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Abstract

This paper introduces an anthropological approach to the foundations of mathematics.
Traditionally, the philosophy of mathematics has focused on the nature and origins of
mathematical truth. Mathematicians, however, treat mathematical arguments as deter-
mining mathematical truth: if an argument is found to describe a witnessably rigorous
proof of a theorem, that theorem is considered—until the need for further examination
arises—to be true. The anthropological question is how mathematicians, as a practical
matter and as a matter of mathematical practice, make such determinations. This paper
looks first at the ways that the logic of mathematical argumentation comes to be real-
ized and substantiated by provers as their own immediate, situated accomplishment.
The type of reasoning involved is quite different from deductive logic; once seen, it
seems to be endemic to and pervasive throughout the work of human theorem proving.
A number of other features of proving are also considered, including the production
of notational coherence, the foregrounding of proof-specific proof-relevant detail, and
the structuring of mathematical argumentation. Through this material, the paper shows
the feasibility and promise of a real-world anthropology of disciplinary mathematical
practice.

Keywords Mathematical practice - Deductive logic - Practical reasoning - Theorem
proving

1 Introduction

By the late 1800s, an ever growing number of mathematical discoveries, technical
problems, and methodological issues gave rise to debates among mathematicians con-
cerning the practices of proving mathematical theorems (Kline 1972; Ewald 1996).
This cauldron of activity influenced mathematics thereafter. It also led to the growth
of the philosophy of mathematics as a distinct subdiscipline of philosophy, but one
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increasingly separated from the practical circumstances and problems faced by math-
ematicians. Over the course of the twentieth century, philosophers of mathematics
predominantly came to view the foundations of mathematics as a problem concerning
the nature and origins of mathematical truth (Beracerraf and Putnam 1964; Shapiro
2005; Irvine 2009).

From an anthropological point of view, perceived truths of the world are not mat-
ters of nature: they belong to the ways of a “tribe”” and are generated and sustained by
the real-worldly practices of its members. In the case of mathematics, the “tribe” of
professional theorem provers, in practice, see written mathematical argumentation as
the arbiter of mathematical truth: if the truth of a theorem is questioned, they examine
the written argument that describes the claimed proof and try to establish the veracity
of its reasoning. In this way, viewed anthropologically, the everyday production of
witnessably rigorous mathematical proofs by, for, and among theorem provers might
well be seen as the living, sustaining foundations of mathematical practice. The anthro-
pological question is how provers go about producing and recognizing such proofs.
This paper begins to develop an empirical, ethnographic approach to answering this
question. In the case at hand, the paper examines the practical work that provers do to
constitute and, therein, realize the reasoning of mathematical argumentation.

The immediate origins of this paper lay in attending to a familiar, recognizable
feature of mathematical practice. By abuse of language, the written mathematical
arguments that fill blackboards, textbooks, and journal articles are often referred to as
“proofs.” The usage simplifies exposition, but such arguments are not proofs. They
are descriptions of proofs or proof-accounts. Where, then, are the actual proofs of
mathematical practice to be found? When provers seriously consider a proof-account,
whether alone with pencil and paper in hand, in consultation with colleagues, or at
the blackboard in the company of other provers, they engage in a process of work-
ing through the account, trying to find the reasoning and actions that the account
describes and, therein, as a practically observable matter, establishing the adequacy or
inadequacies of the account’s description. When successful, such pairings of accounts
and the work of proving are discovered as coherent organizations of the practices of
proving exhibiting the collegially witnessable, practically rigorous proofs of ordinary
mathematical practice.

Section 3 is the heart of the paper. It considers, as an empirical matter, how the
witnessability of such proofs is achieved. The section gives a detailed, ethnographic
description of the process of working through a specific proof-account of a theorem
of Euclidean geometry. Three features of this process are therein made plain. First, no
matter how trivial and uninteresting some of this work may seem, the amount of prac-
tical work that is involved in working through the proof-account is massive. If provers
did not do this work, they would not be able to find the proof that a proof-account
describes. Second, provers give considerable effort to establishing the relevance of
abstract, general explanations to the immediate proof-account: provers have to real-
ize, and work to realize, the reasoning of a proposed proof in the specific details of
that proof’s description. And, last, the reasoning involved in working through a proof-
account is quite different from deductive inference as described in formal theories
of mathematical argumentation. Native to the practical work of proving theorems,
seemingly ignored in discussions of the nature and origins of mathematical truth, such

@ Springer



Synthese (2021) 199:2277-2291 2279

reasoning is, to all appearances, pervasive in mathematicians’ work and unavoidable in
situations of real-time proving. The paper argues that this reasoning is the handmaiden
of deductive inference: it provides the glue that holds the argument together.

The final section of the paper places this material in the context of a develop-
ing anthropology of theorem proving. It sketches the origins and framework of the
project, considers the relationship between often ignored aspects of proving and the
witnessability of mathematical proofs, and shows the potential of such empirically
oriented, anthropological studies. An “Appendix” to the paper briefly elaborates the
pair structure of witnessably rigorous proofs.

2 The midsegment theorem

In Sect. 3, the proof-account in Fig. 1 will be used to examine the constitution of
deductive reasoning. Nothing is particularly special about this proof-account. Our
interests lie in the detail of things, not in abstract disputation: Fig. 1 provides a concrete
example for our consideration. We want to see how deductive reasoning, rather than
being an objective “thing”—transparent and self-exhibiting of its own truth—is an
ongoing practical accomplishment.

Figure 1 is a description of a proof of The Midsegment Theorem, that the line segment
between the midpoints of two sides of a triangle is parallel to, and half as long as, the
third side. The proof-figure (the diagram in Fig. 1, a part of the proof-account) and
the statements directly beneath the proof-figure restate the Midsegment Theorem in
terms of what is to be understood as a general triangle AA BC. For reference, the five
theorems cited in the proof-account are collected in Fig. 2; all but one of them are part
of the “natural” unfolding of the argument.

Theorem 1, “Pasch’s Axiom,” is different from the other cited theorems. The first
step in Fig. 1 is to draw a line through the point E parallel to side AB of AABC.
Nothing is wrong with this: drawing such a line is a standard straightedge and com-
pass construction of elementary Euclidean geometry. Proposition .31 of the Elements
(Heath 1956) describes one such construction. The problem is whether the constructed
line will intersect side BC of AABC. The proof-figure makes it look as if it does,
but this is reasoning by diagram, not a deduction from the postulates of Euclidean
geometry. Pasch’s Axiom, introduced by Moritz Pasch in the 1880s, assures us that
such a point of intersection exists. More typical proof-accounts of the Midsegment
Theorem (School Mathematics Study Group 1961, p. 267; Hemmerling 1964, p. 147,
Jacobs 1974, p. 320; Lee 2013, p. 196) avoid the use of Pasch’s Axiom by giving an
explicit construction of a specific point “F”.!

The need to use Pasch’s Axiom (or to devise a constructive procedure that avoids
it) is embedded in the cultivated skills of Euclidean geometry. Provers learn to attend

I Euclid’s reliance on a number of implicit assumptions/diagrammatic practices is discussed in Golos
(Golos 1968, pp. 53-61); Lee (2013) gives detailed proof-accounts that explicate some of the technicalities
involved in avoiding those assumptions. Euclid did not state or prove the Midsegment Theorem, but argued
for a generalization of it in Proposition VI.2. These matters are not pursued here: our immediate aim is to
make the proof-account in Fig. 1 more accessible and, then, in Sect. 3, to examine the practical actions and
reasoning of provers working through that particular account.
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Fig. 1 A proof-account for the midsegment theorem
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Given: Let AABC be an arbitrary triangle with D and E the midpoints of sides AB and
AC, respectively.

To Prove: DE is parallel to BC and DE = } B

Statements

Reasons
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11. DE

Draw a line through E parallel to
AB that meets BC at F'

ZEFC is congruent to ZABC
ZECF is congruent to ZACB
AEFC is similar to AABC

The constant of proportionality
(or scale factor) between AABC
and AEFC is %
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B=EF

DBFE is a parallelogram

@ parallel to BF and, hence,
to BC
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10.

By construction and Theorem 1
(Pasch’s Axiom)

Theorem 2
Identical angles

Theorem 3 (The Angle-Angle
Similarity Theorem)

Definition of the constant of pro-
portionality

Statement 5, arithmetic

D is the midpoint of AB; State-
ment 5

Statements 1, 7; Theorem 4

Definition of parallelogram; BF
and BC are line segments of the
same line

Theorem 5

Statements 6 and 10

Theorem 1. If a line intersects one side of a triangle, it will intersect either the opposite vertex or
one of the other two sides. (Pasch’s Axiom)

Theorem 2. If a transversal cuts two parallel lines, corresponding angles are equal.

Theorem 3. If two angles of one triangle are congruent to two angles of a second triangle, the two
triangles are similar. (The Angle-Angle Similarity Theorem)

Theorem 4. If two sides of a quadrilateral are congruent and parallel, the quadrilateral is a paral-
lelogram.

Theorem 5. The opposite sides of a parallelogram are congruent.

Fig.2 Theorems cited in the midsegment proof-account
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Fig.3 Two similar triangles A

to certain seemingly transparent features of a proof-figure—such as the place where
two lines will meet—when no justification is given other than the visual appearance
of the diagram.

A second technical remark concerns the measures of line segments and angles. In
Fig. 1 and elsewhere, the congruence of line segments is treated as the same as the
equality of their measures, and the two are used interchangeably without comment—
that is, if two line segments are congruent, they have the same length and if two line
segments have the same length, they are congruent. If the need arises, line segments
are manipulated numerically in terms of their measures. Thus, we will write k =
EC /AC rather than using E C and AC without overlines for their associated numerical
measures. Maintaining a distinction between geometric objects and their numerical
measures would be a distraction and serve no immediate purpose.

The heart of the proof is to show that the smaller triangle A E F C in Fig. 3 is similar
to the larger one AABC. One way of doing this is to show that each of the pairs of
corresponding angles is congruent. Since two angles of a triangle determine the third,
only the congruence of two of the pairs of corresponding angles is needed (Theorem
3).

Let us suppose that AE FC is similar to AABC. This means that the two triangles
have the same “shape,” that they are dilated or contracted versions of each other or,
more precisely, that the ratios of the corresponding sides of the triangles are the same.
Thus, if the two triangles are similar,

k=EC/AC =EF/AB=FC/BC

where the ratio k is called the constant of proportionality or the scale factor between
the triangles. Since E is the midpoint of AC, AE = EC. It then follows that
AC = EC + AE = 2 - EC, and the ratio of proportionality EC/AC is 5. This
propotionality between all the corresponding sides of the triangles allows us to iden-
tify the congruencies between EF and DB and between FC and BF as marked in
Fig. 4. What remains is to show that DE is parallel to BF (which is the same as
being parallel to BC) and that DE is congruent to B F which equals % BC. Both these
properties follow from the fact that DB F E is a parallelogram.
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Fig.4 Additional conguencies A
following from similarity
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3 The constitution of deductive reason

Practical reasoning refers to the reasoning involved in organizing our immediate activ-
ities for the practical purposes of engaging in them. As one example, at some point
when doing the vacuuming, we may find ourselves “vacuuming in rows”: pulling the
vacuum back as we take a step to the side, then moving forward again to vacuum a
new row slightly overlapping the previous one. By continually monitoring our actions,
we keep our place in the vacuuming and try to insure that we’re covering the entire
carpet. Or, as a second example, after taking the laundry out of the drier and dumping
it on the bed, we enter into all the tasks of sorting and folding the clothes while, at
the same time, organizing the bed space in order to facilitate the sorting and folding.
Practical reasoning refers to the detailed, “microscopic” reasoning involved in such
work for, as said previously, the practical purposes of doing it.

Initially, such reasoning may seem far from deductive logic and mathematical argu-
mentation. To see the connection, we want to attend closely to the small details involved
in working through the Midsegment Proof-Account. In particular, we will consider
the actions and reasoning of maintaining the correspondence between the two-column
display and the associated proof-figure, of establishing the relevance of propositional
knowledge, and of realizing the organizational coherence of the described proof.

To begin, then, regarding the proof-figure in Fig. 1, we tend to think—both as a
prospective undertaking and as a retrospective accomplishment—that a fixed, static
correspondence exists between the proof-figure and the two-column display. In prac-
tice, the notational correspondence between the two is a continuing project used to
visually identify features of the proof-figure. Statement 1 in the proof-account directs
attention to E F as parallel to AB. We look into the proof-figure to find the line seg-
ments to which reference is being made—that is, to see the placement of AB and
EF. We observe as well that AB and E F do appear to be parallel: the appearance of
parallelism is a graphic reminder of their relationship in the proof.

The appropriateness of Pasch’s Axiom also needs to be worked out: A line through
E parallel to AB intersects one side of AABC at E. It cannot intersect AB because,
by construction, the line is parallel to AB. Nor can it intersect AC at the point C
because, then, it would be identically the line 1<4_C)' , and 1(4_6' is not parallel to AB. By
Pasch’s Axiom (Theorem 1) it must intersect BC at some point in the interior of BC.
In the case of Fig. 1, that point has been called F. In working out this reasoning,
we have spent considerable effort coming to understand how Pasch’s Axiom is being

@ Springer



Synthese (2021) 199:2277-2291 2283

used: rather than Reason 1 transparently accounting for Statement 1, we have had to
figure out, as a practical matter, how this could be so.

Finally, for some, the instruction in Statement 1 to “draw a line” and the justification
“by construction” may not be familiar idioms. Independently of any historical or
philosophical background, the practical import of the expression “by construction” is
quite direct: it invites provers to recognize and acknowledge the legitimacy of using the
auxiliary line through E in a proof-account of the Midsegment Theorem. In whatever
way the line through E is introduced, the reason for doing so is entirely practical. The
line segment E F is needed for this particular proof of the Midsegment Theorem: as
an example, it is used immediately in Statements 2, 3, and 4 to exhibit the similarity
of triangles AEFC and AABC.?

Turning now to Statement 2 in the proof-account, we see that it claims, by descrip-
tion, that ZE FC and ZABC are congruent. When reading Statement 2, we visually
trace the angles in the proof-figure. In the “Reasons” column, the description is jus-
tified by Theorem 2. One possibility is for us to find the specificity of Theorem 2 for
the current situation of proving—namely, that B(_é is a “transversal” that “cuts” two
parallel lines ﬁ and E<_I)7 (with the latter having just been constructed as parallel to
1(4_1)3). Finding the specificity of Theorem 2 in terms of the immediate situation, we
accept the claim that Z/E FC and ZABC are congruent.

Provers, of course, need not work or reason this way. The aim is not to legislate
exactly what provers do or the precise details of their reasoning, but to bring to attention
the type of miniscule, practical reasoning in which they are engaged. Provers may,
for example, read the descriptive claim in Statement 2 (that ZE FC and ZABC are
congruent), look into the proof-figure, and see that 1<3_C>’ crosses two parallel lines 1(4_)3
and EF. Seeing this about BC might (or, depending on familiarity with Euclidean
geometry, should) recall the property described in Theorem 2. Therein, in this way,
provers may also come to substantiate the claim in Statement 2.

Although the “reasons” in the righthand column are supposed to be independent
of, and justify, the associated descriptive claims in the proof-account (that is, the
Statements), those reasons—as we have seen—actually feature in the process of con-
firming those claims. What the “reasons” mean in terms of the specific details of the
proof-account and what their proof-relevant consequences are, are themselves accom-
plishments of practical reasoning.

For Statement 3 that ZECF is congruent to ZAC B, we, again, visually trace the
two angles ZEC F and ZAC B in the proof-figure; we see that their descriptions (that

2 One appreciation of Euclid’s geometry is that it is a constructive geometry: in a usage understandable
from within that geometry, the proof-figure in Fig. 1 sans the auxiliary line is an observably constructible
geometric object. For example, the midpoints of two of sides of a triangle can be found using a straightedge
and compass, and the line between the midpoints can then be drawn. Any auxiliary lines added to a proof-
figure must also be constructible. If the proof-account were written within the framework of The Elements,
rather than saying “by construction,” Reason 1 would cite Proposition 1.31. Proposition 1.31 describes just
such a construction. In contrast, although Hilbert does justify a number of geometric constructions, in a
Hilbertian-axiomatic framework, the statement and reason might be written differently. Statement 1 would
assert the existence of a line through E parallel to A B; in turn, the “Reasons” column would cite a general
theorem to the effect that given any point and any line, there exists a line parallel to the given line that
contains the given point. (Hilbert 1971, p. 25 argues for this proposition just before introducing “Euclid’s
Axiom.”)

@ Springer



2284 Synthese (2021) 199:2277-2291

is, their descriptions as “ZEC F” and “ZAC B”) describe one and the same angle. This
is the practical sense we make of Reason 3. At the same time, a slightly larger question
can arise: what is the point in working through these statements? The question is not
critical at this point; it is more a matter of getting a sense as to where the proof is going.
Step 4 clarifies the situation: the observations in Statements 2 and 3 have been put
together to lead to, and as the immediate grounds for, the description of AE FC and
AABC as similar triangles. Part of reading the first three steps of the proof involves
looking for the organizational coherence of the proof that gives intention to the way
that the statements of the proof-account have been ordered. Statement 4 provides
the grounds for understanding that intention or, said differently, for following the
developing orderliness of the proof.

Up to now, what ties this reasoning together is the retrospective-prospective char-
acter of a prover’s ongoing inquiry into the organization of the proof-account. Provers
retrospectively come to understand why they have been doing what they have done,
and they look forward to the rest of the proof to figure out what their work will come
to. None of this is explicit in the proof-account except in the way provers are looking
for and finding this intentionality, again as their own achievement, in the organization
of a proof-account’s statements.

The critical claim is Statement 5 and the identification of 1/2 as the scale factor.
Once again, the stated reason places the burden on the reader to find what is being
claimed and to see how the calculation of the scale factor can be made. Looking at
the proof-figure, one sees that E is the midpoint of ‘AC and, therein, finds that the
ratio of two of the triangles’ corresponding sides: EC/AC = 1/2. To stress the point,
this is the practical reasoning of finding the organization of practices that the proof-
account describes. It is also the “easy part.” The reader must understand what is being
proposed about AEFC and AABC, what the “constant of proportionality” is, and
how this constant features in the developing proof.

Statements 6 and 7 follow from the similarity of AE FC and AABC, but how they
follow is again left to the reader. As “trivial” or as “obvious” as such matters may
seem, provers nevertheless have to work them out. The two statements are clumped
together in that they both follow directly from Statement 5. Statement 6 leads to seeing
and working out that FC = BF: from the proportionality between the sides of similar
triangles, FC is 1/2 BC, and if BF is 1/2 BC, then BF = FC. (Variations on this
reasoning are possible; the point is that provers engage in reasoning that substantiates
the claim in Statement 6.)

Although provers must wait to find the relevance of Statement 6 (and provers
recognize this as they move to Statements 7 and 8), the relevance of Statement 7 is
immediate. Statement 7 asserts that DB = E F for which readers need, in some way,
to justify the claimed equation DB = %ﬁ = EF. Following this, the reference to
Theorem 4 in Reason 8 draws attention to the fact that the parallelism and congruence of
DB and E F have already been established. This parallelism and congruence establish
the relevance and applicability of Theorem 4 (that D B F E is a parallelogram), further
clarifying the organization of the developing argument.

The rest of the argument can be understood in terms of what the described proof
is supposed to demonstrate. One of the aims is to show that DE = BF; the other is
to show that DE = %ﬁ Visually, by looking at the proof-figure (and as established
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in Statement 8), DE and BF are opposite sides of a parallelogram. A property of
parallelograms (Theorem 5) is that opposite sides are congruent. (If we need to prove
this, the proof is both simple and clever: one of the diagonals of a parallelogram is
drawn in a proof-figure; the congruence of the two resulting triangles is established
because the diagonal is a transversal, first to one pair of opposing sides and, then,
to the other pair.) The difficulty in Statements 10 through 11 for the writer of the
proof-account is figuring out how to arrange the numerical calculations so that they
seem transparent; for the reader, the problem is to work through the proof-figure to see
what is being calculated and to realize why this is being done. Statements 10 through
11 bring closure to the proof by claiming/describing those features of the proof-figure
that the restatement of the Midsegment Theorem in Fig. 1 asserts to be true.

That the last statement and last reason are the last statement and reason is understood
to signal that the argument has been completed and that what has been said is sufficient
to exhibit the proof of the theorem that has been claimed. If this is unclear, provers
need to consider that the argument has concluded and find how this could be the case.
Such claims are often marked syntactically using “Q.E.D.”, the Halmos symbol “0O0”,
or a similar device.

To many, all this will be seen as focusing on trivial matters and belaboring the
obvious. That is, of course, what we have done and what we are interested in. Practical
action and reasoning are not “the stuff as [mathematical] dreams are made on.” Except,
in a peculiar way, maybe they are. By describing these actions and reasoning in detail,
we are not saying that provers consider them, beyond the immediate moment, as
important or as achievements. They are achievements-in-the-small. Provers tend to
devalue what they have been doing in light of practical reasoning’s local and global
accomplishments—TIocally, finding the clarity and continuity of the assertions of the
textual proof-account; globally, realizing the organizational coherence of the projected
proof as an exhibition of the truth of the Midsegment Theorem.

Because provers come to trivialize and forget the practical work that they have
done in working through a proof-account, the arts of practical action and reasoning
come to appear as anything but essential to finding witnessably rigorous proofs. Yet,
in real time, provers cannot work through a proof-account without engaging those
skills nor, when the details of such accounts are questioned, can provers undertake a
review of the account without animating it with the practical arts of proving that the
account implicitly attempts to describe. All the apparently forgettable, obvious, trivial
practical actions and reasoning of working through a proof-account are the actions
and reasoning that provers do, and must do, to find, recognize, and witness a proof of
the Midsegment Theorem.

4 An anthropology of proving

This paper is part of a developing anthropology of professional, disciplinary mathe-
matical theorem proving. Two observations were essential to the project’s inception:
one involved the fundamenta viva of proving, the other, the nature of mathematical
practice. The relevance of these observations as well as the need for an anthropology
of proving are both, in an odd way, anticipated in contemporary philosophy.
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Philosophers have predominantly viewed the foundations of mathematics as an
abstract, theoretical problem and as a problem concerning the nature and origins of
mathematical truth. Recently, philosophers of mathematical practice have challenged
this traditional conception (see, for example, Mancosu 2008). Although not completely
clear on the matter, the new studies suggest, at least implicitly, that continued work on
the traditionally-conceived problem of philosophical foundations is somewhat confin-
ing, insular, and unpromising (Mancosu 2008, p. 5). The proffered solution has been
a turn to “mathematical practice” and the development of philosophies of features of
contemporary mathematics—as a hypothetical example, the development of a philos-
ophy of structural reasoning in higher-dimensional algebraic topology. There are few
indications of what might be meant by “mathematical practice” (Carter 2019) and,
despite the fact that papers in this new field are sometimes filled with highly technical,
advanced mathematics, few if any attempts are made to apply such philosophies to the
situated doings and practical concerns of provers trying to prove theorems.

Like the philosophy of mathematical practice, an anthropology of proving also
involves a turn away from the abstract, theoretical concerns of traditional philosophical
studies of the foundations of mathematics; it involves a turn to the study of mathe-
matical practice as well. The direction of the research, however, has been different. A
first and fundamental observation of the anthropological studies was that professional
mathematicians, as a practical matter and as a matter of practice, treat written mathe-
matical argumentation as the arbiter of mathematical truth: theorem provers write and
work through textual arguments to exhibit or substantiate the claimed proofs that the
arguments are inteneded to describe. Without this production, evaluation, substantia-
tion, and recognition of practically rigorous proofs by, for, and among mathematicians,
there would be nothing about which philosophers of mathematics could inquire. From
an anthropological point of view, it seemed and still seems reasonable to attend to the
ways that theorem provers make proofs witnessable to and for each other. These ways
of proving can be seen as the living substance of mathematical truth and, therein, make
mathematical truth into a matter for empirical, anthropological, and social investiga-
tion.

Regarding the study of mathematical practice, a second observation also lies at the
origins of an anthropology of proving. Put simply, when engaged in proving theorems,
theorem provers are engaged in and literally do work. Some of the work of elementary
Euclidean geometry was described in Sect 3. All provers know this work—they have
to know it in order to produce practically witnessable proofs. Few want to talk about its
practical, ordinary, and sometimes messy, even embarrassing details. Nevertheless, itis
just this work that makes references to “mathematical practice” definite and concrete.
This is not to deny insight, creativity, experience, and whatever else: acknowledging
mathematical practice as the practical, recognizable work of proving emphasizes the
things about which provers have insight, are creative, anticipate and fashion new lines
of inquiry, find hitherto ignored or misunderstood connections. They are the practices
that provide the background against which proofs are discovered as organizations of
those same practices. A few examples involving the cultivated skills of professional
disciplinary mathematics will help make the substance and intention of the proposal
clear.
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Finally, along with these two observations, a research directive began to develop
to help guide ongoing and future research. As an example, the following discussion
briefly considers the encultured and continually monitored skills involved in producing
coherent notation, in maintaining an appropriate level of proof-relevant detail, and
in arranging and exhibiting the witnessable structure of a mathematical argument.’
Rather than treating these skills as distinct competencies, the research directive is to
examine how the particulars of such skills, in and as the details of their use, are bound
together as the work of producing and exhibiting witnessably rigorous proofs.

Consider, first, some of the details surrounding the production of coherent notation.
Statement 2 in Fig. 1 claims that ZE F C is congruent to ZA BC. What if, instead, State-
ment 2 read “ZC F E is congruent to ZABC.” In one sense, nothing is wrong: ZC FE
identifies the same angle as ZE FC, at least for the purposes of the present proof-
account. Nonetheless, although a minor detail, provers immediately recognize that
something is wrong: they are being asked to identify angles by visually tracing them
in opposite directions. An additional “step” has been interposed between Statement 2
and literally seeing what it proposes. Similarly, Statement 6 (FC = 1 BC = BF) and

Statement7 (DB = 1 E = EF) trace the line segments in the same direction. While
there is nothing substantlvely wrong if the directionality of the segments were mixed
up—e.g., FC = ; CB=BFand DB = 1 BA s BA = F E—these changes make provers
do extra work in order to find what is belng claimed in and through the proof-figure.

In terms of the foundations of mathematics, such details may seem insignificant
except that the more such notational “infelicities” are present, the more difficult it
is to find the proof that a prover is trying to describe. In a completely unanticipated
way, the encultured skills of writing coherent notation are part of the living, real-time
foundations of mathematical truth.

The same is true regarding the skills of maintaining an appropriate level of proof-
relevant detail. A few examples should give the idea. First, in discussing Reason 1, the
text of Sect. 3 and an associated footnote offered a somewhat extended treatment of the
expression “by construction.” For the practical purposes of working through the proof-
account, the digression was and is without point. Given the context, provers either
understand the point of the explanation or they do not. In a different way, the explication
of the application of Pasch’s Axiom in Sect. 3 does not belong in the proof-account
either. At the level of proving the Midsegment Theorem, the use of Pasch’s Axiom is
a technical consideration: mentioning the axiom is required by current standards of
rigor; the explication of its relevance and use through added statements and reasons
in the proof-account would distract attention from the witnessable proof that is being
described. The elaboration of the axiom’s use is left to the reader. The same is true of
the other named theorems listed in Fig. 2. If elaborated, the proof-account would be
buried in a mass of technical and subsidiary details. Viewed from the standpoint of
producing a witnessably rigorous proof, the skills of foregrounding and backgrounding
mathematical details are crucial.

Last, and again only briefly, the skills of arranging and exhibiting the witnessable
structure of a mathematical argument should be considered. This was already stressed

3 The disciplined and disciplinary character of these skills became apparent in the reserach surrounding
Livingston (2015).
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Statements Reasons
1. 1.
2. ZEFC is congruent to ZABC 3. Theorem 2
3. ZECEF is congruent to ZACB 2. Identical angles
4. AEFC is similar to AABC 4. Theorem 3 (The Angle-Angle

Similarity Theorem)

Fig.5 The use of parallel structure

in Sect. 3 and is tied to the production of coherent notation and the work of fore-
grounding proof-relevant details. The focus here is on what may also appear to be a
small and unimportant detail.

Figure 5 presents a part of the proof-account of the Midsegment Theorem. Central
to the projected proof, lines 2 through 4 argue that AE FC is similar to AABC. The
manner in which the lines are written appears so natural that it is difficult to see any
intelligence behind them. In textbooks on grammar and composition, the structure
is called “parallel construction.” Following the notational conventions for describing
features of the triangles, the left side of the “ledger” in Statements 2 and 3 identifies
features of AEFC which are compared with features of AABC appearing on the
right. Statement 4 then makes the point of the preceding lines with AEFC again
appearing on the left and AA BC appearing on the right. If the positions of the angles
in Statement 3 were exchanged (for example, “ZACB is congruent to ZECF”), a
prover has to work out that the intended order is the one given in Statement 3. If,
as well, ZECF were written as ZFCE, reading the proof-account would become
increasingly problematic.

As a matter of common experience and recognition, as the visible presence of
these skills decreases, proof-accounts become increasingly difficult to read and their
intended proofs increasingly difficult to understand. Provers live in a world of technical
and detailed practices; many if not all these practices, particularly in the specifics
of actual proving, are tied to the exhibition of witnessably rigorous proofs. Such
observations give support to the possibility of a fundamenta viva of proving: in the
day-to-day circumstances of ordinary theorem proving, mathematics does not rest
on transcendental truths but on the cultivated practices of professional, disciplinary
mathematics. The examples illustrate as well the directive to see how these skills fit
together as the work of producing and exhibiting witnessably rigorous proofs.

Regarding the central argument of this paper, an apparently widespread belief is
that application of deductive logic guarantees the the truth of mathematical inference
or, more formally, the truth-preservation of mathematical argumentation. This paper
does not argue that this conception of rigorous argumentation and mathematical truth is
wrong; neither does it argue that it is right. It argues, instead, that deductive reasoning
does not stand alone. When working through a proof-account, provers are actively
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engaged in establishing, or constituting, the deductive logic that the proof-account is
supposed and, retrospectively, is seen to describe. The same inextricable reliance on
practical reasoning holds for discovery work: proof-accounts are the interface between
provers; a proof-account attempts to shape the skills of proving to make witnessable
the logic of a discovered proof.

The problem as well as the promise of an anthropology of proving is that it offers
no external, Archimedean position from which to view provers’ work. For provers
working through proof-accounts, they are engaged in all the practical actions and
reasoning of finding, realizing, and making witnessable the proofs that are being
described. From within that work, the deductive structure of that work is their ongoing
achievement. To ask what the relationship is between a proof’s deductive structure and
the messy practical work of real-time proving, the answer is that it is what it observably
is seen to be, the practical, situated, real-time work of finding, realizing, and making
witnessable that structure. The same is true for discovery work. If provers engaged
in discovery work were asked to describe the logic and structure of their prospective
discoveries, they would have to ask their interlocutors to wait until they discovered
the witnessable proofs that they were trying to find. If, on the other hand, they were
asked to describe the logic and structure of their immediate work, they could offer all
the messy details, practical reasoning, and anticipated possibilities of what they were
presently doing and trying to do.

Overall, the aim of this paper has been to show the cogency and feasibilty of an
anthropology of proving and, more specifically, the feasibility of studying mathemati-
cal truth in and as the day-to-day circumstances of ordinary theorem proving. The idea
of an anthropology of proving is to hold a microscope on the work practices of pro-
fessional theorem provers and attend to the details of what they are observably doing,
both alone and together, as practicing mathematicians. Once we turn away from the
abstractions of the foundational problem and begin to look at the real-time, situated,
detailed work of proving theorems—by provers alone and working together—a world
of unanticipated phenomena opens for empirical investigation.

Acknowledgements I thank Chuck Livingston for our conversations on proving and mathematical practice,
for his help with the mathematical details of the paper, and for his considerable assistance writing Latex.
Michelle Arens gave critical commentary on two separate drafts, and the suggestions of two anonymous
reviewers helped clarify the structure of the paper as well improve and sharpen the exposition. I am grateful
for all this assistance.

Appendix: The witnessably rigorous proof

A fuller discussion in the body of this paper of the collegially witnessable, witnessably
rigorous proofs of ordinary mathematical practice would have distracted attention
from the paper’s more immediate aims. Such proofs are the pairing of descriptions of
proofs (proof-accounts) with the lived, practical work of proving that such descriptions
depend upon and implicitly describe. The pairing of the proof-account in Fig. 1 of
Sect. 2 with the practical actions and reasoning described in Sect. 3 provides one
example.
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Fig.6 The diagonals of a A B
rhombus are perpendicular and
bisect each other

o
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~

Fig.7 A Proof-in-the-Diagram
Puzzle (Jenks 1949,p. 73)
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Given: The two circles are congruent.

Prove: £0 plus Z¢ equals a straight angle.

As a second example, consider a standard proof-account of the uniqueness of the
identity element of a group. One supposes that there are two such identity elements, e
and ¢’. Then ¢’ = ¢ x ¢/ = e. QED. Essential to seeing and realizing the witnessably
rigorous proof, provers need to read the expression e * ¢’ in two ways—as the element
¢’ multiplied on the left by the identity e and as the element e multiplied on the right
by the identify element ¢’. If it made pedagogical sense to add such a statement to the
proof-account, provers would still have to engage in the physical actions of reading
e * ¢’ in both ways to find the proof that the proof-account prospectively describes.

Another example is provided by a proof-account that the diagonals of a rhombus
are perpendicular and bisect each other. A brief proof-account including Fig. 6 might
read: “Each of the diagonals lies on the perpendicular bisector of the other. QED.” The
witnessably rigorous proof depends on actually (literally, with the eyes) seeing that the
diagonals are perpendicular bisectors. The proof-account, including the proof-figure,
are just text- and drawing-on-the-page: they do not prove anything. The joining of the
account with the physical perception of the diagonals as perpendicular bisectors is an
essential part of the observable proof.

These two examples—the uniqueness of the identity element and the property of
the diagonals of a rhombus—show the occasional, dramatic starkness of such pairings
and their centrality to a proof. Sect. 3 of the text illustrates the omnipresence and
ordinariness of the pairing of proof-account and the work of proving throughout the
proof of the Midsegment Theorem.

Another way of coming to see and appreciate the pair structure of proofs is afforded
by the “Find-the-Proof-in-the-Diagram” exercises of elementary geometry textbooks.
These exercises pose two problems. No proof “lives” in a diagram: the first problem
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is to visually find how the features of the diagram are germane to the work of proving
the claimed theorem. In the case of Fig. 7, a key realization involves the theorem that
the measure of an inscribed angle is equal to half the measure of its intercepted arc.
The second problem is to write a proof-account that describes the envisioned proof in
terms of specific diagrammatic detail. For Fig. 7, the theorem that congruent chords
in congruent circles cut off congruent arcs may be relevant and, therein, so to the need
to introduce additional notation into the diagram.

Asin Fig. 7, find-the-proof-in-the-diagram exercises often illustrate, in an immedi-
ate, visual way, that proof-accounts can lie at a distance from the initial perception of a
prospective proof. The exercises help teach the practical arts of writing proof-accounts
and how the unexplicated practical skills of proving can be articulated by them.
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