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Abstract
Functional neuroimaging is sometimes criticized as showing only where in the brain 
things happen, not how they happen, and thus being unable to inform us about ques-
tions of mental and neural representation. Novel analytical methods increasingly 
make clear that imaging can give us access to constructs of interest to psychology. 
In this paper I argue that neuroimaging can give us an important, if limited, window 
into the large-scale structure of neural representation. I describe Representational 
Similarity Analysis, increasingly used in neuroimaging studies, and lay out desider-
ata for representations in general. In that context I discuss what RSA can and cannot 
tell us about neural representation. I compare RSA with fMRI to a different experi-
mental paradigm which has been embraced as being indicative of representation in 
psychology, and argue that it compares favorably.
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1 Introduction

In psychology and cognitive science there has been sustained debate about the meta-
physics of mental representation: are mental representations objectively real, useful 
fictions, or nonexistent? Neuroscientists too debate whether neural machinery real-
izes mental representations, or whether our brains are merely dynamic causal sys-
tems that in no meaningful sense represent. Furthermore, what would count as evi-
dence for representation in the brain? Although the groundbreaking work of Hubel 
and Weisel (Hubel and Wiesel 1959, 1962, 1998), whose recordings from cat and 
monkey visual cortex promised to reveal how neurons represent aspects of the visual 
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world, and subsequent work recording from single cells in various cognitive neural 
systems has been taken by many to be evidence of neural representation, functional 
neuroimaging has been criticized as being unable to speak to such questions, telling 
us merely where, but not how content is represented in the brain (Coltheart 2006a, 
b; Fodor 1999).

I would contend that even in the early days neuroimaging was up to far more 
than merely locating where in the brain something happened (see Roskies 2009), but 
the past decade has seen remarkable advances in the sophistication of analysis and 
interpretation of neuroimaging data that even within the field alter our evaluation of 
the prospects of imaging to inform questions of cognitive science. In particular, the 
field has largely shifted away from identifying the primary changes in regional brain 
activation for cognitive tasks (univariate analyses), to looking at complex patterns of 
signal changes and the ways in which they relate to one another and to task demands 
(multivariate analyses). The change has been characterized as a change from a focus 
on activation to a focus on information (Kriegeskorte et al. 2006; Kriegeskorte and 
Bandettini 2007), and, I submit, it is a change that brings us much closer to being 
able to study representation in the brain.

In what follows, I will argue that fMRI data gives us a window into the structure 
of representations in the brain. One illustration of this comes from model-based ana-
lytical techniques. In Sect. 2 I begin with a brief primer on fMRI, and in Sect. 3 I 
discuss RSA in particular. Section 4 lays out the desiderata for a physical phenome-
non to count as having representational content. Sections 5 and 6 explore what RSA 
can tell us about neural representation, and what it cannot, respectively. I conclude 
that RSA and neuroimaging in general provide us with proxy representational vehi-
cles, and provide access to constructs that are provisionally representational. Is that 
a problem? In Sect. 7 I discuss a classic experiment in cognitive psychology, and 
compare it to RSA with fMRI. The last section concludes with a discussion of how 
RSA fits into cognitive neuroscience more broadly.

2  Functional MRI

Functional Magnetic Resonance Imaging (fMRI) is a technique that uses magnetic 
resonance technology to allow us to infer, roughly, the changing patterns of neu-
ral activity across large areas of cortex or the whole brain during the performance 
of specific tasks. Briefly, by subjecting tissue or other materials to rapidly chang-
ing magnetic gradients and radiofrequency pulses, the MR scanner can measure 
certain properties of aggregates of molecules in a region of tissue (Buxton 2009). 
fMRI measurements provide coarse-grained information regarding aggregate neural 
activity in cuboid regions called voxels (volumetric pixels). In most functional MR 
paradigms, the construct measured is the ratio of oxygenated to deoxygenated hemo-
globin in blood, which correlates roughly with blood flow, which is independently 
known to correlate with local neural activity. Thus, through a complicated series 
of inferences, estimates can be made of the regional neural activity throughout the 
brain or in a defined segment of brain tissue (Roskies 2008). The resolution of most 
fMRI studies is on the order of 3 mm3. Since millions of neurons reside in each of 
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these approximately pea-sized region of tissue, these measurements are unable to 
provide anything like complete information about the neural activity in the region 
– different subsets of neurons in a voxel may perform quite different functions yet 
give rise to the same hemodynamic response. However, systematic structure/func-
tion mappings in many brain areas allow us to make functional inferences even 
given the coarse level of grain of fMRI.

Building on methods developed with Positron Emission Tomography (PET), 
early fMRI studies compared activation levels between a task of interest and a base-
line task, reporting the regions with greatest reliable differences in activation and 
associating these with psychological functions identified from hypothesized decom-
positions of task performance. Because brain tissue is always active, even when a 
subject is at rest, insight into the regional activity that correlates with task-specific 
changes in function is achieved by comparison of activity across different kinds 
of tasks. Initially, univariate analyses that focused on reliable observed changes in 
activation magnitudes aimed at localizing task-related functional changes in brain 
activity. Although a number of methodological improvements allowed fMRI to far 
surpass PET using these analysis methods, it was not until multivariate analysis 
methods were developed that fMRI began to show its full potential.

Multivariate analysis techniques utilize the pattern of responses across multiple 
voxels rather than focusing on localized regions of greatest change (Haxby et  al. 
2001). Analyses that harness the information from patterns of activation are called 
multivoxel pattern analyses (MVPA). For example, a set of nine contiguous voxels 
might have the same average activation level across three experimental conditions, 
so a univariate analysis would fail to identify that region as being important in com-
parisons across these conditions. These voxels may nonetheless show reliably dif-
ferent patterns of activity across conditions, which would be discernable with mul-
tivariate analyses. A multivariate analysis might show that sufficient information is 
encoded in each condition to discriminate it from the others. If so, then each pattern 
carries information about which condition the subject was experiencing when the 
data was generated, and, one can infer, about the neural processing specific to these 
conditions.

Employing machine learning classifiers on activity pattern data to classify new 
data on the basis of trained patterns is called MVPC1 (multi-voxel pattern classifi-
cation) (Haxby et al. 2001). Much of interest has been learned using these decod-
ing methods. For example, in an early study, machine learning classifiers trained on 
multivoxel data from regions throughout occipital cortex showed that broad regions 
of cortex encoded sufficient information to discriminate between perception of dif-
ferent classes of objects. Moreover, it was unexpectedly revealed that in a region 
thought to be selective for face processing on the basis of univariate data, sufficient 
information was present in non-face conditions to allow a classifier to determine 
which of several stimulus types the subject was being shown (Haxby et al. 2001).

1 MVPA, or multi-voxel pattern analysis, is an umbrella term used for all sorts of methods which involve 
analyzing fine-grained fMRI data. We use MVPC, or multi-voxel pattern classification, to indicate 
MVPA methods using classifiers (see Haxby et al. 2014).
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Although MVPC has become a standard method for analyzing fMRI data, its rel-
evance for understanding neural representation is limited. MVPC with linear clas-
sifiers reveals whether patterns of brain activity in different conditions are linearly 
separable. If they are, there is sufficient information in the pattern of activation at 
the given resolution to enable a classifier to determine which of the patterns a new 
piece of data is most similar to. Linear separability also suggests that this informa-
tion is explicitly represented, in that downstream brain regions could read out this 
information given standard theories of population coding (Kriegeskorte and Kievit 
2013), though it does not go so far as to demonstrate that they do. For example, in 
the face-processing study mentioned above, MVPC only indicates that the informa-
tion about non-face objects is present in the FFA, it does not reveal whether that 
information is used by the brain in non-face object processing (Diedrichsen and 
Kriegeskorte 2017; Schalk et  al. 2017). Indeed, establishing causality is a general 
problem for neuroimaging: Neuroimaging reveals information correlated with the 
stimulation conditions and behavioral outcomes of experiments, but does not prove 
causation. Other kinds of manipulations (i.e. interventions) are better suited to estab-
lishing causality (Schalk et al. 2017).

A second limitation of MVP classification is that successful classification is silent 
on important questions regarding the brain data it uses. First, it does not reveal what 
aspect of the data allowed for classification. Classifiers can pick up on any aspect of 
the training set, not necessarily the one the experimenter intends, or one that is psy-
chologically salient for humans, or the one that the brain actually uses (Kriegeskorte 
and Diedrichsen 2019). In general, MVPC does not provide information about the 
nature of the information successful classification reflects (Ritchie et al. 2019). Sec-
ond, MVPC is spatially ambiguous: Different cortical patterns in different regions 
can give rise to identical classification performance, and successful classification 
does not care or reveal where in the brain the information that allows for perfor-
mance originates from (Naselaris and Kay 2015). This also limits its scope for yield-
ing insight about neural representation. Still, spatial relevance can be interrogated in 
particular ways, for example, by restricting the location of training data by a search-
light procedure, which looks serially across cortex for patterns in localized regions 
of cortex.

3  Representational similarity analysis (RSA)

Despite its limitations, the recognition that patterns of activity within a region can 
contain information relevant to cognitive processing set the stage for further meth-
odological advances. The method I will focus on for the rest of the paper is another 
type of MVPA, still relatively novel to neuroimaging, but with a long history in psy-
chology. In neuroimaging it is called Representational Similarity Analysis (RSA). 
RSA is the calculation of pairwise similarities between patterns of response, whereas 
second-order RSA is a method for calculating the similarity between different rep-
resentational geometries (Kriegeskorte and Kievit 2013; see below). RSA takes as 
input activation levels in an array of voxels, but instead of using this information 
for classification, it looks for internal similarity relations and their relationship to 
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those of structured models that are either empirically or theoretically derived. It 
is thus one of a growing number of model-based fMRI analyses (Diedrichsen and 
Kriegeskorte 2017).

Before describing RSA in greater detail, I explain some technical terms. A rep-
resentational space defines a similarity metric on measurements in a dataset, and 
distances in that space represent degree of similarity given a chosen metric. The 
set of relationships across the dataset describes a representational geometry, the 
geometry of that similarity space. Thus, representational geometry characterizes 
the relationships between a set of points in a representational space, where dis-
tance in that space is a measure of representational similarity. In a representational 
space for objects, one might find, for example, that all animate objects will cluster 
in a relatively defined region of that space, clearly separable from inanimate objects, 
and furthermore, that among animate objects, 4-legged creatures and winged crea-
tures form distinct clusters (Fig. 1). In some representational spaces the ordering of 
objects reflects patterns that are interpretable, such as taxonomic relationships.

First order RSA allows one to represent the similarity space of one set of data in a 
matrix, and second-order RSA enables one to compare the similarity spaces of differ-
ent sets of data in a different matrices (of same dimensionality). What is key is that, 
once the similarity spaces are both described in matrix form, one is able to compare 
representational geometries in format-neutral ways—ways that abstract away from the 
format of the data. Thus, one can compare for example, patterns of brain activity to 
stimuli or tasks across individuals, or across brain regions, or across species, or even 
to compare them to psychological variables such as similarity measures, reaction time, 

Fig. 1  (A) First order RSA: Differences between patterns of activity in a chunk of tissue responding to 
two objects, here a hand and an umbrella, populate once cell of an RDM in (B). (B) A complete RDM 
can now be compared using second order RSA with other RDMs constructed from behavior, input meas-
ures, or other models.  Source: This figure is reprinted with permission from Kriegeskorte and Kievit 
(2013)
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computational models, and so on. Because RSA looks only at internal relationships, 
abstracting from the format of the representations themselves, and from the absolute 
magnitude of the measures, it allows comparisons of structure across widely differ-
ent representational modes. So while classification depends upon the discriminability 
between patterns of brain activity, RSA characterizes the interrelations among different 
patterns, illuminating structural aspects of the problem.

RSA works as follows: In first order RSA, patterns of brain activity during different 
experimental manipulations are encoded as vectors, and a distance metric is used to 
calculate the distance (Euclidean, angular, etc.) between pairs of vectors. These dis-
tance measurements comprise a representational dissimilarity matrix, or RDM, of the 
activity in that task. The individual entries in an RDM are thus numbers characteriz-
ing the dissimilarity of the brain activity patterns across the two conditions, yielding 
a diagonalized matrix. As RDM entries are scalar quantities, they are content-neutral 
and abstract from particularities of their provenance, such as spatial layout. In RSA 
one then performs second-order comparisons between different RDMs. In general, one 
compares RDMs corresponding to different measurements over the same experimen-
tal conditions. It is this second-order comparison between RDMs that makes RSA so 
versatile, allowing comparisons between sets of measurements that differ in substantial 
ways. In sum, RSA provides a means of comparing structural relationships embedded 
in multivariate data to the structural relationships in other datasets.

To give a brief example, one could construct an RDM from fMRI data of infer-
otemporal cortex (IT) activity patterns from a human observer looking at pictures of 
different animals, and another RDM from the spike train data from neurons in IT in 
a monkey looking at the same array of animal pictures. Each of those RDMs show 
certain kinds of similarity structures (Fig. 2), namely similarities that closely respect 
taxonomic categories (Kiani et al. 2007; Kriegeskorte et al. 2008a, b). Comparison 
of the two RDMs shows that the two organisms have very similar representational 
geometries for animal pictures in IT, despite the fact that the data is generated in 
different species with different methods at very different spatial scales (Kriegeskorte 
et al. 2008a, b).

Importantly, the term ‘representational’ used in ‘representational space’ and ‘rep-
resentational geometry’ refers to the technical mathematical usage of the term repre-
sentation, rather than the term used in cognitive psychology or philosophy of mind. 
Nonetheless, the word in the context of neuroimaging plays a dual role, because we 
assume that the neural states that are causally involved in the performance of cogni-
tive tasks realize the kinds of mental representations that are involved in task per-
formance described at a psychological level. The importance of similarity metrics 
and representational geometries for studying representation has been recognized for 
decades in psychology and related fields. But we cannot take for granted that points 
in a representational space in the mathematical sense are themselves representations 
in the cognitive sense. The question at issue is to what degree are the objects in the 
representational space defined by fMRI activation representations in the cognitive 
sense?
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4  What is representation?

Neuroscientists and philosophers have been concerned with the nature of mental 
representation and the way(s) in which mental representations could be instantiated 
in brain tissue. The most promising framework for understanding cognitive function 
is computationalism, still the driving insight into thinking about how a physical sys-
tem can perform complex tasks. Computationalism takes cognition to be a kind of 
computation, where computations are operations over representations.

A computational explanation of a given neural function would require an account 
of the representations involved in the computation (an elucidation of their struc-
ture and their content—the interpretation function), as well as an account of how 
these representations are physically realized, and the causal processes that operate 
on these representations to generate the appropriate output (the realization function) 
(Egan 2010, 2018).

Fig. 2  Comparing RDMs through second-order RSA can relate representational geometries across very 
different methods, whereas direct relationships can be difficult to establish.  Source: This figure origi-
nally appeared in Kriegeskorte et al. (2008a)
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Any computational explanation involves several substantive commitments. First, 
it is committed to a distinction between representational vehicle and representational 
content. Representational vehicles are physical structures or states that carry repre-
sentational content (Egan 2018). In a computational system, causal processes act 
upon the representational vehicles to effect physical transformations, and in so doing 
the representational content of the representations is also altered. Parallels between 
the formal or physical properties of representations and their semantics make pos-
sible intelligent behavior.

In addition to a commitment to representational vehicles and content, we can 
articulate several other desiderata for candidates for representation in the brain (see, 
e.g. Egan 2020; Ramsey 2007). First, function: representations must have a function 
in the system. In Clark’s minimal representationalism, he calls “a processing story 
representationalist if it depicts whole systems of identifiable inner states (local or 
distributed) or processes (temporal sequences of such states) as having the function 
of bearing specific types of information about external or bodily states of affairs.” 
(Clark 1996). Thus, representations must be part of a system of representations with 
a function for the organism. A corollary of this is that representations must be used, 
consumed or interpreted by the system, and they must play a role in explaining intel-
ligent behavior. In addition, content ascriptions must be naturalizable: both the 
realization and interpretation functions must be able to be cashed out in physical 
matter and processes. Finally, as many have noted, representation implies the pos-
sibility of misrepresentation. At the very least, there must be norms for content 
ascription, even if these norms are relative to the workings of the system. Norms, 
however unnaturalizable they may seem at first glance, are implicit in attributions 
of function (see first desideratum), and violated when the functional goals are not 
achieved.2

4.1  From mental content to neural representation: a proposal

All philosophical theories of mental content rely on the idea that the brain must 
allow the organism to track and respond in adaptive ways to the environment. 
The main accounts philosophers have offered for this tracking relation are causal 
or information-theoretic theories, which anchor the content of a representation in 
a causal story; teleological theories, which ground content in a story of natural or 
evolved function; and structural theories, in which isomorphism or similarity plays a 
role in relating referent to representation. Although each approach has its shortcom-
ings or problem cases, several philosophers have recently proposed that a unitary 
account of content assignment is unnecessary, while other theorists have stressed the 

2 Additional desiderata have been suggested for vehicles, at least for the vehicles of representations in a 
digital system: Clark notes that vehicles need to be “portable”, in that the same vehicle can play a role in 
different computations, and that they be “type-able”, or able to be classified into types. These desiderata 
are more contestable, and seem to be suited to specifically digital representations, as properties of rep-
resentations that operate in a digital system. It seems to remain a possibility that analog representations, 
like pictures, be neither typeable or portable in the way they must be in a digital system, yet that they are 
legitimate representations, and perhaps even paradigmatic representations.
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pragmatic or explanatory role that content ascriptions play in our scientific practice 
(Egan 2020; Godfrey-Smith 2006; Shea 2018; Shea et  al. 2018). I am more sym-
pathetic to a realist interpretation than some, for, as Shea says, “What adverting to 
content does achieve, however, is to show how the system connects with its environ-
ment: with the real-world objects and properties with which it is interacting, and 
with the problem space in which it is embedded.” (Shea 2013, p. 498). Indeed, it is 
this feature that makes it the case that representations play functional roles. One can, 
however, take a realist view yet allow that content identification and explanation can 
appeal to different theories in different cases.

Despite the unsettled nature of theories of content, there is little doubt that there 
are causal processes that relate brain activity to external stimuli, and that play a role 
in transformation of early perceptual representations to more articulated represen-
tations higher in the processing stream. Recent decades have seen significant pro-
gress in theorizing about how to characterize such representations. One promising 
approach involves thinking of brain states as high-dimensional state-spaces. Briefly, 
the brain’s immense complexity endows it with the capacity to represent arbitrary 
combinations of elements in a high-dimensional space. Some of these dimensions 
are straightforwardly represented in the spatial topography of the cortex (for exam-
ple, the somatotopic representations in sensory and motor cortex, and the visuotopic 
layout of early visual cortices), while others, such as orientation-selectivity, are iter-
ated in substructures like cortical columns, and yet others seem to be encoded purely 
functionally. Evidence from single unit recording suggests that representational 
properties are organized hierarchically within cortex, with neurons in lower sen-
sory and motor cortices representing simpler properties and more complex semantic 
properties emerging in higher cortical regions via iterated transformation.

One of the reasons to frame neural coding in terms of high dimensional spaces is 
that this framework easily adapts to both content and neuroimaging domains (Haxby 
et al. 2014). Consider a representational space in which each dimension represents 
specific feature of a given problem area. Let us call this a semantic space. Consider, 
for example, the set of features that characterize objects. Relevant dimensions might 
be size, colors, shape features, and so on. Each object will be represented as a point 
in that space. Of course, we are interested in neural representation, and in particular 
how neuronal processing can underlie cognition and behavior. We can conceive of 
a neural representational space as a very high multidimensional space, with (for 
example) each neuron in a region represented by a different axis in that space, and 
the activity of all neurons in that region at a time defining a particular point in that 
space. Supposing that region is a region involved in visual processing, responses 
of that population of neurons to different visual stimuli will correspond to different 
points in that space, and we could examine how that activity vector moves around 
in the neural representational space given defined changes in the visual stimulus. 
To link this to the basic notion of computation, understanding neural representation 
(say, in a brain region) would involve understanding the dimensions of the semantic 
space there represented (equivalent to the interpretation function), and the mapping 



5926 Synthese (2021) 199:5917–5935

1 3

from the neuronal representational space to the semantic (equivalent to the realiza-
tion function).

Although fMRI gives us a measure of brain activity, it does not give us access to 
the individual activity of neurons in a brain region, but rather to roughly the aggre-
gate activity of neurons in a defined region of brain tissue. We could therefore con-
struct another multidimensional space in which the activity of each voxel mapped 
to an axis in that space. Of course, the dimensionality of such a space would be 
much smaller than the neural representational space, and many different axes of the 
former space would be collapsed into the latter. If all neurons in a voxel were tuned 
to different individual features and the set of stimuli ranged over all these features, 
one would not expect to see differences across different stimulus conditions. How-
ever, we know that neurons with similar functions tend to be spatially located near 
one another, and we do tend to see reliable differences across different conditions in 
many brain areas, indicating some selective tuning to task-related parameters, even 
at the relatively coarse resolution of fMRI. For example, Kamitani and Tong (Kami-
tani and Tong 2005; Tong et  al. 2012) were able to determine the orientation of 
a stimulus from patterned fMRI activity, despite the fact that voxels are orders of 
magnitude bigger than the cortical columns that encode orientation. Their success 
was based upon net signal arising from local anisotropies in the cortex. Just what 
and how much task-related information can be discerned at the level of the voxel is 
unknown, and it is sure to differ between areas, and to depend upon scan resolution.

5  What does RSA tell us about neural representation?

Does RSA identify representations in the brain? The answer here is: partially. We 
can begin by asking whether there is a distinction between vehicle and content. A 
simple reading would say yes: the voxelwise activity pattern is the vehicle, and the 
content is illuminated both by looking at the external cause (or effect) of the neural 
activity as well as by examining the covariation of the pattern with the content of the 
structure to which the activity is being compared (i.e. the target of the RSA). In this 
sense the primary metric of the second-order comparison is iso/homomorphism, for 
the degree to which the content is similar in structure to the domain with which it is 
being compared is indicative of its representational content, derivative on the con-
tent ascribed to that structure. The content ascribed to the primary representations is 
often ascribed on the basis of a theory of content, such as one (or several) described 
above. As in cognitive science more generally, in neuroimaging the theory by which 
content is ascribed is assumed rather than explicated.

For a realist about mental representation, however, voxel activation values are not 
a proper vehicle of content, for they do not meet the realist criteria necessary to 
support a computational role. Representational vehicles must have causal powers, 
and voxel values emphatically do not. The real vehicles of content must be select 
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neural subpopulations that are responsible for the anisotropies of activation seen 
across conditions. Thus, in neuroimaging we do not get direct access to vehicles of 
content, but must infer their presence, from the observation of reliable, theoretically-
meaningful (seeming) patterns of activation. Voxelwise activities are only proxies 
for representational vehicles: they tell us where to look for them with other methods, 
but do not individuate them.

Even if we only get vehicle proxies, RSA does prove informative about content 
insofar as content is encoded or reflected in structural relationships.3,4RSA with neu-
roimaging suggests how representational machinery is structured across the cortical 
surface at a macroscopic level, and is able to discern multiple representational spaces 
within the same tissue, in line with hyperdimensional theories of representation. In 
some instances, these suppositions get confirmation, as in when the results delivered 
with single-unit recording corroborate RSA results. For example, in a study of mon-
key and human IT, the similarity matrix among a large stimulus set of animals was 
strongly isomorphic to that derived from individual neuronal firing rates in monkey 
IT when monkeys were exposed to the same stimulus set (Kriegeskorte et al. 2008a, 
b). The implication is that the large-scale organization of neurons representing the 
animal hierarchy reflects the finer-grained cellular receptive field properties. The 
extent of these similarities suggests that both species represent categorical structure 
among objects similarly. And as we have independent reason to think that our early 
visual systems are highly homologous in terms of basic neural function, the fact that 
the structural relationships are so similar in IT provide further reason to infer that 
vehicles for object representation in this area is similar as well. Among other things, 
this provides (defeasible) reason to interpret single cell level neural data gathered 
from monkeys, which we can obtain, as informative about neural coding in human 
IT, information which in general, we cannot obtain directly.

One might wonder why blood flow can be a proxy vehicle for what is in reality a 
much finer grained vehicle (most likely firing rates or patterns of select populations 
of neurons, whose precise characterization we do not yet know). It may also seem 
puzzling that there are similarity relationships between brain measurements as dif-
ferent as those of individual cell responses to stimuli and of aggregate activity in that 
region to the same stimuli. It certainly could be otherwise: one could imagine that 
even if neural firing rates reflect categorical similarity, the way these neurons are 
distributed within regions of cortex might be relatively homogeneous, so that at the 
resolution of fMRI voxels, no relationships are found between blood flow changes 
and categorical structure. However, these structural parallels apparent between dif-
ferent forms of measurement would be less surprising if the brain uses topography 
in a multidimensional space as a way of organizing and processing content (so, for 

3 RSA yields results which are informative without being determinative: We can assess representational 
structure relative to a hypothetical model or relative to competing hypotheses, but cannot rule out other 
interpretations that share representational geometries.
4 Although the vehicle and content questions are logically separable, in practice they are interdependent. 
You cannot investigate content without identifying the vehicles that carry the content, but a way of iden-
tifying the vehicles in natural systems is to look for structures embodying content-relevant relationships 
in causal pathways that are candidates for representing.
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example, that similar content undergoes similar processing), and if projection of that 
multidimensional space onto the voxel space is nonhomogeneous. If these condi-
tions hold fMRI signals can reflect content-related structure, and thus also function 
as a proxy vehicle for representations. In other words, widespread structural similar-
ity across brain regions and across species suggests that the brain harnesses repre-
sentational structure in its computational solutions to the problems of cognition at 
multiple scales.

Another way RSA could be leveraged to inform us about processing is to suggest 
what kind of transformations occur between closely related stages of processing. If 
RSA reveals a stimulus or task feature that at one stage of processing contributes 
to differences in the similarity space, but at a next stage that feature appears as an 
invariant, we can make inferences about the underlying computations and/or inter-
vening representations. For example, in early visual cortex face stimuli do not clus-
ter together in RDMs, but in higher levels of the visual pathway, such as IT, they 
form a distinct similarity cluster. In a later stage, similarity measures for individual 
faces do not differ even when the face stimuli are presented in different orientations 
(Guntupalli et al. 2017), suggesting that identity is computed between these stages 
of the visual hierarchy.5 By allowing us to probe which kinds of stimuli or behaviors 
result in invariances in the similarity matrix, and to look for the emergence of such 
invariants, we can infer where and when in the processing hierarchy certain higher-
order properties are computed/extracted from the signal. When these invariants are 
part of a system that subserves behavior and are correlated with observed behavioral 
capacities, we have a prima facie case for function.

Although the content of neural representations can sometimes be understood by 
reference to objects causally related in the world, such as in the case of object recog-
nition in IT cortex, sometimes the content is harder to specify – neural content need 
not be semantically transparent. In those cases content is better ascribed by its func-
tional role. Searching for identifiable transformations or the emergence of invariants 
are ways of doing this. Although low level features or intermediate representations 
may not map neatly onto the way in which we categorize or conceptualize things, 
similarities in RSA, and also in deep learning networks and intermediate-level brain 
regions, have representational status because they are part of system that mirrors or 
encodes structural features of the world, reducing the effective search space, even if 
their content is not easily parsed or identified (see Poldrack, this issue).

The problem of misrepresentation is more difficult, but tractable nonetheless. 
In the philosophical literature it has been claimed that no sense can be made of 
misrepresentation without the ability to assign determinate content. As noted, func-
tional accounts and structured maps imply norms: the system must be systemati-
cally organized to function properly. The fact that representational geometries tend 
to be found across persons and even species, and that they can be elicited in many 
different brain areas gives us a handle on understanding misrepresentation. Finding 

5 Here we have evidence from anatomy that there are stages of processing hierarchically organized, and 
thus can infer that representations at one stage causally affect the next. But fMRI does not provide direct 
evidence of causal connection.
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discernable representational geometries across regions, combined with knowledge 
of microanatomical local structure gives us reason to posit a norm. If, for example, 
there is a gradient of predacity in IT (Connolly et  al. 2012), and a stimulus of a 
mouse leads to activation in the high-predacity area, along with lions, tigers, and 
bears, yet it was situated properly in the representational geometry at other levels 
of the hierarchy, we could say the subject misrepresented the mouse as being dan-
gerous.6 This interpretation would be strengthened if we found the representation 
played a role in behaviors at odds with the agent’s goals (Isaac 2013).

RSA provides a means of characterizing content, and thus postulating determi-
nate content, especially in the second-order comparison, which can be chosen by 
the experimenter. Systematic deviations could indicate a lack of correspondence to 
these content ascriptions, whereas punctate deviations in individuals could indicate 
misrepresentation.

To sum up, RSA indicates that we can infer representational contents on the basis 
of proxy vehicles. It further suggests that the cortex encodes some semantic fea-
tures in a map-like way, with semantic relationships mirrored in similarity of pat-
terned activity. Moreover, computational transformations can be inferred by com-
paring contents across regions. Interestingly, this suggests that, at least at the scale 
of fMRI, neural representation looks more analog than digital, contra the kind of 
computational picture espoused by classic computationalists, such as Fodor. Rather 
than contents being arbitrarily associated with symbols, contents are structured and 
represented systematically in cortical regions, allowing inferences about representa-
tion on the basis of representational geometry.

6  Provisional representations: What doesn’t RSA tell us

I call the kinds of representational structure indicated by analysis of fMRI activation 
patterns provisional representations. They have many of the qualities of mental rep-
resentations as realized in neural hardware, yet on some crucial dimensions there is 
just a promissory note. Importantly, RSA yields information about representations that 
leaves open the nature of the vehicles of content. We know the vehicles of content are 
not voxels, since these are mere constructions of the experimenter. We do not know 
which populations of neurons are responsible for carrying the content elucidated in 
the similarity matrices, and what other information they carry that is inaccessible to us 
at the spatial scales that fMRI provides. How much of a problem is that? Some might 
argue that unless we have access to the actual vehicles, we cannot make a case for rep-
resentations: as Egan has said, “No vehicles, no representations.” She has allowed that 
vehicles can be inferred,7 and thus one can still make the case for representations with 
presumptive or proxy vehicles. RSA tells us that the brain regions contributing to the 
analysis carry the relevant information at the scale of fMRI.

A second, perhaps more troubling issue, is that we don’t know whether or how 
the information that informs the RSA is read out by later processes. Although RSA 

6 This presupposes that there is a readout that respects the representational geometry.
7 Egan, personal communication.
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demonstrates that structural information is available in a signal, it does not guarantee 
that that information is made use of by downstream processes. It is this that seems to 
constitute the biggest failure of RSA to provide access to representations, for we lack 
even a candidate for a proxy in this respect. It is an existence proof for the presence 
of the relevant information, but not of its use. Unless information is consumed by the 
downstream processes, it is epiphenomenal to behavior. And even if we have evidence 
that information of this sort is available to later processes, we do not know that the read-
out mechanisms operate on the scale picked out by the resolution of the fMRI study.

The reservations we have due to this limitation can be assuaged by tying our 
experiments closely to behavior. For example, Charest et al. (2014) performed RSA 
on fMRI data from IT when subjects were shown familiar and unfamiliar objects. 
Similarities between the representational geometries were clear for all subjects. 
Moreover, they showed that individual differences in the representational geometries 
predicted individual differences in similarity judgments by those individuals for 
familiar objects. They hypothesized that the representation of these objects was due 
to idiosyncratic experiences of the subjects with the objects, which also underlay 
their similarity judgments. While causality is not demonstrated here, it is inferred 
from the close correlation with individual differences. Similar causal inferences 
could be made by treating an experimental manipulation as the intervention, and 
seeing if and where similarity emerged in RSA.

The availability of correlational evidence without evidence for causal efficacy 
is one that plagues fMRI and other neuroimaging studies more generally: in the 
absence of interventions, we lack proof that the activations we see reflect informa-
tion that is causally relevant. That is, fMRI investigations of representation give us a 
“how possibly, but not necessarily a “how actually” story. Although I fully acknowl-
edge this limitation, I suggest we recognize that no tool in the neuroscientist’s toolkit 
is without limitations, and this work presents us with a clear hypothesis to test with 
other techniques. Evidence of causal involvement is thus a crucial part of the larger 
scientific project.

Indeed, it is worth pointing out here that the multidimensional framework out-
lined here is useful for analysis of convolutional neural nets (CNNs) or deep learn-
ing networks, and that structures in such networks trained to do cognitive tasks that 
humans and animals do are similar to those inferred from neural data (Khaligh-
Razavi et al. 2017). Thus, insofar as these structures in CNNs are taken to be evi-
dence of representation, so should representational geometries found in fMRI data 
(Poldrack, this issue; Yamins et al. 2014; Yildirim et al. 2019). One difference is that 
causality is relatively easy to evaluate in CNNs, in contrast to fMRI. Thus, evidence 
for causality of representations in CNN models may be useful in arguments for cau-
sality with regard to provisional representations in fMRI data.

7  Representations in psychology

As we have seen, RSA gives us some reason to attribute representational status to 
fMRI measurements, but fails to satisfy all desiderata. In case one is tempted to deny 
the patterns seen in fMRI representational status because of these lacunae, it would 
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be useful to compare the fMRI results with other data in psychology that seems to 
unquestionably embrace representational talk. Consider, for example, any of a num-
ber of commonly used methods in cognitive psychology that measure reaction times 
or some other behavior (eye movements, for example) in order to make inferences 
about the existence of mental representations and/or their properties. These kinds of 
experiments, it seems, while central to the discipline, are on no firmer footing than 
RSA is in revealing the inner workings of the mental. Take, for example, the work 
on mental rotation by Shepard and Metzler (Shepard and Metzler 1971) and sub-
sequent studies using similar paradigms.8 In their initial studies, Shepard and Met-
zler found that the time it took for subjects to judge whether two two-dimensional 
visual projections of three-dimensional geometric objects were of identical or mirror 
reversed objects, scaled linearly with the angle of rotation, and, perhaps more inter-
estingly, reaction times were similar regardless of whether the requisite rotation was 
within the visual plane or involved the third (depth) dimension. These reaction-time 
measurements led them to posit the imaginative construction and mental rotation of 
3-dimensional mental shape representations. Their initial results were taken to be 
of sufficient interest that the study made the cover of Science. Although the initial 
paper did not mention representation, but rather phenomena that could be explained 
by reference to representation such as imaginings of three dimensional objects, later 
interpretation took  these results as evidence for analog and spatial (image-like) 
mental representations, and what Shepard termed a “second-order isomorphism” 
between image and object. While these have not been immune to criticism (Carpen-
ter and Just 1978; Just and Carpenter 1976; Pylyshyn 1973), the criticisms have gen-
erally been of the form that ordinary scientific discourse has taken, concerning the 
characteristics of these mental objects, and ultimately leading to new experiments 
to rule out alternative interpretations (Shepard and Cooper 1982) rather than to dis-
missal of their scientific relevance, or to discussion about whether the data supports 
the existence of such mental representations. Indeed, subsequent experiments also 
relied upon reaction time methods.

Notice, however, that the Shepard data gives one no access to representational 
vehicle either. One merely infers that there is a 3D mental construct that the subject 
rotates, though one can calculate from the data the limits to the speed of rotation. In 
this way, the chronometric analysis is even more removed from the representation 
itself than is data from RSA with fMRI. Reaction times give one no access to the 
vehicle of representation at all. Instead, they give one a reason to posit a certain kind 
of content (a 3D as opposed to 2D shape) and perhaps something about the nature 
of the representational vehicle (image-like as opposed to digital).9 The positing of a 
representation is abductive.

8 Interestingly, it was Shepard who was one of the first to apply representational geometry methods in 
psychology, using similarity as a way to characterize content (see Shepard 1987).
9 The Shepard data has often been interpreted as indicating that the relevant mental representations are 
image-like. But in the multidimensional framework discussed here, the RT data could be interpreted as 
being consistent with the dynamics of a movement of an activation vector through a space homologous 
with 3-D rotational space. In such a framework the clear distinction between image-like and digital or 
discursive tends to fall apart.
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Similarly, RSA of fMRI data provides correlational evidence for the existence 
of a structure with structural similarities to behavioral measures. But in addition to 
what the Shepard method provided, RSA points to a brain area as a plausible can-
didate for the vehicle—an embodiment of what in Shepard was merely an existence 
proof.

What differs between the mental representations inferred by Shepard and those 
posited with RSA is that the posited representations in the Shepard case are causally 
implicated in the explanation of behavior. Reaction time on a trial-by-trial basis is 
argued to be dependent upon the angular distance between the two stimuli: the men-
tal manipulation of the mental construct that causes the RT curve to vary as it does. 
The same can be said for the Charest et al. study mentioned above, in which individ-
ual differences in similarity judgment correlated with individual differences in rep-
resentational geometry. In contrast, most uses of RSA do not necessarily compare a 
neural representation directly to a behavioral measure. For example, the comparison 
between the representational geometries of the two face patches discussed earlier do 
not involve specific behaviors, though they make reference to a behavioral capacity 
demonstrated by the organism: the ability to recognize individual faces regardless 
of their angle of presentation. And sometimes RSA is explicitly used to compare 
neural representations to trial-by-trial behavioral variations. For example, when pat-
terns of activity in IT during object recognition are found to correlate closely with 
explicit similarity judgments, the implication is that the behavioral measures reflect 
computations reliant on those representations. Perhaps what that points to is a sug-
gestion that more effort be made to link representational geometries to one another 
and to behavioral measures. But even in the absence of such evidence, it seems such 
similarity is defeasibly evidence of representation.

8  Conclusion

Egan (2018) discusses the important role in cognitive science for using representa-
tion ascriptions as a tool for discovery. This is perhaps the primary role for RSA in 
cognitive neuroscience. As an example, a number of regions that respond selectively 
to faces have been found in human visual cortex. All have been hypothesized to play 
a role in face processing, and some, such as the FFA are causally implicated in face 
processing as well, with reports of prosopagnosia resulting to lesions in this area, 
and stimulation leading to changes in phenomenology of face perception, but not 
object perception (Parvizi et al. 2012; Schalk et al. 2017). RSA has indicated, too, 
that view invariance is computed at a specific level of the cortical hierarchy. It will 
fall to researchers with more fine-grained techniques at their command to elucidate 
the neural codes at both these levels, and, we hope, the underlying computations that 
transform face-related information between these levels. RSA has also been used to 
identify homologous areas in monkey cortex, which will allow such targeted explo-
rations. In other words, RSA is exceptionally good at identifying candidate hypoth-
eses and candidate regions for more low-level, concrete neuroscientific work on rep-
resentational properties. But the identification of vehicles and specific contents will 
require substantiation by other methods.
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It is a mistake to measure the value of neuroimaging purely in what can be con-
cluded on the basis of neuroimaging studies alone. Neuroimaging is one tool in a 
growing toolkit of diverse and ever-more-powerful techniques, none of which yields 
all the information one would need to understand the neural basis of a cognitive 
process. What neuroimaging can provide is a type of behavior-related information 
that is very difficult to get with any other available methods. Despite its centrality, 
it is not information that stands alone, both in that it cannot be interpreted without 
relying on information from other techniques and modalities, and in that while it can 
direct future research using other methods, it cannot supplant it.

Thus, although RSA does not provide all the information we would need to iden-
tify the neural basis of psychologically-potent mental representations, it gives us 
candidates for these representations, and allows for targeted hypothesis-driven neu-
roscience with more fine-grained techniques. If one thinks that Shepard’s famous 
mental rotation experiments are psychologically interesting, one should also think 
model-based fMRI analyses to be. 
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