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Abstract
Philosophers now seem to agree that frequentism is an untenable strategy to explain
the meaning of probabilities. Nevertheless, I want to revive frequentism, and I will
do so by grounding probabilities on typicality in the same way as the thermodynamic
arrow of time can be grounded on typicality within statistical mechanics. This account,
which I will call typicality frequentism, will evade the major criticisms raised against
previous forms of frequentism. In this theory, probabilities arise within a physical
theory from statistical behavior of almost all initial conditions. The main advantage
of typicality frequentism is that it shows which kinds of probabilities (that also have
empirical relevance) can be derived from physics. Although one cannot recover all
probability talk in this account, this is rather a virtue than a vice, because it shows
which types of probabilities can in fact arise from physics and which types need to
be explained in different ways, thereby opening the path for a pluralistic account of
probabilities.
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1 Introduction

Frequentism is dead. This seems to be the consensus among contemporary philoso-
phers. A recent textbook on the philosophy of probabilities phrases it this way:

Although the frequency view remains popular outside philosophy—e.g. among
statisticians—it is not the subject of much, if any, active research. (Rowbottom
2015, p. 112)

Frequentism may be useful for all practical purposes for statisticians, although it
does not convey the true meaning of probabilities, since philosophers have success-
fully exposed the underlying unsurmountable problems. Therefore, active research for
developing frequentism has been discontinued. Hájek (1996) prominently debunked
finite frequentism; a decade later followed his criticism of hypothetical frequentism
(Hájek 2009). Recently, La Caze (2016) agreed that any version of frequentism is
doomed to fail, at least in providing a comprehensive understanding of probabilities.

I think we can breathe life back into frequentism and develop it into a serious
account of probabilities. I intend to defend frequentism against these criticisms and
modify it in such away that it incorporates elements of finite frequentism, hypothetical
frequentism, and the classical interpretation of probabilities. I will call this account
typicality frequentism, which defines, in brief, probabilities as typical long-term fre-
quencies based on the law of large numbers.

Typicality has been developed within Boltzmann’s reduction of thermodynamics to
statistical mechanics, but the scope of this notion is not particularly tied to statistical
mechanics (Wagner 2020). Wilhelm (2019) recently showed how typicality expla-
nations work in general by connecting them with Hempel’s deductive-nomological
model. Ideas along these lines to derive probabilities from typicality as special kinds
of frequencies have been presented by Maudlin (2007a, 2018) and sketched in the
literature on Boltzmann’s statistical mechanics and the de Broglie–Bohm quantum
theory (for a brief overview, see Goldstein 2012), but there has been no work con-
trasting this kind of frequentism with the traditional theories of frequentism in order
to establish typicality frequentism as a serious alternative theory in its own right.

Inmy opinion, the biggest methodological error made by the forefathers of frequen-
tism, like Reichenbach (1949/1971), Venn (1888), and vonMises (1928/1957), was to
interpret probabilities as frequencies from empirical behavior: they started with how
we talk about probabilities and tried to underly an interpretation in terms of frequencies
that supports their empiricism (Gillies 2000, Ch. 5). Instead, I propose a strategy from
a physical theory to probabilities: starting with a deterministic fundamental physical
theory and analyze how this theory introduces probabilities from statistical behavior.
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Then we may recover how our general use of probabilities is backed up by physics.
But, as it turns out, some ordinary ways of talking about probability will not be recov-
ered within this approach. To account for these, we are free to introduce another,
complementary interpretation of probability—becoming pluralists about probability.
The method I will be using to define probabilities is the same statistical method that
has been used to justify the thermodynamic arrow of time in statistical mechanics or
the arrow of time in electrodynamics (North 2003).

2 Typicality frequentism

The idea behind typicality frequentism is to apply the tools from statistical mechanics
to explain how probabilities arise from deterministic physical dynamics. Maudlin
(2018) is confident about this strategy, “The challenge of deriving probabilities—or
quasi-probabilities, probabilities with tolerances—from an underlying deterministic
dynamics can be met. Typicality is the conceptual tool by which the trick is done.”
An important predecessor of typicality frequentism, apart from the different versions
of frequentism, is the theory of probability by Johannes von Kries, laid out in his
Principien der Wahrscheinlichkeitsrechnung (1886, engl. Principles of Probability
Theory). As von Kries’s view seems to be best characterized as objective Bayesianism
(Reichenbach 2008, see p. 16 of the introduction by Eberhardt and Glymour in) or
as a predecessor of the logical interpretation (Fioretti 2001), subjective and objective
aspects are intertwined. For my purpose, I want to lay out in more detail the objective
parts of von Kries’s account, because they contain some essential features of typicality
frequentism, although von Kries criticized the frequentist theories at his time (Zabell
2016b, section 3).

Influenced by the physics of the 19th century, it was important to von Kries to
distinguish between laws of nature and initial conditions (Pulte 2016). Unlike Laplace,
who reduced probability to incomplete knowledge of the initial conditions, von Kries
built up probabilities from objective variations of initial conditions, and he called the
sets of admissible initial conditions “Spielräume,” which are best translated as “sets
of possibilities”.1 More quantitatively, von Kries defined the probability for an event
E in the following way (Pulte 2016, see section 5, for this reconstruction). Let us
say that the event E is brought about by the set of initial conditions C (given certain
laws of nature) and the set of initial conditions that do not bring about E is C∗ (C
would be then the “Spielraum” or set of possibilities for E). The probability p for E is
then defined, in the Laplacian sense, as the quotient of the favorable initial conditions
leading to E over all possible initial conditions by measuring the Spielraum and its
complement by an appropriate measure m:

p := m(C)

m(C) + m(C∗)
.

1 Eberhard and Glymour call them “sets of ur-events” because they are the irreducible basis for von Kries’s
probabilities (see Reichenbach 2008, Introduction, section 4.2).
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Although the objective aspect of probabilities mentioned here comes from the initial
conditions of the physical process, it is not a frequentist account. Moreover, this
reconstruction of von Kries’s theory may incline us to think that the Spielräume are
unique and always tied to a physical theory, but von Kries was in this respect more a
pragmatist and sometimes even a skeptic (see the discussion in Pulte 2016, section 5).
Depending on the knowledge of the agent building a probabilistic model, the space
of possibilities may change and may not be a space of initial conditions of a physical
theory but rather a more generalized sample space; thus, the measure m may not be
unique either.

I share von Kries’s intuition to reduce probabilities to certain basic events, but I
endeavor a more objective account of probabilities always embedded into physics
and using only the tools of physics in defining probabilities. I, therefore, propose that
physics offers a unique space from which to derive probabilities as typical long-term
frequencies. This is the fundamental space of physics, likephase spaceor configuration
space (depending on the physical theory). Here, I agree with the method of arbitrary
functions (or more adequately named the range account of probabilities by Rosenthal
2016), which can be regarded as a modern elaboration of von Kries’s theory. But I
deviate from the range account by incorporating typicality as a central notion to define
probabilities; in a similar fashion, it is possible to explain the thermodynamic arrow
of time as arising from generic initial conditions of the universe.

2.1 Typicality and the arrow of time

Scrambled eggs never unscramble, a shattered vase never reassembles itself, and ice
cubes never un-melt. Although our basic physical laws are time-reversal invariant,
that is, the time-reversed process of a physically possible process is also physically
possible, such time-reversed processes are not observed. Boltzmann proposed a solu-
tion to this problem by distinguishing microscopic from macroscopic behavior and
systems with few degrees of freedom from systems with many degrees of freedom. It
is the microscopic behavior that is time-reversal invariant, and one only finds directed
processes on the macroscopic level, when systems have many degrees of freedom.
If we have a sequence of photos showing a system of few degrees of freedom, like
two rotating molecules, we would not be able to distinguish forward from backward
behavior, but if we have a sequence of photos of a glass bottle thrown on the ground,
we would distinguish one direction as the true one.

Boltzmann gave an explanation in terms of statistics why such behavior is not
observed. The short answer is due to the many degrees of freedom of a macroscopic
process: one had to finely orchestrate all the many microscopic states of the particles
constituting a macroscopic object in order to yield a time-reversed process. If we don’t
interfere thismeticulously (and inmost cases we cannot do so), then a familiar directed
process comes about. In other words, almost all initial conditions of a macroscopic
system yield the familiar directed processes; only very special initial conditions yield
the reversed process. So given broken glass on the floor, there are many more states
of particles constituting the pieces of glass such that these pieces remain on the floor
than those states that would converge the pieces into a brand-new bottle.
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Fig. 1 Clusters in phase space
according to thermodynamic
macrostates and the measure of
typicality, as depicted by Roger
Penrose (1989, p. 402). Thermal
equilibrium is by far the biggest
macrostate in phase space

This behavior can be phrased by means of typicality: a physical behavior is called
typical, if almost all initial conditions yield this behavior (see, for instance, Goldstein
2001; Lebowitz 2008;Myrvold 2016;Volchan 2007). And a physical behavior is called
atypical, if almost none of the initial conditions yield this behavior. So, it is typical
that broken glass remains broken, and it is atypical that scrambled eggs unscramble.

Boltzmann’s ideas on the irreversibility of physical processes have recently experi-
enced a renaissance among philosophers in which the notion of typicality has become
central (see, for instance, Barrett 2017; Frigg 2009; Lazarovici and Reichert 2015,
2019). The notion of typicality, as we introduced it, is still too imprecise for quanti-
tative use in physics. As Wilhelm (2019) rightly emphasizes, there are many ways to
formalize “almost all.” The right way to do so in statistical mechanics is by means
of a measure over phase space. Phase space is constructed from a set of particles
in three-dimensional space.2 Consider N particles in three-dimensional space (if we
have a realistic macroscopic body, N is of the order of Avogadro’s constant, that is,
approximately 1023). Since a particle is completely described by its position x and
momentum p, we can summarize the complete physical state of N particles as a vec-
tor (x1,p1, x2,p2, . . . , xN ,pN ), and this vector is one point in phase space, which
has roughly 6 × 1023 dimensions. So every point in phase space, each microstate,
represents a set of N particles with their precise positions and momenta. In order to
get macrostates, one needs to divide phase space P into disjoint subsets, where each
set represents a macrostate (see Figure 1). So a macrostate arises from a map M that
assigns to every microstate X a macrostate M(X) corresponding to one of the subsets
PM ⊆ P according to the partition—M(X) is the macrostate of X if X ∈ PM .

The tool that ultimately explains irreversible behavior is Boltzmann’s definition of
entropy assigned to every point in phase space:

SB(X) := kB ln|PM(X)|, (1)

2 For simplicity’s sake and to be as close to Boltzmann’s reasoning as possible, I assume Newtonian
mechanics as the microscopic theory.

123



5260 Synthese (2021) 199:5255–5284

where kB is Boltzmann’s constant and ln is the natural logarithm. The main part of
Boltzmann’s entropy is |PM(X)|, which deserves some elaboration. In order tomeasure
the sizes of the subsets PM(X), one needs to introduce a measure λ, which assigns a
number to every such subset. Conventionally, if the system is finite, one normalizes
the measure to 1 such that the size of the entire phase space would be 1. In the entropy
formula, |PM(X)| denotes the size of PM(X) according to the appropriate measure λ,
that is, |PM(X)| = λ

(PM(X)

)
. The only purpose of the measure λ is to tell us which

sets are big and which are small, in order to identify typical and atypical behavior; in
this sense, it is a measure of typicality. Since for real physical systems, like gases in a
box or melting ice cubes, the phase space volume of thermal equilibrium has by far the
largest volume according to the measure of typicality and so it has the highest entropy,
we observe systems that are not in equilibrium (low entropy SB) to reach equilibrium
(high entropy SB), whereas we do not see a system going from a high entropy state to
a low entropy state, because the low entropy states are much smaller in phase space.

Moreover, if we zoom into the phase space region of a low entropy macrostate,
a melting ice cube, for example, almost all microstates will move to a macrostate
with higher entropy and ultimately to equilibrium. It is physically possible that a low
entropy macrostate goes into another low entropy macrostate (by itself), but there
are very few microstates within this macro region that do that. This is Boltzmann’s
explanation why we observe only one direction of a physical process and not the
time-reversed process, although this behavior is physically possible according to the
time-reversal fundamental laws. The symmetry is broken by a statistical argument,
that is, by distinguishing those initial conditions that yield typical behavior from those
that yield atypical behavior.

In classical mechanics, one normally uses the Liouville measure, a natural general-
ization of the standard Lebesgue measure on three-dimensional space to phase space,
as the measure of typicality. But in order to distinguish small sets from big sets, other
measures would do the job aswell. Indeed, everymeasure that is absolutely continuous
with respect to the Liouville measure will agree on the same physical behavior to be
typical or atypical.3 Moreover, there is a certain vagueness intended in the notion of
typicality that is to be reflected in the mathematical formalization. The sets A yielding
typical behavior are those that have measure 1 or close to one, that is, λ(A) = 1 − ε,
where ε is a very small number also depending on the application. Similarly, for atyp-
ical behavior where the relevant sets may have a measure λ(B) = 0 + δ for some
small δ, which depends on the specific application.4 This will become important when
we apply typicality and its mathematical formalizations to develop a new theory of
frequentism.

3 A measure μ is absolutely continuous with respect to a measure λ (symbolically μ � λ), if all the null
sets of λ are null sets of μ, that is ∀X (λ(X) = 0 ⇒ μ(X) = 0).
4 There has been a long debate to make Boltzmann’s argument more mathematically and conceptually
precise. For our purpose, we do not need to dive into these details (see, e.g., Volchan 2007; Frigg 2009;
Werndl 2013; Lazarovici and Reichert 2015; Myrvold 2019.)
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2.2 Probabilities as typical frequencies

There are two steps to present the theory of typicality frequentism. First, I need to
elucidate the role of random variables, in a way that differs from standard accounts
of probability theory (Sect. 2.2.1). In typicality frequentism, random variables are
primarily used to bridge the gap between a physical theory and the mathematics of
probability theory. Second, this account of random variables is needed to interpret
the law of large numbers in such a way to define probabilities as typical long-term
frequencies (Sect. 2.2.2).

2.2.1 Random variables and their relation to physics

Consider a box with 1000 balls; the balls are either blue, green, or red. Let’s say 500
balls are blue, 300 are green, and 200 are red; in other words, 50% are blue, 30%
are green, and 20% are red. With this information we can build a simple stochastic
model. The set of balls forms the sample space� := {1, . . . , 1000}. From this sample
space, we can define a coarse-graining function X : � → {B,G, R}, which assigns to
every ball a color B=blue, G=green, or R=red. Functions of this kind are usually (and
unfortunately misleadingly) called random variables. There is indeed nothing random
about them; their only use is to abstract from the sample space, when one is interested
in specific features of the members of the sample space. Next, one determines the
distribution of the random variable. This is a function ρX : F(X) = {B,G, R} →
[0, 1], such that ρX (B) = 0.5, ρX (G) = 0.3, and ρX (R) = 0.2. This illustrates the
standard way of building a probability space (see Fig. 2).5

The distribution ρ is normally called a probability distribution, for it assigns “prob-
abilities” to certain sets of the sample space. But this would be putting the cart before
the horse; at this stage, we do not have a theory of probabilities, just a certain recipe
for building a mathematical model. This particular model of colored balls is concep-
tually very simple, because the numbers 50%, 30%, and 20% are mere proportions of
balls having the same color. Nevertheless, some work is to be done to interpret these
numbers correctly as probabilities, as we will be doing in the next subsection, when I
fully lay out typicality frequentism.

The sample space can be in principle any kind of (mathematical) space, and in
general no particular attention is paid to the sample space in textbooks, because in order
to make correct predictions the images of the random variables and the probability
distribution are sufficient. I want to go beyond a pragmatic attitude toward probability
theory, although it is justified by its success in application, and derive probabilities
instead from physical behavior. This is where von Kries’s idea of sets of possibilities
or ur-events comes in. He wanted to prove that probabilities can be derived from
certain compositions of ur-events—random variables, in his account, are defined on
these spaces. Although he intended an objective theory of probability, von Kries had
to rely on a subjective element in order to justify that ur-events are equiprobable. This
element is the Principle of Indifference, which he advocated in the form of a principle

5 There are some subtleties when one generalizes this scheme to infinite sample spaces, like, forming a
σ -algebra. These are treated in standard textbooks on probability theory and are not the focus of this paper.
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Fig. 2 The ingredients of a
stochastic model and how they
relate to each other. Random
variables X abstract from the
sample space � by assigning
every member of � a real
number. Abstracting means that
X maps many elements in its
domain to the same number. The
image of X gets assigned a
number in the interval [0, 1],
which measures the size of the
sets that are mapped by X to the
same real number. It’s important
for typicality frequentism that all
random variables are ultimately
defined on phase space, which is
the fundamental sample space

of insufficient reason: Two events are equipossible if at the current state of knowledge
there is no reason to consider one of the events more likely than the other (Reichenbach
2008, p. 15).

It is, however, possible to retain ur-events without this subjective ingredient. There
is a distinguished sample space among all possible sample spaces, namely, phase
space, on which a typicality measure can be defined, thereby erasing the principle of
insufficient reason.6 I now make the following postulate: all random variables are
ultimately defined on phase space, because all statistical patterns are determined by
what happens in the fundamental physical space, which are governed by the laws
of physics. Hence, probability theory ultimately works because it is embedded into
physics, and it is so successful because it abstracts from many physical details, so that
when we apply probability theory we, in most cases, are not aware of the relations to
fundamental physics.

In the above example, the sample space�, which distinguishes the different balls, is
a coarse-grained space of phase space PB , which describes the balls’ actual positions
and velocities. These two spaces are also connected by a random variable XB : PB →
�. We can even go one floor deeper to the fundamental phase space. Every ball is a
macroscopic object consisting of zillions of tiny particles. The positions and momenta
of these particles are summarized in the fundamental phase spaceP f . Again a random
variable X f connects this fundamental space to PB , that is, X f : P f → PB .

Of course, this interpretation of probability theory will not be shared by subjective
Bayesians and other schools. My goal is not to provide a framework that suits all

6 If one were to embed this discussion in quantum theory, one would need to replace phase space with
configuration space.
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interpretations of probability but rather to interpret probability theory in such a way
that is best suited for a modern version of frequentism.

2.2.2 Probability from typicality

Let us now apply all this to demonstrate how probability arises from typicality. Recall
Boltzmann’s explanation that we observe certain physical processes only in one direc-
tion: it is typical that ice cubes melt and not unmelt because the universe started in a
low entropymacrostate, where most of the initial microstates yield a universe in which
ice cubes melt. A very similar kind of explanation can be given for the emergence of
probabilities from a deterministic dynamics. For simplicity’s sake, I’ll restrict myself
to coin tosses, which is a deterministic physical process following the laws of Newto-
nian mechanics, but it is, in principle, straightforward to generalize the main idea to
other physical processes and to other deterministic physical theories.

First, there is an observational fact about coin tosses, as there is an observational
fact about the thermodynamic behavior of ice cubes: When we toss a coin thousands
of times, we see that heads and tails appear approximately half the time, and the more
we toss the closer the fraction of heads and tails approaches 1

2 . For instance, Kerrich
(1946) noted to have tossed a coin 10,000 times of which heads appeared 5,067 times,
and it’s also said that Karl Pearson tossed a coin 24,000 times of which heads appeared
12,012 times (see Küchenhoff 2008, although no source for Pearson’s experiment is
given).

Second, recall from the thermodynamic arrow of time that almost all points in phase
space are in thermal equilibrium, where every point represents the physical state of
a gas in a box or the entire universe. When the system starts from a low-entropy
macrostate, statistical mechanics says that almost all phase space points within this
macrostate will follow a trajectory according to the Newtonian laws of motion that
leads to thermal equilibrium (for not too long time scales). If, say, � is this low-
entropy macrostate and P is the property “following a trajectory that leads to thermal
equilibrium,” then the property P is said to be typical in � (see Wilhelm 2019, p. 4,
for this general framework—we can imagine the property P to give a certain color to
phase-space points. Next, let’s say we are interested in the behavior of a subsystem
with respect to the initial conditions of a larger system, for example, gases in a box
with respect to the initial conditions of the entire universe. Then given the special low-
entropy initial macrostate of the universe, it is typical (within this macrostate) that
subsystems in this universe will reflect thermodynamically time-oriented behavior.
In other words, � would be the low-entropy initial macrostate of the entire universe,
and the property P would be “subsystems reflect thermodynamically time-oriented
behavior”—then again, almost all points in this macrostate would have the same color.

This relation between the behavior of subsystems and the initial conditions of the
universe is central to typicality frequentism. When we apply this picture to the coin
toss, we need to start with the phase space regions of the entire universe in which
coins exist. The relevant property P is “long-term frequencies of fair coin-tosses are
approximately 1

2”. It turns out that almost all universes share this property.
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All this can be mathematically captured by the (weak) law of large numbers:7

λ

(∣∣∣∣∣
1

N

N∑

k=1

Xk(x) − 1

2

∣∣∣∣∣
< ε

)

≈ 1,

where ε is an arbitrary small real number, N is taken to be very large, the random
variables Xk represents the kth toss, Xk(x) is the result of the kth toss determined by
the initial condition of the universe x , and λ is the measure of typicality. For typical
coin tosses, that is, for most universes in which coins are tossed, which translates
mathematically into λ(·) ≈ 1, the arithmetical mean of an actual run of tosses does
not deviate from 1

2 more than ε. So in any sufficiently long finite series of flips in these
generic universes the frequency of heads and tails will be in the range of 50%± ε for
some specific ε.

There is something different and something similar between finite and infinite
sequences. In both cases the fraction of heads and tails lies within ±ε from 50%,
but ε in the finite case cannot be arbitrarily small and the actual frequency to be
(typically) within the error bounds, whereas that is the case for infinite (or sufficiently
long) sequences according to the law of large numbers. However small ε is chosen,
it is typical that an infinite series of coin flips will have a limiting frequency within
50% ± ε. Note also that the finite case has to be sufficiently large in order to show
some robust behavior.8

Moreover, the law of large numbers mathematically says that a series of coin flips
that shows 100% heads and 0% tails after, say, 1,000,000 flips, although physically
possible, would be atypical:

λ

(∣∣
∣∣∣
1

N

N∑

k=1

Xk(x) − 1

2

∣∣
∣∣∣
> ε

)

≈ 0.

For any large ε you choose, there is a very small set of initial conditions that would
give a long series that deviate from 50% ± ε.

One may argue that the law of large numbers is a limit theorem and so doesn’t say
anything about finite cases, nor does it say anything about what is typical or atypical

7 Whenever I refer to the law of large numbers, I always mean the weak law of large numbers.
8 More precisely, there are three parameters in the law of large numbers that are fixed successively. First,
one chooses an ε, then a δ, and then sufficiently large N > N0 such that:

λ

⎛

⎝

∣∣
∣∣∣
∣

1

N

N∑

k=1

Xk (x) − 1

2

∣∣
∣∣∣
∣
< ε

⎞

⎠ > 1 − δ.

Such an N0 exists, because according to the Chebychev inequality

λ

⎛

⎝

∣
∣∣∣
∣∣

1

N

N∑

k=1

Xk (x) − 1

2

∣
∣∣∣
∣∣
< ε

⎞

⎠ > 1 − 1

ε2N
.
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(I thank an anonymous referee for raising these concerns). One needs to distinguish
between what the limit of a sequence is and how the sequence approaches the limit.
Finding out about the right convergence behavior is, for example, a major task in
functional analysis and mathematical quantum mechanics (Lieb and Seiringer 2010).
Here is a simple example to illustrate this point. The three sequences 1

n ,
1

ln(n)
, and

1
ln(ln(n))

go to 0 for n → ∞. These sequences, however, approach the limit differently:
1

ln(n)
goes to 0 more slowly than 1

n , and
1

ln(ln(n))
even more slowly than 1

ln(n)
.9 If

one traces a certain (standard) proof of the weak law of large numbers, one finds the
formula footnote 8, which can be itself proven and which tells us something about the
limit behavior of finite sequences. Then, given how typicality is defined via a measure,
one can indeed rephrase the law of large numbers, as well as the limit behavior of finite
sequences, in terms of typicality. I admit that this is not how the law of large numbers is
standardly understood, but it is a possible, and I think consistent, way of re-interpreting
what the law of large numbers says (see also Dürr et al. 2017).

After these elaborations, we can finally define what probabilities are in typicality
frequentism:

This definition has several important parts that I want to comment on:10

1. Definition of probability: One may argue that what follows is not a definition
but rather a sufficient condition for probabilities, because what the definition says
requires certain strong idealizations that may not be met. My reply is twofold.
For one, this is a definition of what probabilities are in typicality frequentism. For
another, if one takes a broader view of what probabilities are in general, then this
“definition” is indeed a sufficient (but not necessary) condition of probabilities,
since I am aware that other ways of talking about probabilities differs from a
frequentist account. I, therefore, advocate a pluralist theory of probabilities that
complements typicality frequentism in areas where typicality frequentism does not
give an account of probabilities.

2. State of affairs: I use “state of affairs” instead of “events” that get assigned probabil-
ities, in order not to confuse events with the standard technical term in probability
theory as a subset of the sample space or, more precisely, a member of the σ -
algebra. The tossing of a coin or a ball in roulette would be examples of “states of
affairs”.

3. The fundamental physical theory: In the ideal case, the fundamental physical theory
I refer to is the Theory of Everything, the unique physical theory that correctly
represents the world. Since we haven’t found this theory yet, other approximately

9 e.g., 1
1,000,000 = 0.000001, 1

ln(1,000,000) ≈ 0.072, and 1
ln(ln(1,000,000)) ≈ 0.38.

10 I thank an anonymous referee for raising many of the following points.

123



5266 Synthese (2021) 199:5255–5284

true deterministic physical theories can do the job, like Newtonian physics or the de
Broglie–Bohm quantum theory. The theory needs to be approximately true in order
to give rise to (at least) the right statistical pattern. Newtonian physics has been
proven successful in the domain of statistical mechanics, and it is good enough for
most macroscopic applications. It is also very unlikely that Newtonian physics and
statistical mechanics will be completely overthrown by future physical theories. It
is plausible to assume that both theorieswill be recovered in a kind of classical limit.
A candidate for a deterministic theory on the quantum level is the de Broglie–Bohm
pilot-wave theory, which also allows for extension to quantum field theory. Another
deterministic quantum theory is the many-worlds theory according to Everett. My
introduction of probabilities is closer to the de Broglie–Bohm theory, but also Hugh
Everett III wanted to base probabilities on typicality (Barrett 2017). I also think that
one can generalize typicality frequentism to indeterministic theories, which would
be a future project and would also require to distinguish this idea from propensities.

4. Uncorrelated events: The events Xk (or rather the random variables) that build up
the physical process need to be uncorrelated in order to converge. Standardly, the
law of large numbers requires the events of the stochastic process to be stochasti-
cally independent, which is a stronger condition than being uncorrelated. If the Xk ’s
were correlated (for example, the individual tosses of a coin), then onewould be able
to undermine the law of large numbers, and a unique limit may not exist. Or a limit
may exist but it would not be p, where p is technically the expectation value of Xk .

5. The frequency:The frequency that is supposed to approach the limit p is the relative
(finite) frequencyof the the physical process Xk : 1

N

∑N
k=1 Xk(x). For a coin toss, for

example, Xk ∈ {0, 1} representingwhen a coin lands heads Xk = 0 or tails Xk = 1.
So, 1

N

∑N
k=1 Xk(x) counts the number of tails and divides it by howoften one tossed

the coin. 1 −
(

1
N

∑N
k=1 Xk(x)

)
would then be the relative frequency for heads.

6. Almost all universes: One may think that one needs to quantify over all universes
in order to determine the probabilities in our universe, and, therefore, the probabil-
ities in our universe are also determined by what happens in other universes. The
first part is correct—that one needs to quantify over all possible universes—but
this doesn’t mean that the probabilities here are determined by the goings-on in the
other universes. Rather, one needs to compare what happens here to what happens
there, and the appropriate tool for this comparison is the measure of typicality.
If we are in such a world in which the assumptions of the law of large numbers
hold, then the probabilities are particularly robust and regular, because most of the
other universes show the same statistical pattern.11 The “atypical” worlds widely
diverge from the typical ones and also widely diverge among themselves. There is
no unifying or regular behavior to be expected in these “atypical” universes.

We need to distinguish between the definition of probability and the empirical sig-
nificance of this number.While the number p, is defined in terms of infinite sequences,
which cannot be instantiated in the real world, the empirical content of this number
arises from its relation to finite sequences:

11 There is one caveat: even if all the assumptions of the law of large numbers were fulfilled it is still
possible for a sequence to have a different limit or no limit at all; the initial conditions leading to these
sequences have measure zero though.
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Let me add the following comments:12

1. Status of the empirical significance of p: I take it to be a true statement about the
observed relative frequencies, and that this statement follows from the definition
of probabilities. It is, therefore, rather a corollary than a criterion, since a criterion
would be something closer to an axiom.

2. Sufficiently long series: The above definition of probabilities presupposes that the
physical process is “in principle infinitely repeatable”, but, of course, it doesn’t
and cannot say how often the real process is actually repeated. The probability
p is empirically significant because it gives bounds for the real observed (and
expected) relative frequencies. It may be unsatisfactory that the real process needs
to be “sufficiently long” without a precise numerical length. The appropriate length
of the series depends on many factors of the real physical set-up and the overall
physical process.

3. Interval p±ε: For real world cases, one has tolerances for the relative frequencies.
The question is now how robust these tolerances are. A small “uncertainty” of p
would also be consistent with the observed frequency being within the interval.
First, I assume the real p, the one given by the true Theory of Everything, to be
unique. Second, I assume that the approximately true candidate theories that are
not the Theory of Everything, like Newtonian physics or the de Broglie–Bohm
theory, etc., would give p’s that are very similar. So in this case, there may be a tiny
interval or at least a point-like spread of p’s. And we would have to say that there
are several ”candidate probabilities”. Perhaps one of them hits the true probability;
I assume, however, that these “candidate probabilities” are very close to the true
one and for all practical purposes indistinguishable.

In typicality frequentism, there are actually three ideas mingled together from other
interpretations of probability. The first ingredient is similar to the classical interpre-
tation of probability, which adds up different equally probable events according to
the principle of indifference. Everything in typicality frequentism hinges on a proper
way of counting that leads us to distinguish typical from atypical behavior based on
big and small sets, whose elements are intrinsically “equally likely” to occur. Second,
the definition of probabilities in terms of a limit that cannot be carried out in the real
world is reminiscent of hypothetical frequentism. Third, in order to make these typ-
ical frequencies empirically meaningful one needs to introduce tolerances for finite
sequences in order to have realistic frequency bands for actual processes, but in con-
trast to finite frequentism probabilities in typicality frequentism are not defined by
finite sequences.

There are two ways to undermine the long-term frequency of 1
2 . Either one is in one

of those special universes that yield a different statistical pattern for fair coin tosses,
or one were able to replicate, say, with a sophisticated tossing machine, the exact

12 I also thank here an anonymous referee for raising these issues.
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conditions in every toss. The special universes that yield atypical coin behavior may
reflect all kinds of long-term coin pattern: there are initial conditions of the universe
that lead to 95% heads and also to no regular behavior at all. Because of these diverse
behaviors, there is no way to put these special universes under one umbrella. It is,
however, appropriate to talk of a probability of 100% showing heads in the tossing
machine example. In order to get probabilities diverging from 100% or 0%, physics
requires significant variations in the ways a coin is tossed (as is realistic), and these
variations in fact yield robust statistical patterns.

As Gillies(2000, Ch. 5) describes, the problem of connecting limiting frequen-
cies with actual finite frequencies had been raised by de Finetti against von Mises
(1928/1957):

It is often thought that these objections may be escaped by observing that the
impossibility of making the relations between probabilities and frequencies pre-
cise is analogous to the practical impossibility that is encountered in all the
experimental sciences of relating exactly the abstract notions of the theory and
the empirical realities. The analogy is, in my view, illusory: in the other sciences
one has a theory which asserts and predicts with certainty and exactitude what
would happen if the theory were completely exact; in the calculus of probability
it is the theory itself which obliges us to admit the possibility of all frequencies.
In the other sciences the uncertainty flows indeed from the imperfect connection
between the theory and the facts; in our case, on the contrary, it does not have its
origin in this link, but in the body of the theory itself […]. (de Finetti 1937, p. 77)

The criticism against frequentism is (i) that limiting frequencies as predicted in infinite
series are not observed, (ii) that there is no precise way to give an interval for the
empirical frequencies, and (iii) that if an interval is given it is still possible that the
actual observed frequency may lie outside this interval. Von Mises argued (Gillies
2000, see p. 103), as described in the first sentence of de Finetti’s quote, that the
problemof connecting limiting frequencieswith actual frequencies is no different from
connecting the idealized predictions of a scientific theory with actual observations,
something ubiquitous and practically unproblematic in all of the natural sciences. To
which, de Finetti replied that this analogy is invalid because a scientific theory would
in principle be able to make exact predictions if it were to capture sufficiently all the
relevant details of the world, whereas probability theory, even in the best case, would
allow significant deviations from its predictions, both from the limiting frequencies,
as well as from finite frequencies.

I think, de Finetti’s criticism of von Mises is correct, and von Mises indeed over-
looked the disanalogy between probability theory and the standard application of
scientific theories. The imprecision of probability theory has a different origin than
the imprecision of applying scientific theories or scientific models to real world cases.
Themain problem for vonMiseswas to justify were the imprecision of his frequentism
comes from. Since his theory was solely based on empirical facts, the truthmakers for
the predictions of probability theory need to be empirical facts too. But how can these
exceptions be empirically made true if they are rarely or never observed in the first
place?
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Hajek (2009, pp. 217–218) makes the same argument as de Finetti when he says,
“There is no Fact of what the Hypothetical Sequences Look Like”. He imagines a coin
that is just tossed once and happens to have landed Heads. Hájek then asks about the
coin:

Howwould it have landed if tossed infinitelymany times?Nevermind that—let’s
answer a seemingly easier question: how would it have landed on the second
toss? Suppose you say “Heads”.WhyHeads! The coin equally could have landed
Tails, so I say that it would have. We can each pound the table if we like, but
we can’t both be right. More than that: neither of us can be right. For to give
a definite answer as to how a chancy device would behave is to misunderstand
chance. (Hájek 2009, p. 217)

Again, this argument is valid for the traditional version of frequentism, but in typicality
frequentism a physical theory tells us “how the coin would have landed on the second
toss”. The truthmakers for the predicted frequencies come from a physical theory, in
particular, from the distributions of initial conditions of the micro-constituents of the
involved physical bodies and ultimately of the entire universe itself—of course, this
movewould be contested by an empiricist like vonMises. Typicality frequentism, thus,
explains why probability theory is intrinsically imprecise and that this imprecision
cannot be improved, but at least to certain degree quantified and grounded.

3 Defending typicality frequentism

Typicality Frequentism combines ideas from finite frequentism, hypothetical frequen-
tism, and the classical interpretation of probabilities. Finite frequencies (with error
bounds) describe actual outcomes of a series of a chancy process; hypothetical fre-
quencies in terms of infinite series are used to define what probabilities are; and the
principle of indifference, which is the central piece of the classical interpretation, is
replaced by a measure of typicality to count events on the sample space. It seems,
therefore, that the critique raised against either of these interpretations of probability
is again effective to undermine typicality frequentism. The principle of indifference
has been rightly dismissed when an agent is truly ignorant—although it may be suc-
cessfully used for symmetry arguments (Zabell 2016a). Hájek (1996, 2009) presents
a total of 30 arguments against different versions of frequentism, 15 against finite and
15 against hypothetical frequentism, demanding that in order to rescue any kind of fre-
quentist account all these arguments need to be countered, where one counterargument
would still leave the other 29 unanswered. I won’t endeavor to reply to every single
argument, because not all counterarguments are in fact counterarguments but rather
characterize a frequentist’s account. Instead, I will first contrast typicality frequentism
with two most recent competitors, the range account and the Humean Mentaculus.
Then I will counter some recent arguments raised against frequentism by La Caze
(2016), who builds on Hájek’s papers.
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Fig. 3 This shows the partition of phase space for the initial conditions of a single coin, which determine how
the coin will land after it is tossed. The x-axis represents the initial conditions for the angular momentum
around a certain axis; the y-axis represents the vertical velocity of the entire coin. Pink areas depict the
initial conditions for which the coin lands on the same face as it started, while the white areas stand for
the initial conditions for which the coin changes faces. In the method of arbitrary functions, one puts a
probability density on this phase space, which gives 1

2 once integrated over all the pink or all the white
areas. (Picture from Strzałko et al. 2008, p. 62, as an elaboration of Keller 1986, p. 193.)

3.1 The range-account of probabilities

The work by von Kries (1886) was a rich source for further research. Henri Poincaré
and Eduard Hopf filled in amajor gap by developing the method of arbitrary functions,
which is also known as the range-account of probabilities, advocated and further
refined in different versions by Abrams (2012), Rosenthal (2010, 2016), and Strevens
(2003, 2008, 2013). Here, the probabilities, like in typicality frequentism, are related
to some sort of initial conditions, but, unlike typicality frequentism, regions of phase
space together with a probability density or a volume measure directly determine
probabilities. For example, for the coin toss a probability density over the initial
conditions for every single toss is used (see Figure 3). The physical state of a coin
is completely described by its vertical velocity v for the trajectory of the coin and
the angular momentum ω for its rotation, given a fixed height and further simplifying
restrictions, like the exclusion of bouncing (see Keller 1986; Strzałko et al. 2008;
Stefan and Cheche 2017, for detailed physical models). The phase space structure for
the coin toss has a regular structure, in which the size of the areas leading the coin
to land on the same side as it has started are approximately equal to the size of the
areas for which the coin changes faces (if v or ω are not too small). In the method of
arbitrary functions, probabilities result when a probability density is integrated over
specific regions in this phase space. Themain two problems for themethod of arbitrary
functions is, first, to justify the particular shape of the probability density and, second,
to base this justification on non-probabilistic facts in order not to explain probabilities
by probabilities. This is the main point in which Abrams, Rosenthal, and Strevens
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disagree. They agree, however, that some measure must be used to determine the sizes
of phase space regions in terms of which probabilities are defined.

The range account of probability is easily confused with typicality frequentism.
First, the range account does not define probabilities in terms of frequencies. Nonethe-
less, Strevens’s account, for example, relies on a close link to frequencies; he aims at
explaining probabilities in long series of trials and facts about frequencies determine
facts about the (initial) probability density (see also Strevens 2011, sections 4.2 and
4.3). Second, typicality frequentism considers, like statistical mechanics, the initial
conditions for the entire universe, where a measure of typicality is imposed on. All
these initial conditions are grouped into two main groups: almost all initial condi-
tions lead to typical behavior, whereas almost no initial conditions lead to atypical
behavior (there may be remaining sets that do not fit in either category, but they are
not important for our current purposes). The typicality measure is only used to group
the initial conditions of the universe, from which probabilities are defined in terms of
frequencies.

There are several problems a range account faces, which Abrams, Rosenthal, and
Strevens are aware of and have reacted to. First, one needs to justify the initial proba-
bility distribution.Where did it come from? Second, by explaining the probabilities for
a coin toss by a probability distribution over the initial conditions, one would explain
probabilities with probabilities. It is a challenge to explain the properties of the initial
probability density from non-probabilistic facts in order not to make the theory circu-
lar. Third, a probability distribution actually contains much more information than is
needed to get probabilities for frequencies. Typicality frequentism, on the other hand,
introduces something weaker than an initial probability distribution that is more tai-
lored to define probabilities as special kinds of frequencies, and it does not suffer from
a circular argument (see the next section for a more detailed discussion of this point).

Fourth, typicality frequentism can explain the initial probability distribution of the
range-account (if it is the one used for frequencies). It is known that the probabilities
in repeatable processes are robust under many changes of the initial probability distri-
bution. Only very special distributions (Rosenthal 2016, calls them ‘eccentric’) would
lead to different probability assignments. In typicality frequentism these distributions
are, in fact, explained to arise from special initial conditions of the universe yielding
atypical behavior. Strevens(2011, pp. 355–356) seems to be aware of thiswhen he says,
“the typical actual pre-toss state, together with the typical actual set of timings and
the typical actual coin, usually produce—because of such and such properties of the
physiology of tossing—amacroperiodic set of spin speeds.” But instead of embedding
his theory into a theory of typicality, Strevens borrows from Lewis’s possible-worlds
semantics to explain why we observe typical frequencies in our world.

3.2 The humeanmentaculus

Albert (2000, 2015) and Loewer (2001, 2004, 2012) have been working on a Humean
account of probabilities.13 Similar to the range account, they postulate an initial proba-

13 Hoefer (2007, 2011, 2019) developed a more pragmatic account of Humean probabilities, which is
closely linked to the Albert–Loewer account.
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bility distribution, but this initial probability distribution is defined on the phase space
for the initial conditions of the entire universe. More precisely, the Albert–Loewer
account of probabilities consists of three postulates:

1. The fundamental deterministic laws of physics.
2. The existence of a special (low-entropy) macrostate (called the past hypothesis).
3. A probability distribution over the initial conditions of the universe (within this

macrostate).

These three postulates are embedded in a Humean interpretation of laws of nature,
so they are axioms in the best systematization of the Humean mosaic, balancing sim-
plicity, strength, and fit. The initial probability distribution assigns a probability to all
kinds of factual and counterfactual events. These three postulates, theMentaculus, are
said to form a probability map of the history of the universe. Probabilities in this theory
are defined, similarly to the range account, as weighed regions of initial conditions
of the universe (in phase space); in other words, one counts and weighs, according to
the initial probability distribution, all possible initial conditions of the universe that
would give rise to the relevant phenomenon. And again, as the range-account, the
Mentaculus needs to explain what it means for the initial probability distribution to be
a probability distribution. So far, the probability distribution axiomatically introduced
by the Mentaculus is merely a mathematical object that assigns numbers to certain
sets.

The central feature and goal of the Albert–Loewer account is “to obtain a definite
numerical assignment of probability to every formulable proposition about the physical
history of theworld” (Albert 2015, pp. 7–8). This probabilitymap assigns a probability
not only to coin tosses but also to events that may happen (or not) just once, like
France defending the Soccer World Cup title in 2022. There seems to be a shared
intuition that these single-case probabilities are meaningful and crucial to the notion
of probability—a point that has been raised against frequentism:

The most famous problem for finite frequentism is the problem of single case.
According to finite frequentism all single-case events automatically have the
probability 0 or 1. Consider a coin that is only tossed once and comes up Heads.
It appears that the probability of heads may be intermediate, but the finite fre-
quentist is unable to say this. This goes against some strong intuitions about
probability. A form of this problem remains in larger finite sequences. (La Caze
2016, p. 343)

This criticism was raised early on against frequentism, to which von Mises answered:

‘The probability of winning a battle’, for instance, has no place in our theory
of probability, because we cannot think of a collective to which it belongs. The
theory of probability cannot be applied to this problemanymore than the physical
concept of work can be applied to the calculation of the ‘work’ done by an actor
in reciting his part in a play. (Gillies 2000, von Mises, quoted in p. 98)

For many it was a shortcoming of frequentism that it does not assign probabilities
to single events, although it ought to do so (Hájek 2009, pp. 227–228). Von Mises
argues, and I agree with him here, that scientific concepts may not capture the full
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range of intuitive notions and it may not even be the goal of science to form concepts
that capture all the different meanings of an intuitive notion. Scientific concepts are
defined in a precise way for the price of being less general. Probability, according
to von Mises, is like the word “work” in physics, which has a precise meaning in
terms of an integral of the forces along a certain path and which, thus, differs from the
everyday meaning of “work”. Von Mises was, therefore, open to a pluralistic account
of probability dependent on the field of application.

In contrast to vonMises, other frequentists tried to generalize probabilities to single
cases as a kind of fictitious value:

Frequentists from Venn to Reichenbach have attempted to show how the
frequency concept can bemade to apply to the single case.According toReichen-
bach, the probability concept is extended by giving probability a “fictitious”
meaning in reference to single events. We find the probability associated with an
infinite sequence and transfer that value to a given single member of it. (Salmon
1966, p. 90)

Although one can formally or “fictitiously” assign these numbers from frequencies to
single events, theirmeaning is unclear, especially theirmeaning as something objective
or physical. This is not only a problem for frequentism, but also for the Humean
Mentaculus because it is unclear what a probability in an objective or physical sense
for a single event is in the first place. A purely subjective account, on the other hand,
would not have this problem, as probabilities are an agent’s degree of belief, which
are meaningful for single events, because they capture how confident an agent is to
believe a proposition.

In the Mentaculus, probabilities are introduced by a probability density over the
initial conditions of the universe, but this probability density, it shall be noted, merely
axiomatically introduces numbers on the Humean mosaic. To make this distribution
of numbers a probability distribution requires further elaboration and an interpretation
that turns these numbers into probabilities. This is accomplished in two steps (Loewer
2004). First, the concept of “fit” is introduced. Every (probabilistic) proposition is said
to have a certain degree of fit, that is, how likely it is to be true, and this is quantified
by a probability. If a proposition with high probability matches the actual facts, it has a
better fit than a proposition with low probability.14 Second, in order that fit in terms of
probabilities is informative, an agent needs to constrain her belief according to these
probabilities (Loewer 2004, p. 1122), and this is done according to another axiom, the
Principal Principle. It roughly says that an agent ought to adjust her degree of belief
or her credence according to the probability of the proposition given by the Humean
best system.

It is not immediately clear what the physical meaning of single-case probabilities
is in this Humean theory. Let us say that there are two coins, and the Mentaculus
assigns a probability of landing heads of 0.4 to one coin and 0.6 to the other. Each coin
is just once tossed and then destroyed. What can these numbers 0.4 and 0.6 mean?
These probabilities indeed influence, by the Principal Principle, an agent’s attitude

14 The concept of fit leads to the zero-fit problem; Elga (2004) proposes a solution by invoking a certain
notion of typicality.
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and behavior toward the outcome of the coin tosses. For example, an agent will bet
differently on an eventwith probability of 0.4 than on an eventwith a probability of 0.6.
It seems, however, that these single-case probabilities need also to say something about
the physical events themselves, whether their occurrence is in some way constrained
or not, which is then the basis for an agent to adjust her degree of belief. Moreover,
this example of two coins being tossed just once is in principle repeatable, and so
Humeans need to clarify the relationship between these single-case probabilities and
the frequencies of repeatable coin tosses. Although the Albert–Loewer account of
Humean probabilities explicitly introduces and endorses single-case probabilities, it
is, as of now, unclear what their objective physical meaning is supposed to be.

3.3 Countering standard critique of frequentism

Building on Hájek’s critique of frequentism, La Caze (2016) launched another com-
prehensive attack. Here, I reply to four of La Caze’s arguments: (i) that frequentism is
a poor analysis of probabilities, (ii) the problem of ascertainability, (iii) the reference
class problem, and (iv) that frequentism is not completely objective.

3.3.1 It’s a poor analysis of probabilities

La Caze (2016) claims that hypothetical frequencies are not the right description of
probabilities because they provide a poor analysis of what probabilities are:

The hypothetical frequentist provides an answer to the question “What is proba-
bility?” with an analysis that has little relationship with what most people mean
by the probability statements they make. […] When stating that a specific coin
has the probability of Heads of half, people are typically referring to their beliefs
about the coin, their experience with this coin in a finite series of tosses, or their
experience with similar-seeming coins. (La Caze 2016, p. 350)

The aim of typicality frequentism is not to reduce all ways in which probabilities
are invoked to typical long-term frequencies. It, rather, aims at showing how one can
derive from fundamental physics physically meaningful probabilities, and it is open to
be complemented by other accounts of probability outside its scope. Given themyriads
of different cases in which probabilities are used, it is plausible that all these cases are
not unified by one account. Typicality frequentism would be, in my view, one piece
in a pluralistic landscape of probabilities. Moreover, if typicality frequentism is true,
then people may need to re-think their intuitions they have about probabilities of coins
and other physical processes. I aim at giving an account of objective probability, but I
agree that we also need an account of subjective probabilities, and I can envision that
it may be possible, in certain circumstances, to connect a particular interpretation of
subjective probabilities with typicality frequentism.
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3.3.2 The problem of ascertainability

“[T]he problem of ascertainability is the most fundamental difficulty the frequency
interpretation faces,” says (Salmon 1966, pp. 89–90), and he defines this problem in
the following way:

Ascertainability. This criterion requires that there be some method by which, in
principle at least, we can ascertain values of probabilities. It merely expresses
the fact that a concept of probability will be useless if it is impossible in principle
to find out what the probabilities are. (Salmon 1966, p. 64, my emphasis)

Actually, all interpretations of probability face in one form or other the problem of
ascertainability, that is, how to assign probabilities in practice. Ameaningful definition
is not enough, because it may lack the instructions for how to pick the right probabil-
ities. Salmon stresses that these instructions, however, are supposed to be applicable
only in principle, and not necessarily in actual practice. Applied to hypothetical fre-
quencies, they are said to be unascertainable for the following reasons (see also Hájek
2009, pp. 214–215):

To ascertain a hypothetical frequency with certainty we would need to observe
an infinite number of trials. Assuming that a specific sequence of observations
will converge to a limiting relative frequency, there is no guarantee that it will do
so within the number of trials that will be observed. And if a relative frequency
appears to have converged in a finite number of trials, it is always possible that
the relative frequency diverges from this value in subsequent trials. These points
are direct consequences of the mathematics of infinite sequences. The task for
the frequentist is to justify inferring a (frequentist) probability from a relative
frequency observed in a finite number of trials, and there is no deductively valid
way to do this. (La Caze 2016, p. 353)

The argument amounts to the correct observation that we cannot figure out the true
probability (as a hypothetical frequency) by observing finite frequencies. This objec-
tion is particularly damaging to von Mises and Reichenbach because they defined the
probabilities in the spirit of logical empiricism based on obersvation. The only means
that they had to reach the hypothetical frequencies is by means of observable finite
frequencies. In order to mitigate this problem, von Mises introduced two principles
(Rowbottom 2015, p. 100–1):

1. Law of StabilityThe relative frequencies of attributes in collectives become increas-
ingly stable as observations increase.

2. Law of Randomness Collectives involve random sequences, in the sense that they
contain no predictable patterns of attributes.

These laws are arguably ad hoc in von Mises theory, but at least they may be justified
by induction.

Similarly to von Mises, Reichenbach (1949/1971) bridged the gap between finite
and infinite sequences by induction; Reichenbach called his law the Rule of Induction
by Enumeration. Startingwith an infinite sequence of events A, we are interested in the
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relative frequency that some feature B occurs in this sequence. We can only observe a
finite sequence of events of length n, for example. The frequency of feature B among
the first nmembers of A is, say, Fn(A, B) = m

n . In order to infer the limiting frequency,
the Rule of Induction by Enumeration needs to be applied: Given Fn(A, B) = m

n , to
infer that lim

n→∞ Fn(A, B) = m
n (Salmon 1966, pp. 85–6).

La Caze, on the other hand, demands a deductive way to get to the hypothetical fre-
quencies, and this can be, in principle, accomplished by typicality frequentism, as the
hypothetical frequencies are predictions of the laws of physics about typical behavior.
By applying a physical theory, probably by building a model as is standard in many
cases (Cartwright 1983; Morgan and Morrison 1999; Giere 2004), the probabilities
fall out of the theory as any other empirical prediction. This move was not possible for
von Mises and Reichenbach, as they based their probabilities on observable behavior
of the physical processes. Typicality frequentism adheres to Salmon’s requirement for
solving the problem of ascertainability, because we can access the information of a
physical theory in principle; in practice, there might be strong limitations on how to
access all this information, but these obstacles are not of a different nature than we
normally encounter in other kinds of empirical predictions.

Onemay argue that the “in principle” in typicality frequentism does a lot of work.15

If we have a powerful enough physical theory that also makes it easy to extract empir-
ical predictions, then we would be able to solve the problem of ascertainability. But
what if we cannot extract this information from a physical theory (for whatever rea-
son)? Then either we need to extract the right frequencies from observations, or we
need to apply further metaphysical or physical assumptions. Both paths are problem-
atic: the first because we would fall back to the (empirical) problem of hypothetical
frequentism, the second because further theoretical assumptions need to be justified.
I grant that this is argument poses a challenge to the epistemology of typicality fre-
quentism, that is, how to ascertain the probabilities in practice. It is in general very
hard, and mostly impossible, to extract precise empirical information from a physical
theory for sufficiently complex systems—we cannot even analytically solve the three-
body problem in classical physics. Therefore, for practical purposes we rely on other
means tomake empirical predictions: for example, bymaking certain idealizations and
approximations. In the case of probabilities, we may need to rely on past incomplete
empirical observations for future predictions, or we may use theoretical assumptions,
like symmetry arguments (Zabell 2016a).

3.3.3 The reference class problem

The reference class problem is generally regarded to sound another death knell to
frequentism (Hájek 2009, p. 219), although it was originally raised by frequentists,
like Venn (1888) and Reichenbach (1949/1971), against single-case probabilities:

If we are asked to find the probability holding for an individual future event,
we must first incorporate the case in a suitable reference class. An individual
thing or event may be incorporated in many reference classes, from which dif-

15 Thanks to an anonymous referee for raising this point.
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ferent probabilities will result. This ambiguity has been called the problem of
the reference class. (Reichenbach 1949/1971, p. 374)

The reference class problem for single-case probabilities is a problem of how to get
the probability of one event when it can be part of many collections. Venn’s example
is the single-case probability of a man called John Smith, aged 50, to die at age 61.
In order to make a qualified prediction of Smith’s life in the future eleven years, one
needs to compare Smith with other people similar to Smith. In order to extract single-
case probabilities from frequentism, one would need to find a set of people similar to
Smith and who live until 61 and compare this number with all the people of this age.
The problem is, however, that it is not clear which properties the reference class, that
is, the people similar to Smith, need to have in order to count as ”similar to Smith,”
(also because Smith himself has so many different properties).

This example can be transferred into a reference class problem for frequentism in
general (La Caze 2016, section 16.4.4); we just need to add to John Smith any finite
number of people of the same age and ask about the probability of their life expectancy
until age 61. What is the correct infinite collection of people that give rise to the right
probability?More precisely, given a finite sequence of events (x1, . . . , xn), what is the
appropriate infinite sequence (y1, y2, . . . ) that we shall associate with (x1, . . . , xn) in
order to assign the probability p = lim

m→∞
1
m

∑m
i=1 yi for some feature of (x1, . . . , xn)?

Furthermore, having found a suitable (or even the “correct”?) reference class, the
order of the members of the reference class may change the probability, and there may
be even an ordering where the sequence does not converge and no probability can be
assigned in the first place. Hajek (2007, p. 567) calls this subcategory of the reference
class problem the reference sequence problem. Von Mises dealt with the reference
sequence problem by restricting the admissible sequences to give a unique ordering;
these sequences, he called collectives, and they are defined by means of his two laws
of probability, the law of stability and the law of randomness. With this move, von
Mises could only solve, or propose a solution to, one aspect of the reference class
problem, namely, what Hajek (2007, p. 565) calls the metaphysical reference class
problem. Given the two laws of probability, there is (hopefully) a fact what the correct
reference class is andwhat accordingly the probability is. Still, this informationmay be
practically inaccessible for an agent, which amounts to an epistemological reference
class problem.

Does the reference class problem only arise in frequentist interpretations of proba-
bilities? Hájek (2007) argues that basically all interpretations of probability face their
version of the reference class problem, and the best we can hope for is to solve the
metaphysical problem—the epistemological problem will always remain. And theo-
ries that do not face a reference class problem in the first place, like radical subjectivists
á la de Finetti or certain versions of the propensity interpretation, are, according to
Hájek, no-theory theories of probability, because they do not sufficiently specify what
probabilities are and how they are to be used to guide agents’ beliefs and actions.

Typicality frequentism indeed solves the metaphysical reference class problem by
means of a physical theory, something Salmon also mentioned as a way out:
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When a sequence is generated by a physical process that is well understood in
terms of accepted physical theory, we may be able to make theoretical infer-
ences concerning convergence properties. For instance, our present knowledge
of mechanics enables us to infer the frequency behavior of many kinds of gam-
bling mechanisms. Our theory of probability must allow room for inferences of
this kind. The basic problem, however, concerns sequences of events for which
we are lacking such physical knowledge. (Salmon 1966, p. 84)

The Theory of Everything ultimately determines the underlying physical processes
of a random sequence, and thus determines the limit of a finite sequence if one were
to repeat it infinitely. The reference class problem is solved in typicality frequentism,
because the reference class is the finite sequence itself which gets extrapolated into
an infinite sequence by means of the Theory of Everything. Since we do not yet have
a Theory of Everything, any candidate for a fundamental physical theory determines
the behavior of the reference class. In other words, the truthmaker for singling out
the reference class and the corresponding behavior is the Theory of Everything, and
for the current situation we can replace the Theory of Everything by an appropriate
candidate for a fundamental physical theory or by amodel of the physical theory (given
certain idealizations). So the gap in Reichenbach’s Rule of Induction by Enumeration
is closed not by induction from the observable sequence itself, but by a physical theory
describing the physical processes underlying the sequence.

In a similar vein, the reference sequence problem is tackled. Intricate orderings
that yield different limits or no limit at all are physically possible but atypical, given
the initial conditions of the universe, which determine the physical conditions of the
physical processes governing the sequence.16 More precisely, there is a physically
distinguished “natural” ordering of the sequence, namely, the temporal ordering as
determined or predicted by physics. Rowbottom (2015, p. 111) presents an argument
that physics is not able to single out a natural order for sequences , because, according
to special relativity, the order of, say, coin flips depends on the state of motion of an
observer. So two observers on two different trajectories may disagree on the order
of the same coin flips that they observe. But this would be only correct when the
observers would see two different sequences of coin flips that are space-like separated.
If Rowbottom refers to one sequence of coin flips, and I assume he does because this
is the relevant case at issue, then the coin flips are time-like separated, and, according
to special relativity, the temporal order of time-like separated events are objective, that
is, independent of the state of motion of observers.

16 Something similar has been proposed in certain versions of the propensity interpretation. Miller (1994,
p. 56) says that propensities are determined by “the complete situation of the universe (or the light-cone)
at the time, and, for Fetzer (1982, p. 195), they are determined by “a complete set of (nomically and/or
causally) relevant conditions […] which happens to be instantiated in that world at that time.” These
solutions, however, are not satisfactory for Hajek (2007, p. 576) because the propensities, such defined, are
not accessible to an agent to assign probabilities in practice. Therefore, he subsumes these proposals under
no-theory theories of probabilities.
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3.3.4 Frequentism is not completely objective

Von Mises Mises (p. 14) makes a strong assertion about frequentistic probabilities
when he says, ”The probability of a 6 is a physical property of a given die and is a
property analogous to its mass, specific heat, or electrical resistance.” I agree with
Caze (2016, section 16.4.5) that frequentism does not oblige upon us this strong meta-
physical interpretation of probabilities, but I disagree that frequentistic probabilities
are not objective. For La Caze, “[h]ypothetical frequencies are not divorced from
consideration of personal factors (including beliefs).”

His argument goes like this. Since the main advantage proclaimed of frequentism
is that it introduces objective probabilities, any subjective trace in frequentistic prob-
abilities would undermine the entire project. The subjectivity that frequentism relies
on comes from how the particular physical process that gives rise to frequencies is
modeled. The probabilities for a coin toss, for example, depend on how the properties
of the coin and the tossing mechanism are modeled. That some particular physical
model is suitable for giving rise to the proper frequencies needs to be judged by an
agent. And this judgement is unequivocally subjective, as La Caze (2016, p. 358)
says, “Scientists employing frequentists probabilities need to make a judgement that
the data-generating processes providing the measured outcomes of the study are ade-
quately modeled by one or more of these approaches to specifying the requirements
on the expected sequence of outcomes.” The bar raised by this requirement is so high
that basically all our physical predictions are deemed to be subjective, because they
depend on certain idealizations to be made by an agent. The practice of physics has for
practical matters this “subjective” ingredient but it does not make physics a subjective
science. Therefore, I do not see that frequentistic probabilities are less objective than
other predictions of physics.

Hajek (2009, pp. 215–217) also criticizes the idealizations made in hypothetical
frequentism, but he approaches this problem from a different direction:

Consider the coin toss. We are supposed to imagine infinitely many results of
tossing the coin: that is, a world in which coins are ‘immortal’, lasting forever,
coin-tossers are immortal and never tire of tossing (or something similar any-
way), or else in which coin tosses can be completed in ever shorter intervals of
time... In short, we are supposed to imagine utterly bizarre worlds […]. (Hájek
2009, pp. 215–216)

For Hájek, the problem of hypothetical frequentism lies in the definition of prob-
abilities: in order to define hypothetical frequencies “utterly bizarre” counterfactual
scenarios need to be set up that “would have to be very different from the actual world”
(Hájek 2009, p. 215). I think this problem can be remedied by a physical theory and the
laws of nature in such a theory. We know that laws of nature ground facts beyond the
actual regularities (e.g., Maudlin 2007b). The counterfactual idealizations that need to
be made for hypothetical frequentism—and also for typicality frequentism—may be
more radical or more detached from the actual world than in other applications, like
in the normal way of model building (Morgan and Morrison 1999), but they can be
still grounded and made true by the laws in a physical theory.
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3.4 Objections and replies

1. Typicality seems to be too vague. How can it be meaningful?
Typicality is intentionally a vague term. Not all notions need to be precise to be
meaningful. We know when someone is tall or when someone is bald. Of course,
there may be borderline cases when we may debate is this person really tall or
really bald, but for all practical purposes there is no ambiguity. The same we
encounter in physics. The initial macrostate the universe evolved from according
to statistical mechanics is also vague, because the boundaries are fuzzy and not
precisely specified. But when we reason about the evolution of the universe we talk
about microstates that do not lie on the boundary, so this vagueness is harmless.
It is a strength of the notion of typicality to be vague, because we don’t need to
cope with unnecessary details in our explanation and we can use typicality in many
different areas.

2. What is a formal definition of typicality?
In many cases, typicality does not need a formal definition. It is basically a tech-
nical term for most or almost all. Maudlin (2018) and Wilhelm (2019) propose
two different approaches to formalize typicality. Maudlin interprets typicality as a
second-order predicate, that is, a predicate of a predicate. We formally write F(X)

symbolizing that X has property F . Typicality would be a further qualification
between X and F . T (F, X) would symbolize that it is typical for X to have F .
Onemay even consider typicality as another quantifier.Wilhelm, on the other hand,
focuses on the explanatory scheme of typicality explanations and points out that it
resembles Hempel’s deductive-nomological model.

3. What is the relationship between a probability measure and a typicality measure?
Mathematically, a typicality measure is usually represented as a probability mea-
sure, but a probability measure contains more information than is actually needed:
While typicality is usually defined—as it was here—in terms of a probability mea-
sure, the basic concept is not genuinely probabilistic, but rather a less detailed
concept. Ameasureμ of typicality need not be countably additive, nor even finitely
additive. Moreover, for any event E , if μ is merely a measure of typicality, there
is no point worrying about, nor any sense to, the question as to the real meaning
of say ‘μ(E)= 1

2 ’. Distinctions such as between ‘μ(E)= 1
2 ’ and ‘μ(E)= 3

4 ’ are
distinctions without a difference.
The only thing that matters for a measure μ of typicality is ‘μ(E) � 1’: a measure
of typicality plays solely the role of informing us when a set E of exceptions is
sufficiently small that we may in effect ignore it and regard the phenomenon in
question occurring of the set E , as having been explained. (Goldstein 2001, p. 15)

4. What is the difference between typicality and probability? Is typical just another
word for highly probable and atypical for highly improbable?
Historically typicality evolved from abstracting from highly probable cases. Boltz-
mann, for example, said that the second law of thermodynamics makes it highly
probable that a gas in a box equilibrates. But I think that typicality is a more primi-
tive notion than and different from probability, and this paper showed how one can
reduce probabilities to typicality. Typicality is a much less-fine grained and more
general concept than probability.
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5. There are cases where something typical is highly improbable. For example, a
long, well-mixed sequence of heads is typical but improbable, e.g. HTHTTHH-
HTTTHTHHT. Or a very specific event may be typical but improbable, e.g. the
probability of randomly selecting from the US population a man of height exactly
175.4 cm is very low, even though this is the average height, and in a good sense
typical. How can one reconcile that?17

The difference between typicality and probability have been addressed in more
detail in Wilhelm (2019). Typicality is not a categorical property. So it doesn’t
make sense to say that something is typical by itself. There needs to be always
a reference: “typical with respect to what?” It is typical for clovers to have three
leaves, because in the class of all cloversmost of them have three leaves. If we zoom
in toomuch, for instance, when comparing the particular shapes of the leaves, every
leaf may be unique, and we may not be able to find any “typical shape”. Applied
to the coin toss, if we zoom in the particular pattern of a series of tosses, and
ask, “Is HTHTTHHHTTTHTHHT typical?”. The right answer is, “Typical with
respect to what?” Typical with respect to the number of heads and tails. Then yes,
because approximately 50% are heads and tails (I ignore that the series needs to
be much longer to make such a statement). But what about the particular pattern
HTHTTHHHTTTHTHHT? It is very unlikely to repeat this particular pattern in
an actual coin toss. But this is the case for any particular pattern. The same is
true in statistical mechanics: every particular trajectory in phase space has measure
zero and is therefore very unlikely (or atypical, although it is meaningless to talk
about atypicality per se too). This point has been raised against typicality by Uffink
(2007), and I think it has been rightly answered by Lazarovici (2015, section 5.2). I
agree on the example of the height, which is similar to theway I define probabilities.
The actual height 175.4 cm is rarely found in a person but most people are close to
the average.

6. If you reduce probabilities to typical longterm frequencies, then you cannot account
for all the uses of probability. Especially single-case probabilities lack an expla-
nation.
That is correct, but I claim that single-case probabilities are not meaningfully
interpreted as some kind of frequency. They may be properly construed as purely
subjective degrees of belief, as a kind of tool in Bayesian updating, but not in an
ontological sense. Therefore, I endorse a pluralistic account of probabilities tailored
to different applications.

4 Conclusion

If our world is correctly described by a deterministic physical theory, then every
event is determined by the initial conditions of the universe. Typicality frequentism
builds on this insight and singles out physical processes that give rise to stable long-
term frequencies. If these frequencies are typical they define probabilities. As I have
shown, the essential idea behind this approach comes from how Boltzmann explained

17 Thanks to an anonymous referee for raising this issue, who I quote almost verbatim.
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the thermodynamic arrow of time and how he reduced thermodynamics to statistical
mechanics. The main advantage I see with typicality frequentism is that it carves
objective probabilities at the right joint by specifying those kinds of probabilities that
are meaningful within physics. In this way, typicality frequentism does not face the
same problems as traditional empiricist accounts of frequentism do. Other applications
of probability beyond physicsmay be properly described by subjective approaches that
would complement to a pluralistic picture of probabilities.
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