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Abstract
Multivariate pattern analysis, or MVPA, has become one of the most popular ana-
lytic methods in cognitive neuroscience. Since its inception, MVPA has been her-
alded as offering much more than regular univariate analyses, for—we are told—
it not only can tell us which brain regions are engaged while processing particular 
stimuli, but also which patterns of neural activity represent the categories the stim-
uli are selected from. We disagree, and in the current paper we offer four concep-
tual challenges to the use of MVPA to make claims about neural representation. 
Our view is that the use of MVPA to make claims about neural representation is 
problematic.

Keywords  MVPA · Mental representation · Neural representation · 
Misrepresentation · Neuroscience

1  Introduction

Multivariate pattern analysis, or MVPA, has become one of the most popular ana-
lytic methods in cognitive neuroscience (Haxby et  al., 2014; Weaverdyck et  al., 
2020). Since its inception, MVPA has been heralded as offering much more than 
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regular univariate analyses, such as general linear modeling (GLM) approaches, 
which can merely associate a certain neuroimaging measure, say, increased BOLD 
signal in a particular brain region, with one experimental condition relative to 
another one. By contrast—the story goes—MVPA could tell us whether a particu-
lar pattern of brain activity carries information about a specific stimulus. Indeed, 
many researchers take MVPA to be able to provide evidence that a particular pattern 
of brain activity represents the categories the stimuli are selected from. This was 
the moral we were invited to draw from the first use of MVPA with fMRI signal, 
where it was employed to discriminate—according to the paper’s title (Haxby et al., 
2001)—“Distributed and overlapping representations of faces and objects in ven-
tral temporal cortex” (emphasis added). Year after year we see papers with similar 
titles, all of which support their claims by employing MVPA approaches on neuro-
imaging data. For example, we have learned of patterns of brain activity that cor-
respond to “categorical representations of objects” (Carlson et al., 2003; emphasis 
added), or “representation of behavioral choice from motion” (Serences & Boyn-
ton, 2007; emphasis added), or even “abstract and concrete concept representations” 
(Wang et al., 2013; emphasis added). MVPA has even been employed for “Decod-
ing individual natural scene representations during perception and imagery” (John-
son & Johnson, 2014) because, we are told, MVPA can be used to “directly probe 
how information is represented in visually responsive brain areas” (Johnson & John-
son, 2014; emphasis added). In sum, MVPA does not seem to be simply a gradual 
increment over typical GLM approaches, for it has “revolutionized fMRI research” 
by allowing researchers to answer new questions that were hitherto unanswerable: 
“Instead of asking what a region’s function is, in terms of a single brain state associ-
ated with global activity, fMRI investigators can now ask what information is repre-
sented in a region, in terms of brain states associated with distinct patterns of brain 
activity, and how that information is encoded and organized” (Haxby et al., 2014: p. 
436; emphasis added).

Roughly speaking, MVPA can be seen as a four-stage process (Norman et  al., 
2006). The first stage, feature selection, starts when the experimenters choose stim-
uli from two or more categories of interest, and proceed to present them to partici-
pants while collecting neuroimaging data—typically functional magnetic resonance 
imaging (fMRI), but also electroencephalography (EEG), magnetoencephalogra-
phy (MEG), single unit recordings, and so on. To illustrate, suppose researchers are 
interested in brain activity, as measured by blood oxygen level dependent (BOLD) 
signal with fMRI, while participants are seeing stimuli that belong to one of two 
categories: LIVING or NON-LIVING. Feature selection occurs when researchers 
choose a set of stimulus-dependent data, from a set of voxels of interest—which 
could be as large as all voxels or some subset of them—in order to include them in 
a subsequent classification analysis. While there are a number of different feature 
selection methods, they typically involve an a priori selection of a region of interest 
(ROI), and, often, the use of some multivariate statistic in order to allow the inclu-
sion of voxel-wise activity related to the stimuli of interest, that would not normally 
meet the stringent univariate threshold of statistical significance—although, to be 
fair, sometimes univariate approaches are used as well (Fan & Chou, 2016). In our 
example, the ROI could be, say, lateral temporal cortex, and feature selection occurs 
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when the researcher chooses a set of voxel-wise activity from this ROI to include in 
the next stage of analysis.

This second stage, pattern assembly, consists in sorting the selected data into 
discrete vectors or “patterns” that correspond to individual stimuli from each cat-
egory, based upon the voxels chosen in the previous feature selection step. Thus, 
in our example, fMRI data from the selected ROI will be sorted into patterns of 
brain activity associated with each individual stimulus from the LIVING category 
and patterns of brain activity associated with each individual stimulus of the NON-
LIVING category. Each one of these distinct patterns is thus labeled as either “liv-
ing” or “non-living,” and then they are randomly divided into two sets: a training set 
and a testing set.

Now comes the third stage, classifier training, whereby the data in the training 
set is fed to a machine learning algorithm that learns a function to map the voxel-
based vectors or patterns onto the experimental conditions. There are a number of 
machine learning algorithms in the offing (Pereira et al., 2009), but most typically 
they involve approaches similar to logistic regression analysis in which the predicted 
variable is not continuous but discrete. A classifier algorithm may learn a function to 
map patterns of brain activity (i.e., vectors of voxel-wise measures of BOLD signal 
from the selected ROI) from the training set—the predictor variables—onto a stimu-
lus discriminant category—the predicted variable—which, in our example, is either 
LIVING or NON-LIVING.

The fourth and final stage, classifier testing, consists in feeding the untrained 
data—i.e., the dataset that was previously set apart as the testing set—to the classi-
fier in order to determine whether or not the function correctly classifies these new 
patterns of brain activity as corresponding to relevant categories. Thus, in our exam-
ple, the testing data will be the set of brain activity from the ROI that was not used 
to train the classifier, and the test is successful if, when fed to the algorithm, the 
classifier predicts whether a brain pattern corresponds to a stimulus with either a 
“living” or a “non-living” label beyond some determined decision boundary—which 
could be chance or certain percent accuracy (Pereira et al., 2009).

Although, as mentioned, MVPA has grown in popularity for the last two decades, 
many have pointed out a number of limitations. Some of these limitations fall on the 
practical or methodological side of things. For instance, temporal autocorrelation 
often yields collinearities in the preprocessing of fMRI data that could potentially 
render two brain patterns as being more similar to each other than they should be, 
particularly if they belong to adjacent trials or are part of the same run (see Davis & 
Poldrack, 2013, for discussion). Others have pointed at discrepancies that should not 
exist between category structures recovered from MVPA analysis conducted with 
fMRI versus single unit recordings of the same brain regions (Dubois et al., 2015). 
And others have indicated various difficulties in disambiguating geometrical and 
spatial ambiguities inherit in MVPA, with the further difficulty that many of the pro-
posed solutions come with additional costs (Naselaris & Kay, 2015).

Yet, other limitations are more theoretical or conceptual in nature, and a number 
of them have been voiced by philosophers of neuroscience. For instance, Anderson 
and Oates (2010) argued that inferring represented information on the basis of infor-
mation available to the classifier is, at best, problematic. In support, they ran a series 
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of simulations and showed that nearly any voxel, regardless of activation level, could 
end up in the “most informative” set of voxels and, thus, carry a heavy weight in the 
generation of the pattern classifier. As such, they warn us that the inference from 
being the set of voxels most relevant for the classifying prediction, to being the set 
of brain regions carrying information about the predicted categories, is unwarranted. 
Similarly, Wright (2018) argues that results from MVPA can only be taken as giving 
us direct evidence about patterns in the data, not about patterns in the phenomena 
from which such data is generated—which, in this case, would be the alleged rep-
resented information. Inferring the latter from the former is, according to Wright, 
an unwarranted leap. Along similar lines, Ritchie et al. (2019) have recently argued 
against what they call the “Decoder’s Dictum,” which says that decoding success 
provides strong evidence about the information that patterns represent. Their argu-
ment is that, even in successful decoding, a gap remains between the information 
used by the decoder and that represented in the brain. The existence of this gap 
threatens the reverse inference from decoder information to neural information.

The current paper seeks to add four additional philosophical challenges to the 
use of MVPA to make claims about neural representation. The nature of these chal-
lenges depends in part on what notion of representation MVPA is supposed to pro-
vide evidence for. Inspired by Sullivan (2010), we distinguish between a strong and 
a weak sense of representation in neuroscience, which closely follow her substantive 
versus minimal distinction. In the strong sense, a representation plays an explana-
tory role in neuroscience in virtue of its content, whereas in the weak sense it does 
so by merely signaling co-variation with its referent. Thus, the first two challenges, 
which we call “the problem of cross-cut categories” and “the problem of misrep-
resentation,” apply to inferences from MVPA to neural representations in a strong 
sense, and are discussed in Sects. 2 and 3, respectively. The other two challenges, 
which we call “the problem of orthogonalization” and “the problem of null results,” 
pertain to inferences from MVPA to neural representations in a weak sense, and are 
discussed in Sects. 4 and 5, respectively. Finally, in Sect. 6, we conclude with a criti-
cal assessment of the promises of MVPA to deliver evidence about representations 
in the brain.

2 � The problem of cross‑cut categories

To introduce this first challenge, consider a thought experiment. Imagine there is 
a neuroscientist who is interested in understanding how the brain represents things 
that are living and things that are non-living. As such, she runs an fMRI study in 
which images of items that are living and items that are non-living are employed 
as stimuli, and then she asks participants to simply make a categorical discrimina-
tion judgment while lying in the scanner. A selected sub-set of the resultant data is 
chosen on the basis of some a priori ROI analysis, and trial-based vectors are then 
labeled as “living” or “non-living”. In turn, these data are split into training and 
testing sets, and the former are used to train a classifier to tell apart trials labeled as 
“living” versus “non-living”. Happily, the classifier succeeds, and the neuroscientist 
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concludes that she has identified patterns of brain activity that represent the catego-
ries of LIVING and NON-LIVING.

But now suppose that this neuroscientist dies, unexpectedly, before she has the 
chance to report the results. And suppose further that the experimental protocol gets 
lost as well as the Python script she used to analyze the data. Nothing is left but the 
uncategorized images employed as stimuli and the collected fMRI data. Imagine, 
though, that another neuroscientist discovers these data and the stimulus set, and 
tries to make sense of the experiment. She looks at the uncategorized images and 
finds that they all could be neatly divided into SMALL and LARGE, so she takes 
it that the experiment must have employed a size discrimination task. Now, coinci-
dentally, the set of small items in the stimuli includes only living things, while the 
set of large items includes only non-living things; that is, the SMALL and LARGE 
categories cross-cut the old LIVING and NON-LIVING categories. Unaware of this 
coincidence, the experimenter carries on by sorting trials into labels “small” and 
“large”, and proceeds to divide these data into a training set and a testing set. Once 
again, she feeds a classifier with the training set and then tests it on the testing set. 
Lo and behold, the new classifier performs just as well, and it is able to identify 
voxel patterns as belonging to the categories SMALL or LARGE at an above-chance 
rate. Critically, the same brain patterns of activity the new classifier identifies as 
either “small” or “large” correspond to those the previous classifier identified as 
either “living” or “non-living”.

Let us ask now: what does the pattern of brain activity initially assigned to “liv-
ing”, and now assigned to “small”, represent? Does the pattern carry information 
about items that fall under the category LIVING and, thus, represent living things, 
or does it carry information about items that fall under the category SMALL and, 
thus, represent small things? Does it represent both? Or does it represent neither? 
Philosophers—we hope—may find a family resemblance between this thought 
experiment and Quine’s famous doctrine of indeterminacy of reference (Quine, 
1960),1 which he introduces with the famous example of ‘Gavagai’. Quine invites 
us to imagine a linguist in a foreign land meeting a native who only speaks a com-
pletely unknown language. All of a sudden, “a rabbit scurries by, the native says 
‘Gavagai’, and the linguists notes down the sentence ‘Rabbit’ (or ‘Lo, a rabbit’) as 
tentative translation” (Quine, 1960: p. 25). The linguist, however, is aware that the 
utterance is consistent with a number of other possible meanings; it may mean, for 
instance, ‘jumping’, ‘fast’, ‘food’ or ‘white’, let’s say. So she tests her initial hypoth-
esis—the tentative translation—by uttering ‘Gavagai’ in the presence of jumps, fast 
things, foods and white objects, and records the native’s assent or dissent accord-
ingly. This way, she manages to narrow down the possible meaning of ‘Gavagai’. 
The problem, however, is that there are a number of compatible translations that no 
amount of testing could falsify, such as ‘there is a rabbit’, or ‘Lo, undetached rabbit 

1  Quine sometimes uses the expressions “ontological relativity”, “indeterminacy of translation” and 
“inscrutability of reference” to refer to the same underlying notion. Although some philosophers tried to 
pull apart these ideas as different doctrines, later in life Quine made clear that these terms expressed the 
same idea (Quine, 1986).
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parts’, or even ‘rabbithood is manifested here now’. While all these co-instantiated 
entities constitute possible different referents of the term ‘Gavagai’, it is impossible, 
from the behavioral/observational data alone, to know for sure whether ‘Gavagai’ 
means ‘rabbit’ and not ‘undetached rabbit parts’. In other words, a precise transla-
tion of ‘gavagai’ is underdetermined by the observational data and, thus, its referent 
remains inscrutable.

We believe that a similar lesson applies to the problem of cross-cut categories in 
MVPA. Mutatis mutandis, a machine learning classifier is nothing but an automated 
linguist that is trying to assign proxy-functions from expressions in brain data to 
objects in the world. But as with the case of the native’s behavior, the observational 
data—i.e., the patterns of brain activity—can be mapped to at least two co-extensive 
sets of stimuli and, thus, can mean either ‘small’ or ‘living’, or ‘large’ or ‘non-liv-
ing’. It would be premature for the second neuroscientist to claim that she has found 
a pattern of brain activity that means SMALL, just as it would have been premature 
for the first neuroscientist to claim that she has found a pattern of brain activity that 
means LIVING. These are at best—to use Quine’s trope—tentative translations.

‘What’s the big deal?’, one may rebuff at this point, ‘Couldn’t a third, clever neu-
roscientist notice the co-extensionality of the stimulus set and run another experi-
ment to tell them apart—this time involving living things that aren’t small, and 
non-living things that aren’t large?’ Sure! In practice, this is likely the best meth-
odological response. In fact, it is precisely what the linguist in Quine’s fable does: 
he collects further observations to confirm or disconfirm semantic hypotheses. But 
the point in principle persists, for there is always an alternative possible category the 
same brain data could predict such that it would make the alleged neural representa-
tion to be about something else altogether. Then, just as it would have been wrong 
for the first neuroscientist to say that a certain pattern of brain activity represents 
LIVING, since—as shown by the second neuroscientist—it could as well represent 
SMALL, this third, clever neuroscientist could also be unaware of another co-exten-
sive category her data set could be equally predictive of.

Although our thought experiment appears far-fetched, there is some evidence 
that suggests that, actually, it may not be as unlikely as it seems. Consider the 
aforementioned study by Haxby et  al. (2001), which showcased MVPA as a 
method to identify representations in the brain. Among other things, this paper 
claims to find evidence of distinct neural representations for faces, cats, and five 
categories of human-made objects: houses, chairs, scissors, shoes, and bottles. 
Their selected ROI is the ventral occipitotemporal cortex, which they had reason 
to believe was sensitive to these sorts of contents. Fast-forward a decade, when 
Konkle and Oliva (2012) scanned participants while displaying several pictures 
of the same retinal size depicting objects that, in reality, are either smaller than 
or larger than an average person. Their analysis showed, among other things, dis-
tinct patters of brain activity in the ventral surface of the occipitotemporal cortex 
as a function of whether the object depicted by the displayed picture was either 
smaller or larger than an average person. How are we to know that the occipito-
temporal pattern of brain activity identified by Haxby and colleagues was repre-
senting, say, BOTTLE and not BOTTLE SMALLER THAN ME, as identified 
by Konkle and Oliva (2012)? Indeed, just a year later, Konkle and Caramazza 
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(2013) identified yet another category—animacy—that could also cross-cut those 
of object type and relative size. Now the same batch of gray matter could repre-
sent BOTTLE, BOTTLE SMALLER THAN ME, or STATIC BOTTLE.

In fact, as shown recently by Goddard et  al. (2018), similar concerns could 
even arise for studies that are “data-driven” or “hypothesis-free”, as opposed 
to hypothesis-driven ones beginning from a set of pre-determined categories. 
Roughly, data-driven approaches typically employ dimensionality reduction 
strategies to generate a tractable feature-space—i.e., a multidimensional space in 
which coordinates correspond to features of the stimuli or experimental design—
that’s allegedly hypothesis-free or unbiased, and from which one can read-off its 
underlying representational-space, namely the structure of neural activity that 
carries the contents in the feature-space revealed by the dimensionality reduction 
analysis. Unfortunately, as Goddard and colleagues show, different dimensional-
ity reduction strategies fail to converge on a single solution for a feature-space, 
even when the representational structure they are supposed to mirror is as simple 
as a two- or three-dimensional one. Part of the problem, as they elaborate, is that 
many dimensionality reduction strategies suffer from “rotation indeterminacy”: 
since one can arbitrarily rotate factor solutions, it is always possible to generate a 
different feature-space (see also Carlson et al., 2018). And some of those spaces, 
as they demonstrated, do not look at all like the alleged representational structure 
they were supposed to recover. Indeed, what typically occurs is that the research-
ers already have a representational structure in mind, and use their preferred fea-
ture-space ‘solution’ as evidence that it can be recovered in an unbiased manner, 
when in reality the read-off is hypothesis-driven too. This opens up the door for 
another gavagai-like situation, whereby two hypothetical researchers, employing 
two distinct dimensionality reduction analyses to the same data, extract different 
solutions that recover distinct representational structures. What the neural pat-
terns represent is, once again, underdetermined by the data.

‘This is an old story!’, someone may gruffly interject at this point, ‘This is 
exactly what happened when we were told that the fusiform face area (FFA; 
Kanwisher et  al., 1997) was not selective for faces, since it also responded to 
greebles (Gauthier et  al., 1999) and to expertise in categorizing cars and birds 
(Gauthier et al., 2000). So what’s new?’ Excellent question! What is new is that 
neither Kanwisher and colleagues, nor Gauthier and collaborators, claimed that 
their findings gave them evidence to the effect that FFA represented faces, gree-
bles or general expertise. They knew their lowly univariate methods could at best 
speak to stimulus-dependent processing differences, not that those brain regions 
represented faces, or greebles, or what-have-you. But this is not what MVPA is 
trying to sell us, for we have been told that this method can “revolutionize fMRI 
research” as it can move beyond stimulus-dependent processing differences to 
evidence about what the brain represents. Our point is simply that it can’t—or at 
least not if we want to hold a view according to which neural representations are 
about something in particular, i.e., that they have determinate meanings. In sum, 
the problem of cross-cut categories simply seeks to suggest that MVPA falls short 
of delivering what it promises.
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3 � The problem of misrepresentation

Traditionally, philosophers who think of mental states as representational take such 
entities as exhibiting intentionality, i.e., mental representations are about or refer to 
things. That which a mental representation is about is often called its intentional 
object, the adjectival qualifier indicating that the object need not exist. One can 
think that Santa was stingy last Christmas even though (spoiler alert) Santa does not 
exist. Additionally, most representational views of mental states distinguish between 
the intentional object and the intentional content of the mental representation, on 
account that mental states are opaque or intensional (with an ‘s’).2 Louis Lane 
likely can entertain lots of thoughts about Superman. She may think, for instance, 
that Superman is brave. She can also entertain thoughts about Clark Kent; she may 
think, for instance, that Clark Kent is a coward, since he seems to run away every 
time there is trouble. But even though Superman and Clark Kent are the same indi-
vidual—Kal El—Louis Lane is not contradicting herself when she entertains both 
thoughts. This is because when she thinks about Superman, she’s thinking of him 
under a certain mode of presentation or in a particular sense, which is different from 
the sense or mode of presentation under which she thinks about Clark Kent. This is 
a difference in the intentional content of her mental states, as they both refer to the 
same intentional object.

The project of naturalizing intentionality, of understanding how the brain can 
instantiate the semantic properties we attribute to mental representations, requires 
not only that we can explain how brains like ours can have neural states that refer 
to things that may or may not exist—i.e., how they can relate to their intentional 
objects—but also how they can be the bearers of intentional contents capable of 
determining their referents under one or another mode of presentation. Indeed, one 
way of thinking about the problem of cross-cut categories mentioned above, is in 
terms of MVPA failing to tell us anything about the content of neural representa-
tions that happen to have co-extensional referents.

2  The term intensional comes from mathematical logic, and refers to definitions that are not extensional. 
A set is extensionally defined when its elements are listed. Thus, the set of all even number is extension-
ally defined as the set containing 2, 4, 6, 8, 10 and so on. But one could also intensionally define the 
same set with the function f(n) = n. 2, where n ∈ ℕ . Chisholm (1957) famously argued that intentional 
statements are also intensional because (1) they don’t admit existential generalization—viz., from “Ana 
believes Santa is stingy” it does not follow that there exists an x such that x is Santa and x is stingy—
and (2) co-referential terms in intensional contexts cannot be substituted salva veritate—viz., I cannot 
substitute “Clark Kent” for “Superman” in “Louis Lane believes that Clark Kent is a coward” without 
changing the truth value of the whole statement. Critical for our discussion is the fact that two terms can 
be co-extensional and differ in their intensional definition. For instance, the set of all cordata (animals 
with hearts) is co-extensional with that of renata (animals with kidneys), but it is definitively different to 
entertain thoughts about cordata as opposed to renata (Quine, 1951). The elements in the set—the refer-
ent—do not determine how you think about them for, as Frege put it, “sense determines reference”: two 
expressions with the same sense will have the same referent, but two expressions with the same referent 
need not have the same sense (Frege, 1892).
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With this clarification in mind, let us look at the second challenge, which is very 
closely related to the first one.3 According to the received view in the philosophy of 
mind, any attempt to naturalize intentionality needs not only to explain how neural 
states or processes can bear contents that represent their intentional objects, but also 
how sometimes they can misrepresent them (Dretske, 1986; Neander, 1995; Nean-
der & Schulte, 2021). The idea comes from Grice’s (1957) influential distinction 
between natural and non-natural meanings. The former refers to instances in which 
we say, of a meaning-bearer particular, X, that it means that p, only if p is the case. 
If we say “The spots on Tommy’s face means he has measles, but he does not have 
measles”, we are contradicting ourselves. The spots on Tommy’s face mean that he 
has measles only if he has measles (Dretske, 1986). By contrast, non-natural mean-
ings are such that X can mean that p even when p is not the case. If we say “The 
needle in the gas gauge means the tank isn’t empty, but the tank is empty” we are 
not contradicting ourselves. Sediment in the tank may make the needle indicate that 
there is gas, for instance, even when the tank is empty. In other words: the needle in 
the gas gauge, unlike Tommy’s face spots, can misrepresent. Given that many of the 
expressions of our thoughts convey non-natural meanings, then it follows that we are 
the sort of creature whose thoughts can misrepresent. Furthermore, if thinking con-
sists in tokening a mental representation, then it follows that our mental representa-
tions can misrepresent.

What does it take for a mental representation to misrepresent? Consider the men-
tal representation of DOG, the extension of which are dogs and only dogs. If one 
were to token the representation of DOG when pointing to a cat, say, then one would 
be misrepresenting the cat as a dog. To illustrate, suppose that you see, from a dis-
tance, what appears to you as a dog (but in fact is a cat) and then you confidently say 
to your companion ‘Lo, a dog!’. A naturalistic analysis of what is going on would 
need to involve at least four components. First, there will be the tokening of a rep-
resentation, whose vehicle would be some sort of neural state or process. Second, 
this representation would also have an intentional content which, in this case, would 
be DOG. Third, there would be an intentional object the representation is intended 
at—what Cummins (1996) calls the target of the representation. In this case, the 
target object would be a particular dog that would have fallen under the extension 
of DOG. Finally, the fourth component is the causal object of the tokening of the 
representation. In this case, the cause is a cat which does not fall under the extension 
of DOG. Thus, we have an instance of mismatch between the causal object and the 
target object and, thus, a case in which the referred object does not fall under the 

3  So closely related they are, that a reviewer suggested to combine this challenge with the previous one. 
However, we decided to keep them separate. We reasoned that, for many philosophers of mind with a 
naturalistic bent, the issue of misrepresentation is critical (Neander, 1995), and it is likely that at least 
some of them may be unmoved by Quinean considerations about radical translation. In fact, a number of 
philosophers of mind and cognitive scientists have rejected Quine’s concerns (e.g., Chomsky, 1968; Soa-
mes, 1999), and yet they remain open to the possibility of naturalizing intentionality and representation 
(e.g., Fodor, 1990). Thus, although the points that the problem of cross-cut categories and the problem of 
misrepresentation make are closely related, the motivation behind them differs. We thank a reviewer for 
inviting us to clarify this issue.
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extension of its representational content. Explaining how this could be the case in 
purely descriptive terms is the challenge faced by those who want to offer naturalis-
tic accounts of mental representation.

Advocates of MVPA argue that they can tell us how brains like ours can represent 
things like bottles, chairs and dogs. More precisely: some advocates of MVPA claim 
that they can give us evidence as to how the brain instantiates particular contents 
that represent intentional objects from categories such as BOTTLE, CHAIR, and 
DOG. And the relevant notion of representation here appears to be non-natural, as in 
the case of the aforementioned example of the mental representation of DOG. As a 
result, if MVPA is supposed to deliver evidence for representational contents in the 
non-natural sense, then it should be able to tell us when a neural representation gets 
its target object right and when it does not.

Unfortunately, we argue that if we take the success of a classifier at predicting 
a pattern of brain activity, X, given instances of category A as sufficient reason to 
claim that X represents A, then we may face a situation in which the classifier may 
classify an entirely different stimulus—say an instance of B—as being A without 
having a principled reason to assert that we have a case of misrepresentation. Let’s 
work this out more carefully. Consider a variation on the thought experiment dis-
cussed above, when we presented the problem of cross-cut categories. Suppose, 
again, that Neuroscientist 1 collected fMRI data while participants were sorting 
stimuli as being either LIVING or NON-LIVING. She then trained a classifier over 
a subset of the data from a certain ROI, ran the classifier over the testing set and 
found that it identified that a particular brain pattern, X, predicted instances of test-
ing stimuli labeled as “living” with extraordinarily high accuracy. Excitedly, Neu-
roscientist 1 claims that brain pattern X represents LIVING—i.e., that the content 
of this putative neural representation is such that it refers to living and only liv-
ing things. Then, Neuroscientist 2 comes along, reclassifies the stimuli as either 
SMALL or LARGE, trains a classifier over a subset of the data from the same ROI, 
and finds that X predicts stimuli from the testing set labeled as “small” with incred-
ibly high accuracy as well. Happily, Neuroscientist 2 announces that brain pattern 
X represents SMALL—i.e., that the content of the putative neural representation is 
such that its extension covers small and only small things.

But now suppose that Neuroscientist 1 takes a careful look at the testing data 
and discovers that a seemingly large looking animal—say, a cow—got classified as 
“non-living”. Being somewhat philosophically inclined, Neuroscientist 1 claims that 
this case of misclassification constitutes an instance of misrepresentation: the clas-
sifier misrepresented the cow as non-living while it should have been living. Neu-
roscientist 2 also decides to take a closer look at the testing data and notices that 
there is a particularly living-looking large item—say, a building’s façade4—that got 
classified as “small”. Neuroscientist 2, also in philosophical guise, claims that this 
case of misclassification constitutes an instance of misrepresentation: the classifier 
misrepresented a building as small when it should have been large. But here’s the 

4  Perhaps unsurprisingly, there are several websites dedicated to collecting pictures of buildings that 
look like living things (https://​images.​app.​goo.​gl/​2NoL9​eidmJ​tSPSQ​r7).

https://images.app.goo.gl/2NoL9eidmJtSPSQr7
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problem: what reason do we have to accept the claim of Neuroscientist 1—namely, 
that the cow was misrepresented as NON-LIVING when it should have been LIV-
ING—rather than the alternative interpretation, according to which it got misrep-
resented as LARGE when it should have been SMALL? Likewise, what reason do 
we have to accept the claim of Neuroscientist 2—namely, that the building was mis-
represented as SMALL when it should have been LARGE—rather than the alterna-
tive construal, whereby it got misrepresented as LIVING when it should have been 
NON-LIVING? Although both seem reasonable interpretations of misrepresenta-
tion, they cannot be true at the same time. Unfortunately, we don’t seem to have a 
principled reason to prefer one rather than the other.

This concern harkens back to Fodor’s (1987) observation that the causal depend-
ency underlying causal theories of representation needs to be asymmetric: two 
items, A and B, may co-vary with tokens of mental representation X, but if we claim 
that X means A and not B, we need to be able to say why it does not represent B 
even though it co-varies with A. Alas, MVPA alone cannot reveal the asymmetry, 
because—as illustrated by our thought experiment—there is no principled reason 
to claim that the pattern of brain activity identified by the classifier represents LIV-
ING rather than SMALL (or vice-versa). Moreover, to make things more interest-
ing, it is even possible for a classifier to misclassify an item that the participant did 
not misrepresent, just as it is possible for a classifier to correctly identify an item a 
participant did misrepresent. Once again, the gap between the representation and the 
classification discussed by Klein et al. (2019) and Wright (2018) reemerges in the 
context of misrepresentation.5

Notice, once again, that the problem of misrepresentation does not necessarily 
go away with further experimentation. Sure, Neuroscientist 3 may suggest running 
an experiment with a 2 × 2 design in which LIVING and NON-LIVING are pit-
ted against SMALL and LARGE. But, again, this not only amounts to caving in 

5  A reviewer suggested an intriguing possibility to try to circumvent—or, at least, ameliorate—the prob-
lem of misrepresentation, namely the inclusion of error trials in the analysis. In fact, as pointed out by the 
reviewer, this is a strategy that has been employed, for instance, by Woolgar et al. (2019) in a challenging 
stimulus–response task with a stable error rate. The reviewer’s suggestion is that these sorts of analyses 
may be able to tell us when a misrepresentation may occur by, say, “showing that patterns on trials where 
X is an error are similar to patterns where X is not”. Although intriguing, we remain somewhat skepti-
cal. For one, error trials are extremely difficult to analyze, as it is often not clear why a participant erred 
in each trial. Perhaps in one trial a participant was confused, in another one tired, or even simply pushed 
the wrong button by accident. Indeed, it is because of the difficulty of determining the reasons behind 
error trials that most researchers simply discard them. A second reason to be skeptical, is that the few 
instances (we are aware of) in which error trials have been included in MVPA analyses, is for extremely 
tight experimental paradigms where there are no more than a couple of options to hit or miss. It is not 
clear how these kinds of paradigms and analytic strategies can scale up to larger stimuli set. Finally, even 
if, for the sake of argument, we were to assume that we knew why a participant makes an error—say, a 
participant incorrectly identifies a dog as a cat—we may still face similar difficulties as those pointed 
out in the current paper. After all, such a result will only reverse the mapping for error trials (i.e., error 
trials will be thought to match the incorrect response and not the actual target), and thus problems like 
that of cross-cut categories and orthogonalization (discussed below) would still apply. Nevertheless, we 
acknowledge that our brief rebuttal is far from being a knock-down counterargument against this intrigu-
ing possibility. Further research is needed to evaluate the extent to which the inclusion of error trials can 
solve the problem of misrepresentation for MVPA.
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and accepting that neither Neuroscientist 1 nor Neuroscientist 2 should have made 
claims about representation, but it also opens the possibility that there is another co-
varying feature, unknown to Neuroscientist 3, for which there will still be cases of 
misclassification that do not reveal the asymmetry required for them to be accounted 
for as cases of misrepresentation. Finally, it is worth remarking that concerns about 
co-extensional stimuli are not new to users of MVPA, and worries about so-called 
“representational ambiguities” are discussed regularly in the literature (e.g., Carlson 
& Wardle, 2015). In fact, for the past decade or so, many neuroimagers have advo-
cated for the use of “encoding models”—e.g. voxelwise—which basically impose 
top-down constrains on the way the acquired data should be structured (Naselaris & 
Kay, 2015). The problem is that such constrains are always based on the researcher’s 
a priori hypotheses as to how one should expect the data to behave, so any read-off 
is always going to be limited by the experimenters’ choices, leaving open the pos-
sibility that the labels used in the model are not the correct “labels” from the point 
of view of the brain. Moreover, the use of explicit encoding models introduces a 
normative element to the interpretation of the data that should give the naturalist 
a pause—but then again, perhaps Loewer (2017) is right: the more naturalistic the 
approach to mental representation is, the less it accounts for content, but the more it 
accounts for content, the less naturalistic the view is.

4 � The problem of orthogonalization

At this point, advocates of MVPA may bite the bullet and accept that the notion 
of representation they have in mind does not conform to the strict notion philoso-
phers have in mind when arguing for naturalistic accounts of mental representation. 
Instead, they may argue that their notion of representation is weaker, that it admits 
contents to be underdetermined by reference, and that it need not demand an account 
of misrepresentation. This weaker notion of representation is close to the sense of 
minimal representation Sullivan (2010) contrasts against a more substantive sense of 
representation in neuroscience, whereby the latter plays explanatory roles in terms 
of the representation’s content, while the former does so only in terms of co-varia-
tion. In other words, advocates of MVPA may reason that their use of representation 
implies nothing more than a reliable co-variation between the neural activity that 
allegedly carries a particular representational content and a particular stimulus, or 
class of stimuli that correspond to the intentional object of said representation. Thus, 
despite misleading headlines to the effect that MVPA can unveil neural representa-
tions of emblematic instances of non-natural meanings, such as complex concepts 
and semantic categories, in reality we should understand MVPA as providing evi-
dence for a weaker sense of representation, one that reveals mere reliable co-varia-
tions between neural activity and stimuli, not unlike typical cases of natural mean-
ings such as the rings of a tree representing its age and, yes, the spots in Tommy’s 
face indicating that he has measles (Dretske, 1986).

Unfortunately, we believe that even if we relax the notion of representation to its 
minimal, co-variational use, there are still situations in which MVPA does not give 
us reliable information about the sort of object that is allegedly represented in the 
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pattern of brain activity. To see why, consider a third challenge, which we call “the 
problem of orthogonalization”. The vast majority of machine learning algorithms in 
cognitive neuroscience classify between two classes. Most algorithms, including the 
popular support vector machine (SVM), project acquired data into a multi-dimen-
sional space and draw a hyperplane to maximally divide the classes. Moreover, the 
majority of multiclass classifiers typically utilize something known as a softmax 
loss function, meaning that the summed probabilities of the output classes equals 
one. The strategy of dividing between the two classes is done in order to orthogonal-
ize the data so as to maximally classify them. In general, this approach makes good 
sense, as in almost all cases the neuroscientist’s primary goal when using MVPA is 
to clearly distinguish between categories of interest, and applying a softmax func-
tion to a classifier such as SVM tends to contribute to their high accuracy. But it also 
comes with some drawbacks, especially when the same classifier is applied to a new 
set of data.

First of all, most MVPA algorithms are likely to ignore features that are identi-
cal between classes. For example, if we wanted to classify items as belonging to 
CAT versus DOG, features such as ‘living’, ‘household pet’ and ‘furry’ are—from 
the point of view of the classification algorithm—irrelevant, whereas features such 
as ‘aloof’ and ‘friendly’ are critical. In nearly all real-world cases the researcher 
is blind to these features. Recall the problem of cross-cut categories above where 
small / large can be conflated with living / non-living dimensions. A key function 
of the classifier is to extract which features maximally separate categories. (Notice 
that, in order to better articulate the orthogonalization problem, the features are 
transparently laid out here; we get back to this point soon). Accordingly, a classi-
fier trained on this information will be sensitive to these critical, unique features. 
As a consequence, when/if the classifier is applied to a new item, it is going to be 
forced to classify it as either CAT or DOG. For instance, if the classifier is given a 
new item—say, a friendly looking teddy bear—it is very likely that it will classify it 
as DOG with high accuracy, since teddy bears are much more friendly than they are 
aloof—even though a teddy bear is neither a living being nor a household pet. While 
arguably a teddy bear is no more a dog than it is a cat, the classifier still classifies it 
as a dog. But now consider a different new item: a rabbit. As dogs and cats, a rabbit 
also has the common features ‘living’, ‘household pet’, and ‘furry’ but, critically, 
rabbits are equally friendly and aloof (or let’s suppose, for the sake of the argument). 
If this is the case, then the classifier would be greatly challenged, and its output will 
be no more effective than that of a simple guess.

The upshot of this basic example is that we end up with high classification accu-
racy for the teddy bear but just chance-level accuracy for rabbit, despite rabbits 
being much more similar to either cats or dogs than teddy bears are. This highlights 
a critical point with respect to classifiers: their function is to achieve maximal accu-
racy, and the best way to do this is to focus on features that maximally separate the 
categories. As a consequence, when new items are highly similar to the categories 
the classifier was trained on, the classifier struggles. Furthermore, as the features 
that the classifier extracts as meaningful are often hidden from us (see footnote 4), 
the classifier has the capacity to make high-confidence judgements in cases where 
classification should not have been clear-cut.
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It may be helpful to think of this issue graphically. Assume a low dimensional 
space, such as that depicted in Fig. 1, in which the ‘Friendliness’ dimension ranges 
over the x axis. Classes are divided where x = 0. Thus, in our case, if x < 0, then the 
item is ‘Friendly’ and gets classified as DOG. By contrast, if x > 0, then the item 
is ‘Aloof’ and gets classified as CAT. Moreover, the bigger the magnitude of x and 
the farther the item is from 0, the more confident the classifier is that the item is 
either a dog or a cat. But now imagine an item that falls exactly at mid-point, where 
x = 0—let’s say, a rabbit that is equally friendly and aloof. Here, classification accu-
racy would be near-chance, as the classifier cannot decide if the rabbit’s x-coordi-
nate is closer to the dog side (more friendly value along the x axis) or closer to the 
cat side (more aloof value along the x axis). The problem is that the same is true of 
another item, a teddy bear, who also happens to be equally friendly and aloof and, 
thus, falls squarely in the mid-point where x = 0. Of course, from the point of view 
of the y-axis, the point representing the teddy bear is clearly among the non-living 
items, whereas the point that represents the rabbit is clearly among the living items. 
Unfortunately, from the classifier’s perspective, both points (i.e., rabbit, teddy bear) 
are equally distant from the categories of interest (i.e., cat, dog) and, as such, the 
classifier outputs the same classification uncertainty for both items, despite one of 
them—the rabbit—being clearly much more related to the categories CAT and DOG 
than the teddy bear.

This common orthogonalization approach to the classification of new items pre-
sents, therefore, a problem of interpretation: low classification accuracy can occur 
because the new item looks nothing like the old classes or because it looks very 
much like both classes. Unfortunately—and this is critical—we simply cannot tell 
which from the classifier output alone. Often times, these classification errors are 
innocuous, but in certain circumstances they could have serious consequences. 

Fig. 1   Graphical depiction of a binary classifier on a low dimensional space. The property ‘Friendliness’ 
varies along the x-axis. X = 0 at the intersection of the classifier plane and the x-axis
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Consider fields such as associative or reward learning, where MVPA is commonly 
used (e.g., Visser et al., 2011). Suppose, for instance, that MVPA is used in a learn-
ing paradigm, during memory retrieval, to classify a pair-associate. Now imagine 
a particular instance in which the classifier accuracy is low. What should we con-
clude from that finding? Should we conclude that the participant was confused and 
thus retrieved both associated items—and, thus, the relevant brain pattern repre-
sents both items—or should we rather say that she was forgetful and retrieved nei-
ther—in which case the relevant brain pattern does not represent either associate? 
Once again, from the classifier output alone we cannot tell what the brain pattern 
represents.

To be sure, the severity of the problem of orthogonalization has been recognized 
by several researchers in the past few years, and many have suggested that a way to 
ameliorate this concern is to add a third neutral class (e.g., Rose et al., 2016).6 In 
essence, the inclusion of a third class provides researchers with a baseline against 
which to compare their classes of interest. Here is how it works in practice. Sup-
pose we add a neutral class, roughly characterized as ‘neither-cat-nor-dog’, and test 
the algorithm from the previous example against our two new items: a rabbit and 
a teddy bear. With the neutral class to be tested against, the classifier may output 
that ‘rabbit’ has higher evidence for DOG versus NEUTRAL and CAT versus NEU-
TRAL, whereas ‘teddy bear’ has low evidence for DOG vs. NEUTRAL and CAT vs. 
NEUTRAL. We, as researchers, could then conclude that this evidence suggests that 
rabbit is more like a dog and a cat than a teddy bear is. However, this result comes 
at the cost of not really knowing on what grounds the classifier is cataloguing an 
item as more or less similar to the target category, since we, by design, are blind to 
the features by means of which items are classified as likely belonging to the neutral 
class. It is natural to assume that the neutral class may classify in terms of LIVING 
or NON-LIVING, but then again, that is the researchers’ read-off of the data and, as 
before, we could find ourselves in the territory of cross-cut categories, for there may 
always be another, consistent way of interpreting what the neutral class ranges over 
that would still fit the classifier’s output.

Finally, another solution is to get rid of binary classifiers, and accept that they are 
not a requirement for MVPA. This strategy invites us to reject the assumption that 
items need to be classified in terms of distance to a single category, A or B, and, 
instead, that they should be classified as either closer to two (or more) categories, A 
and B, than to an alternative category, C. Unfortunately, for the purposes of giving 
us information about the representational content of the relevant brain pattern, this 
strategy massively backfires, as we now can read the evidence as showing that a par-
ticular brain pattern represents A or B, but we cannot tell, from the read-off alone, 
whether it is A and not B, or B and not A. This not only brings back the problem 
of disjunction discussed by Fodor (i.e., a state represents that p only if p, not if p 
or q (Fodor, 1987)), for which the asymmetric dependency view was proposed as a 

6  Indeed, today it may be really hard to get a paper accepted using a SVM algorithm with a softmax loss 
function without the use of a neutral class, even though this was a common strategy just a few years ago.
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solution, but also goes against the only requirement a weak construal of representa-
tion demands: that a brain state represents that p only if p is the case.

5 � The problem of null results

We finished Sect. 3 conceding that MVPA users who claim that their method gives 
them evidence for neural representations may not have a strong but rather a weak 
notion of representation in mind. According to this weak sense of representation, a 
brain pattern represents that p only if p is the case—or, to put it differently, that the 
brain pattern co-varies with its referents. However, as we discussed in the previous 
section, the problem of orthogonalization makes it possible for a brain pattern to be 
identified as representing that p when p is not the case.

The final problem we discuss also challenges a weak sense of representation. This 
fourth challenge, which we call “the problem of null results”, is not new to fMRI 
research (e.g., Cremers et al., 2017) and was noted briefly by Ritchie et al. (2019) 
with respect to MVAP. As they mention, many users of MVPA take it that “poor 
decodability (or even failure to decode) provides evidence that the information is 
not represented in that region” (Ritchie et al., 2019, p. 597). As Ritchie, Kaplan and 
Klein, we also believe that this claim is false, but we think that it is such a seri-
ous concern for MVPA that it deserves further development. Consider, once again, 
a toy example. Suppose there is a neuroscientist who ran an fMRI experiment in 
order to determine if a pattern of brain activity in region X represents LIVING or 
NON-LIVING. She collects a corpus of pictures of living and non-living stimuli and 
presents them to participants while they are in the scanner. Then the neuroscientist 
conducts a MVPA analysis on the data, with a focus on the ROI of interest, X, and 
finds out that the classifier is unable to accurately sort the testing data according to 
the labels ‘living’ or ‘non-living’. As a result, the neuroscientist concludes that brain 
area X does not represent either LIVING or NON-LIVING. Despite the fact that this 
practice is common among practitioners of MVPA, she would be wrong to do so, as 
there are a number of reasons why a classifier may fail to associate a pattern of brain 
activity with certain stimuli, and these reasons have nothing to do with whether or 
not such a brain structure carries representational information about it.7

First, a classifier may fail to associate a pattern of brain activity with a certain cat-
egory because of a bias in the selection of the stimuli. No matter how hard our hypo-
thetical neuroscientist must have worked to come up with a representative sample 
of pictures of living and non-living entities, it is always possible that the exact same 

7  For example, the theory of activity-silent working memory has begun to replace the earlier established 
hypothesis that working memory is dependent upon sustained neural activity. The activity-silent working 
memory hypothesis arose from theoretical work at the cellular level (Mongillo et al., 2008), but it was 
supposed to be later confirmed with EEG (Wolff et al., 2015) and fMRI (Rose et al., 2016) MVPA-style 
analyses via null results (i.e., the inability to decode the contents of working memory). Our argument in 
this section does not imply that something like the activity-silent working memory hypothesis is wrong; 
we simply want to suggest that the structure of the inference from null results alone to corroborate such a 
view is, if not inadequate, at best insufficient.
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classifier could fare much better, and even yield a much more accurate classification, 
with an entirely different set of pictures. Alternatively, the reason why the classifier 
failed to reveal a significant pattern in region X when presented with pictures of 
living animals may have to do with the fact that the stimuli were static rather than 
dynamic. Perhaps if the neuroscientist had chosen short clips rather than stills of 
living and non-living things the classifier would have revealed that activity in brain 
region X was, in fact, reliably associated with LIVING rather than NON-LIVING. 
This concern is reminiscent of the problem of cross-cut categories discussed above, 
but not identical, for the point is that any finding from MVPA, whether positive or 
negative, is read-off in relation to how researchers choose and label their stimuli. 
Null claims can just as easily be indicative of a biased sample as they can be a lack 
of a ‘representation’.

A second reason to be skeptical of the neuroscientist’s conclusion from a null 
result pertains to the nature of the classifier itself. MVPA does not refer to a sin-
gle analytical strategy, but, in practice, to any multivariate analysis the researcher 
wishes to conduct. For example, many researchers utilize linear classifiers (e.g., 
SVMs) that fit straight lines (in 2D space) to divide stimulus sets (as in the example 
in Fig. 1). However, there is also the option to use non-linear classifiers (e.g., arti-
ficial neural networks) that can fit much more complex shapes (e.g., curves, circles, 
and so forth in a 2D space). In practice, the more complex an algorithm is (i.e. the 
more parameters it has), the more complex the space it can define. More parameters 
often require more data to fit, but the general principle holds. But this brings out our 
critical point: does a null result arise because there is no signal or because an inad-
equate classifier was used? For example, the failure of an SVM says little or nothing 
about how an artificial neural network might perform. As consequence, suggesting 
that a region, X, does not ‘represent’ living or non-living items based upon the out-
put of a single classifier is premature.

Finally, a third, well-known reason as to why MVPA can yield a null result con-
cerns the issue of granularity inherent to fMRI. There are roughly 16 billion neurons 
in the cerebral cortex, and around 60 billion glial cells (Lent et al., 2012). Despite 
the fact that our most advanced MRI scanners have remarkable resolution, a typical 
3 mm isotropic voxel in a functional scan contains approximately 630,000 neurons. 
That is a lot of neurons. As a result, a classifier may fail to output a successful dis-
crimination simply because the resolution is too coarse. There are several ways in 
which different neuronal populations within a single voxel could co-vary with dif-
ferent stimuli (Fig. 2). Unfortunately, because MVPA with fMRI data still takes as 
its input the average activity within a single voxel, all these more within-voxel, fine-
grained distinctions would be missed by the classifier. That is, they could all produce 
a null result where a significant result would have been found, had the instrument’s 
resolution been higher. To complicate things a bit more, there is even suggestive 
evidence to the effect that a single neuron may be able to carry information from 
two different stimuli—a process known as multiplexing. If so, even a classifier with 
a single-cell resolution averaging over the activity of a single neuron would still pro-
duce a null result when it probably shouldn’t.

In sum, in Sect. 4, we offered a possible situation in which the result of a multi-
variate pattern analysis invites the researcher to claim that a pattern of brain activity 
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in a particular area X represents p when p is not the case, while in Sect. 5 we dis-
cussed situations in which a researcher takes the null result from the MVPA in a 
particular area X as indicating that it does not represents that p when it is the case 
that it might. Together, both the problem of orthogonalization and the problem of 
null results give us reason to doubt that MVPA offers conclusive evidence for even a 
weak notion of neural representation.

6 � Assessment and conclusion

Twenty years ago, MVPA was introduced as a revolutionary method that promised 
researchers to move beyond simple questions about brain areas preferentially associ-
ated with the processing of one or another kind of stimuli, to asking questions about 
“what information is represented in a region” (Haxby et al., 2014). If this is what 
the method promised, it is unsurprising to see its users making claims about their 
results in terms of providing evidence for neural representation. With the current 
paper, we sought to add to a chorus of skeptical voices by offering four challenges to 
the claim that MVPA does provide evidence for neural representation. The first two 
challenges—the problem of cross-cut categories and the problem of misrepresenta-
tion—target a strong or substantive notion of representation (Sullivan, 2010), while 
the other two—the problem of orthogonalization and the problem of null results—
target a weaker or minimal notion of representation.8 Our aim was simply to argue 
that MVPA alone does not provide conclusive evidence for neural representation in 
either of these two senses.

It is worth concluding with three questions that have been raised across differ-
ent audiences when drafts of this manuscript have been presented. First, one may 
wonder whether our challenges do not also apply to pretty much any other neuro-
imaging technique, in which case one may ask why are we singling out MVPA. 

Fig. 2   Examples of different ways in which the same average BOLD signal within a single voxel could 
result from different neuronal populations carrying information from distinct stimuli. a Single neuronal 
population in which neurons multiplex for A and B. b and c Discrete neuronal populations, each one car-
rying information about different stimuli, A and B, but a much fine grained resolution than voxel-level. 
d Four distinct neuronal populations, each one carrying information about different stimuli at an even 
lower level of granularity. The dotted lines represent the three dimensions of an isotropic functional voxel

8  To be sure, the first two challenges likely apply to a weaker notion of representation as well. We are 
assuming here that partisans of a weaker notion of representation may feel unaffected by the first two 
challenges, but it is possible that don’t. We thank Zina Ward for mentioning this point.
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The short answer is: yes; it is very likely that all of our challenges—or, at least, 
an appropriately modified version of them—could apply to just about any neu-
roimaging technique in the offing. But there is a reason why we chose MVPA: 
because many of its advocates, as we mention throughout, have singled out 
MVPA as a method that has “revolutionized fMRI research” (Haxby et al., 2014), 
for it, unlike other techniques, does provide evidence for neural representations. 
Our point is simply that it does not: MVPA just does not deliver what it promises.

Second, does that mean that people should stop using MVPA? Not at all. 
MVPA is a clever method to interrogate neuroimaging data. The fact that it allows 
us to use principles from machine learning to test classifiers with untrained data 
certainly helps to find signal in the rather noisy world of neuroimaging data—a 
signal that likely otherwise would not have been uncovered. But this development 
does not constitute the revolution some sell it to be. It is just another useful yet 
gradual advancement that provides users with another analytic tool, not unlike—
say—partial least squares (PLS) analysis (Krishnan et al., 2011) or any other of 
the several multivariate techniques available to neuroimaging researchers.

Finally, some may wonder at this point whether any technique could ever 
deliver evidence for neural representation, even in a weaker sense. This question 
is complex, the answer to which requires much more space than what is available 
here. But here is our two cents. One the one hand, it is likely that robust evi-
dence for neural representation is going to require more than just neuroimaging 
approaches, and that intervention methods would be required—be they optoge-
netic, intracranial stimulation, or even some yet-to-be-developed ones. This is 
partly because of the asymmetric dependency of mental/neural representations 
mentioned above: unless we can move from mere statistical co-variation to causa-
tion we likely won’t be able to get rid of the challenges we offer here. On the other 
hand, the solution won’t come from technological developments alone. There is 
also a need for theory development. Consider the sacrosanct example of Hubel 
and Wiesel (1959), in which their results are interpreted as providing evidence 
that single neurons in the striate cortex code for orientation. These conclusions 
are open to question under a different theoretical framework, such as that of pre-
dictive coding, according to which the neuron does not represent orientation but 
the mismatch between the expected model and the incoming retinal signal (Rao 
& Ballard, 1999). Once again, we find ourselves in gavagai territory. Undoubt-
edly, the path of contemporary cognitive neuroscience toward neural representa-
tion faces formidable challenges, and it is time to recognize that many of them 
had been anticipated, years ago, by philosophers who understood how difficult it 
would be to ever naturalize intentionality.
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