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Abstract
Conditional learning, where agents learn a conditional sentence ‘If A, then B,’ is
difficult to incorporate into existing Bayesian models of learning. This is because
conditional learning is not uniform: in some cases, learning a conditional requires
decreasing the probability of the antecedent, while in other cases, the antecedent
probability stays constant or increases. I argue that how one learns a conditional
depends on the causal structure relating the antecedent and the consequent, leading
to a causal model of conditional learning. This model extends traditional Bayesian
learning by incorporating causal models into agents’ epistemic states. On this theory,
conditional learning proceeds in two steps. First, an agent learns a new causal model
with the appropriate relationship between the antecedent and the consequent. Then,
the agent narrows down the set of possible worlds to include only those which make
the conditional proposition true. This model of learning can incorporate both standard
cases of Bayesian learning and the non-uniform learning required to learn conditional
information.

Keywords Conditionals · Bayesian Learning · Causal Models

1 Introduction

Suppose someone is looking for their keys in drawers A, B and C ; they think each
drawer is equally likely to contain the keys, so the probability that the keys are in
any given drawer is 1

3 . Upon learning that the keys are not in drawer A, the most
reasonable way to change one’s beliefs is to believe that the keys are in either drawer
B or drawer C , each with probability 1

2 . This kind of learning is successfully captured
by the Bayesian theory of learning, which assumes that beliefs are represented by a

I would like to thank Fabrizio Cariani, as well as an anonymous reviewer, for helpful comments on an
earlier version of this paper.

B Jonathan Vandenburgh
jonathanvandenburgh2021@u.northwestern.edu

1 Northwestern University, 1880 Campus Dr., Evanston, IL 60208, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-020-02891-x&domain=pdf
http://orcid.org/0000-0003-4488-7662


2416 Synthese (2021) 199:2415–2437

probability distribution and that when someone learns a proposition A, their beliefs
change from some prior distribution Pr to a posterior distribution PrA according to
Bayes’ Theorem.1 The posterior distribution PrA is given by conditionalization, so
for any proposition B, PrA(B) = Pr(B|A) = Pr(B∧A)

Pr(A)
. Bayesian learning therefore

predicts that learning is uniform, so the same updating procedure applies for any
proposition in any situation.

Now suppose the information one learns is in the form of a conditional sentence ‘If
A, then B.’ While one might expect conditional learning to be uniform in the same
way Bayesian learning is, many examples (Douven 2012) suggest this is not the case.
Consider, for example, the conditionals ‘If my brother is here, the keys are in drawer
C’ and ‘If the keys are in drawer A, then someone moved them.’ In the first example,
the conditional should not change the credence that the speaker’s brother is here, but
may affect the probability that the keys are in drawer C . In the second example, the
conditional seems to express the speaker’s belief that the keys were not originally in
drawer A; if it is unlikely someone moved them, then the probability that the keys are
in A should decrease. Thus, in one case, the conditional does not affect the probability
of the antecedent, but in the other case, it decreases the probability of the antecedent.

Many theories of conditional learning fail to predict this lack of uniformity. The
most popular approach to conditional learning has been to assume that people learn
conditionals throughBayesian updating on thematerial conditional A ⊃ B, or¬A∨B.
This has nice theoretical properties; this approach to conditional learning produces a
posterior distribution which minimizes the Kullback-Leibler divergence between the
prior and the posterior (Van Fraassen 1981). However, this procedure always decreases
the probability that the antecedent is true, offering counterintuitive predictions in some
cases (Douven and Romeijn 2011; Douven 2012). For example, this approach can-
not explain the intuition above that some conditionals leave the antecedent probability
unchanged.Nevertheless, this view retains some advocates; Eva et al. (2020), for exam-
ple, argue that they can use material conditional learning to account for the observed
variations in the posterior by considering other propositions learned alongside the con-
ditional propositions. Another proposal (Bradley 2005) predicts that the antecedent
probability always remains constant, failing to explain cases where the antecedent
probability changes. Other authors, such as Huisman (2017), take the observed lack
of uniformity in conditional learning as evidence that conditional learning cannot be
incorporated within the Bayesian framework.

This paper proposes a causal model for conditional learning which can explain the
observed variations in the posterior distributions. Sect. 2 provides a formal account of
Bayesian learning based on a possible worlds semantics for propositions. Section 3
introduces a causal constraint governing conditional learning, arguing that the posterior
probability of the antecedent depends on the causal structure behind the conditional.
This goes beyond the constraints introduced by Douven (2012), offering a systematic
explanation for different posterior judgments in different contexts. Furthermore, the
conditionals introduced here do not rely on additional information in the background.

Section 4 introduces causal models and presents a generalization of Bayesian learn-
ing to causal belief states, showing that this coincides with ordinary Bayesian learning

1 For psychological evidence in favor of Bayesian reasoning, see Oaksford and Chater (2007).
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for non-conditional propositions. Section 5 introduces a causal semantics for condi-
tionals and shows how the problemof conditional learning arises again in the semantics
of left-nested conditionals. Section 6 presents a causal approach to conditional learn-
ing. On this theory, conditional learning proceeds in two steps: first, one learns a
new causal model, if necessary, which ensures that the antecedent and the consequent
are probabilistically dependent, and second, one performs Bayesian updating on the
largest set of possibleworldswhichmakes the conditional true in the newcausalmodel.
This, I show, can explain the predictions identified in Sect. 3. Section 7 presents some
further examples of conditional learning within the causal framework, including the
‘common cause’ conditional and examples from Douven (2012) where background
information becomes relevant.

The main competing account which rivals the predictions of this paper is an
approach which uses Jeffrey imaging on Stalnaker conditionals (Günther 2017, 2018).
Since this approach builds on the Stalnaker semantics for conditionals, the predictions
rely on judgments about which worlds are most similar to which other worlds. While
this can account for the causal constraints presented here, it can only do so if the
similarity ordering respects the background causal structure, lending explanatory pri-
ority to the causal account. Additionally, the account presented here is consistent with
any conditional semantics which respects causal constraints on the background set
of worlds, providing a more general theory that does not rely on Stalnaker’s more
restrictive conditional semantics. Furthermore, the causal constraints on conditional
learning in Sect. 3 and the causal generalization of Bayesian learning in Sect. 4 make
contributions independent of the model of conditional learning in Sect. 6.

2 Bayesian learning

In Bayesian models of learning, agents’ epistemic states are represented by credence
functions on propositions. Learning a proposition A leads the agent to update his or
her credence function by conditionalization. Thus, if A is a field of propositions, we
assume that the agent has a credence function P : A → [0, 1] such that (i) for any
tautology T , P(T ) = 1 and (ii) for mutually exclusive A and B, P(A∨ B) = P(A)+
P(B). When an agent learns a proposition A ∈ A, the agent forms a new credence
function PA which assigns probability 1 to proposition A. This credence function is
given by conditionalization, so for any belief B, PA(B) = P(B|A) = P(B∧A)

P(A)
.2

Identifying propositions with sets of possible worlds will facilitate the discussion
of conditional learning and learning in causal models. In this case, we model belief
states as probability distributions over a set of possible worlds. We assume that we
have a set of possible worlds Ω and that for each proposition A ∈ A, A represents a
set of possible worlds, [A] ⊆ Ω . We assume that Ω is a probability space, so there
is a sigma algebra Σ ⊆ P(Ω) of measurable subsets of Ω and a probability measure
Pr on Σ . To simplify exposition, I will assume Ω is finite throughout, though the
discussion extends to the infinite case. When Ω is finite, all subsets of Ω are in Σ

2 For an introduction to Bayesian epistemology, see Hartmann and Sprenger (2010).
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and a probability distribution Pr is fully determined by an assignment Pr(ω) to each
ω ∈ Ω such that:

(i) for all ω ∈ Ω , Pr(ω) ∈ [0, 1]
(ii)

∑
ω∈Ω Pr(ω) = 1.

Any proposition A is associated with a set of possible worlds [A] ⊆ Ω , which we
assume is measurable, so [A] ∈ Σ . The likelihood that A is true, Pr(A), is determined
by the likelihood that the world is an A-world. For finite Ω , this means that

Pr(A) =
∑

ω∈[A]
Pr(ω).

It is not hard to see that this credence assignment satisfies the conditions for a credence
function stipulated above.

The possible worlds formalism also allows us to handle belief updating by con-
ditionalization. Learning the proposition A corresponds to restricting the space of
possible worlds Ω to the set of A-worlds, [A], and updating the probability distribu-
tion accordingly: for any B ∈ A (or, more generally, B ∈ Σ), the new distribution
PrA is given by PrA(B) = Pr(B|A) = Pr(B∧A)

Pr(A)
. For a world ω, the updated prob-

ability PrA(ω) is 0 in worlds where A is false and Pr(ω)
Pr(A)

in worlds where A is true.
Since the new probability function PrA yields a probability distribution over possible
worlds, we can think of the new belief space as the set of possible worlds ΩA = [A]
with probability distribution PrA. Thus, Bayesian learning predicts that, given a belief
space consisting of a set of possible worlds Ω with probability distribution Pr, learn-
ing A results in a new, restricted, belief space ΩA with a new probability distribution
PrA given by conditionalization. The characterization of Bayesian learning in terms
of possible worlds will prove useful in understanding how to extend the theory to
incorporate conditional sentences.

3 Constraints on conditional learning

A problem for Bayesian learning is that there is no straightforward extension to the
case of conditional learning, where one learns a conditional ‘If A, then B’. The above
account of Bayesian learning proposes a method for learning propositions, or sets of
possible worlds. However, there is no straightforward proposition, or set of possible
worlds, corresponding to the conditional. Adams (1975) and Edgington (1995), for
example, argue that the conditional does not have truth conditions, Kaufmann (2001),
Bradley (2002) and Rothschild (2014) argue that the truth conditions of conditionals
are not binary, and the dominant linguistic approach to conditionals, following Kratzer
(1986, 2012), treats the conditional as a restricted modal rather than a stand-alone
proposition.

Despite the difficulties in settling on a propositional account of the conditional,
some authors (Van Fraassen 1981; Eva et al. 2020) have proposed that people update
their beliefs according to the material conditional, A ⊃ B, even though the material
conditional does not work in general as a semantic theory of the conditional. This
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approach has some theoretical virtues: for example, it minimizes the Kullback–Leibler
divergence between the prior and the posterior distribution, generalizing in one way
Bayesian updating. However, this approach leads to counterintuitive predictions for
how people learn conditional information.

The main issue is that, since A ⊃ B = ¬A ∨ B, learning A ⊃ B only eliminates
worlds where A is true, so learning a conditional always decreases the probability that
the antecedent is true. However, there are many examples where this seems absurd.
Consider the sundowners example fromDouven andRomeijn (2011),where one learns
the conditional ‘If it rains tomorrow, sundowners (a party) will be canceled.’ Suppose
we initially think rain and sundowners are independent and both have 50% chance of
occurring. Then, if we let R stand for rain and S stand for sundowners, our epistemic
state consists of four possible worlds, R ∧ S, R ∧ ¬S,¬R ∧ S,¬R ∧ ¬S, each with
equal probability 1

4 of occurring. Learning R ⊃ ¬S eliminates R ∧ S and leads to
Bayesian updating on the remaining worlds, which now have equal probability of 1

3 .
This means that Pr(R) = Pr(R ∧ ¬S) = 1

3 , so the probability of rain decreases from
1
2 to

1
3 . This is problematic because we think of the conditional as telling us something

about the relationship between rain and sundowners, or what will happenwhen it rains,
but not communicating any information about whether it will rain or not.

In light of this concern, some authors have proposed slight modifications of this
approach to conditional learning. Bradley (2005), for example, has argued that we
learn a conditional ‘If A, then B’ by updating on both the material conditional A ⊃ B
and the constraint that the probability of the antecedent remains fixed. Thus, in the
sundowners example, the new credences are Pr(R ∧ ¬S) = 0.5 and Pr(¬R ∧ S) =
Pr(¬R ∧ ¬S) = 0.25, a much more reasonable prediction than what follows from
just updating on the material conditional. However, this is inconsistent with cases
highlighted by Douven (2012) which suggest that learning a conditional can lead the
antecedent probability to decrease, increase, and remain the same. While Douven’s
cases rely on background explanatory concerns and will be discussed in greater detail
in Sect. 7, we can illustrate the point by considering another example where the
probability of the antecedent decreases.

Suppose one is receiving a test (T ) for a disease (D), where one initially thinks
the likelihood of having the disease is 10% and the test comes back positive in all
cases where one has the disease, as well as 10% of the time when one is healthy (a
false positive). Consider learning the conditional ‘If the test comes back positive, the
disease is present.’ It seems that we are learning that the test has no false positives, so
Pr(T ∧ ¬D) = 0. Thus, we expect the probability of having the disease to stay the
same (since we did not learn anything about its presence) and the probability that the
test is positive to decrease from 20% to 10%. This coincides with the prediction of
material conditional learning, while Bradley’s account predicts that Pr(T ) stays the
same at 0.2 and Pr(D) increases to 0.2, making the unfortunate prediction that a more
accurate test leads to a higher likelihood of disease.

Thus, in the sundowners case, we expect the antecedent probability to stay the same,
while in the disease testing case, we expect the antecedent probability to decrease.
Possible explanations for this include background effects on the explanatory status
of the antecedent (Douven 2012), background information learned in addition to the
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conditional (Eva et al. 2020), and which antecedent world is closest to the actual world
(Günther 2018). The most fundamental difference, I argue, comes from the difference
in causal structure underlying the two examples.

In the sundowners example, rain has a causal effect on the cancelation of sundown-
ers, so the conditional is causal: it communicates that the antecedent has a causal
effect on the consequent. In the disease testing example, the positive test is a causal
result of the disease, so the conditional is diagnostic: the antecedent is a causal result
of the consequent.3 Intuitively, we expect a difference in how one learns causal and
diagnostic conditionals. For a causal conditional ‘If A, then B,’ where A causes B, we
do not learn anything about A, but learn that B must always be the case conditional
on A, so we expect the probability of A to remain the same and the probability of B to
increase. For a diagnostic conditional ‘If A, then B,’ where B causes A, we learn that
B is the only cause of A, so the likelihood of B stays the same while the likelihood of
A decreases since we have ruled out causes of A other than B.

We can explain the difference in learning causal and diagnostic conditionals by
formalizing the learning process within causal models. While the formal procedure
will be presented in Sect. 6 after a discussion of causal models and conditional truth
conditions, at this point we can outline the intuition for how causal models can explain
these cases. Conditional learning through causal models proceeds in two steps: (1)
learning a causal model which can explain the relationship between the antecedent
and the consequent and (2) ruling out states of the world which are inconsistent with
the conditional information.

In the sundowners example, the causal information we learn is that rain causes the
cancelation of sundowners. We can formalize learning this causal information when
we put the example into the terminology that will be introduced formally in Sect. 4.
We begin with two endogenous variables of interest, rain (R) and sundowners (S),
which are governed by exogenous variables UR and US , so R = UR and S = US ,
where UR and US are independent. The exogenous variables UR and US represent
whatever background factors cause rain and sundowners, which are not theorized
about further in the model. When we learn the conditional, we learn that this initial
causal model is insufficient to represent the relationship between R and S since R and
S are independent in the model. Thus, to incorporate the new information, we must
form a new causal structure of the world where R has a causal effect on S, which we
can represent as a graph on endogenous variables:

R

S.

This graph comes with a new set of ‘structural equations’ which determine the
relationships between variables. We keep R exogenous, so R = UR , but now sun-
downers is canceled in the case of rain, so S = ¬R ∧ US : sundowners needs an
absence of rain to occur. If we keep our prior constant on the exogenous variables

3 The division of conditionals into causal and diagnostic conditionals also plays a role in van Rooij and
Schulz (2019).
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in the model, so Pr(UR) = Pr(US) = 0.5, then in the new model, Pr(R) = 0.5 and
Pr(S) = Pr(S ∧ R) + Pr(S ∧ ¬R) = 0+ 0.25 = 0.25. The fact that the probabilities
ofUR andUS stay the same represents the fact that we haven’t learned anything about
rain or the causes underlying sundowners absent rain; we have only learned about what
happens to sundowners in the case of rain. This causal updating procedure, where we
change the relationships between variables but keep all other beliefs about these vari-
ables constant, predicts that the probability of rain remains constant, agreeing with the
posterior which results from Bradley’s account. This analysis also extends beyond the
sundowners case to any causal conditional ‘If A, then B’, where we can interpret the
conditional as ‘A causes B’ or ‘A leads to B’. In these cases, the probability of the
antecedent remains constant and the probability of the consequent increases.

In the sundowners case, creating the new causal model for the situation is sufficient
to learn the conditional information: the structural equation S = ¬R ∧ US rules out
the possibility of R ∧ S, so no situations prevent ¬S from being true whenever R is
true. This means step (1) is sufficient to learn the conditional information with no need
to rule out further possibilities from step (2). The disease testing case, on the other
hand, illustrates a case where we already have the correct causal model, but must rule
out some of the possible worlds.

Recall thatwe begin in the disease testing case by understanding that the disease (D)
causes a positive test result (T ), where Pr(D) = 0.1 and a positive test result occurs
whenever the disease is present and 10% of the time when the disease is absent, so
Pr(T ) = 0.2. Here, the causal structure is as follows, both before and after learning
the conditional:

D

T .

Prior to learning the conditional, the structural equations governing the causal rela-
tionships are D = UD and T = D∨UT . Here,UT stands for any cause of T other than
D, which represents the false positives of the test T . When learning the conditional,
we learn that D is the only cause of T , so we should eliminate the possibility that the
test will come out positive for a reason other than the disease D, which corresponds
to UT . This leads to updated structural equations D = UD and T = D, where the
possibilityUT is no longer relevant. Since nothing changed about D, the probability of
D remains the same (Pr(D) = 0.1), but T occurs in fewer circumstances than before,
so now Pr(T ) = 0.1 rather than 0.2; we learn, as expected, that the test does not have
false positives, but our beliefs about the presence of the disease remain the same.

The two examples presented here highlight a problem for accounts of conditional
learning. How we update a probability distribution, and specifically how we deter-
mine the updated probability of the antecedent, changes in different circumstances.
Furthermore, whether the antecedent is causally relevant for or causally dependent on
the consequent seems relevant for how we update our beliefs based on the conditional.
For a causal conditional, where the conditional tells us how the consequent changes
given the antecedent, the antecedent probability remains constant. For a diagnostic con-
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ditional, where the conditional tells us in which circumstances the antecedent arises
from the consequent, the antecedent probability decreases. These examples also offer
a preview for how a causal approach can account for these cases: the structural equa-
tions governing the causal relations determine which changes are required to make
the conditional true, explaining why different posterior distributions result in different
cases. This motivates the introduction of a causal approach to learning in Sect. 4 and
its extension to conditionals in Sect. 6.

4 Causal structures and Bayesian learning revisited

To extend Bayesian learning to handle causal information, wewill introduce the notion
of a causal model. Within a causal model, the exogenous variables determine all of
the information represented in the model. A causal model paired with an exogenous
variable assignment, then, will determine a causal world; the causal worlds act as
truthmakers for propositions expressed within the causal model. We can then use
this notion of a causal world to extend the approach to epistemic states and learning
presented in Sect. 2: an epistemic state is a probability distribution over causal worlds
and learning a proposition corresponds to limiting the set of causalworlds and updating
the probability distribution accordingly.

To make this discussion of learning more precise, we start by defining a causal
model.4 A causal modelM = (U , V , fi ) requires a finite set of exogenous variables
U , a set of endogenous variables V = (V1, . . . , Vn), and a set of structural equations
F = ( f1, . . . , fn) determining the values of the endogenous variables. For each i ,
the structural equation fi determines the value for Vi as vi = fi (pai , ui ), where pai
is a value for the parents PAi of Vi and ui is an assignment to the exogenous vari-
ables needed to determine Vi . The set of parents PAi for each endogenous variable
Vi determines a directed acyclic graph (DAG) G over V , where we draw an arrow
from Vi to Vj if Vi is a parent of Vj . Since all structural equations depend on a vari-
able’s parents and exogenous variables, and the endogenous variables without parents
are determined completely exogenously, setting the exogenous variables completely
fixes the endogenous variables of the model. This means that the structural equations
determine the values of V given values of U , so the set of structural equations forms
a function F : U → V .

As discussed above, a causal world (M, u) is a causal model M paired with
an exogenous variable assignment u ∈ U . The propositions of interest in causal
models are logical combinations of variable assignments, generally restricted to the
endogenous variables. For a variable assignment Vi = vi , we get a set of possible
worlds [Vi = vi ] = {u ∈ U : F(u)i = vi } ⊆ U , where Vi = vi is true in a world
u when plugging u into the structural equations F makes Vi take on value vi . Since
individual variable assignments yield sets of possible worlds, we can associate logical
combinations of variable assignmentswith sets of possibleworlds through theBoolean

4 This presentation of causal models follows Vandenburgh (2020). For a more detailed discussion of causal
models, see Pearl (2009).
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operations: conjunction corresponds to set intersection, disjunction to set union, and
negation to complementation.

To see an example illustrated more formally, recall the above case where a test T
tests for disease D with false positives. Here, we have two exogenous variables, UD

determining the presence of the disease and UT representing any cause of a positive
test result other than D, and D and T are our endogenous variables. The structural
equations in this model are D = UD and T = D∨UT . Since the variables are binary,
this model has four possible worlds, corresponding to the four states of the exogenous
variables UD and UT . We can consider propositions built from endogenous variable
assignments, such as ‘The disease is present or the test comes back positive,’ D ∨ T .
This proposition is true in three of the four possible worlds, only false when UD = 0
and UT = 0.

Now that we have defined causal worlds and propositions, we can define an epis-
temic state as a probability distribution Pr over the set of causal worlds. Taking the
causal structure as given, this is simply a probability distribution over exogenous
variable assignments. We assume that the exogenous variables are probabilistically
independent of each other, so when i �= j , Pr(Ui = ui |Uj = u j ) = Pr(Ui = ui ).
Causal models with probability distributions satisfying this condition are called
Markovian models. Note that a distribution on U leads to a distribution over V : for
v ∈ V , Pr(v) = Pr({u ∈ U : F(u) = v}); we will denote {u ∈ U : F(u) = v} as Uv .
If A is a proposition, so [A] ⊆ U , we can use the Bayesian learning mechanism from
Sect. 2 to learn A within the causal model: we restrict to the set UA of worlds where
A is true and use the Bayesian updated probability distribution PrA.

We can see that this learning procedure always agrees with the result we get if
we ignore the causal model and use Bayesian updating on the endogenous variables.
Supposewe have a distribution Pr on V and a distributionπ onU so that Pr agrees with
the distribution π induces on V : Pr(v) = π(Uv). To see that traditional Bayesian
updating and Bayesian updating within the causal model give the same results, we
must verify that πA(Uv) = PrA(v) for any A ∈ A and for any v ∈ V . To demonstrate
this, first note that the proposition A defines both a set of worlds [A]U ⊆ U and a set
of worlds [A]V ⊆ V . For all u such that F(u) = v, the same propositions are true of
v and u, so v ∈ [A]V iff, for all u such that F(u) = v, u ∈ [A]U . Then we can see
that A has the same probability according to both π and Pr:

π(A) =
∑

u∈[A]U
π(u) =

∑

v∈[A]V
π(Uv) =

∑

v∈[A]V
Pr(v) = Pr(A).

Then for any v ∈ V , when A is not true in V , PrA(v) = πA(v) = 0, and when A is
true in V , PrA(v) = Pr(v)

Pr(A)
= π(Uv)

π(A)
= πA(Uv). This shows that Bayesian updating

within a causal model produces the same result that Bayesian updating would produce
if we ignored the causal model.

We can illustrate this with an example. Consider the testing example with false
positives. In the possible worlds framework from Sect. 2 without a causal model, we
have three possible worlds with probability distribution: Pr(D ∧ T ) = 0.1, Pr(¬D ∧
T ) = 0.1, and Pr(¬D∧¬T ) = 0.8. To translate this into the causal framework above,
we need a probability distribution π on exogenous variables which induces Pr. It is not
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hard to see that this is satisfied by the distribution where π(UD) = 1
10 and π(UT ) = 1

9 ,
whereUD andUT are independent, satisfying theMarkov condition. We can calculate
the full distribution using independence, so π(UD ∧UT ) = 1

90 , π(UD ∧ ¬UT ) = 4
45 ,

π(¬UD ∧UT ) = 1
10 , and π(¬UD ∧ ¬UT ) = 4

5 . We can see that π induces Pr on V .
As an example, consider the proposition T , that the test is positive. In the original

representation, Pr(T ) = Pr(D∧T )+Pr(¬D∧T ) = 0.2. In the causal representation,
a positive test result comes from D whenever the disease is present and fromUT when
the disease is not present since T = D ∨UT , so π(T ) = π(UD) + π(¬UD ∧UT ) =
0.1 + 0.1 = 0.2. We can see that updating by T leads to the same distribution for
π in the causal model and for Pr without the causal model. For Pr, we get that there
are two worlds, PrT (D ∧ T ) = 0.5 and PrT (¬D ∧ T ) = 0.5. For π , we have three
worlds: πT (UD ∧UT ) = 1

18 , πT (UD ∧ ¬UT ) = 4
9 , πT (¬UD ∧UT ) = 1

2 . We can see
that πT and PrT are equivalent on endogenous variables: πT (D) = PrT (D) = 0.5,
for example. This shows that Bayesian learning of non-conditional propositions can
be incorporated into the causal modeling framework; the main advantage of causal
models will come in the next sections when we discuss conditional truth conditions
and how to learn conditional information.

5 Conditional truth conditions and the problem of left-nested
conditionals

In order to find a procedure for updating beliefs to make a conditional true, we must
discuss the truth conditions for conditionals. As discussed in Sect. 3, this is a complex
issue with little agreement. Here, I will briefly argue for a causal interventionist theory
of conditional truth conditions, defended in greater depth in Vandenburgh (2020). This
theory reconciles two competing approaches to the truth conditions of counterfactuals:
the possible worlds approach (Lewis 2013; Stalnaker 1968; Kratzer 1986) and the
causal modeling approach (Pearl 2009; Hiddleston 2005).

The causal modeling approach defines conditional truth conditions relative to a
causal model using causal concepts like interventions and minimal changes. Using
causal models allows us to avoid less formal notions like similarity or relevance and
makes it easier to incorporate causal intuitions relevant for conditional judgment, like
those presented in Sect. 3. However, popular theories which rely on causal models face
two disadvantages relative to possible worlds theories: they fail to generalize to log-
ically complex conditionals (for example, conditionals with disjunctive antecedents)
and they do not clearly correspond to well-known conditional logics.5 The possible
worlds approach takes a conditional ‘If A, then B’ to be true if B is true in all relevant
worlds where A is true, where the set of relevant A-worlds depends on the actual world
u and is represented by the selection function f (A, u). The use of possible worlds
makes the extension to logically complex conditionals straightforward and allows us
to easily verify axioms of conditional logic (Nute and Cross 2001; Arlo-Costa 2019).
However, the selection function is usually determined by informal notions like simi-

5 The original theories of Hiddleston and Pearl only apply to a limited set of counterfactual antecedents.
Briggs (2012) offers one extension of Pearl’s model to more complex antecedents, but this comes with
undesirable logical consequences: modus ponens, for example, is not valid.
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larity and relevance rather than more robust causal notions. The theory presented here
combines these two approaches: it defines conditional semantics in terms of a selec-
tion function, which has nice logical properties, but uses causal criteria to determine
the worlds in the selection function. On this theory, the selection function f (A, u)

is the set of worlds where we perform some causal intervention on the actual world
u to set A true. Here, I implement a strict semantics which incorporates all causally
relevant interventions and satisfies the axioms of Pollock’s (1981) logic SS. However,
one could easily restrict the selection function further based on additional notions of
similarity, relevance, or minimal change, and therefore get a stronger logic such as
Lewis’sVC or Stalnaker’sC2, without changing the causal framework or significantly
impacting the results for conditional learning.

It is worth noting that, while causal models are typically used for counterfactual
rather than conditional semantics, there is good reason to believe that themodel carries
over to indicative conditionals. In many cases, indicative and counterfactual condi-
tionals have the same meaning: consider, for example, ‘If it rains, sundowners will
be canceled’ and ‘If it were to rain, sundowners would be canceled.’ Furthermore,
many semantic theories, such as those of Lewis and Stalnaker, are applied to both
indicative and counterfactual conditionals.6 However, there are also well known cases
where judgments about indicative and counterfactual conditionals come apart: con-
trast ‘If Oswald didn’t shoot Kennedy, someone else did’ with ‘If Oswald hadn’t
shot Kennedy, someone else would have’ (Adams 1970). While understanding the
differences between indicative and counterfactual conditionals poses an interesting
research question relevant for the causal modeling of conditional truth conditions and
conditional learning, this falls beyond the scope of the present study.7

To define the truth conditions of a conditional ‘If A, then B’ in a world u, we must
define the selection function f (A, u), or the set of causally relevant A-worlds. To do
this, we consider all of the minimal ‘interventions’ one could make in the world to
set A true.8 An intervention is a change to some of the exogenous variables which
produces a causal effect but leaves all aspects of the world independent of the change
constant.9 Restricting ourselves to the minimal interventions eliminates the need to
consider worldswherewe change variables not necessary to set the antecedent true; for
example, if we are interested in changes to the weather, we should not consider what
happens if we change someone’s shopping preferences. The set of relevant A-worlds
is then the set of all worlds where one has applied a minimal intervention to set A true
in u.

Suppose the causal model has m exogenous variables, U = (U1, . . . ,Um). A
restricted variable assignment r is an assignment to some subset of these variables,
S ⊆ {1, . . . ,m}. If US represents the assignments to variables in U corresponding to
indices S, then an assignment r to variables S is an element r ∈ US . Given a world u,

6 Note, however, that Lewis himself opposed applying his semantics for counterfactuals to indicatives; see
Lewis (2013).
7 See also Weatherson (2001) and Khoo (2015).
8 There is some experimental support for using minimal interventions; see, e.g., Rips (2010).
9 Note that typical definitions of an intervention allow for interventions on endogenous variables to make
the variables independent of their parents (Pearl 2009; Hagmayer et al. 2007; Fisher 2017a). In the theory
used here, we restrict interventions to the exogenous variables.
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we can intervene with the restricted assignment r by setting the values of u to r on S
and leaving u unchanged outside of S : u|r = r × u|S′ , where S′ is the complement
of S.

This allows us to define the set of all restricted variable assignments which set the
antecedent A true for a given world u:

Ru(A) = {r : ∃S, r ∈ US & u|r ∈ [A]}.

This is just the set of restricted assignments r where A is true in u|r . This set is non-
empty as long as A is true in some world: if w ∈ [A], then w ∈ Ru(A) for all u since
u|w = w.

As discussed above, we do not want to include all variable assignments which
set A true, since these involve changing variables which are irrelevant to A. Instead,
we want to restrict the set Ru(A) to include only those variable changes which are
necessary to set A true. We notice that if i is such a minimal intervention, then any
extension of i to other variables would keep A true, so any extension would also be an
element of Ru(A). We can formalize this minimality condition by defining an order ≤
on Ru(A): if r1, r2 ∈ Ru(A)make assignments to S1 and S2, respectively, then r1 ≤ r2
iff S1 ⊆ S2 and r2|S1 = r1. This is satisfied when r2 is an extension of r1: r2 makes
the same assignment on all variables r1 changes, but may change more variables.

This allows us to define the set of minimal interventions which force A, Iu(A):
i ∈ Iu(A) if i is an ≤-minimal element of Ru(A). Formally,

Iu(A) = {i ∈ Ru(A) : �r ∈ Ru(A), r �= i, r ≤ i}.

We can use this set of interventions to define the selection function for conditional
semantics: f (A, u) = {u|i : i ∈ Iu(A)}. This selection function allows us to define
truth conditions for the conditional: a conditional ‘If A, then B,’ written A → B, is
true in a world u if B is true in all intervened worlds in Iu(A). Thus, whenever we
make a minimal intervention to set A true, B must be true. This gives a set of worlds
where the conditional A → B is true:

[A → B] = {u ∈ U : ∀i ∈ Iu(A), u|i ∈ [B]}.

To see how the truth conditions for conditionals work, consider again the example
where a test T tests for disease D with false positives. Recall that there are two
exogenous variables,UD determining the presence of the disease andUT representing
any cause of a positive test result other than D, with structural equations D = UD

and T = D ∨ UT . Consider the conditional D → T : ‘If the disease is present, the
test is positive.’ Here, any variable assignment which setsUD = 1 sets the antecedent
true (formally, is in Ru(A) for any u) and the assignment setting UD = 1 is the
unique minimal element of Ru(A) for every world u (the only element of Iu(A)). For
every u, setting UD = 1 guarantees that T = 1 since D = UD and T = D ∨ UT ,
so the conditional D → T is true in every world. Now consider the conditional
T → D: ‘If the test is positive, then the disease is present.’ This is the diagnostic
conditional considered in Sect. 3. The two possible minimal interventions which set

123



Synthese (2021) 199:2415–2437 2427

the antecedent true are UD = 1 and UT = 1; the only worlds where the minimal
interventions guarantee that D = 1 are those where UD = 1 already, or where the
consequent is already true. When the consequent is not true, the possibility of false
positives makes the diagnostic conditional false.

Having defined truth conditions for conditionals, we can identify another problem
which arises for conditional learning. Since we defined a set of possible worlds asso-
ciated with the conditional, [A → B], we might expect to get good predictions for the
truth conditions of left-nested conditionals. However, this is not the case. Consider the
conditional ‘If the disease is present whenever the test is positive, then the disease is
present,’ (T → D) → D. As we saw above, the conditional T → D is true only in
worlds whereUD = 1, so this is the minimal intervention we need to consider for the
antecedent T → D. However, the interventionUD = 1 always guarantees that D = 1;
therefore, this left-nested conditional is predicted to be true in every world. However,
this is absurd: learning that the test is only positive when the disease is present should
eliminate the chance of false positives, not teach us that the consequent is true (that
the disease is present). This is a problem which arises for left-nested diagnostic condi-
tionals: the closest worlds where the conditional is true are predicted to be the worlds
where the consequent is true, a very counterintuitive result.

This shows that treating a left-embedded conditional as a set of possible worlds,
on the semantic theory presented here, yields counterintuitive truth conditions. Part
of the reason for this is that the conditional proposition may require changes to the
causal model itself, as was the case in the sundowners example in Sect. 3. Another
reason, as illustrated here, is that conditional truth conditions depend on both the actual
world and the selection function, or the possible worlds that are relevant for evaluating
the conditional. Sometimes, conditional learning requires not just that we impose a
constraint on the world tomake the conditional true, but that we impose a constraint on
the set of possible worlds that will enter into the selection function. This is the case in
the above example,where the conditional seems to communicate that false positives are
no longer possible, so we should removeUT = 1 from the set of relevant possibilities.

This motivates the account of conditional learning introduced in the next section,
which will be able to handle learning both causal and diagnostic conditionals. This
learning will require two steps: first, we must find a causal model which connects
the antecedent and the consequent, and second, we must narrow down the space of
possibilities in a way which makes the conditional true in every possible world.

6 Conditional learning in causal models

We now return to the problem of conditional learning. Recall from Sect. 2 how
Bayesian learning of a proposition A works: we start with a belief state, which is
a probability distribution Pr over a set of possible worlds Ω , and after learning A,
we have an updated belief state consisting of a smaller set of possible worlds ΩA

and a new probability distribution PrA over ΩA defined through Bayesian updating.
Section 3 argued that conditional learning depends on the causal structure underly-
ing the conditional, Sect. 4 introduced a causal model for an agent’s epistemic state
using a probability distribution over causal worlds, and Sect. 5 defined truth conditions
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for conditionals in a causal world. In defining a procedure for conditional learning,
we want a procedure which takes as input (1) a belief state consisting of a causal
modelM = (U , V , fi ) and a probability distribution Pr overU and (2) a conditional
A → B, where A and B are propositions formed from variable assignments in V , and
outputs a new causal modelM′ = (U ′, V , f ′

i ), whereU
′ ⊆ U , and a new probability

distribution Pr′ over U ′ such that A → B is true in all worlds in M′.
Two changes are necessary for the new causal modelM′ to ensure that the condi-

tional A → B is true: first, the causal graph and structural equations must allow for
the right dependence between B and A and, second, we must eliminate any possible
worlds from U which prevent A from guaranteeing B. First, we discuss how to form
the new graph and structural equations in M′. This will be necessary in cases where
the antecedent or consequent are initially thought independent, like the sundowners
case, or in caseswhere a new causalmodel is communicatedwith the conditional infor-
mation. However, in many cases, this step will be unnecessary: in the disease testing
example, the causal structure (where the disease causes a positive test result) remains
constant through conditional learning. We focus on the case where the antecedent and
consequent are initially thought independent.

Consider the case where one learns a conditional ‘If A, then B’ where A and B are
initially thought to be independent. This means that the value of A has no effect on B:
Pr(B|A) = Pr(B). In a causal graph, we can represent this with no arrows between A
and B:

A B.

Absent further information about the model, both variables would be exogenous with
structural equations A = UA and B = UB . This causal model can never make the
conditional A → B true in a world where the consequent is not true using the condi-
tional truth conditions from Sect. 5. Any intervention to produce A, which amounts to
setting the exogenous variable UA governing A true, would have no effect on B. This
problem also arises when there is a collider in the causal graph:

A B

C

Here, since A and B are both parent nodes with no parents in common, changes in A
or B are independent of each other.10

The problem that arises at this point is that we need a procedure which replaces the
old graph,where A and B are independent, with a newonewhere they are conditionally
dependent.11 However, there are multiple options for how to form a new graph: having

10 An exception to this is if C is known or held fixed, in which case A and B can become dependent
conditional on C .
11 Note that while conditional dependence is a necessary condition for the new graph to satisfy in order
to learn a conditional A → B, it is not always sufficient. If A is a disjunction of variable assignments, for
example, we may require that the consequent is conditionally dependent on both disjuncts.
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A depend on B, B depend on A, and A and B both depend on some common cause C
can all render A and B probabilistically dependent:12

A B C

B A A B.

Oneway of trying to solve this is to find a procedurewhich transforms a given causal
graph without conditional dependence between the antecedent and consequent into a
unique new causal graph with conditional dependence. Fisher (2017b), for example,
defines a measure of ‘minimal illegality’ for new causal models; the goal, then, would
be to update the old causal model to the unique new, minimally illegal causal model.13

However, it seems impossible to figure out whether the new causal model should have
A depend on B or B depend on A just from the original causal model where two
variables are independent. In the sundowners example, it is clear that rain would cause
the cancelation of sundowners rather than the other way around, but this isn’t encoded
anywhere in the initial causal representation of the epistemic state.

Another approach is to derive a newcausalmodel fromcertain syntactic or structural
properties of the conditional. While providing a complete theory of the relationship
between properties of conditionals and causal models goes beyond the scope of this
paper, we can note some regularities in how the new causal model is formed. Con-
ditionals with the future tense ‘will’ in the consequent are often causal conditionals,
where the antecedent causes the consequent (i.e., ‘If it rains tomorrow, sundownerswill
be canceled’). Conditionals where the consequent temporally precedes the antecedent,
on the other hand, are usually diagnostic or ‘backtracking’ conditionals. For example,
in the case of ‘If the test comes back positive, the disease is present,’ the presence of
the disease temporally precedes the positive test result.

We assume that the agent learns not just a new causal ordering of the variables,
but also the structural equations specifying the precise causal relationships. For causal
conditionals, one learns that the antecedent is sufficient for the consequent, while with
diagnostic conditionals, one learns that antecedent is necessary for the consequent.We
can illustrate the difference in the corresponding structural equations by considering
the sundowners example.When learning the causal conditional ‘If it rains, sundowners
will be canceled,’ one learns not just that rain causes the cancelation of sundowners,
but the full structural equations R = UR and S = ¬R ∧ US . The structural equation
S = ¬R ∧ US tells us not just that rain causes the cancelation of sundowners, but
that sundowners occurs precisely when the other conditions for holding sundowners
are met (US) and rain is absent (¬R); in other words, rain is a sufficient, but not
necessary, condition for cancelation. Now consider learning the diagnostic conditional
‘If sundowners is canceled, it is raining.’ In this case, we still have rain causing
the cancelation of sundowners, but the structural equation we learn tells us that rain

12 More generally, any graph where A and B are not d-separated can render A and B conditionally
dependent. On d-separation, see Pearl (2009, p. 16).
13 Fisher’s specific proposal considers only changes to the structural equations of the model rather than the
causal graph itself, so it is unclear what predictions it would offer for cases like the sundowners example.
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is necessary rather than sufficient for the cancelation of sundowners, meaning the
structural equation is S = ¬R ∨ US : sundowners always occurs absent rain and
when certain conditions (US) are met during rain. While further work is necessary to
understand how the properties of conditionals can translate into causal constraints, we
proceed under the assumption that the new conditional information is sufficient for
the agent to form a new causal model.14

Once we have the new causal graph and structural equations for the causal model
M′ where the antecedent and the consequent are causally related, we must find the
restricted set of possible worlds U ′ ⊆ U which makes the conditional true in every
world. Once we have this new U ′, we can update the probability distribution Pr over
U to Pr′ by Bayesian updating, so Pr′(u) = 0 if u /∈ U ′ and Pr′(u) = Pr(u)

Pr(U ′) if u ∈ U ′.
This is analogous to the procedure for learning a non-conditional proposition A in
Sect. 2: we find the largest set of possible worldsUA such that A is true in every world
then update our probability distribution using Bayesian updating.

In traditional Bayesian updating, this set UA is just the set of worlds in which A
is true. For conditional learning, this is not always the case: in the disease testing
example, we saw that the set of worlds in which the conditional T → D is true is the
set of worlds where D is true, but this does not correspond to the content we seem
to learn from the conditional. The difference is that, when we restrict to a new set of
possible worldsU ′, we also update the set of possibilities included in the causal model
M′ = (U ′, V , f ′

i ), which influences the ‘set of relevant possible worlds’ included in
the selection function f (A, u)which enters into the conditional truth conditions. Thus,
to findU ′, we want to consider all Ũ ⊆ U such that ∀u ∈ Ũ , A → B is true in u with
causal model (Ũ , V , f ′

i ).
Before finding the largest such Ũ , there is another condition we must be attentive

to for conditional learning: ensuring that we do not learn the conditional ‘trivially’ by
just learning that the consequent is true. Consider again the case where we learn the
conditional ‘If the test is positive, the disease is present,’ T → D, where D = UD and
T = D ∨UT . As motivated in Sect. 3, we expect to learn the constraint that UT = 0,
that there are no false positives. If we find the maximal Ũ such that T → D is true
in (Ũ , V , f ′

i ), this will be the set of all worlds where UT = 0 or UD = 1. However,
we do not want to include the additional worlds where UD = 1; these are the worlds
where we learn that the disease is present as a trivial way to make the conditional
true. If we include these worlds in the new epistemic state, then the probability of the
consequent will increase: using the probability distribution from Sect. 4, learning the
conditional in this way would increase the probability of having the disease from 1

10
to 1

9 .
We can eliminate these worlds by imposing a non-triviality constraint: we require

that, in themodelwhere all possibleworlds are included, (U , V , f ′
i ), the counterfactual

‘If Dwerenot true, thenT → Dwould still be true’must be true. This eliminates all the
worldswherewemake the conditional true only by setting D true.We see, for example,
that the world (UD,UT ) = (1, 1) does not satisfy the condition ¬D > (T → D):

14 There is some relevant work on this issue in cognitive science: see Griffiths and Tenenbaum (2009) and
Lake et al. (2018).
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intervening to set ¬D setsUD = 0 and the intervened world (UD,UT ) = (0, 1) is no
longer a world where the conditional T → D is true (since T is true but D is false).

To return to the general case, suppose we have a causal model M = (U , V , fi )
and we are learning the conditional A → B, where we have already found structural
equations f ′

i such that A and B satisfy the desired dependency relation. To update the
set of possible worlds U to a new set U ′, we find the largest Ũ such that ∀u ∈ Ũ ,
(1) A → B is true in u with causal model (Ũ , V , f ′

i ) and (2) ¬B > (A → B) is
true in u with causal model (U , V , f ′

i ). With U ′ the largest such Ũ , the new causal
model is given by M′ = (U ′, V , f ′

i ). If the initial epistemic state is represented by
a probability distribution Pr over U , the new epistemic state consists of the Bayesian
updated distribution Pr′ over U ′.

To see that there is a unique largest set U ′ satisfying these conditions, suppose
that U1 and U2 are two distinct maximal sets. Since U1 and U2 are distinct, there is
a u1 ∈ U1 which is not in U2. This means that u1 satisfies condition (2) and that u1
satisfies condition (1) for (U1, V , f ′

i ) but not (U2, V , f ′
i ). Since u1 does not satisfy

(1) in (U2, V , f ′
i ), there must be some u2 ∈ U2 which is in the selection function

f (A, u1) in U2 but not in U1 which prevents the conditional A → B from being true
at u1 relative toU2. But since u2 ∈ f (A, u1), u2 ∈ [A], and since u2 prevents A → B
from being true in u1, u2 /∈ [B]. But then u2 is a world where A → B is false in U2
since A is true but B is false, so u2 is a world in U2 which does not satisfy (1). This
shows that there cannot be two distinct maximal sets satisfying these two conditions,
so the new set of worlds is unique.

Now that we have presented the procedure for learning conditionals, we can return
to our twomotivating examples to show that this procedure predicts the intuitive results
motivated in Sect. 3. Consider the sundowners example, where the initial epistemic
state predicts that rain R and sundowners S are independent with probability 0.5, so
R = UR , S = US , and Pr(UR) = Pr(US) = 0.5. We learn the conditional ‘If it
rains, sundowners will be canceled,’ R → ¬S. We update our epistemic state to have
a new causal structure where R causes ¬S with structural equations R = UR and
S = ¬R ∧US . In this new causal model, R → ¬S is true in every world since setting
UR = 1 always sets S = 0, so we do not need to change the set of possible worlds or
the distribution Pr. However, the new causal model means that the same distribution
over exogenous variables induces a new distribution over endogenous variables: while
Pr(R) is still 1

2 , S is now only true in one world, (UR,US) = (0, 1), so Pr(S) = 1
4 .

Therefore, the new epistemic state predicts that rain occurs with the same probability,
but sundowners is now less likely to occur, as expected. This result generalizes for
all causal conditionals: whenever we learn a causal conditional, the probability of the
antecedent stays the same.

Now consider the disease testing example. The initial epistemic state predicts that
the disease D causes a positive test result T , but T can occur with false positives
UT . The initial causal model specifies that D = UD and T = D ∨ UT , where UD

and UT are independent and Pr(UD) = Pr(UT ) = 0.1. We learn the conditional ‘If
the test is positive, then the disease is present,’ T → D. Since D and T are already
probabilistically dependent, we do not need to change the structural equations. The
largest set of worlds which makes the conditional T → D true is the set of worlds
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where UT = 0 or UD = 1, and only those where UT = 0 satisfy constraint (2). The
only relevant worlds now are (UD,UT ) = (0, 0) and (UD,UT ) = (1, 0), where the
former has probability 0.9 and the latter has probability 0.1 by Bayesian updating.
Therefore, the new distribution predicts that Pr(D) = Pr(T ) = 0.1, as expected.
This result generalizes for diagnostic conditionals: learning a diagnostic conditional
decreases the probability the antecedent is true.

7 Further examples and extensions

Throughout, we have considered conditional learning through the lens of two exam-
ples: the sundowners problem and the disease testing case. While these examples are
designed to be representative cases of causal and diagnostic conditionals, respectively,
it is natural to wonder how many conditional assertions can be incorporated into the
causal framework. Somemore complicated examples include: (1) conditionals with no
causal connection between the antecedent and the consequent, (2) conditionals with
more complex causal structures than simple causal or diagnostic conditionals, (3)
conditionals learned alongside other propositions, and (4) probabilistic conditionals.

One assumption of the conditional learning framework is that there is a causal
connection between the antecedent and the consequent of a conditional. When this
assumption is not satisfied, the truth conditions from Sect. 4 become trivial (where
‘If A, then B’ is equivalent to B) and the conditional learning problem cannot be
approached through causal learning. While there are examples of conditionals with no
causal connection between the antecedent and the consequent, these are often atypical
conditionals like biscuit conditionals (‘If you’re hungry, there are biscuits’) andDutch-
man conditionals (‘If he’s right, then I’m a Dutchman’). Many authors think that there
is something pragmatically or semantically inappropriate about conditionals where the
antecedent is irrelevant for the consequent (Douven 2008; Krzyżanowska and Douven
2018), a claimwhich is supported by experimental evidence (Over et al. 2007; Douven
et al. 2018; Skovgaard-Olsen et al. 2016). Thus, the exclusion of conditionals where
the antecedent is irrelevant for the consequent does not represent a serious limitation
of the causal framework.

Whenwe restrict to the conditionalswhere A is relevant for B, so Pr(B|A) > Pr(A),
the Markov property from Sect. 4 guarantees that the conditional relationship can be
cast in causal terms. When the causal model is Markovian, whenever A is statistically
relevant for B, theremust be a causal relationship between A and B (Pearl 2009, p. 30).
More specifically, when A is statistically relevant for B, either A causes B, B causes
A, or A and B share a common cause. This suggests that, consistent with the examples
of the paper, causal and diagnostic conditionals actually cover a very wide range of
conditional assertions once irrelevant conditionals are excluded.

For completeness, we can briefly discuss the case of the ‘common cause’ condi-
tional. A common cause conditional is a conditional ‘If A, then B,’ where A and B
share a common cause C :
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C

A B.

In this case, when we learn A → B, we learn that A has no cause other than C and
that whenever C is true, B is true. This means that the probability of A decreases
since some causes of A are ruled out, as in the case of diagnostic conditionals, and
that the probability of B increases since a cause of B is identified, as in the case of
causal conditionals. Consider a conditional like ‘If Susan is out of office next week,
then she needs someone to watch her cat.’ In this case, there is some common cause
(e.g., a vacation) which leads Susan to be both out of office and to need someone to
watch her cat. This conditional rules out causes of being out of office which do not
also require a cat sitter (like a ‘stay-cation’), decreasing the likelihood of being out
of office. Additionally, since the conditional identifies a set of situations where a cat
sitter is definitely necessary, the likelihood that a cat sitter is needed increases.

To see this illustrated more formally, suppose O represents being out of office, C
represents the need for someone to watch the cat, and A represents the common cause
of both, being away from home. Suppose one initially has the correct causal structure
in mind,

A

O C,

with structural equations A = UA, O = A ∨ UO , C = (A ∧ ¬U ′
C ) ∨ UC . Here,

whether Susan is away (A) is exogenous, Susan is out of office when she is away (A)
or some other cause leads her to be out of office (UO ), and Susan needs someone to
watch her cat when she is away (A) and she has not already made arrangements for
the cat (¬U ′

C ), or when some other cause requires someone to watch the cat (UC ).15

To make the conditional O → C true, we eliminate the worlds where Susan is out of
office but not away (UO is activated) or Susan is away but does not need anyone to
watch her cat (U ′

C is activated); all of these worlds either make the conditional false
or true trivially, and are therefore eliminated.16 This redistributes probability to keep
Pr(A) constant, decrease Pr(O), and increase Pr(C), as expected.

The examples in this paper are also very simple conditionals. The variables have
all been binary, the antecedents and the consequents correspond to single variables
rather than a conjunction or disjunction of variables, the causal structures are relatively
simple, and there is no information learned alongside the conditional. However, the

15 Here, U ′
C is a disabling condition which prevents A from causing C . Such disabling conditions are

common in causal models; see Pearl (2009, p. 29).
16 If we represent worlds as (UA,UO ,UC ,U ′

C ) and use ∗ to refer to a value of either 0 or 1, we
can see that (0, 1, 0, ∗), (∗, 0, 0, 1), and (1, 1, 0, 1) are eliminated for making the conditional false and
(∗, 1, 1, ∗), (∗, 0, 1, 1) and (1, 1, 0, 0) are eliminated for making the conditional trivially true. This leaves
the four worlds where UO and U ′

C are both unactivated: (∗, 0, ∗, 0).
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causal framework can also handle cases of more complicated variables, logically com-
plex conditionals, and longer causal chains. Consider the conditional ‘If John moves
to New York or San Francisco, he will not be able to afford an expensive vacation.’
This involves variables which take on more than two values (i.e., city of residence), a
disjunctive antecedent, and a longer causal chain:

City

Cost of Living

Vacation Funds.

However, we can still interpret this as a causal conditional with the same predictions:
we learn nothing about the likely city of residence, but consider it less likely that John
will be able to afford an expensive vacation since this has been ruled out if he moves
to a city with a high cost of living.

The effects of learning other propositions alongside a conditional requires further
discussion, especially given its prominence in recent literature (Eva et al. 2020). Fol-
lowing an example from Douven (2012), suppose your friend Sue recently had an
important exam and you learn the conditional ‘If Sue passed her exam, her father will
take her on a ski vacation.’ This is a causal conditional, where Sue passing the exam
has a causal effect on her father taking her on a ski vacation. Following the argument
of this paper, we expect learning the conditional to keep the probability of her passing
the same and to raise the probability that she will go on a ski vacation, a reasonable
prediction.

However, we can consider learning the same conditional with a different back-
ground, as in Douven (2012). Suppose you see Sue buying a ski outfit, so that you find
it likely she is going on a ski vacation soon. Then, suppose you learn the conditional
‘If Sue passed her exam, her father will take her on a ski vacation.’ Given that Sue is
preparing for a ski trip, it seems that learning the conditional leads one to believe it
is more likely that Sue passed her exam. Since this diverges from the prediction that
learning a causal conditional keeps the probability of the antecedent the same, this
case calls for an explanation.

We can explain this as an effect of the background information that Sue bought
a ski outfit. When one learns the conditional, one learns that the structural equation
governing whether Sue goes on a ski trip is S = P ∨US , where Sue goes on a ski trip
(S) when she either passes the exam (P) or she goes on a ski trip for any other reason
(US). Updating by the information in favor of her going on the ski trip (S) then raises
the probability of both P and US , confirming the intuition that the probability of Sue
passing the exam increases. For example, if we learn with certainty that Sue is going
on a ski trip, S, and we previously suspected a 10% chance of her passing and 10%
chance of her going on a ski vacationwithout passing, our new credences upon learning
that Sue is going on a ski trip (following the Bayesian updating procedure in a causal
model defined in Sect. 4) would ascribe a 50% chance to Sue passing the exam. This
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requires interpreting the original evidence for S retrospectively, considering it in light
of the conditional information, consistent with Douven’s hypothesis that explanatory
considerations are relevant.17

Following a different example from Douven, we can also change the background
so that the probability of the antecedent decreases upon learning the conditional infor-
mation. Suppose we know that Sue has made plans to babysit for one of her neighbors
for the whole ski season, so that it is very unlikely that she is going on a ski trip. In
this case, learning the conditional ‘If Sue passed her exam, her father will take her on
a ski vacation’ decreases the probability of the antecedent. This is because decreasing
the probability of S decreases the probability of all S worlds, including the P worlds.
For example, if we are certain Sue is not going on a Ski trip and learn the conditional
information, the posterior likelihood that she passed the exam becomes zero.

The cases from Douven highlight how background information can change the
result of conditional learning: depending on the background, learning the same causal
conditional can increase, decrease, or leave unchanged the antecedent probability.
While much more needs to be said to offer a complete account of how background
information factors into conditional learning,we can see howDouven’s predictions can
be incorporated within the causal framework.We can also see howDouven’s examples
differ from those in this paper: while his examples rely on differences in background
information to drive differences in posterior beliefs from learning a conditional, the
examples in this paper predict that differences can also arise from the variations in
causal structure, even when no other background information is relevant.

Another important case of conditional learning not discussed in this paper involves
conditional probability constraints, such as ‘If A, then the probability of B is p.’
This case is particularly important because many authors prefer to model conditionals
using probabilities rather than truth conditions (Adams 1975; Edgington 1995; Over
and Cruz 2018). Furthermore, using probabilistic constraints may be more accurate
in certain circumstances than the universal quantifier approach taken in Sect. 5. For
example, in the disease testing case, very few medical tests have absolutely no false
positives, and it may be more likely to encounter a constraint like ‘If the test is pos-
itive, the likelihood the disease is present is 95%.’18 While some recent accounts of
conditional learning incorporate probabilistic constraints (Günther 2018; Eva et al.
2020), the differences between bare conditionals and probabilistic conditionals are
significant. For example, for the bare conditional ‘If the test is positive, the disease is
present,’ the causal framework offers a clear interpretation of the meaning as ruling
out false positives. However, for the probabilistic conditional ‘If the test is positive, the
likelihood the disease is present is 95%,’ the probabilistic constraint could arise from
a decrease in the rate of false positives, a decrease in the rate of false negatives, or an
increase in the prevalence of the disease, and unlike in the bare case, themeaning of the

17 Note that this retrospective learning is essential: if one updates by S and then updates by E → S
mechanistically, E → S would be trivially true and would communicate no new information. This presents
an interesting case where the order of updating beliefs matters: revising by E → S and then S differs from
revising by S and then E → S. This issue of commutativity arises for Jeffrey conditioning (Diaconis and
Zabell 1982; Wagner 2002) and poses many interesting questions, but falls outside the scope of this paper.
18 I would like to thank an anonymous reviewer for drawing attention to the significance of conditional
probability constraints.
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conditional does not seem to convey which factors must change to meet the constraint.
One could stipulate that all relevant factors change in the way which minimizes the
Kullback–Leibler divergence (Jeffrey 1990; Van Fraassen 1981) or prioritize chang-
ing the factor which is relevant for the corresponding bare conditional, but any such
theory makes assumptions beyond what is motivated by the causal account presented
here. While the causal framework can likely contribute to models of belief revision
handling conditional probability constraints, this issue is left open for future research.

8 Conclusion

This paper provides a causal model for learning conditionals which can explain why
different conditionals lead to different posterior distributions over beliefs. Since condi-
tional learning is observed to depend on the causal structure underlying the conditional,
we introduce causal models into the theory of learning as a natural extension of
Bayesian learning. After incorporating causal models into the theory of learning,
conditional learning is taken to proceed in two steps. First, the old causal model is
replaced by a new model which has the correct relationship between the antecedent
and the consequent. Second, we restrict the set of worlds to the largest set of worlds
which non-trivially sets the conditional true and then we update the probability distri-
bution through Bayesian updating. This can account for the variations in conditional
learning observed to depend on causal structure; in particular, it predicts that the
antecedent probability remains constant when learning a causal conditional and that
the antecedent probability decreases when learning a diagnostic conditional.
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