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Abstract
Many philosophers claim that the neurocomputational framework of predictive pro-
cessing entails a globally inferentialist and representationalist view of cognition. 
Here, I contend that this is not correct. I argue that, given the theoretical commit-
ments these philosophers endorse, no structure within predictive processing systems 
can be rightfully identified as a representational vehicle. To do so, I first examine 
some of the theoretical commitments these philosophers share, and show that these 
commitments provide a set of necessary conditions the satisfaction of which allows 
us to identify representational vehicles. Having done so, I introduce a predictive pro-
cessing system capable of active inference, in the form of a simple robotic “brain”. 
I examine it thoroughly, and show that, given the necessary conditions highlighted 
above, none of its components qualifies as a representational vehicle. I then consider 
and allay some worries my claim could raise. I consider whether the anti-represen-
tationalist verdict thus obtained could be generalized, and provide some reasons 
favoring a positive answer. I further consider whether my arguments here could be 
blocked by allowing the same representational vehicle to possess multiple contents, 
and whether my arguments entail some extreme form of revisionism, answering in 
the negative in both cases. A quick conclusion follows.

Keywords Anti-representationalism · Predictive processing · Structural 
representations · Mental content · Sensorimotor contingencies

1 Introduction

Many philosophers argue that the neurocomputational framework of predictive pro-
cessing (PP) entails a form of global representationalism and inferentialism about 
cognition. Their reasoning seems the following: PP casts perception as a top-down 
process in which brains try to actively predict the incoming sensory inputs. Since 
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this process approximates Bayesian inferences, PP is an inferentialist theory of per-
ception (e.g. Kiefer, 2017). But inferences requires representations; and in fact, PP 
extensively quantifies over generative models, which, being models, are structural 
representations: vehicles representing their targets by mirroring their inner relational 
structure (e.g. Gładziejewski, 2016; Kiefer & Hohwy, 2018, 2019). Since the same 
kind of top-down processing appears to explain cognitive processes in general (Fris-
ton, Hohwy, 2015; Spratling, 2016), then cognitive processes in general are inferen-
tial processes involving representations. As a consequence, inferentialism and repre-
sentationalism hold about cognition in general.1

Here, I scrutinize these interpretations. I argue that, given the theoretical commit-
ments they endorse, the physical structures instantiating generative models do not 
seem to qualify as representational vehicles. Rather, they appear as non-representa-
tional structures instantiating an agent’s mastery of sensorimotor contingencies (i.e. 
the ways in which bodily movements systematically alter sensory states). So, if my 
arguments are on the right track, and PP really has the explanatory breadth most of 
its supporters believe,2 then PP seems to naturally lead towards global anti-represen-
tationalism; that is, anti-representationalism about cognition in general.

To substantiate my claim, I examine a minimal PP system: a simple robotic 
“brain” able to predict the incoming input and to act out certain predictions through 
active inference. I argue that, given the relevant theoretical commitments endorsed 
by inferentialist and representationalist readings of PP, nothing in that “brain” 
appears to qualify as a representational vehicle. I also argue that the same con-
clusion likely generalizes to other PP systems. In this way, the physical structures 
instantiating generative models will more naturally appear as non-representational 
structures instantiating an agent’s sensorimotor mastery.

Importantly, my argument is not based on Ramsey’s (2007) job-description chal-
lenge.3 Thus, my argument differs from other popular arguments claiming that PP is 
not a representationalist theory (Downey, 2018; Orlandi, 2014, 2016, 2018). These 
arguments consider different seemingly representational PP posits (e.g. priors, pre-
dictions, etc.) and argue that, on their own, these posits function either as detectors 
or as mere biases. Since detectors and biases fail the job-description challenge (i.e. 
they do not perform any representational function), these arguments conclude that 
PP is not really a representationalist theory, because its posits are not really repre-
sentational posits. Proponents of the inferentialist and representationalist readings 

1 This reconstruction surely downplays the differences between “radical” and “conservative” interpreta-
tions of PP (see Clark, 2015a; Gładziejewski, 2017). Yet, since both interpretations are committed to 
representationalism and inferentialism, I here clump them together.
2 Importantly, the claim that PP explains cognition in general is highly speculative, and some cognitive 
processes might lie beyond the explanatory reach of PP (see Williams, 2020). Here, I assume for the sake 
of argument that PP has the explanatory breadth the proponents of its inferentialist-representationalist 
reading believe. Given this assumption, if my arguments are correct, then global anti-representationalism 
seemingly follows. Yet, if that assumption is not correct, then my arguments only support a form of lim-
ited anti-representationalism: representations might still be involved in the cognitive processes PP does 
not account for. Many thanks to an anonymous reviewer for having pressed me to clarify this point.
3 Many thanks to the reviewers for having suggested expanding upon this point, and to Nina Poth who 
advised me to make this point explicit from the onset.
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of PP, however, contend that these arguments simply miss the mark, because, on the 
representationalist reading they favor, the relevant representational posit is the entire 
generative model, of which priors, predictions and the like are just parts (e.g. Kiefer, 
2017: pp. 11–12; Kiefer & Hohwy, 2018: pp. 2394–2395).4 Here, I will directly con-
front this representationalist reading on its own terms.

I structure the essay as follows. Section 2 briefly5 introduces PP, showing how 
generative models and sensorimotor contingencies are related. Section 3 identifies 
some theoretical commitments of the representationalist and inferentialist view of 
PP, showing that they form a set of necessary conditions the satisfaction of which 
allows us to identify representational vehicles. Section 4 introduces a simple PP sys-
tem in the form of a robotic “brain”, and argues that none of its structures appears to 
satisfy all the conditions previously identified. Section 5 argues that the anti-repre-
sentationalist verdict thus obtained likely generalizes to more complex PP systems, 
and responds to two worries raised by the reviewers. Lastly, Sect. 6 succinctly con-
cludes the essay.

2  Predictive processing: a short introduction

As a theory of perception, PP starts by assuming that sensory states are under-
informative in respect to their worldly causes. Each retinal image, for instance, 
could in principle have been caused by indefinitely many environmental layouts 
(e.g. Palmer, 1999: p. 25). So, to perceive, brains must estimate the causes of their 
sensory inputs, by combining under-informative signals and some prior knowledge 
on how these signals have likely been produced. PP suggests such an estimate is 
found by inverting a generative model operating according to a predictive coding 
algorithm (Friston, 2005).

Generative models are data structures capturing how sensory states might have 
been produced. Sampling from these models can generate sensory states (e.g. Hin-
ton, 2007a), which are predicted (or expected) under the model. This procedure can 
be intuitively understood as realizing a mapping from external causes (e.g. carrots) 
to predictable sensory states, given these causes (e.g. orange retinal images).6

According to the predictive coding algorithm (Huang & Rao, 2011; Rao & Bal-
lard, 1999), these predictions are then contrasted with the actual sensory states, 
typically, but not exclusively, by subtraction (Spratling, 2017). Their comparison 
yields a signal known as prediction error, which is used to revise predictions, so 

4 See (Sims & Pezzulo, 2021) for a nice rational reconstruction of this debate.
5 As PP is now fairly well-known among philosophers, I will only cover the most essential aspects of it. 
For more introductory material, see (Clark, 2013, 2016; Hohwy, 2013; Tani, 2016; Wiese & Metzinger, 
2017).
6 To model rich bodies of data such as our sensory states, generative models must be hierarchically 
organized, so as to capture the hierarchical nesting of worldly causes. However, this only means that each 
hierarchical layer learns to predict only the layer directly below, predicting the patterns of activation it 
displays (e.g. Hinton, 2007b).
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as to minimize the incoming error.7 In this way, the system searches for a global 
minimum of error which, when reached, inverts the generative model, as it maps the 
incoming input (e.g. orange retinal images) onto its most likely cause (e.g. carrots). 
Importantly, as the cause thus selected approximates an exact Bayesian posterior, PP 
seems to cast perception as an inferential process performed by means of prediction 
error minimization.

A similar description holds for action, or active inference.8 The basic idea behind it 
is that brains are skewed towards a set of (multimodal) sensory expectations. The error 
relative to the proprioceptive facets of these predictions is then used to trigger spinal 
reflexes (Adams et al., 2013; Friston, 2011), so as to bring about the predicted intero-
ceptive sensory states, and eventually encounter the whole multimodal prediction. 
Active inference is thus a process of error minimization in which the predicted sen-
sory states are brought about through movement (e.g. Namikawa et al., 2011); thereby 
bringing about the evidence in favor of one’s generative model (Hohwy, 2016, 2020).

Importantly, the predictions triggering active inference are always multimodal, 
and non-proprioceptive predictions can sometimes (more or less directly) drive 
active inference too (see Pio-Lopez et al., 2016). In fact, if, as PP suggests, the only 
function of the brain is that of keeping prediction error at a minimum over time (see 
Friston, 2009, 2010), it is hard to see how these predictions can be but multimodal. 
A brain unable to predict the visual consequences of a saccadic eye movement, for 
instance, would be unable to effectively minimize prediction error, as each saccade 
would bring about unpredicted (i.e. error inducing) visual input. This immediately 
connects generative models to sensorimotor contingencies.

Sensorimotor contingencies are law-like relations capturing how the sensory 
states of a system evolve, given a system’s movements and the relevant features of 
a system’s sensorium and environment (Brette, 2016; O’Regan, 2011; O’Regan & 
Noë, 2001). Approaching an object, for instance, will make its retinal image expand; 
whereas backing away from it will make the retinal image contract.9 Although theo-
rists introducing sensorimotor contingencies never specified what sort of structures 
could realize a system’s knowledge of sensorimotor contingencies, generative mod-
els appear to be ideal candidates (Pezzulo et al., 2017; Seth, 2014; Vásquez, 2019; 
see also Hemion, 2016; Laflaquiere, 2017).

To briefly see why, consider the role of forward models in motor control. Forward 
models are special purpose generative models, tasked with converting motor com-
mands into the predictable sensory consequences of movement. Clearly, to function 
properly, a forward model must encode the relevant sensorimotor contingencies, as 
its role is precisely that of predicting how bodily movements alter sensory states (see 
Maye & Engel, 2013: p. 425; Pezzulo, 2011).

9 Provided, of course, that the moving system has eyes, that there is light in the environment, and that 
the object is still. These are examples of the “relevant features” of the system’s sensorium and the envi-
ronment.

7 Prediction error is often weighted according to the expected signal-to-noise ratio of the data. Roughly, 
this is how PP accounts for attention (see Feldman & Friston, 2010).
8 This sacrifices precision to ease of exposition: active inference is also responsible for changes of bodily 
states that are not actions (see Seth & Friston, 2016).
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In traditional theories of motor control, forward models work in tandem with 
inverse models, converting goal states into motor commands. A copy of the motor 
command thus computed is sent to the forward model, to estimate the expected sen-
sory consequences of movement. The estimate is needed for a variety of reasons. 
For instance, it allows the agent to control and correct actions on-line, in spite of the 
fact that the reafferent signal is noisy and delayed. It also allows the agent to pro-
actively adjust in regard to the foreseeable consequences of its own actions (Frank-
lin & Wolpert, 2011). Forward models can also act as filters, allowing the agent to 
ignore the predictable, and thus uninformative, “bits” of the reafferent signal (Black-
more et al., 1999).

According to PP, however, there is only the forward model. More precisely, there 
is only one integrated generative model busy predicting the motor-dependent sen-
sory states the agent “desires to encounter”10; the motor plant itself will then bring 
them about through movement (Friston, 2011; Pickering & Clark, 2014). Generative 
models able to perform active inference, thus, appear as ideal candidates to imple-
ment an agent’s sensorimotor mastery, as they must encode parsimonious descrip-
tions of sensorimotor loops (Baltieri and Buckely, 2019; Tschantz et al., 2020).11

Inferentialist and representationalist interpretations of PP conceive generative 
models as structural representations: vehicles representing their targets in virtue of 
the structural similarity holding between them. If they are on the right track, and 
my presentation of PP is correct, it thus follows that the structures instantiating our 
sensorimotor mastery are representational vehicles. But what does it take to be one?

3  Some necessary features of representational vehicles

Here, I expose some of the theoretical commitments endorsed by inferentialist and 
representationalist interpretations of PP. Each commitment spells out a condition 
that, according to these views, an item must satisfy in order to qualify as a represen-
tational vehicle. Hence, they jointly provide a minimal set of criteria to determine 
whether the physical structures instantiating generative models qualify as represen-
tational vehicles.

10 Strictly speaking, these are the sensory states the agent predicts to encounter, given its priors; see 
(Friston et al., 2012a, b, c).
11 Here, I mainly focus on perception and action, ignoring PP explanations of other cognitive processes 
(see Friston 2009, 2010; Spratling 2016). One, however, might fear that an agent’s sensorimotor mastery 
alone will not support cognitive processing beyond simple sensorimotor coordinations. Computationally 
speaking, there are some reasons to believe that sensorimotor mastery can support more “thought-like” 
cognitive processes (e.g. Hay et al., 2018; Le Hir et al., 2018), but that evidence is not conclusive. How-
ever, within the PP literature, “thought like” cognitive processes are typically supposed to be supported 
by the offline functioning of the machinery responsible for perception and action (e.g. Pezzulo, 2017; 
Tani, 2016). Thus, it seems to me, the image of PP I just painted is not significantly removed from the 
official one.
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3.1  Vehicles can be assigned distal and determinate content

Representations are type-identified by their contents, which are both distal and 
determinate (e.g. Egan, 2012: p. 256). Representations “are about” well specified 
worldly targets, rather than the proximal conditions by means of which these targets 
are causally encountered. Hence, representational vehicles can always be assigned a 
determinate and distal content, given a theory of content.

Here, the relevant senses of “distality” and “determinacy” are the ones at play in 
the horizontal disjunction/stopping problem (Dretske, 1986; Godfrey-Smith, 1989; 
Neander, 2017). A correct theory of content must allow us to say that a vehicle V 
represents one, and only one, target T, rather than the disjunction of two or more 
targets (T or T*). This is determinacy. Moreover, a vehicle must represent a target 
appropriately “out there”. Cognitive agents represent objects and states of affairs of 
the distal world, rather than the more proximal states of affairs causally mediating 
one’s encounter with the distal world, such as the states of one’s transducers. Two 
distinct reasons support this assumption.

The first is empirical adequacy: cognitive scientists, by and large, do ascribe 
determinate and distal content to representations. A neuropsychologist, for instance, 
might claim that a given pattern of activation of the fusiform face area represents 
faces. I know of no neuropsychologist claiming that such a pattern of activation rep-
resents (faces or face-like conformations); or that it represents face-shaped retinal 
images. Hence, to be consistent with the normal conduct of cognitive science, philo-
sophical theories of content need to deliver determinate and distal contents.12

The second reason is conceptual. Representations must be able to misrepresent. 
But disjunctive (i.e. non determinate) and/or proximal contents do not allow for 
misrepresentation to occur. To see why, consider Fodor’s (1987: pp. 99–102) crude 
causal theory, according to which a vehicle V represents whichever target causes its 
tokening. If dogs cause the tokening of V, then V represents dogs. Suppose now a 
sheep causes a “wild” tokening of V. We would like to say that V misrepresents the 
sheep as a dog. Yet, the crude causal theory prevents us from saying so. If V repre-
sents whatever causes its tokening, and its tokening is caused by dogs or by sheep, 
then V represents (dogs or sheep), and tokens of V caused by sheep are not misrep-
resentations. Further, it could be argued that the tokening of V is not really caused 
by dogs (or sheep), but by some more proximal conditions, such as quadruped-
shaped retinal images. Again, in this case, it seems that “wild” tokenings of V do not 
misrepresent dogs as sheep. Rather, they correctly represent some more proximal 
condition, which happens to be disjunctively caused by both dogs and sheep.

Notice that although the horizontal disjunction problem ties them together, distal-
ity and determinacy are two logically independent requirements, which can indepen-
dently fail to obtain (see Artiga & Sebastián, 2018; Roche & Sober, 2019). A theory 

12 Importantly, this passage and the following should not be taken to imply that all currently existing 
theories of content do not have the conceptual resources needed to assign determinate and distal con-
tents. Indeed, at least some theories of content seem to have the resources to do so (e.g. Neander, 2017: 
Ch. 7 and 9).
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of content can be in trouble both because it does not provide appropriately determi-
nate content (as in the “vertical” disjunction problem, see Fodor, 1990) or because it 
provides determinate, but only proximal, content.

Thus presented, distality and determinacy seem two requirements that a theory 
of content must satisfy; and, traditionally, they have been articulated in that way. 
Their traditional articulation is roughly as follows: representational vehicles have 
determinate and distal contents. If a given theory of content C does not assign them 
determinate and distal contents; then C is wrong and ought to be rejected. Notice the 
argument assumes representationalism, and assesses theories of content based on 
their ability to satisfy distality and determinacy.

Yet, the issues concerning distality and determinacy allow to formulate an argu-
ment working the other way around; namely, by assuming that a given theory of 
content is correct, one can assess whether a candidate vehicle really qualifies as a 
vehicle, by checking whether it is assigned an appropriately determinate and distal 
content by the theory. In fact, a correct theory of content supposedly assigns deter-
minate and distal contents to all and only representational vehicles. Therefore, if 
given such a theory a candidate vehicle is not assigned an appropriately distal and 
determinate content, then the candidate vehicle really is no vehicle. If it were, it 
would have been assigned a determinate and distal content.

I take this to be the first necessary feature of vehicles of content: vehicles of con-
tent must be assigned determinate and distal contents, given a correct theory of con-
tent. Clearly, this procedure presupposes a theory of content, whose correctness has 
to be assumed. In the following, I grant representationalists and inferentialist reading 
of PP their theory of content of choice. I examine it in the next subsection, showing 
that it imposes further constraints on the properties of candidate vehicles.

3.2  Exploitable structural similarity

Inferentialist and representationalist accounts of PP argue that generative models 
are structural representations: vehicles representing their targets in virtue of their 
exploitable structural similarity (Gładziejewski, 2016; Kiefer & Hohwy, 2018, 2019; 
Wiese, 2018; Williams, 2018). The relevant theory of content they endorse is thus 
based on two ingredients: (1) structural similarity and (2) exploitability. I unpack 
them in turn.

Structural similarity is often unpacked as homomorphism (Kiefer & Hohwy, 
2018; Wiese, 2018) or “second order structural resemblance”, which is a partial 
homomorphism (Gładziejewski, 2016). Here, I adhere to the second reading. This 
is because second order structural resemblances are easier to obtain than homomor-
phisms, and so sticking to it allows me to provide a more charitable reconstruction 
of inferentialist and representationalist readings of PP.

On this reading, a system V bears a structural similarity to a system T if, and only 
if, there is a one-to-one mapping from at least some constituents  vx of V onto at least 
some constituents  tx of T such that an identical abstract pattern of relations among 
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constituents is preserved on both sides of the mapping.13 Several clarifications seem 
needed.

First, structural representations are defined in terms of vehicles representing 
a target in virtue of the (exploitable) structural similarity that ties them together. 
Structural similarity is thus a relational property of vehicles. Hence, candidate vehi-
cles must be structurally similar to their targets. Notice that the relevant structural 
similarity partially constitutes the relevant content of the vehicle. Hence, to secure 
distality and determinacy, the relevant structural similarity must hold between a can-
didate vehicle and some appropriately distal and well determined target.

Secondly, both the vehicles and the targets of structural representations must have 
some internal degree of complexity: they are made up by constituents among which 
certain relations hold. I will denote constituents using uncapitalized letters with a 
subscript (e.g.  vx is an arbitrary constituent of a vehicle V,  ta is a specific constituent 
of a target T).

Lastly, notice that what is mirrored on both sides of the mapping is a pattern 
of relations, not a relation. This means that the relations holding among the con-
stituents of V and T may differ. Only their patterns need to be identical. Suppose, 
for instance, that V is constituted, among other, by three constituents ordered in the 
triplet  (va,  vb,  vc) by their relative magnitude; whereas T is constituted, among other, 
by three constituents ordered in the tripled  (ta,  tb,  tc) by their relative frequency. If 
constituents with identical subscripts map one to one onto each other, V and T are 
structurally similar, in spite of the fact that no common relation holds among their 
constituents.14

Structural similarity alone is clearly insufficient to determine content. Structural 
similarities do not have the logical properties of representations (Goodman, 1969) 
and are extremely cheap to come by; so cheap that any two arbitrary systems can be 
said to be structurally similar in some regard (McLendon, 1955: pp. 89–90; Shea, 
2018: p. 112). This is why the relevant vehicle-target structural similarity must be 
exploitable.

Exploitability is canonically defined as the conjunction of two requirements 
(Shea, 2018: p. 120). First, the relevant relations holding among vehicle constituents 
must have some systematic downstream effect on the computational operations of 
the system in which the vehicle is tokened. Secondly, both the constituents of T and 
their relations must be “of significance” to the system. Here, significance should be 
unpacked in terms of the system’s task functions. Roughly put, task functions are the 
outputs that a system produces in response to a range of inputs in a range of differ-
ent conditions and that the system is supposed to produce, in virtue of the system’s 
history of selection, individual learning, or explicit (human) design (see Shea, 2018: 
Ch. 3).

Exploitable structural similarity naturally combines with distality and deter-
minacy, yielding a further requirement on representational vehicles. A candidate 

13 Here, I’m trading precision for ease of exposition. See (O’Brien & Opie, 2004: p. 11) for the canoni-
cal formal definition of second order structural resemblance.
14 Notice also, for the sake of clarity, that V and T need not have any property in common.
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vehicle really is a vehicle only if it is assigned a determinate and distal content in 
virtue of the exploitable structural similarity it bears to a determinate and distal 
target.

3.3  Mathematical contents constrain representational contents

A further constraint must be taken into account. According to representationalist and 
inferentialist accounts of PP, the representational (distal and determinate) content of 
a vehicle must at least cohere with its mathematical content (Wiese, 2016, 2018). 
Thus, mathematical content constrains representational content.

Mathematical content is a kind of narrow content which is ascribed to vehicles 
in virtue of the relevant computational description that the system satisfies; that is, 
in virtue of the mathematical functions the system computes (Egan, 2014, 2018). 
Consider for instance how prediction error is computed. Saying that prediction error 
is computed by subtracting the values of expected and actually received sensory sig-
nals means that there is a robust mapping between vehicles and numerical values, 
such that, anytime the vehicle of the prediction signal maps onto value x and the 
vehicle of the incoming signal maps onto value y, the prediction error signal pro-
duced will map onto value (x–y). In this example, the numerical values of x, y and 
(x–y) are the mathematical contents carried by the vehicles.

The idea that mathematical contents must constrain representational content is 
attractive because we can explain the functioning of PP systems in two ways. One 
explanation leverages the mathematical tools of computational theory. Explanations 
of this kind are provided, for instance, when we say that prediction error encodes 
the difference between predicted and actual signal, computed by subtraction. The 
other explanation relies instead on the familiar lexicon of representational contents. 
According to this kind of explanation, for instance, prediction error represents what 
was missing from the original prediction; that is, the unexpected features displayed 
by a perceptual take (e.g. Clark, 2015b: pp. 5–6). Given that both accounts are literal 
explanations detailing how the PP machinery works, they must be at least coherent 
with each other. For this reason, the assignment of mathematical contents can place 
some constraints on the assignment of representational contents.15

But which constraints does it place? The literature is not explicit on this matter. 
Wiese (2018: p. 209) only explicitly states that mathematical contents pose “strong 
constraints” on representational contents, which get stronger as computational the-
ories grow (Wiese, 2016: pp. 724–725).16 It seems, however, that the constraints 
mathematical contents place on representational contents are strong enough to at 
least partially determine representational contents. I list some examples below.

15 This is a significant departure from Egan’s (2014, 2018) account of mathematical content. On her 
account, mathematical contents do not constrain ascription of representational content. Moreover, Egan 
claims that representational content cannot be naturalized. Conversely, inferentialist and representational-
ist accounts of PP endorse naturalism about representational content.
16 A somewhat similar idea seems to be endorsed by (Ramstead et al., 2020b), even if I doubt that Ram-
stead and colleagues’ notion of “representation” is the same notion of representation used in this essay.
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Wiese (2016: p. 733) claims that computational models of active inference 
determine at least some representational contents, as they interpret the signals 
reaching the motor plant as conveying predicted sensory states rather than motor 
commands. But predicted sensory states and motor commands are not numeri-
cal values, hence they are not mathematical contents. Rather, they are representa-
tional contents, which, on Wiese’s view, “fall off” directly from the computational 
rendering of the theory. In a further publication, Wiese (2018: pp. 215–218) sug-
gests that the representational content of a generative model includes everything 
that can be described by the same set of equations which describe the model com-
putational behavior. Again, it seems that here too Wiese is suggesting that math-
ematical contents at least partially determine representational contents. And it 
seems to me that Wiese is not alone in endorsing this view.

Gładziejewski (2016: p. 573) argues that the relevant structural similarity 
holding between generative models and their targets should be construed in terms 
of the prior probabilities of certain events and the likelihoods of sensory states, 
given external events. Prior probabilities and likelihoods are mathematical con-
tents—they are numerical values upon which (some) PP systems compute. Yet, in 
Gładziejewski’s view, they also partially determine the relevant structural simi-
larity; and so the representational content of a generative model.

Clark (2015c: p. 2) and Williams (2018: pp. 162–163) claim that, in PP mod-
els, the naturalization of content falls within the scope of computational neurosci-
ence. In their view, what needs to be done to naturalize content just is detailing 
the computational functioning of generative models, showing how such mecha-
nisms “get a grip” on the world (see Hutto & Myin, 2020: pp. 93–97 for further 
discussion). (Kiefer & Hohwy, 2018, 2019) go as far as proposing a mathematical 
measure of misrepresentation.

Due to space limitations, I cannot examine any of these proposals in detail. 
Nevertheless, they are here worth mentioning, to show that representational-
ist and inferentialist accounts of PP really are committed to the claim that there 
is a significant interplay between mathematical and representational content; so 
significant, indeed, that in many cases representational contents seem to derive, 
more or less immediately, from mathematical ones. Notice, importantly, that this 
is entirely compatible with the claim that representational contents are deter-
mined by exploitable structural similarities. In fact, the relevant structural simi-
larity itself might be visible only under some quite specific mathematical descrip-
tion (e.g. Gładziejewski, 2016; Wiese, 2018: pp. 215–217).

Taking stock: according to inferentialist and representationalist accounts of 
PP, representational vehicles have a determinate and distal content, which they 
acquire in virtue of an exploitable structural similarity with an appropriate (i.e. 
determinate and distal) target. Moreover, the representational (distal and deter-
minate) content of these vehicles is at least coherent with (if not more or less 
directly determined by) their mathematical content: the numerical values they 
must represent to allow the computational operations defined over them to take 
place.

In the next two sections, I will argue that no component of a generative model 
seems to satisfy that description. Hence, given these theoretical commitments, 
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generative models will naturally appear as non-representational structures instanti-
ating a system’s sensorimotor knowledge.

4  The structures instantiating generative models do not appear 
to be representational vehicles

I split this section into two sub-sections. The first introduces a minimal generative 
model able to perform active inference. The second examines it, arguing that none 
of its components qualifies as a representational vehicle, given the requirements 
highlighted above.

4.1  A minimal generative model capable of active inference

According to PP, generative models are physically instantiated by patterns of neu-
ral activation and axonal connections (Friston, 2005: pp. 819–820; Buckley et al., 
2017: p. 57). So, patterns of activation and connections are the candidate vehicles of 
generative models. Hence, connectionist systems are ideally suited to examine the 
representational commitments of PP (Dołega, 2017; Kiefer & Hohwy, 2018, 2019).

Consider the network Bovet (2007) engineered as a control system for robotic 
agents, enabling them to display a variety of behaviors involving simple sensorimo-
tor coordinations, such as returning to a “nest” after having explored the environ-
ment (Bovet, 2006), smoothly moving using different gaits (Iida & Bovet, 2009) or 
successfully navigating simple T-mazes (Bovet & Pfeiffer, 2005a, b).

The network is a series of homogeneously connected artificial neural networks, 
one for each sensory modality of the robotic agent (“motor” modality included). 
Each net consists of the following three input populations (ending in “S”) and two 
output populations (ending in “C”):

(CS) or current state population, receiving input from the sensor or effector of 
one modality.
(DS) or delayed state population, receiving the same input of (CS) after a small 
delay.
(VS) or virtual state population, receiving input from all other nets.
(SC) or state change population, receiving input from (CS) and (DS).
(VC) or virtual change population, receiving input to (CS) and (VS), and sending 
output to all other (VS)s (Fig. 1).

The number of neurons of each population varies across modalities, but remains 
constant within each modality. This allows the various populations of a single 
modality to be “copies” of each other. In particular, (DS)s and (VS)s can be “cop-
ies” of (CS)s; whereas (VC)s can “mimic” (SC)s. Within each net, the connections 
running from input to output populations are not trained, and have opposite weights. 
Moreover, these connections are neuronwise: the nth neuron of each input popu-
lation projects only to the nth neuron of the relevant output population. Thus, the 
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patterns of activation of the output populations are defined as the neuron-to-neuron 
subtraction of activity patterns of the corresponding input populations. Conversely, 
connections between nets are trained, and involve all neurons of the (VC) population 
of a modality and all the neurons of the (VS)s of all other modalities.

To understand how the network works, consider first (CS)s: they encode, in each 
modality, the state of the relevant sensor. In the visual modality, for instance, (CS) 
will reflect the image captured by a camera. (DS)s do the same, but after a small 
delay: in the visual modality, (DS)’s activity reflects the image captured by the cam-
era one timestep ago. (CS)s and (DS)s jointly determine the activation pattern of 
(SC)s, which thus reflect how the sensory state has changed in a timestep.17 Contin-
uing with the previous example, (SC) in the visual modality captures how the cam-
era image changed during the delay; for instance, whether it expanded or contracted.

Consider now any two arbitrary modalities a and b: there will be patterns of co-
activation between the neurons in (SC) of modality a and those in (CS) of modality 
b. For instance, when visual (SC) encodes the expansion of the camera image, the 
motor (CS) is typically encoding the fact that the motors are pushing forward. These 
patterns of coactivation are then used to train, in a purely Hebbian fashion, the con-
nections running from (VC) of modality a to (VS) of modality b. If the nth neuron 
in (SC) of modality a and the mth neuron in (CS) of modality b fire together, the 
nth neuron in (VC) of modality a and the mth neuron in (VS) of modality b wire 
together.

This allows the information flowing from (VC)s to (VS)s to be transformed in a 
way so as to induce, in (VS)s, a pattern of activation that corresponds to the sensory 
state that modality typically occupies as the other modalities change in a given way; 
that is, the sensory state expected, given the activity in all (SC)s.18 Thus, the activity 
of (VS) estimates (or predicts) a sensory state, given the motor-dependent changes 
of sensory states in all other modalities. And, in fact, the connections from all (VC)
s to all (VS)s constitute a simple generative model, which predicts the sensory states 
expected, given the robot’s activity. In this way, they constitute a simple generative 
model instantiating an agent’s knowledge of its relevant sensorimotor contingen-
cies: they allow the network to predict the incoming stimulation, given the robot’s 
movements.

Recall now that the connections running from (CS)s and (VS)s to (VC)s are not 
trained, and have opposite weights. This means that the pattern of activity in each 
(VC) will reflect the difference between current and predicted sensory states, which 
is just prediction error, computed in the simplest possible way. Prediction error 
is then forwarded to all (VS)s, enabling them to update their estimate just as PP 
requires.19

17 Notice that each change in sensory state is always due to the behavior of the robot or, during the learn-
ing period, the fact that an experimenter “moved” the robot’s body around.
18 To be clear, (SC)s do not project on (VS)s. Only (VC)s do. But since within each modality each popu-
lation has the same number of neurons, the (VC) of each modality can mimic the (SC) of that modality.
19 Notice that albeit here all nets are homogeneously connected (and so there is no hierarchy) PP allows 
for horizontal (i.e. within level) message passing of error, see (Friston, 2008: p. 16). Intriguingly, such 
an horizontal message-passing is rarely implemented in robotic models inspired by PP, see (Ciria et al., 
2021).
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Notice further that in the motor modality, (VS) directly controls the motors. In 
this way, the robot will move so as to bring about the sensory states the network 
expects. The robot’s behavior is thus driven directly by the network’s motor predic-
tions, and indirectly by the ensemble of expected sensory states. This is because 
the input to the motor (VS) just is prediction error from all other modalities. Thus, 
the robots will act if, and only if, the network needs to minimize prediction error in 
some modalities, and the robot will act so as to bring about the sensory stimulation 
the network expects, thereby minimizing prediction error in all modalities.20 In this 
way, Bovet’s networks qualify as minimal PP systems, able to “actively infer” the 
sensory states expected in all modalities.

Before I move forward, let me stress that it is essential not to confuse networks 
and robots. Only networks literally are PP systems, generating and minimizing 
prediction errors. And only networks host connections and units exhibiting activa-
tion patterns. So, only networks are candidate vehicles of generative models. This 
is important because Bovet describes networks and robots differently. Robots are 
described distally, in terms of interactions with the environment (e.g. navigating a 
T-Maze). But networks are described only proximally, without any reference to envi-
ronmental states of affairs. For instance: “The essence of this neural architecture 
[…] is the following. (1) All signals of the sensors and motors the robot is equipped 
with are represented through the activity of artificial neurons.” (Bovet, 2007: p. 12, 
emphasis added). The point motivates Bovet’s research: he aims at showing that 
coherent and intelligent behaviors can be enabled by networks that only learn cor-
relations between the states of the robots’ sensors and motors (ibidem).21

Fig. 1  Implementation of the model at the neural level (one modality). See text for details. © IEEE. 
Reprinted, with permission, from (Bovet & Pfeiffer, 2005b)

21 Many thanks to an anonymous reviewer for having advised me to be clearer on this point from the 
onset.

20 This is because the (VC) in each modality effectively “mimics” the (SC) of that modality. Thus, the 
activity of (VC)s elicit in motor (VS) a pattern of activity corresponding to the motor state expected, 
given that change in sensory states. In this way, the robot will act so as to minimize that error.
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Now, to see this simple generative model in action, consider the following experi-
ment in which the network enabled a form of “phonotaxis”22 comparable with that 
of female crickets (Bovet, 2007: pp. 79–105). When a female cricket hears the song 
of a conspecific, she turns in the direction of the sound source and approaches the 
male to mate. The turning behavior of the cricket, however, generates optic flow 
in the opposite direction23; and optic flows tend to trigger the cricket’s optomotor 
response: a simple reflex that tries to correct for the visual flow, re-orienting the 
cricket in her original position. Clearly, in order for the cricket to reach her mate, her 
optomotor response needs to be inhibited. Empirical studies suggest that the inhibi-
tion is carried out through reafference cancellation: a simple forward model predicts 
the visual flow caused by the cricket reorientation, and that prediction is used to sup-
press the optomotor reflex (e.g. Payne et al., 2010; Webb, 2019).

Bovet’s experiment was simple. First, he created a network mounted on a “cricket 
robot”, possessing four modalities: an “auditory” modality, a visual modality, a 
motor modality and a battery level modality, which equipped the robot with a min-
imal form of visceroception. The network was then trained (by making the robot 
interact with its environment) so that it could learn the relevant sensorimotor con-
tingencies. Crucially, each time the robot reached the “auditory source”, the battery 
level was increased.

After training, the experimental session began. The network’s visceroceptive 
(VS) was increased; and the mismatch between visceroceptive (CS) and (VS) propa-
gated prediction error. Since increases of battery level highly correlated with certain 
patterns of activation of the “auditory modality” (recall, the battery level increased 
anytime the robot was in proximity of the “auditory source”), the “auditory” (VS) 
instantiated those patterns. The mismatch between “auditory” (CS) and (VS) was 
then propagated to all other modalities. Hence, the network “expected” the pat-
terns of stimulation generated by movements towards the “auditory source”: a cer-
tain kind of motor activation, and the corresponding optic flow. The error relative to 
these expectations was then minimized through active inference; that is, by making 
the robot reach for the “auditory source”.

Then, the (VS) of the motor modality was injected with some noise, and the 
robot’s “phonotactic” behavior was tested under two conditions. In the first, the 
synaptic coupling between motor and visual modality was removed; whereas in 
the second it was left untouched. In the first condition, the robot was often unable 
to display the “phonotactic” behavior. This is because the noisy activity in motor 
(VS) forced the robot to take sudden curves, and, given that the visual and motor 
modalities were disconnected, the visual modality was unable to predict the cor-
responding optic flow. This generated visual prediction error, which was propagated 
in the network, triggering the optomotor reflex, thereby hindering “phonotaxis”. The 

22 Due to the robotic hardware employed, “phonotaxis” really was phototaxis (i.e. the sound source 
really is a light source). This is why “phonotaxis”, “auditory modality” and “sound source” will appear 
under scare quotes in the text.
23 That is, when the cricket turns left, the optic flow optic flow moves to the right. This is a simple sen-
sorimotor contingence.
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competition between “phonotactic” and optomotor behaviors can be seen in (Bovet, 
2007: p. 90, figs. 5-7): the robot’s trajectories exhibit the zig-zag typical of two com-
peting orienting reflexes. Yet, when the synaptic coupling between motor and visual 
modalities was re-established, the visual modality was able to predict the incoming 
optic flow. Thus, no optomotor reflex ensued, and the robot swiftly reached for the 
“sound source”.24 Hence, the synaptic coupling between visual and motor modality 
constituted a simple forward model25; and, more generally, the connection between 
various modality constituted a simple generative model, enabling the network to pre-
dict the incoming input and to make some of those predictions come true through 
active inference. Notice further that the network qualifies as a genuine forward 
model, rather than merely as a system exhibiting a simple compensatory bias. In 
fact, its predictions are targeted to enhance or suppress behaviorally relevant stimu-
lation, are modulated so as to match the incoming feedback and are able to adapt in 
an experience-dependent manner (see Webb, 2004).26

4.2  The network hosts no representational vehicle

It is now possible to check whether the connections or the activity patterns of the 
network qualify as representational vehicles given the theoretical commitments 
endorsed by inferentialist and representationalist readings of PP.

Consider first patterns of activity. In the connectionist literature it is standardly 
assumed that patterns of activity of the hidden layers are representational vehicles 
(e.g. Goodfellow et al., 2016: Ch. 15). But the network has no hidden layers. It is 
thus doubtful whether we should consider its activity patterns as candidate represen-
tational vehicles.27

Suppose we should. Are patterns of activity structurally similar to relevant envi-
ronmental targets? As far as I can see, the answer is in principle positive: structural 
similarities are cheap to come by and can even be arbitrarily defined (Shea, 2018: 
pp. 112–113). Hence, it is extremely likely that the patterns of activation of the 

24 Strikingly, a similar synaptic coupling enabling optic flow predictions has been observed in mamma-
lian brains, and it nicely fits a number of theoretical predictions coming from PP, see (Leinweber et al., 
2017).
25 Notice, importantly, that I’m here using the term “forward model” just to denote the fact that such 
a synaptic coupling allowed the network to predict the sensory consequences of the movements of the 
robot. I’m not implying that the synaptic coupling estimated the sensory consequences of behavior from 
motor commands. In fact, there are no motor commands in such an architecture, and the robot’s behavior 
is directly controlled by the network’s sensory predictions, just as active inference prescribes.
26 On experience-dependent adaptability, see (Bovet & Pfeiffer, 2005a, b).
27 As a reviewer noticed, it is intuitive to define hidden layers as layers which are neither input nor out-
put layers. Given this definition, (VS)s seem to be hidden layers: they do not receive inputs from the sen-
sors (so they are not input layers) nor forward output to effectors (so they are not output layers). So, why 
am I claiming the networks have no hidden layer? Mainly, because this is how Bovet characterizes them: 
“The network does not contain any so-called ‘hidden’ layer of inter-neurons” (Bovet 2007: 29). Perhaps 
it could be argued that both the reviewer and Bovet are right: if we focus on single modalities, then (VS)
s naturally appear as input layers. Yet, when focusing on the entire network, (VS)s are more naturally 
considered as hidden layers. However, as far as I can see, granting (VS)s the status of hidden layers does 
not impact my argument.
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network will turn out to be structurally similar to at least some environmental target. 
The relevant point is thus whether these structural similarities will be exploitable.

Recall: exploitability is the conjunction of two requirements (Shea, 2018: p. 120). 
First, the system must be systematically sensitive to the relations holding among 
vehicle constituents. Secondly, the relevant target must be of significance to the sys-
tem; that is, it must be relevant to the system’s task functions: the outputs the sys-
tem has been stabilized or purposefully designed to produce. As Bovet’s networks 
are artificially designed, the designer dictates their task functions, thereby (partially) 
determining which structural similarities are exploitable.

However, Bovet defines the function of his networks in squarely proximal terms. 
For instance, he states that (CS)s are, by design, “supposed to” produce a pattern of 
activity that corresponds to the state of one sensor or motor. As he writes: “In the 
visual modality for instance, the activity of each neuron corresponds to the bright-
ness of a pixel in the camera image” (Bovet, 2006: p. 528, italics added). Similarly, 
he states (SC)s have been designed to reflect how the sensory inputs have changed 
in a timestep. Equally proximal descriptions are in fact given for each neural 
population.

It thus seems that, by design, the network’s task functions target only proximal 
states, and therefore only proximal states will be of significance to it. But exploitable 
structural similarities can hold only between candidate vehicles and targets that are 
of significance to the system. Thus, if exploitable structural similarities are used to 
determine the content of the candidate vehicles under scrutiny (i.e. patterns of acti-
vation), their content can only be proximal. But then the candidate vehicles fail to 
satisfy distality. Conversely, if we assign candidate vehicles distal targets, they will 
fail to satisfy exploitability. It thus seems that here candidate vehicles cannot sat-
isfy distality and exploitable structural similarity in conjunction. The same holds if 
instead of single patterns of activations we focus on the entire activation space (e.g. 
Churchland, 2012), as focusing on the entire activation space will not change the 
task functions of the networks. Thus, the entire activation space can bear an exploit-
able structural similarity only to proximal stimuli (or, perhaps more appropriately, 
the space of possible proximal stimuli). As a result, it fails to satisfy either distality 
or exploitability just as single activation patterns.

What if, as a reviewer asks, we focus on the robots’ task functions instead? 
Since the robots’ behavior is distally characterized, it seems legitimate to expect 
the robots’ task functions to be distally characterized (i.e. “long-armed”) too. That 
would solve the problem of distality just raised. However, albeit Bovet describes the 
robots’ behaviors in distal terms, he never assigns distal functions to them. In fact, 
he explicitly states that his robots have no purpose (Bovet, 2007: pp. 4–9). His aim 
is that of studying: “artificial systems endowed with a self-developing dynamics, yet 
without any particular task or motivation” (ibidem: 8, emphasis added). Given that 
robots are artificial systems, and so their functions are determined by their designer, 
it seems correct to conclude that Bovet’s robots have just no task function, long-
armed or otherwise.

Couldn’t perhaps the patterns of activation have acquired some distally character-
ized function through the network’s individual learning history? A negative answer 
seems warranted for two distinct reasons. First, albeit some philosophers do allow 
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individual learning histories to dictate functions, the scope of the claim is restricted 
to supervised forms of learning involving some sort of feedback (e.g. Dretske 1998; 
Shea, 2018: pp. 59–62). But Bovet’s networks learn in a purely unsupervised man-
ner, and no feedback is involved. Moreover, functions are typically understood as the 
upshot of processes of selection, in which certain features or traits are selected over 
competing features or traits in virtue of their effects. Hebbian learning, however, is 
not a process of selection. Hence, it cannot confer functions (Garson, 2012).28 Muta-
tis mutandis, the same reasoning seems to apply to entire robotic agents.

Maybe we should assign content to single activation patterns in a different way. 
Wiese (2018: pp. 219–223) has in fact recently suggested a different procedure to 
do so. In his view, the (generative) model as a whole represents the causal structure 
of the world in virtue of the exploitable structural similarity holding between the 
two. However, he adds that the contents of individual patterns of activation should 
be determined by looking at the statistical dependencies holding between them and 
their worldly causes. Relying on Eliasmith’s theory of content, Wiese suggests that 
the target of a neuronal response is the set of causally related events upon which the 
neural response statistically depends the most under all stimulus conditions (see Eli-
asmith, 2000: p. 34). That is, a neuronal response represents the events that, on aver-
age, make its tokening most likely. Does this suggestion allow the candidate vehicles 
under scrutiny to meet distality and exploitable structural similarity? The answer 
seems to me negative for two reasons.

First, resorting to Eliasmith’s theory of content seems redundant. Wiese (2018: 
pp. 219–222) intends to use it to assign contents to individual neuronal responses, 
which he takes to be “proper parts” (i.e. vehicle constituents) of the generative 
model. He also maintains that the generative model is, as a whole, structurally simi-
lar to the causal structure of the world. However, in structural representations, the 
way in which each vehicle constituent participates to the structural similarity is 
already sufficient to determine its content (Cummins, 1996: p. 96; Shea, 2018: p. 
125; Kiefer & Hohwy, 2018: p. 2391). Consider, for instance, a map. As a whole, 
the map (V) is structurally similar to a target territory (T). This is because V’s con-
stituents  (va…vn) map one to one onto T’s constituents  (ta…tn) in a way such that the 
same pattern of spatial relations holds among both  (va…vn) and  (ta…tn). But if this 
is the case, then it is entirely correct to say that  va represents  ta and  vb represents  tb 
and so on. Since individual vehicle constituents acquire content in virtue of the role 
they play in the overall structural similarity, there seems to be no need of resorting 
to Eliasmith’s theory of content.

Secondly, suppose that content is assigned to vehicle constituents as Eliasmith’s 
theory of content suggests. Will the contents thus assigned be consistent with the 
ones assigned by the relevant structural similarity? If yes, then resorting to Eli-
amith’s theory of content adds nothing to what structural similarity already pro-
vides. But if not, then there are at least some cases in which a vehicle constituent  vx 

28 Notice also that PP only requires Hebbian forms of learning, see (Bogacz, 2017). Thus, given that 
Hebbian learning is not a selectionist process, it could be argued that no PP system can acquire functions 
through individual learning.
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represents both  tx by structural similarity and  ty by Eliasmith’s theory. But then  vx 
fails determinacy, because its content is disjunctive. In fact, given that  vx represents 
 tx, its conditions of satisfaction obtain whenever  tx is the case. And, given it also 
represents  ty, its conditions of satisfaction obtain whenever  ty is the case. Hence, 
 vx will misrepresent if, and only if, both  tx and  ty are not the case. But these are the 
conditions of satisfaction of a vehicle representing  (tx or  ty).

To restore determinacy, one needs to deny either that  vx represents  tx or that it 
represents  ty. Denying that  vx represents  ty rules out the contribution provided by 
Eliasmith’s theory, which again is left with no role to play. But one cannot rule out 
that  vx represents  tx either, as that would deny that V, of which  vx is a constituent, 
is a structural representation. In fact, the statement “if V is a structural representa-
tion of T, then each constituent  vx of V represents the constituent  tx of T onto which 
it maps” is correct. So, by saying that  vx is not a representation of  tx one denies the 
consequent of a true statement. But if the consequent of a true statement is false, 
then the antecedent must be false too. Therefore, if  vx does not represent  tx, then V is 
not a structural representation of T.29

Summarizing: patterns of activation do not seem to bear any exploitable struc-
tural similarity to distal targets. Hence, if their content is determined by exploitable 
structural similarity, then distality does not obtain. Conversely, if their content is not 
proximal, then their content is not determined by an exploitable structural similar-
ity. Appealing to a different content determination procedure appears to deepen the 
problem. I thus conclude that patterns of activation are not representational vehicles.

Now, what about the connections? As distality has thus far been particularly 
pressing, it offers a natural starting point: do connections have distal content? The 
answer seems negative.

To begin with, what should their content be? Connections encode all a network 
learns (e.g. Rogers and McClelland 2004). But all Bovet’s networks learn is to pre-
dict the states of the sensors and motors of the robots they control. This seems defi-
nitely proximal content. Computationally speaking, connections are also trained in a 
simple Hebbian fashion. At each time step, the way in which the weight of a connec-
tion is modified is provided by a function that takes as arguments patterns of co-acti-
vation between the neurons in (CS) and (SC) and the learning rate (see e.g. Bovet, 
2007: pp. 26–29). The mathematical content of these connections (i.e. their weight 
value) is thus exclusively determined by factors lying inside the system. If ascrip-
tions of mathematical contents constrain ascriptions of representational contents, it 
seems that, in these cases, the mathematical contents constrain our ascriptions of 
representational contents in favor of proximal contents.

These arguments are not conclusive. So, I concede we might be able to assign 
distal contents to connections. But will it be assigned in virtue of an exploitable 
structural similarity? I believe the answer is again negative. This is because if con-
nections are representations, they are superposed representations. And, given the 

29 An anonymous reviewer raised a challenge to the line of argument developed here. I discuss it in 
Sect. 5.2 to avoid having to place a long digression here. But the reader can read it now, if they so wish.
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standard notion of superpositionality (see Clark, 1993: pp. 17–19; Van Gelder, 1991, 
1992), superposed representations cannot be structurally similar to their targets.

Consider the standard definition of superpositionality. The definition is based 
on a further technical concept, that of a vehicle being conservative over a target 
(Van Gelder, 1991: p. 43). Bluntly put, a vehicle V is conservative over a target 
T just in case the minimal set of resources a system needs to leverage in order to 
represent T equals V. For instance, given the representational resources of natural 
languages, “John” is conservative over John. To represent John I need, minimally, 
to token “John”. Moreover, “John” has no “representational space” left to repre-
sent something over and above John. On the other hand, “John loves Mary” is not 
conservative over John. To represent John I need not token the entirety of “John 
loves Mary”, and “John loves Mary” has some representational space left to rep-
resent something other than John. Superpositionality can then be defined in terms 
of conservativeness as follows: a vehicle V is a superposed representation of a 
series of targets  Ta…Tn just in case V is conservative over each member of  Ta…
Tn. Notice the plural: superposed representations are always, by definition, con-
servative over more than one target (Clark, 1993: pp. 17–19; Van Gelder, 1992).

Structural representations, however, can be conservative over one target at most. 
If V is the vehicle of a structural representation, then there is at least one target T 
with which V is exploitably structurally similar. This entails that each relevant (i.e. 
similarity constituting) constituent of V  va…vn maps (in an exploitable way) onto 
one, and only one, constituent  tx of T. Now, if this mapping determines the content 
of each constituent, it seems that each constituent of V entirely “spends its represen-
tational credit” to represent one and only one constituent of T. Hence, each constitu-
ent of V will be conservative over one, and only one, constituent of T. By the same 
token, V will be conservative over one, and only one, target T.

Why can’t a constituent  vx be conservative over two (or more) constituents  tx and 
 ty, making V conservative over T and T* (of which  ty is a constituent)? Because it 
would have to map onto many. But (exploitable) structural similarities are defined 
in terms of one to one mappings (see O’Brien & Opie, 2004: p. 11). Thus, it seems 
correct to say that if a vehicle represents by means of (exploitable) structural simi-
larity, then it is conservative over one, and only one, target. Hence, if a vehicle is 
not conservative over one, and only one, target, then the vehicle does not represent 
by means of exploitable structural similarity. But superposed representations are 
not conservative over one and only one target. Hence, their vehicles fail to satisfy 
exploitable structural similarity.

Couldn’t perhaps the relevant definition of structural similarity be relaxed, so as 
to allow superposed representations to count as structural representations? Allowing 
structural similarities to be defined in terms of one-to-many mappings would easily 
defuse my argument. However, allowing one-to-many mappings makes the content 
of structural representations disjunctive. In fact, if V is a structural representation of 
T and  vx maps onto many (e.g. onto both  tx and  ty), it follows that  vx misrepresents 
only when both  tx and  ty are not the case; and thus that  vx represents  (tx or  ty). Notice 
that, formally, this is the same problem faced by Wiese’s (2018) suggestion on how 
to assign content to vehicle constituents.
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Summarizing: it seems correct to say that connections fail to satisfy distality. 
And, were that verdict wrong, they would still fail to satisfy exploitable structural 
similarity. Hence, it seems correct to conclude that, in the networks under scrutiny, 
connections do not qualify as representational vehicles, given the theoretical com-
mitments of inferentialist and representationalist accounts of PP.

Perhaps my analysis thus far has been unfair. Perhaps it is the network as a whole 
that instantiates the relevant generative model, rather than one of its parts (see e.g. 
Kiefer & Hohwy, 2018: pp. 2394–2395; Wiese, 2018: p. 219). Albeit I think this is 
a fair point, I fail to see how it might challenge my conclusion. After all, it seems 
to me still correct to say that the only things “of significance” to the network, given 
the task function it has by design, are proximal sensory states. Thus, it seems to me 
that even conceding, for the sake of discussion, that the network as a whole is, in 
some sense, exploitably structurally similar to its targets, it would still fail to meet 
distality.

In this section, I presented the simplest PP system able to perform active infer-
ence I know of, and checked whether the candidate vehicles of the relevant genera-
tive model (i.e. patterns of activations and connections) actually qualify as vehicles, 
providing a negative answer. Thus, albeit the network instantiates a simple genera-
tive model “knowing” the robot’s sensorimotor contingencies, the structures instan-
tiating that model do not qualify as representational vehicles. They are non-repre-
sentational structures instantiating the robot’s knowledge of its own sensorimotor 
contingencies.

Notice that my verdict does not hinge on “weird” metaphysical premises on what 
counts as a representation. Indeed, the criteria by which I assessed the metaphysi-
cal status of generative models are derived from inferentialist and representationalist 
accounts of PP, which surely provide the mainstream interpretation of the theory.

In the next section, I examine some concerns regarding the verdict here provided.

5  Some worries considered

Here, I examine three distinct concerns regarding the argument I have provided. The 
first regards the scope of my conclusion: can it be generalized to other PP systems? 
The second and third worries have been raised by two anonymous reviewers. They 
concern, respectively, the possibility of multiple assignments of contents and the 
revisionist implications of my argument. I examine these three worries in turn.

5.1  Will it generalize?

The most obvious objection to the analysis provided above is that its conclusion will 
not generalize to other PP systems. This is a genuine concern, which I cannot fully 
exorcise here. I will, however, propose a number of arguments and considerations 
to the effect that my conclusion is likely to generalize. To do so, I mainly consider 
the lines of reasoning that could block the generalization, arguing that none, at pre-
sent, seems sufficient to block it. Of course, this is not a proof that my conclusion 



11629

1 3

Synthese (2021) 199:11609–11642 

generalizes. To prove it, I would probably have to examine all possible PP systems, 
which is clearly unfeasible.

One reason as to why my verdict will not generalize is that Bovet’s networks do 
not resemble standard PP networks, such as Rao and Ballard’s (1999) network. The 
conclusions drawn by looking at Bovet’s networks might simply not apply to differ-
ent PP networks.

Yet, albeit it is surely correct to say that Bovet’s networks do not resemble other 
PP systems, it is worth noting that there is no standard PP network. They are all 
different. For instance, some PP networks do not have distinct error and prediction 
units (e.g. O’Reilly et al., 2014), and others do not embody distinct sets of ascending 
and descending connections (e.g. Matsumoto & Tani, 2020). And, when it comes to 
robotic implementations, there just is no standard PP model, connectionist or oth-
erwise (Ciria et al., 2021). So, if the relevant conclusions drawn from these various 
models are supposed to generalize (as their modelers surely suppose), why shouldn’t 
the conclusions drawn from Bovet’s model generalize too?

Perhaps, then, the problem is that Bovet’s networks lack an ingredient which, 
when considered, would force me to revise my verdict. But what could that ingredi-
ent be?

Hierarchy is an obvious candidate: Bovet’s networks are non hierarchical, 
whereas the majority (but by no means all, see Tani, 2014; Lanillos & Cheng, 2018) 
of PP systems are. However, I simply fail to see how hierarchy would force me to 
revise my verdict. Adding hierarchy means adding hidden layers and connections to 
(and from) these layers. But these connections would be superposed representations 
just as the connections of Bovet’s network. Thus, if the argument provided above is 
correct, they would surely fail to satisfy exploitable structural similarity.30

Moreover, it is doubtful that the patterns of activity in hierarchically higher lay-
ers could be assigned an appropriately distal content (O’Regan & Degenaar, 2014; 
Dołega, 2017: pp. 12–13). Strictly speaking, all a hierarchically higher level has to 
predict is what is going on in the layer directly below it, of which it can thus be 
rightfully said to be a model. Computationally speaking, hierarchically higher lev-
els are said to “produce abstract statistical summaries of the original visual input” 
(Bulow et al., 2016: pp. 5–6; emphasis added; see also Hinton, 2007b; Foster, 2019). 
Thus, if these computational descriptions are correct, and the mathematical content 
assigned by these descriptions strongly constrains the ascription of representational 
content, there are good reasons to expect that the content of hierarchically higher 
layers to be only proximal.

Notice that sometimes this point seems to be acknowledged even by defenders 
of the representationalist and inferentialist view of PP. As Orlandi and Lee (2019: 
pp. 215–217) aptly noticed, it is not uncommon, in the PP literature, to characterize 
higher levels as models of the level directly below them, and to say that they predict 

30 A reviewer noticed I must here make a concession: I cannot exclude that, in a possible connectionist 
implementation of PP, weighted connections will be structural, rather than superposed, representations. I 
surely cannot rule out this possibility. However, at present, I do not see any positive reason to believe that 
such an exceptional connectionist system will be produced.
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the behavior of the level directly below them (e.g. Clark, 2016: pp. 14–24). If these 
characterizations are correct, they definitely suggest that the content of hierarchi-
cally higher layers is only proximal.

But what about the standard account of representations in hidden (i.e. hierarchi-
cally higher) layers of artificial neural networks?31 Careful mathematical analyses 
conducted on the pattern of activation of those layers often reveal a structure-pre-
serving mapping holding between patterns of activation and features of the dis-
tal domain the network has been trained to operate upon (e.g. Churchland, 2012; 
Elman, 1991; Shagrir, 2012). This surely seems a hefty consideration in support of 
a structural-representationalist reading of these patterns. So, were similar patterns 
found in at least some PP systems, the representationalist-inferentialist reading of PP 
would be bolstered.

I cannot in principle exclude that some form of mathematical analysis on PP 
models could unravel similar patterns of activation. Yet, I do not believe that it 
would provide the desired support to the inferentialist and representationalist read-
ing of PP. There are two broad reasons as to why that seems to me the case.

One is that the relevant structure-preserving mapping often holds among many 
patterns of activation (if not the entire activation space, as in Churchland, 2012) and 
their respective targets. Yet, it seems correct to say that different patterns of activa-
tion are different vehicles. Hence, the structural similarity would not hold between 
a single vehicle and its target (as it is in the case of structural representations), but 
rather between an ensemble of vehicles and the ensemble of their respective targets.

The other is that it seems correct to say that, if V is structural representation of T, 
then changes to V which make it more structurally similar to T increase its represen-
tational accuracy. Now, when it comes to artificial neural networks, the changes that 
increase their representational accuracy surely include changes in the weighted con-
nections. Hence, it seems that weighted connections must be vehicle constituents (or 
relations thereof) participating in the relevant structural similarity. Yet, in the case at 
hand, only patterns of activation are considered. It thus seems doubtful that a struc-
tural similarity defined purely in terms of patterns of activation will substantiate the 
representationalist reading of PP as desired. However, simply “adding connections 
to the mix” raises the problems with superpositionality described above, marring the 
relevant structural similarity.

I take this to be only circumstantial evidence in favor of the claim that hierarchi-
cally higher layers do not qualify as representations. So my argument is not con-
clusive: it could be argued that hierarchically higher levels are, as a matter of fact, 
exploitably similar to some distal target. And that might be done without violating 
the constraints mathematical contents place upon representational contents. Yet, as 
far as I know, an argument to that effect has still to be made. As things stand, I only 
see circumstantial evidence favoring the claim that higher layers do not qualify as 
representational vehicles. It thus seems that the available evidence favors my anti-
representationalist verdict over the representationalist one.

31 Thanks to an anonymous reviewer for having raised this objection.
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A second missing ingredient from Bovet’s network is precision. This might be 
worrisome, as PP suggests that precision plays a key role in enabling active infer-
ence (see Brown et al., 2013).

However, I believe that considering precision will not change my verdict. On the 
one hand, precision is only supposed to modify, in various ways (see Friston, 2012) 
the relevant patterns of activation to which it is applied. But if, as I argued, these pat-
terns of activation are not representational vehicles in the first place, then any mech-
anism operating upon them should not be considered a representational mechanism. 
Moreover, from the computational point of view, precision is typically equated with 
the inverse variance of the predicted signal (Buckley et al., 2017). If, as I’ve argued, 
predictions only have proximal content, and the mathematical content of precision 
signals (i.e. inverse variance) constrains our ascription of representational contents, 
it then seems we can only ascribe proximal contents to precision signals too.

Perhaps the verdict I have provided here will not generalize because I’ve consid-
ered an artificial neural network whose task functions have been proximally defined 
by a human designer, whereas “natural” neural networks implementing PP have 
long-armed task functions. I think there are reasons to suspect this will not be the 
case.

To see why, it is important to notice that functions are normative: they are out-
comes that a system is supposed to produce, in virtue of its design (natural or artifi-
cial) or learning history. Task functions (and, more generally, functions) dictate the 
standards against which to test the performance of a system (e.g. Neander, 2017, Ch. 
3). A system can perform optimally or abnormally only given the standards deter-
mined by its functions.

This seems to speak against PP systems having long-armed functions. Consider, 
for instance, the fact that, on the account PP offers, perceptual illusions are optimal 
percepts (Brown & Friston, 2012). Now, if perceptual illusions are optimal percepts, 
it follows that the machinery producing them (i.e. the PP system) is not malfunction-
ing when a perceptual illusion is produced. But, if this is correct, then it seems that 
perceptual PP systems do not have long-armed functions. That is, their functions do 
not appear to be defined in terms of distal states of affairs (e.g. tracking the distal 
environment, recognizing the external causes of the sensory inputs, etc.). For the 
output produced by the system here does not match distal states of affairs; hence, 
were the system’s function defined in terms of the latter, the system would have been 
malfunctioning. As a consequence, perceptual illusions would not have been optimal 
percepts.

Moreover, PP systems are often described as just in the task of minimizing pre-
diction error (e.g. Friston, 2010; Hohwy, 2015).32 In fact, the discussion about 
what PP systems are supposed to do is typically couched in proximal terms, such as 

32 Here, I trust neurocomputational modellers (e.g. Spratling, 2017; Tani, 2014) and consider free-
energy minimization as a PP algorithm, bracketing the complex relation between the free-energy princi-
ple and PP “proper” (see Friston, 2019; Hohwy, 2020).
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avoiding sensory states with high surprisal33 or encountering the sensory states pre-
dicted by the model (see Hohwy, 2020). Notice that the purely proximal rendering of 
what PP systems are supposed to do is no accident: it is actually needed to account 
for how these systems function in practice. Since PP systems have by assumption34 
access only to proximal states, the relevant tasks they are “supposed to” perform 
must be defined in terms of these states.

As further evidence of the proximal character of what, according to PP, genera-
tive models are supposed to do, consider the so-called “dark room” problem (see 
Sims, 2017 for discussion). The problem is roughly as follows: why, if PP systems 
are only trying to minimize prediction error, they do not lock themselves in envi-
ronments delivering extremely predictable stimuli, such as a completely dark room? 
Notice that such a problem would be immediately dispelled if PP systems were 
assigned long-armed functions: if PP systems were supposed to, say, find mates to 
reproduce (rather than just minimize prediction error) it would be immediately clear 
why they do not end up in dark rooms: there just are no mates there. Notice further 
that the standard reply to the “dark room” problem is not to concede that PP sys-
tems are supposed to do more than minimizing prediction error. Rather, the reply is 
that “dark room” sensory states are prediction-error inducing, given the models pos-
sessed by PP systems (Friston et al., 2012c).

All this suggests that, according to PP, all PP systems have to do can be spelled 
out in proximal terms: they have to minimize the error relative to the expected sen-
sory input. But if this is the case, there seems to be little reason to think that “natu-
ral” PP systems will be assigned long-armed functions. Thus, there seems to be little 
reason to think that “natural” PP systems will satisfy both distality and exploitable 
structural similarity in the desired way.35

33 In extremely crude terms, surprisal is an information theoretic quantity (also known as self-informa-
tion) which captures how improbable a sensory state is, given a model.
34 This assumption is a corollary of the assumption that sensory states are under-informative in respect 
to their worldly causes (see Orlandi, 2016; Anderson, 2017 for discussion).
35 A reviewer wonders whether considering PP systems in the context of the free-energy principle 
could deliver long-armed functions. The reviewer also points to Hohwy (2013: pp. 179–181; expanded 
in Hohwy, 2020) as providing some argument to that effect. Now, I cannot introduce the free-energy 
principle here, but I think I can make a few remarks motivating some skepticism about the free-energy 
principle providing long-armed functions. The first remark is the following: all the free-energy princi-
ple “commands” is to minimize free-energy, which is a quantity internal to systems. Indeed, it is pre-
cisely because free-energy is internal to systems that free-energy is useful in the first place (see Hohwy, 
2020: pp. 5–8). It is thus very hard to see how abiding the free-energy principle would confer long-armed 
functions. Moreover, insofar PP is the “process theory” by means of which the free-energy principle is 
abided, to minimize free-energy just is to minimize prediction error on average (e.g. Friston, 2009: p. 
295; Hohwy, 2013: p. 180). So, it seems that all the free-energy principle “commands” PP systems to do 
is to minimize prediction error, and this seems to be a proximally defined function. Lastly, it is not clear 
to me whether the normativity the free-energy principle brings to the table is the normativity of functions 
in the relevant sense (Hohwy, 2013: p. 181; 2020: pp. 18–20 seems to agree). The relevant normativity of 
the free-energy principle seems to be based on the very existence of free-energy minimizing systems (e.g. 
“Rather, the FEP’s conceptual analysis allows us to see how existence (analysed as self-organization) is 
at the same time both causal and normative”, Hohwy, 2020: p. 16, emphasis added). A system failing to 
abide by this kind of normativity, would simply “fail to exist” as a system. But, given the relevant notion 
of function under consideration, something can exist, and yet systematically fail to perform its function 
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The verdict I provided could also be challenged arguing that Bovet’s networks 
enable the robotic agents to perform only very “low level” sensorimotor coordina-
tions with the surrounding environment. Had I considered different (and, plausibly, 
more complex) networks, enabling “representation hungry” tasks requiring coordi-
nation with non-present targets, my verdict would have been different, as coordinat-
ing with non-present targets requires representations to be in place (Clark & Tori-
bio, 1994). A related worry is that the robots guided by Bovet’s network might be 
“merely reactive”: they just respond to the incoming environmental inputs. Many 
hold that merely reactive behaviors do not require any internal model, whereas pro-
active, self-generated behaviors do (e.g. Pezzulo, 2008; Tani, 2007). Both objections 
share a common theme; namely, that the networks upon which my verdict is based 
is too simple of a model to allow my verdict to generalize to more complex PP sys-
tems. However, I believe these objections are misguided in at least two respects.

To begin with, it is, as a matter of fact, false that the robots guided by Bovet’s 
network are merely reactive systems enabling only low level sensorimotor coordi-
nations. As a matter of fact, in numerous experiments (e.g. Bovet, 2006; Bovet & 
Pfeiffer, 2005a, b) the robot self-initiated its own behavioral routines, because the 
network was expecting sensory inputs that the environment did not deliver, thereby 
triggering active inference. Moreover, the network architecture Bovet engineered 
is capable of delayed reward learning in the context of T-maze tasks (Bongard & 
Pfeiffer, 2005a; b). In such tasks, however, agent and target (reward36) are not imme-
diately coupled, and so, from the point of view of the robotic agent, the target is 
absent at the start of each trial. Furthermore, delayed reward learning is supposed 
to require some form of working memory, which is needed to correctly associate 
cue, motor decision and outcome (e.g. Kim, 2004; see also Carvalho & Nolfi, 2016). 
Thus, it seems to me correct to say that delayed reward tasks in a T-maze setting are 
a bona fide instance of “representation hungry” cognition. Nevertheless, that non-
representational network managed to solve the task with a high degree of accuracy, 
only by learning a set of relevant sensorimotor associations. More precisely (but 
see Bovet & Pfeiffer, 2005a, b and Bovet, 2007: pp. 123–153 for the full account), 
the network enabled the robot to solve the task only by learning to predict shifts 
of visual flow conditioned on the activity of tactile sensors stimulated by the cue. 
The mismatch between expected and actually received visual flow was then mini-
mized through active inference, thus making the robot turn so as to bring about the 

36 A PP enthusiast might question my use of the word “reward” in this context, as active inference does 
not, strictly speaking, posit rewards (see Friston et al., 2012a, b). It is thus worth noting that Bovet him-
self acknowledges that “reward” and “punishment” are arbitrary tags, which he uses to simplify the 
discussion. The “reward” modality of the net really only tracks the state of the robot batteries, and the 
reward itself is a reduction of prediction error between the predicted and actually sensed state of the 
batteries (see Bovet and Pfeiffer 2005a, b). Notice further that, in Bovet’s architecture, a “reward” only 
aligns expected and actually sensed battery states. Hence, “rewards” just are highly predictable sensory 
states, exactly as PP suggests.

(Millikan, 1989). To use a well-known example: malformed hearts are supposed to pump blood, but they 
always fail to do so.

Footnote 35 (continued)



11634 Synthese (2021) 199:11609–11642

1 3

expected visual flow. But by turning, the robot also entered in the correct arm of the 
T-maze, thus “stumbling upon” the reward.37

Secondly, I do not think that these objections can be rightfully formulated within 
the theoretical framework of PP, at least if really PP offers “a cognitive package 
deal” able to account with the same set of resources for cognition in general (Clark, 
2016; Pezzulo, 2017; Spratling, 2016). If really PP can account for all cognitive phe-
nomena using the same set of resources functioning in the same way, then it seems 
to me that representationalism or anti-representationalism should be valid across the 
board. If these resources are representational resources, then it seems that they will 
be representational even when they are enabling simple sensorimotor interactions 
with a present target. And, if, as I’ve argued, these resources do not qualify as rep-
resentational, then they will not be representational even when the target they are 
enabling a system to proactively coordinate with is absent.

5.2  Can the “two‑level attribution” save representationalism?

My argument against Wiese’s (2018) appeal to Eliasmith’s theory of content pre-
supposes that vehicles can be assigned contents in only one way. But what if, as a 
reviewer asks, vehicles could be assigned multiple contents according to multiple 
theories of content, based on one’s explanatory focus? For instance, if one’s focus is 
centered on the inner workings of Bovet’s network, it might be appropriate to assign 
it only proximal contents via exploitable structural similarity. But if one’s explana-
tory focus is how the entire robot interacts with the environment, it might be appro-
priate to assign it distal content resorting to Eliasmith’s theory of content (or vice 
versa). Given that contents thus attributed sit at different explanatory levels, they 
need not be mutually exclusive. Such a “two-level attribution”38 of content can thus 
allow us to follow Wiese’s suggestion, without thereby inviting the problems I raised 
before. How can I respond?

To start, I wish to point out an ambiguity. Talking of “assigning content” is 
ambiguous between two readings. On a first reading, content assignments are mere 
ascriptions of content: given our explanatory aims, we speak of a vehicle as if it rep-
resents something, but as a matter of fact the vehicle does not represent that thing. 
This seems a form of content pragmatism (Mollo, 2020: p. 109). On a second read-
ing, content assignments are not mere ascriptions: the vehicle really has multiple 
contents, perhaps in virtue of the fact that it satisfies multiple content-determining 
relations with multiple targets. Our explanatory interests only select, among the 
many contents a vehicle really and objectively bears, the one that best serves our 
explanatory needs.

Now, which is the intended reading of the “two-level attribution” the reviewer 
suggests? I think the second one. The reviewer is presumably trying to rescue 

37 In this way, it seems to me that Bovet’s systems provide some empirical support to the enactivists’ 
claim that complex non-representational structures instantiating sensorimotor knowledge are sufficient 
for “higher”/”representation hungry” cognition (Bruineberg et al., 2019; Kiverstein & Rietveld, 2018).
38 The phrase has been coined by the anonymous reviewer.
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Wiese’s (2018) account, which espouses realism about content (as all the infer-
entialist and representationalist readings of PP do). Moreover, it could be argued 
that inferentialist and representationalists accounts of PP already ascribe multiple 
contents to vehicles: they do accept that a vehicle has both mathematical and rep-
resentational contents. Isn’t this a “two-level attribution” of the kind the reviewer 
suggests?39

Yet, I see a problem with the “two-level attribution” thus interpreted. It can be 
exposed by means of a simple example. Suppose V satisfies (at the same time) the 
conditions spelled out by two theories of content C and C*. According to C, V rep-
resents T; whereas it represents T* according to C*. Accept the “two-level attribu-
tion” as sketched above: V really and objectively represents T as well as T*. Thus V 
has two contents, and we are free to “pick one” based on our explanatory needs.

Now, V is a representational vehicle objectively bearing some content. So, there 
are some tokenings of V which objectively are misrepresentations—but which ones? 
I think there are only three possible cases:

(a) A tokening of V is a misrepresentation when T, and only T, is not the case 
(mutatis mutandis for T*)

(b) A tokening of V is a misrepresentation when at least one among T and T* is not 
the case

(c) A tokening of V is a misrepresentation when both T and T* are not the case

If (a) is accepted, then it seems that V represents only T (or only T*). It’s accu-
racy conditions are sensitive only to Ts, just as those of a vehicle representing only 
Ts, and thus having only one content, determined only by C (or C*).

If (b) is accepted, then V appears to be representing (T and T*). In fact, a vehicle 
misrepresenting when T or T* are not the case just is a vehicle representing (T and 
T*). But then it seems that V has a single “conjunctive” content, determined by nei-
ther C nor C*.

If (c) is accepted, then V appears to represent (T or T*). A vehicle misrepresent-
ing only when both T and T* are not the case just is a vehicle representing (T or T*). 
But then, again, V seems to have a single disjunctive content, determined by neither 
C nor C*.

So, it seems that, in all cases,40 the “two-level attribution” view entails that V does 
not have multiple contents, but only a single (perhaps disjunctive or “conjunctive”) 

39 Perhaps it is, but an important difference should be noticed. Mathematical and representational con-
tents are different kinds of content (Egan, 2014: p. 118). One is narrow, the other is (typically) wide. One 
is determined by the computations a system performs, the other by some privileged naturalistic relation 
holding between vehicles and targets. But the “two level attribution” the reviewer proposes assigns dif-
ferent contents of the same kind (representational) to the same vehicle.
40 A reader might wonder why I have not considered option (b) when considering Wiese’s proposal. The 
answer (embarrassingly) is that I had not noticed its viability when the manuscript was first conceived. 
Noticing the presence of option (b), however, does not solve the problems with determinacy Wiese’s 
proposal suffers from. Indeed, it seems to me that it makes them harder to solve. For now it is unclear 
whether following Wiese’s suggestion delivers us vehicles representing (T or T*) or (T and T*).
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content. Moreover, in two cases out of three, that content is not determined by any 
of the theories of content accepted (C and C*). This seems to put these theories 
under pressure, as it suggests that those theories inadequately capture the content 
that representational vehicles bear. A defender of the “two-level attribution” view 
might object that content is as a matter of fact determined in a way that it is only 
partially captured by C and C*, and that only by wielding them together we under-
stand what vehicles really represent. But why then shouldn’t we resort to a third 
theory C** “mashing up” C and C*? Indeed, if either option (b) or (c) is accepted, 
C** looks desirable: it would be the single theory of content capturing the single 
(“conjunctive” or disjunctive) content possessed by vehicles.

Now, the above is too quick of a discussion for me to declare that the “two-level 
attribution” view is untenable. Its defenders might convincingly reply to my quick 
argument. At present, however, the “two-level attribution” view does not really seem 
viable.41

5.3  Radical revisionism?

A different reviewer asks how the anti-representationalism advocated here squares 
with the representationalism of cognitive science. Am I committed to a strong form 
of revisionism? I clearly cannot reply in full here. Yet, I can quickly motivate a neg-
ative answer.

To start, notice that I (as any other anti-representationalist) am committed to 
some form of revisionism. Cognitive science really seems strongly committed to 
representationalism. Arguing that certain structures are not representations or that 
no such commitment is present (e.g. Ramsey, 2007) is a form of revisionism: at least 
one ontological commitment of cognitive science should be modified. How radical 
should the revision be? There are, I think, two reasons as for why the anti-represen-
tationalism defended here does not seem to have radically revisionist implications.

First, the anti-representationalist conclusion has been motivated using an artificial 
neural network; and artificial neural networks surely are central in the current empir-
ical practice of cognitive science. The form of anti-representationalism I’m argu-
ing for stems from cognitive science as it is currently practiced, rather than some 
alternative research program developing alternative empirical methods and research 
practices (e.g. Chemero, 2009). So, at least prima facie, the form of anti-represen-
tationalism argued for here does not invite a radical departure from the current epis-
temic routines of cognitive science.

Secondly, in the context of the free-energy principle, generative models have 
already been characterized as non-representational structures mediating agent-
environment interactions (Bruineberg & Rietveld, 2014; Ramstead et  al., 2020a). 
Indeed, it could be argued that this sense of “model” is the core sense of model in 
the free-energy framework, for, according to it, models, in the relevant sense, just 
are controllers (e.g. Seth, 2015: pp. 6–8). So, in a way, my argument only extends 

41 I’m also leaving the possibility of reading the “two level attribution” as a form of content pragmatism 
undiscussed. Owing to space limitations, I cannot address content pragmatism here.
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an already existing conceptual characterization of generative models from the free-
energy principle to PP proper. Surely this isn’t a conceptual revolution.

But what about the term “model” itself (as well as other representational terms)? 
Should we police our language so as to systematically avoid them? I think the 
answer is negative. As hinted above, “model” has a technical meaning, which does 
not align with the philosophically loaded meaning of models as structural represen-
tations; or so, at least, I’m suggesting. But once the point has been made, I see no 
strong reason to systematically police our language so as to erase any occurrence of 
“model”.

6  Concluding remarks

In this essay I have argued that, given the theoretical commitments of representa-
tionalist and inferentialist accounts of PP, the structures instantiating generative 
models do not appear to qualify as representational vehicles. The physical realizers 
of generative models seem to be just non-representational structures instantiating 
an agent’s knowledge of sensorimotor contingencies. So, if the theoretical commit-
ments of inferentialist-representationalist readings of PP are correct, then PP does 
not seem to qualify as a representationalist theory of cognition. And, if, as these 
views hold, PP really explains all aspects of our cognitive lives, then it seems that 
PP invites a form of global anti-representationalism about cognition.

Contra (Gładziejewski, 2016), PP might be as anti-representationalist as cogni-
tive science can possibly get.
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