreted.

Using Bernoulli’s numerical example (26) implies that: N � [4(.2)2(.001)]−1 �
6250. That is, for any n ≥ 6250 the lower and upper bounds,

(
Xn − ε

)
and

(
Xn + ε

)
,

respectively, will include (overlay) the true value of θ, say θ∗, with probability
(1 − δ) � .999.

It is worth noting that Bernoulli’s (1713) bound for δ was much less accurate
than (26), yielding N � 25550, “… because of two crude approximations. First, he
requires that the basic inequality holds for each tail separately, instead of their sum.
… Second, he uses the arithmetic approximation for the tail probability instead of
the geometric one.” (Hald, 2007, p. 14). It is also important to bring out the fact
that the lower bound for (20) yielding N � 6250 does not use the information that
θ∗ � .6. Naturally, when this information is used, θ(1 − θ) � .24, yielding a smaller
N � (.24)[(.2)2(.001)]−1 � 6000.

In light of the above comments, one should separate the golden theorem from
Bernoulli’s numerical example to illustrate it. His illustration is no different in sub-
stance from demonstrating the golden theorem today using simulation or an analytical
calculation for particular values of θ, ε, δ, and N . The simulation can be used to estab-
lish the relevant tail areas empirically based on a large number (say N � 10,000) of
sample realizations xi , i � 1, 2, . . . , N , of size n. Hence, it will be a mistake from
today’s perspective to view Bernoulli’s theorem as (somehow) tainted by his use of the
information θ∗ � .6 to illustrate it since such information is irrelevant for the theorem
in (20) to hold.

3.3 Revisiting Bernoulli’s alleged swindle

Influencedby the legal tradition of his time,Bernoulli (1713) understood themagnitude
of probabilityP(A) as degrees of certainty along a graduated spectrumof belief ranging
from total ignorance (P(A) � 0) to firm conviction (P(A) � 1) or moral certainty:
“something is morally certain if its probability comes so close to complete certainty
that the difference cannot be perceived.” (p. 315). In his numerical example, an event
(conjecture) A is morally certain when P(A) � .999.
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3.3.1 Bernoulli’s alleged swindle

Diaconis and Skyrms (2018) argue that Bernoulli committed a ‘swindle’ by viewing
his golden theorem in (20), in conjunction with his notion of moral certainty, to infer:

xn � θ∗, for n ≥ N , (27)

where xn denotes the observed value of Xn � 1
n

∑n
k�1 Xk .

A retrospective view suggests that (27) is just a special case of the unwarranted claim
in (2), with θ̂ (x0) � xn , potentially stemming from misinterpreting (21) as entailing
(23); see Spanos (2013b). The claim in (27), to the extent it persists today, stems
primarily from misconstruing the long-run metaphor that aims to conceptualize the
link between relative frequencies and probabilities. In the context of model-based fre-
quentist inference, probabilities are not identified with relative frequencies, but rather
probabilities are evidenced by stable relative frequencies based on a statistically ade-
quateMθ(x); see Spanos (2013a). As argued by Hacking (1980): “Probability in this
sense [frequentist] does not mean ‘relative frequency’, but probabilities are typically
manifested by stable frequencies.” (p. 150). ‘Typically’ refers to ‘the particular data x0
being a typical realization of the prespecifiedMθ(x) or equivalently, the probabilistic
assumptions comprisingMθ(x) are valid for x0. Hence, (21) is justified on empirical
and not on a priori – rational defense in reason – grounds.

The intuition underlying Bernoulli’s golden theorem could be illustrated in terms of
relative frequencies (proportions) as follows: assuming the IID assumptions ofMθ(x)
in (5) are valid, for large enough n, say n ≥ 6250, a proportion δ � .001 of the N
� 10,000 sample realizations xi :� (x1i , x2i , . . . , xni ), i � 1, 2, . . . , N , is likely
to exhibit errors (fluctuations around θ∗) outside the band |xn − θ∗| < ε. Borel’s
SLLN states that under the same conditions, for n ≥ 6250 no sample realization
is likely to exhibit errors outside |xn − θ∗| < ε. It is important to view this as a
heuristic explanation of the theorems (21)–(22) where probabilities are manifested by
the relative frequencies; see Spanos (2013a).

Is Bernoulli (1713) guilty of the swindle alleged byDiaconis and Skyrms (2018)? A
retrospective case can be made that the combination of his numerical example and his
notion of ‘moral certainty’, are likely to have misled modern readers into conflating
the heuristic illustration with the theorem in (21).

3.4 The golden theorem and approximate CIs

As argued above, the statistical adequacy of Mθ(x) in (5) is critical for the golden
theorem in (20), as well as (21)–(22), to hold. A crucial difference between Bernoulli’s
and Borel’s Law of LargeNumbers (LLN) and subsequent variants is that the inductive
premises underlying (21) and (22),Mθ(x) include an explicit distribution assumption
that can be used to simulate the underlying sampling distribution of

∑n
k�1 Xk in in

(24), as shown in Fig. 1, where the Binomial is approximated closely by the Normal
distribution.
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Fig. 1 Bin(nθ*, nθ*(1 − θ*); n) versus N(nθ*, nθ*(1 − θ*)), θ* � .6, n � 100

Historically, almost all subsequent extensions (generalizations) of the original limit
theorems (LLN, CLT) replaced that with indirect distribution assumptions (e.g. exis-
tence of certain moments); see Billingsley (1995).

In light of that, the golden theorem in (20) can be used in conjunction with the
sampling distribution in (24) to derive an approximate frequentist CI:

P
(
Xn − ε < θ ≤ Xn + ε; θ � θ∗) � (1 − α), (28)

where ε � c α
2

√
Xn

(
1 − Xn

)
/n, and c α

2
relates to the Normal approximation in Fig. 1.

Hence, contrary to the Diaconis and Skyrms (2018) claim, Bernoulli did answer the
question: “what is the probability that the chances [i.e. θ∗ � P(X � 1)] fall within a
certain interval?”, in the sense that the CI in (28) overlays θ∗ with probability (1 − α),
and not the inverse probability interval P(θ − ε < xn ≤ θ + ε|θ).

That is, the legitimacy of this approximate CI in (28) stems from (24) and the fact
that δ does not depend on θ∗. Indeed, Laplace (1812) was the first to put forward a
similar interval based on direct probabilities; see Hald (2007), p. 5. Dempster (1966)
argues that the golden theorem can be viewed as a forerunner of Neyman-type CIs.
What is even more interesting is that (28) can be sharpened considerably by replacing
the (1 − δ) bound with the tails areas of (24).

Example 2 (continued). Using Chebyshev’s inequality for n � 2500 and ε � .1,
implies δ � [4(2500)(.1)2]−1 � .01, one can deduce that the approximate .99 CI:

P
(∣
∣Xn − θ

∣
∣ ≤ ε

) ≥ .99. (29)

On the other hand, when Z �
∑n

k�1 (Xk−nθ)√
nθ(1−θ)

is used to approximate the Binomial

with theNormal distribution (deMoivre, 1738), shown in Fig. 1 for n � 100, θ∗ � .6,
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the finite sample .99 CI in (28) requires only n � 166 since
√

n(.1)/
√

.25 � 2.576 →
n � 166, and thus:

P
(∣
∣Xn − θ

∣
∣ < .1

) ≥
2.576∫

−2.576

(
exp

(−.5z2
)

√
2π

)

dz � .99. (30)

The sizeable reduction of the required sample size n from 2500 to 166 illustrates Le
Cam’s quotation about asymptotic approximations being “too crude and cumbersome
to be of any practical use”, and the reduction from 2500 to 166 is typical of asymptotic
approximations versus finite sample results; see Spanos (2019).

3.5 Bernoulli and direct versus inverse inference

As argued above, the alleged Bernoulli’s swindle in (27) is a special case of the more
general unwarranted claim in (2). This calls into question the traditional argument
articulated by Diaconis and Skyrms (2018) that the source of the swindle stems from
conflating f (x|θ ) with f (θ |x). Let us unpack this claim.

Regrettably, Bernoulli’s use of the true θ∗ � .6 in his numerical example has
generated confusion in the literature about legitimate and illegitimate interpretations
of the golden theorem, as well as whether the probability in (20) is direct (frequentist)
or inverse (Bayesian). As shown above, the lower bound (1 − δ) in (20) need not rely
on knowing θ∗ since δ � θ(1−θ)

ε2n
≤ 1

4ε2n
. Also, it is not obvious what the claim by

Diaconis and Skyrms (2018): “He solved an inference from chances to frequencies”
(p. 65) refers to. Why?

To begin with, the probabilistic assignment P(θ − ε < xn ≤ θ + ε|θ ) � 1 is mean-
ingless in frequentist inference since there is no random variable involved to justify
the assignment P(.); xn , θ and ε are known constants.

Second, it is not obvious what the inferential claim: ‘assuming θ is known, for
a given ε > 0 there is a large enough n such that P(θ − ε < Xn ≤ θ + ε|θ) � 1’
could (possibly) mean in frequentist statistics since the golden theorem pertains to
a particular value of θ, i.e. θ∗. When θ � θ∗ is known, the underlying generating
mechanismM∗(x) � { f (x; θ∗), x ∈ {0, 1}n, is fully known for any n; see Fig. 1 for
n � 100, θ∗ � .6. That is, one can just use:

f
(
x; θ∗ � .6

) � (.6)
∑n

k�1 xk (.4)
∑n

k�1 (1−xk ) � (.6)y(.4)(n−y), y � 0, 1, . . . , n,

(31)

where y � ∑n
k�1 xk , to evaluate the exact probabilities for different Y � y as in Table

1.
Given that the primary objective of frequentist inference is to learn from data x0

about θ∗, when θ∗ is known no statistical inference is called for or warranted. The
notion that one can use θ � θ∗ to infer something about x0 is nonsensical since
there is no statistical inference to be had; there is no uncertainty about θ∗. Indeed,
one can use M∗(x) to evaluate the probabilities associated with any values of Y �
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Table 1 Probabilities relating to Fig. 1

y … 58 59 60 61 62 …

P(Y � y) … .0742 .0792 .0812 .0799 .0754 …

∑n
k�1 Xk of substantive interest beyond x0, including predicting future values of Xt .

Moreover, since neither f (θ |x0), nor f (x0|θ ), exist in frequentist inference (Sect. 2.5),
(20) cannot (possibly) be susceptible to the charge of conflating direct with inverse
inference.

One the other hand, when θ is assumed to be a random variable, as in Bayesian
statistics, the probabilistic statement Pr(xn − ε < θ ≤ xn + ε|x0) � 1 stems from the
posterior distribution, π (θ |x0) ∝ f (x0; θ) · π(θ), θ ∈ (0, 1). This, however, does not
render the frequentist interpretation of (20) problematic in the context of Mθ(x) in
(5) in any logical or mathematical sense.

4 Revisiting the direct versus inverse inference

4.1 Bayesian deformation of the p value?

The question that naturally arises at this stage is: what is the merit of the Bayesian
charge that frequentists often confuse f (θ |x0) with f (x0|θ ) when neither exists in that
context and what does that imply for frequentist testing in particular?

In a section entitled "Bernoulli swindle and hypothesis testing" Diaconis and
Skyrms (2018, p. 67), argue: “Suppose a drug company runs randomized trials on
a new drug. The drug is either effective or not. You would like to know the probability
that it is effective given the data. The drug company computes the probability that one
would get the result in the data or better, given that the drug is ineffective, and gets
a very small number. … To those who do not understand statistics, this is an invita-
tion to Bernoulli’s swindle. It is "morally impossible" to get this value if the drug is
ineffective. Therefore the drug is effective.”

A Bayesian practitioner would wholeheartedly agree with the sentence in italics
since probability refers to his/her degrees of belief, but why do the authors presume
that this claim has any meaning in frequentist testing where the drug does not have
a "probability of being effective", whether or not given the data. As argued below,
N–P testing results can provide reliable evidence ‘whether the drug is effective or not’
when appropriately interpreted using the post-data severity evaluation to establish the
warranted discrepancy γ from the null value; see also Mayo and Spanos (2011).

The above quotation echoes Cohen’s (1994) more direct calumny: “When one tests
H0, one is finding the probability that the data (D) could have arisen if H0 were true,
P(D|H0). If that probability is small, then it can be concluded that if H0 is true, then D
is unlikely. Now, what really is at issue, what is always the real issue, is the probability
that H0 is true, given the data, P(H0|D), the inverse probability.” (p. 998).
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Numerous papers in the replication literature (Wasserstein et al., 2019) declare:

P(H0|D) �� P(D|H0), (32)

self-evident, and proceed to admonish frequentist testing. As argued in Sect. 2.5, when
(32) is properly defined takes the form in (19), which does not exist in frequentist
inference. Why the confusion? The unwarranted claim in (32) pertains to any two
events A and B, where the relevant formula:

P(A ∩ B) � P(A|B) · P(B) � P(B|A) · P(A) (33)

implies that P(B|A) �� P(A|B) unless P(A) � P(B). What is insufficiently appreci-
ated is that (33) involves observable events A and B, in �; see Spanos (2010). Calling
B a hypothesis (H0) and A data (D) does not render (32) a legitimate claim in the
context of Mθ(x) since H0: θ � θ0 cannot be an event in �; see Sect. 2.5.

4.2 From accept/reject H0 to an evidential interpretation

After a tongue-in-cheek ‘praise’ for Fisher for avoiding ‘Bernoulli’s swindle’ by
proposing “… a methodology and a story about why that is what you want”, Dia-
conis and Skyrms (2018) take the praise back by claiming: “But it is not what you
want, is it? You want the probability of effectiveness given the data.” (p. 68). Instead
of allowing frequentists to articulate what they really want, and try to understand their
underlying reasoning, they pronounce "what you really want is a posterior probability
from f (θ |x0), ∀θ ∈ �".

Fisher’s (1925) significance testing driven by the p value was recast into an optimal
theory of hypothesis testing by Neyman and Pearson (1933), where the type I and II
(or power) are used to calibrate the pre-data capacity of the test to detect different dis-
crepancies from H0; see Spanos (2006). Unfortunately, neither account has provided
a cogent evidential interpretation of the testing results. Mayo and Spanos (2006) pro-
posed such an evidential interpretation based on a post-data evaluation of the testing
results that outputs the discrepancy γ from H0 warranted with high probability by test
Tα and data x0. What is different from previous attempts at providing an evidential
interpretation is that error probabilities are viewed and interpreted in the context of
the particular statistical set-up:

[a]Mθ(x), [b]H0 : θ ∈ �0 vs. H1 : θ ∈ �1, [c]Tα :� {d(X), C1(α)}, [d]datax0,
(34)

which includes the validity of the assumptions comprising Mθ(x) vis-à-vis data x0,
the framing of H0 and H1 as a partition of�, and the sample size n. What is important
to emphasize is that the discrepancy γ from H0 warranted by Tα and x0, with high
probability, provides a more reliable testing-based effect size, which is not vulnerable
to the alleged Bernoulli swindle since it does not invoke the unwarranted claim in (2);
see Spanos (2013b, 2021).
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Contrary to the claim by Diaconis and Skyrms (2018), a frequentist tester agrees
with their comment that: “… the p values are only part of the story. There is the
power of the test ….” (p. 116). Indeed, from the post-data severity perspective (Mayo
& Spanos, 2011) p(x0) < α indicates the presence of ‘some’ discrepancy γ , but
provides no information about its magnitude since (i) the underlying distribution for
p(x0) is evaluated only under H0, and (ii) p(x0) is vulnerable to the large n problem
(e.g. high power). Both problems are addressed using the severity evaluation that takes
into account the statistical context in (34), including the power, or equivalently the
‘sensitivity’ of the test: “By increasing the size of the experiment, we can render it
more sensitive, meaning by this that it will allow the detection of … a quantitative
smaller departure from the null hypothesis.” (Fisher, 1925, pp. 21–22).

Regrettably, ‘untutored’ practitioners accept the misleading claims (a)–(d) by Dia-
conis and Skyrms (2018) in the introduction at face value, in concert with similarly
erroneous testimonials from Bayesian textbooks, which include:

(e) Ignore the statistical context in (34) because only x0 has any bearing on the
evidence for or against H0 since Bayesian inference is data specific. A feature that
has been lionized by Bayesians in the form of the likelihood principle, which asserts
that for inference purposes x0 is the only relevant value of X; see Berger and Wolpert
(1988).

(f) Accept the unwarranted claim that the p value conflates P(H0|D) with P(D|H0)
and disparage frequentist testers for conflating the two; see Nickerson (2000).

(g)Keep reminding practitioners that ‘what they reallywant’ in terms of inference is
the conditional probability of different values of θ givenx0, i.e. the posterior probability
based on f (θ |x0), ∀θ ∈ �.

Arguably, the erroneous referrals and recommendations (a)–(g) have contributed a
great deal to the misuse/abuse and misinterpretation of the p value in particular, and
frequentist inference results more generally. Adding to this list:

(h) the confusion between the false positive/negative rates in medical diagnostic
screening and the type I/II error probabilities that permeates the discussion in the
replication crisis (Spanos, 2021), and

(i) a statistically misspecified Mθ(x)—its assumptions are invalid for data x0,
Taken together (a)–(i) provide a much better explanation of why a sizeable percent-

age of the empirical evidence published in scientific journals is untrustworthy.

5 Bernoulli’s alleged swindle and effect sizes

Bernoulli’s distinction between chances, referring to θ � P(X � 1), and xn as prob-
ability a posteriori, referring to relative frequencies, is important because θ is rarely a
probability in the context of a statistical modelMθ(x); the Bernoulli distribution is an
exception. As argued below, the inferential claim in (27) is unwarranted, not because
Bernoulli conflated f (x0|θ ) with f (θ |x0), but since (27) is an instance of (2).
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5.1 An unwarranted claim: �̂n(x0) � �∗, for a large enough n

As argued in Sect. 2.3, the Law of Large Numbers (LLN) (weak or strong) does not
justify the claim θ̂n(x0) � θ∗, for a large enough n, since the LLN pertains only to
what happens at the limit (n � ∞).What would it take to find a statistic, say h(X), that
would justify the claim h(x0) � θ∗?For that one needs to invoke another limit theorem,
known as the Law of Iterated Logarithm (LIL) that quantifies the LLN fluctuations

of θ̂n(X) around θ∗, as described by its sampling distribution f
(
θ̂n(x); θ

)
, x ∈ R

n ,

using upper and lower bounds.
As an aside, it is important to note that limit theorems, such as LLN and the LIL

revolve around a specific statistic, Xn � 1
n

∑n
i�1 Xi , but their results can be easily

extended to more general statistics h(X); see Spanos (2019), ch. 9.
To implement the LIL, however, one would need to generate additional sample

information in the form of N faithful replicas—ones that exhibit the same chance
regularity patterns—as the original data x0, say x1, x2, . . . , xN , using simulation or
bootstrapping (resampling). These replicas are used to evaluate N estimates θ̂n(xi ),

i � 1, 2, . . . , N , of θ whose (smoothed) histogram approximates the empirical dis-

tribution, say f̂N

(
θ̂ (x1, , x2, . . . , xN ); θ

)
; the empirical counterpart of the sampling

distribution f
(
θ̂ (x); θ

)
, x ∈ R

n . Although no single θ̂n(xi ) approximates θ∗ unless

by happenstance, the overall average of these N estimates provides a ‘close enough’
approximation:

θ̂ N (x1, , x2, . . . , xN ) � 1

N

N∑

i�1

θ̂n(xi ) � θ∗, for a large enough N . (35)

The LIL quantifies ‘close enough’ by providing bounds for the approximation error∣
∣
∣ 1

N

∑N
i�1 θ̂M L(xi ) − θ∗

∣
∣
∣ < ε (Billingsley, 1995, p. 153):

(1 ± ε)

(
1

N

√
2N lnln(N )

)

f or any ε > 0. (36)

For instance, when N � 20,000 (36) yields (1 ± ε)(.015), ensuring first decimal
approximation accuracy, but for N � 100 the bounds are not as accurate (1 ± ε)(.175).

In practice, the histogram in Fig. 1 can be replicated using simple bootstrapping
(Efron & Tibshirani, 1993), when the validity of the IID assumptions for data x0 has
been established using comprehensive misspecification testing; see Spanos (2018).
This qualification is particularly crucial because any departures from the IID assump-
tions will render the bootstrap replications unfaithful replicas—they will exhibit
different chance regularities than x0—and the ensuing empirical sampling distribution
and its summary statistics will be unreliable; see Spanos (2019), p. 463.

It is important to emphasize that the approximation in (35) is not equivalent to using
an enlarged data set X0 with sample size nN to estimate θ and invoke consistency to
claim θ̂nN (X0) � θ∗. What is different in (35) is that the LIL bounds in (36) depend
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crucially on the averaging of the N estimates which shortens the range of values of the

sampling distribution f̂N

(
θ̂ (x1, , x2, ..., xN ); θ

)
as opposed to that of f̂

(
θ̂nN (x); θ

)
.

That is, the LLN does justify θ̂nN (X0) → θ∗ (in probability or almost surely), as

nN → ∞, but it cannot provide bounds for the approximation error
∣
∣
∣θ̂nN (X0) − θ∗

∣
∣
∣,

otherwise the LIL would have been redundant!
It should also be noted that Bernoulli’s LLN in the context of (5) can be somewhat

misleading for the general case of an arbitrary consistent estimator θ̂n(X) → θ∗ as
n → ∞. As mentioned in Sect. 3.4, it constitutes a special case where the invoked
probabilistic assumptions include a direct (explicit) distribution assumption,Bernoulli,
ensuring that (a) the finite sampling distribution of Xn � 1

n

∑n
k�1 Xk, is known, (24),

and (b) V ar
(
Xn

) � (θ(1 − θ)/n) is bounded above by (1/4n) since θ(1 − θ) ≤
(1/4). This is not the case with more general limit theorems since they usually rely
on indirect distribution assumptions, such as the existence of the first few moments;
see Spanos (2019), ch. 9.

5.2 Estimation-based effect sizes

This approximation in (35) has important implications for the replication crisis as they
relate to the estimation-based effect sizes. Usually, effect sizes are point estimates of
a function of one or more parameters of Mθ(x); see Cohen (1988), Ellis (2010). For
instance, in the case of testing the difference between two means, the estimation-
based effect size, known as Cohen’s d � [(

xn − yn
)
/s

]
, is nothing more than a point

estimate θ̂n(z0) � [(
xn − yn

)
/s

]
of the unknown parameter θ � [(μ1 − μ2)/σ ]. This

suggests that such estimation-based effect sizes constitute instances of the unwarranted
claim (2).

This is important for the current discussions on replicability since numerous recent
papers (Nosek & Lakens, 2014) replicate published results to compare the point esti-
mates θ̂n(z0) of two or more studies to draw inferences relating to the replicability
and the trustworthiness of their evidence. Given that θ̂n(x0) � θ∗ is unwarranted,
this strategy is likely to give rise to highly misleading results by the replicators. The
above discussion questions the reliability of conclusions of the form ‘for a particular
published study (i) the statistical significance is replicated based on observed CIs,
but (ii) the effect size θ � [(μ1 − μ2)/σ ], measured by Cohen’s d is smaller/bigger
than the original’. Since particular point estimates depend crucially on the sample size
n, as well as the statistical adequacy of Mθ(x), estimates based on different sample
sizes or statistically misspecified models (Mθ(x)) will give rise to highly misleading
replications results.

A case can be made that a more reliable way to evaluate the replicability of studies
is to compare the discrepancies from a null value warranted by an optimal test and
data z0 stemming from the post-data severity evaluation of the testing results that takes
fully into account the statistical context in (34); see Spanos (2021).
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6 Bayes’ theorem and direct versus inverse inference

The traditional interpretation of Bernoulli’s golden theorem, as summarized by Dia-
conis and Skyrms (2018) in the introduction, has been that his inferential claim
xn � θ∗, for n ≥ N , is not just unwarranted, but the problem he posed did not
have a legitimate frequentist answer. His answer is based on conflating two differ-
ent conditional densities f (x0|θ) and f (θ|x0). Instead, his inferential problem was
solved by Bayes (1764) who introduced the distinction between the two densities.
As argued in Sect. 2.5, conditioning on the unknown and unobservable constant θ is
both mathematically and logically meaningless in model-based frequentist inference;
neither density exists. Despite this obvious mathematical fact, Bayesians have con-
vinced many frequentists that the distribution of the sample, f (x; θ), x ∈ R

n
X , can be

(legitimately) reimagined as f (x|θ), x ∈ R
n
X , giving rise to a reinterpreted likelihood

function L(θ|x0) ∝ f (x0|θ), ∀θ ∈ �, as well as a transposed conditioning, to define
f (θ |x0), ∀θ ∈ �, when neither makes sense in frequentist statistics. Why? The short
answer is that it allows Bayesians to use a dubious crosscut to render Bayes’ rule easier
to define, justify and apply. Let us unpack this claim in finer detail.

6.1 Revisiting the traditional Bayes’ rule

According to Ghosh et al., (2006), Bayes’ rule takes the form:

π (θ|x) � f (x|θ) · π(θ)
∫
θ∈�

f (x|θ) · π(θ)d`
, (37)

“where π(θ) is the prior density function and f (x|θ) is the density of X, interpreted
as the conditional density of X given θ. The numerator is the joint density of θ and X
and the denominator is the marginal density of X.” (p. 31).

The formula in (37) and the Ghosh et al. (2006) description of its components are
both misleading. To reveal the flaws, compare a more accurate definition of Bayes’
rule that includes a needed quantifier:

π(θ|x0) � f (x0|θ) · π(θ)
∫
θ∈�

f (x0|θ) · π(θ)d`
, ∀θ ∈ �, (38)

for f (x0) � ∫

θ∈�

f (x0|θ) · π(θ)dθ > 0, where data x0 represents a point in the

sample space Rn
X . When (37) is compared to (38), the obvious differences are that the

subscript 0 for x0, and the quantifier ∀θ ∈ � are missing, rendering the description of
its components problematic in so far as:

[i] f (x0|θ) is not the conditional density ofX given θ; it is an amalgam fromdifferent
conditional distributions with a fixed x0 and varying values of θ in � ⊂ R

m, n > m.

Besides, the conditional density ofX given θ requires the quantifier ∀x ∈ R
n
X , and not

∀θ ∈ �.
[ii] The product f (x0|θ) ·π(θ), ∀θ ∈ �, is not the joint density of θ andX, because

f (x, θ) would require a double quantifier ∀θ ∈ �, ∀x ∈ R
n
X with a generic x ∈ R

n
X .
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[iii] ∫
θ∈�

f (x0|θ) · π(θ)d` � f (x0) is a scaling factor and not the marginal density

of X, which is defined by f (x), ∀x ∈ R
n
X .

When one points out the flaws [i]–[iii] in the above quotation from Ghosh et al.,
(2006), the reply is often framed in terms of ‘sloppy language and clumsy notation’.
The problem is that this interpretation is typical of Bayesian textbooksmore generally;
see Lindley (1965), p. 118, O’Hagan (1994), p. 4, and Robert (2007), pp. 8–9, inter
alia. It will be equally misplaced to dismiss [i]–[iii] as restating the obvious that
‘we all know that …’ type of exculpation because the problem is more fundamental
and has to do with Bayesians (purposely) reimagining the distribution of the sample
f (x; θ), x ∈ R

n
X as conditional on θ, f (x|θ), x ∈ R

n
X . Why?

6.1.1 Bayes’ foundational problem

Given that in Bayesian inference, X and θ are viewed as random variables (vectors),
they are both functions defined on the same probability space (S,�,P(.)) underlying
the relevant Mθ(x) based on events:

Ax :� X−(−∞, x] ∈ �, ∀x ∈ R
n, Bϑ :� θ−(−∞, ϑ] ∈ �, ∀ϑ ∈ �,

where Z−(.) denotes the pre-image of Z(.). Since X is observable and represents
real-world events (data), but θ is unobservable and denotes degrees of belief, the
foundational problem that arises is how one is supposed to conceptualize and construct
the joint density:

f (x, ϑ), ∀x ∈ R
n
X , ∀ϑ ∈ �, (39)

by assigning probabilities to the overlapping events Ax ∩ Bϑ �� ∅ aiming to blend
coherently the observable (X) with the unobservable (θ) worlds. If onewere to imagine
that such a task is (somehow) achievable, then Bayesian inference would be reduced
to a simple deductive formula:

f (ϑ |x0) � f (x0, ϑ)

f (x0)
, ∀ϑ ∈ �. (40)

The key difference between (40) with (38) is that f (x0, θ) is replaced by
f (x0|θ) · π(θ), where π(θ) is chosen independently of f (x, ϑ) instead of using
f (ϑ) � ∫

x∈Rn
X

f (x, ϑ)dx.

The traditional perspective on Bayesian statistics, however, ignores the above foun-
dational conundrum and defines Bayes’ rule using a dubious crosscut to evade the
intellectually taxing task in defining (39). Instead of choosing f (x, θ), which will
determine both f (x|θ) and f (θ), Bayesian statistics selects f (x|θ) and π(θ) sepa-
rately and defines a (contrived) joint distribution via (Gelman, et al., 2004, p. 7):

f (x, θ) � f (x|θ) · π(θ), ∀x ∈ R
n
X , ∀θ ∈ �. (41)
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This conveniently evades the mammoth conundrum of bridging the gap between
the real world of data and the mathematical world of prior probabilities pointed out
by Le Cam (1977):

“(2) It [Bayesian statistics] confuses ‘theories’ about nature with ‘facts’, and makes
no provision for the construction ofmodels. (3) It applies brutally to propositions about
theories or models of physical phenomena the same simplified logic which every one
of us uses ordinarily for ‘events’. … (5) The theory blends in the same barrel all forms
of uncertainty and treats them all alike.” (p. 134).

To be more specific, after reimagining f (x; θ) as f (x|θ), the second step involves
invoking the multiplication rule for density functions which takes the form:

f (x, θ) � f (θ|x) · f (x) � f (x|θ) · f (θ), ∀x ∈ R
n
X , ∀θ ∈ �. (42)

The third step mistakenly evaluates (42) at X � x0:

f (x0, θ) � f (θ|x0) · f (x0) � f (x0|θ) · f (θ), ∀θ ∈ �, (43)

by ignoring the fact that f (θ|x0) · f (x0) �� f (x0|θ) · f (θ), since the multiplication rule
in (42) holds only when both quantifiers are attached, unlike the one for simple events
in (33), since random variables always define more than one simple event in �. To
derive (38), the erroneously derived (43) is then solved for f (θ|x0), thus eliminating
f (x0, θ) as a result of the sleight of hand in step three hiding the misapplication of
(42) as if it were (33).

This sleight of hand suggests that one way to render the above Ghosh et. al (2006)
interpretation of Bayes rule’s components formally correct is to add both quantifiers:

f (θ|x) � f (x|θ) · π(θ)
∫
θ∈�

f (x|θ) · π(θ)d`
, ∀θ ∈ �, ∀x ∈ R

n
X . (44)

This describes accurately the above quotation by Ghosh et al. (2006), but has two
unusual features:

(i) f (θ|x) is essentially a simple reparametrization of the contrived f (x, θ), and
(ii) The presence of the quantifier ∀x ∈ R

n
X belies the Likelihood Principle: for infer-

ence purposes, the only relevant sample information pertaining to θ is contained
in x0 via the likelihood function L(x0|θ) ∝ f (x0|θ),∀θ ∈ �. Moreover, if two
sample realizations are proportional, x0 � cy0, for some c > 0, they contain the
same information about θ (Berger & Wolpert, 1988, p. 19).

In light of the above discussion, Bayesian statistics need to choose between a for-
mally correctBayes’ rule as in (38) and forsake themisleading interpretation associated
with (37), or adopt the formula in (44) and give up the likelihood principle. A third,
and more practical choice is to do away with the interpretation of the various compo-
nents in (37), as per Ghosh et al., (2006), and view it as an updating formula whose
interpretation is deemed irrelevant. All three choices, however, leave unresolved the
key conundrum of bridging the gap between the real world of data and the mathemat-
ical world of prior probability. The questionable crosscut in (41) can be defended on
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pragmatic grounds, but using it to admonish frequentists for conflating f (θ|x0) with
f (x0|θ) is absurd, since neither density makes sense in that context.

6.2 Alternative ways to ‘learn from data’

In frequentist inference, bridging the gap between the real world of data x0 and the
mathematical world of probability constitutes the essence of statistical induction:
learning from data x0 about M∗(x) � {

f
(
x; θ∗), x ∈ R

n
X

}
that gave rise to data x0.

This is achieved by first securing the statistical adequacy of Mθ(x) vis-a-vis data
x0, including the constancy of its parameters θ, and then proceed to use effective
(optimal) procedures at the inference facet, estimation (point and interval), testing and
prediction, knowing that this ensures both the reliability and effectiveness of inference
as well as the trustworthiness of the ensuing evidence; see Spanos (2013a).

In contrast, learning from data in Bayesian inference takes the form of revising the
prior probability π(θ), ∀θ ∈ � in light of data x0, to yield the posterior probability
π (θ|x0) ∝ f (x0; θ) · π(θ), ∀θ ∈ �. What is not so obvious is the nature and meaning
of the inferential claim that accompanies the revised rankings of θ by π (θ|x0). Is the
highest-ranked θ value, say θ†, the one approximating θ∗ the best in some sense?
There is no decipherable answer to that question in the Bayesian literature since the
notion of a ‘true value’ θ∗ is not well-defined when θ is a random variable (vector);
no single number can characterize a non-degenerate random variable. Looking at
Bayesian statistics textbooks, the pragmatic answer seems to be: it depends on the
choice of ‘a loss function’; seeGhosh et al., (2006), Robert (2007) inter alia.What does
expected loss, based on information other than data x0 and statistical model Mθ(x)
have to do with learning from data x0 about M∗(x)? The answer to this question
highlights incisively a key difference between the frequentist andBayesian approaches
to inference, as well as ‘what learning from data’ amounts to in the context of two
approaches; see Spanos (2017). In that sense, Bernoulli’s (1713) inferential problem
wasnot addressed byBayes (1764) as often claimed.Bayes recastBernoulli’s inference
problem by viewing θ as a latent random vector and offered an alternative way to learn
from data x0 about observable phenomena of interest.

7 Conclusions

Viewing Bernoulli’s (1713) golden theorem retrospectively in the context of model-
based frequentist inference that revolves around a parametric statisticalmodel,Mθ(x),
the following claims were called into question: (a) Bernoulli solved the problem of
“an inference from chances to frequencies”, and thus (b) the golden theorem does not
justify an approximate CI for θ , (c) Bernoulli’s ‘swindle’ in identifying probability
with relative frequency stems from his conflating f (x0|θ ) with f (θ |x0), and (d) the
same swindle is routinely perpetrated by p value significance testers. In interrogating
these claims, the paper argued that they are grounded in misconceptions that raise
several broader foundational problems relating to the current replication crisis.

123



13974 Synthese (2021) 199:13949–13976

The main conclusions are: (i) Frequentist error probabilities are not conditional on
hypotheses framed in terms of θ . They are attached to the inference procedure itself
to calibrate its effectiveness and grounded in the relevant sampling distribution of a
statistic (estimator, test, predictor), which is evaluated via (6) under factual (presuming
that θ � θ∗, in estimation and prediction), or hypothetical (presuming that θ � θ0
or θ � θ1 in testing) reasoning. (ii) The alleged Bernoulli’s swindle is an instance of
the unwarranted claim θ̂n(x0) � θ∗, for a large enough n, that also undermines point-
estimationmeasures, such as the straight rule and the estimation-based effect sizes. (iii)
More reliable measures for the ‘scientific effect’ can be evaluated using testing-based
discrepancies warranted by data x0; see Spanos (2021). (iv) The direct versus inverse
inference problem is a contrived issue that gives rise to misplaced criticisms of model-
based frequentist inference since neither distribution f (x0|θ ) or f (θ |x0) exists in that
context. A case is made that (v) this criticism is motivated by a misguided attempt to
justify a dubious crosscut in deriving Bayes’ rule by reimagining the distribution of
the sample f (x; θ), x ∈ R

n
X , as conditional on θ . (vi) The reliability and precision of

inferences depend solely on the approximate validity of the probabilistic assumptions
comprisingMθ(x) for the particular data x0, and nothing else. Any attempt to invoke
limit theorems (asn → ∞) ismisplaced. (vii)Bayes (1764) did not addressBernoulli’s
(1713) inference problem. Instead, he recast the original problem by viewing θ as a
latent random vector and proposed a very different way to learn from data x0. (viii)
Bayesians should consider the dormant foundational problems arising from the choice
of a prior as it relates to the dubious crosscut and the erroneous use of themultiplication
rule for random variables in (42)–(43) in defining the contrived joint distribution in
(41).
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