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Abstract
Although there is a substantial philosophical literature on dynamical systems theory in
the cognitive sciences, the same is not the case for neuroscience. This paper attempts to
motivate increased discussion via a set of overlapping issues. The first aim is primarily
historical and is to demonstrate that dynamical systems theory is currently experienc-
ing a renaissance in neuroscience. Although dynamical concepts and methods are
becoming increasingly popular in contemporary neuroscience, the general approach
should not be viewed as something entirely new to neuroscience. Instead, it is more
appropriate to view the current developments as making central again approaches that
facilitated some of neuroscience’s most significant early achievements, namely, the
Hodgkin–Huxley and FitzHugh–Nagumomodels. The second aim is primarily critical
and defends a version of the “dynamical hypothesis” in neuroscience. Whereas the
original version centered on defending a noncomputational and nonrepresentational
account of cognition, the version I have in mind is broader and includes both cognition
and the neural systems that realize it as well. In view of that, I discuss research on
motor control as a paradigmatic example demonstrating that the concepts and meth-
ods of dynamical systems theory are increasingly and successfully being applied to
neural systems in contemporary neuroscience. More significantly, such applications
are motivating a stronger metaphysical claim, that is, understanding neural systems
as being dynamical systems, which includes not requiring appeal to representations to
explain or understand those phenomena. Taken together, the historical claim and the
critical claim demonstrate that the dynamical hypothesis is undergoing a renaissance
in contemporary neuroscience.
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1 Introduction

Throughout the mid-twentieth century, many areas of psychology underwent a “cog-
nitive revolution” (Bechtel and Graham 1999; Thagard 2005). This revolution drove
an information-processing perspective of mind (Stillings et al. 1995), namely, mental
activity like decision-making and problem solving, as well as goal-directed behavior.
This perspective centered on explaining mind in terms of representations that encoded
and decoded information and the computational procedures that acted on them (Tha-
gard 2019; Von Eckardt 1995). During that time, the neurosciences were primarily
concerned with behavior and physiology (Cooper and Shallice 2010). Accordingly,
conceptual tools gaining traction in cognitive science (e.g., computation and represen-
tation) were largely not employed. On the other hand, throughout the 1980s and 1990s,
research in cognitive science centered more on neurobiologically-inspired accounts
of cognition, especially artificial neural networks like connectionism (Cooper and
Shallice 2010; Rumelhart 1989). Even though neurobiologically-inspired concepts
and models gained prominence, the information-processing perspective remained and
cognition was defined in terms of computations and representations (Boden 2006).
The widespread application of such information-processing conceptions of mind pre-
sumably left many in agreement with Fodor (1975) in thinking that computational and
representational approaches were “the only game in town” (Rescorla 2020).

This overview is, of course, quite simplistic and leaves out significant facts. For
example, various mind sciences—broadly construed—were not impacted by the cog-
nitive revolution and its information-processing perspective. Ecological psychology
(Gibson 1979/1986), embodiment (Varela et al. 1991), and synergetics (Haken et al.
1985), to name a few, carried out rich research programs without appeal to concepts
such as “computation” or “representation” in their accounts of mental activity or goal-
directed behavior. Many of these research programs did not just adhere to different
concepts, methods, and theories, but were also staunchly opposed to understanding
the mind in computational or representational terms. Yet, proponents of information-
processing accountswere left asking, “Ifmind is not computational or representational,
then what is it?” Throughout the 1990s, van Gelder (1995) and others published a
number of works answering just that question: Mind is best understood not in com-
putational or representational terms, but in terms of dynamical systems theory. The
claim that mind is fundamentally dynamic in nature captured what was at the heart of a
variety of noninformation-processing accounts of mind. The concepts and methods of
dynamical systems theory are regularly central to research by ecological psychologists
(Chemero 2009), proponents of embodiment and enactivism (Thompson 2007), and
work in coordination dynamics and synergetics (Kelso 2009). What about dynami-
cal systems theory in neuroscience; does it provide a viable investigative framework?
Answering that question is the primary purpose of this paper.

I have two aims here: The first aim is primarily historical and is to demonstrate that
dynamical systems theory is currently experiencing a renaissance in neuroscience.
Although dynamical concepts and methods are becoming increasingly popular in
contemporary neuroscience, the general approach should not be viewed as something
entirely new to neuroscience. Instead, it is more appropriate to view the current devel-
opments as making central again approaches that facilitated some of neuroscience’s
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most significant early achievements during the mid-twentieth century. The second
aim is primarily critical and defends a version of the “dynamical hypothesis” in neu-
roscience. Whereas the original version centered on defending, among other things,
nonrepresentational accounts of cognition, the version I have in mind is broader and
includes the substrates of cognitive systems as well. In view of that, I discuss research
on motor control as a paradigmatic example that demonstrates that the concepts and
methods of dynamical systems theory are increasingly and successfully being applied
to awide range of neural systems in neuroscience.More significantly, such applications
are motivating a stronger metaphysical claim, that is, understanding neural systems
as being dynamical systems, which includes not requiring appeal to representations to
explain or understand those phenomena.

In the next section, I focus on the first aim and describe the dynamical renais-
sance. There, I introduce dynamical systems theory and dimensionality reduction. I
highlight the significant role the latter has come to play in dynamical accounts of
neural phenomena, with an emphasis on two historical examples of its application: the
Hodgkin–Huxley and FitzHugh–Nagumo models. In the section that follows, I focus
on the second aim, and present representational and dynamical systems explanations
of motor control in order to demonstrate how the dynamical renaissance is motivating
a reexamination of the necessity of appealing to “representations” in explanations of
neural phenomena.

2 The dynamical renaissance

A “renaissance” can be defined as “a situation when there is new interest in something
and it becomes strong and active again” (Combley 2011). This term is an appropriate
description of what is happening in neuroscience because although the concepts and
methods of dynamical systems theory can be viewed as novel in many contemporary
subdisciplines of neuroscience, the fact is that the general approach was employed
in research on a number of the field’s foundational discoveries in the mid-twentieth
century. The claim here is not that dynamical systems theory, broadly construed, has
been absent from all neuroscience practice during those intervening years. It is clear
that some dynamical tools—especially differential equations—have been standardly
applied in neuroscience research for decades.1 Much of this work employs dynamical
tools in order to model the electrophysiological properties of neurons, particularly
those concerning neuronal circuits and synaptic organization (Izhikevich 2007, pp.
xv–xvi). Consequently, the dynamic properties of neural systems have not on their
own been central topics of investigation. Thus, dynamical systems theory concepts

1 With that said, terms like “dynamic(s)” and “dynamical(ly)” seldom appear in the philosophy of neu-
roscience literature. The following is far from a literature review, but is intended to provide illustrative
examples: Bickle et al. (2019) mention “dynamical” 11 times, but primarily in terms of nonmechanistic and
nonreductionistic approaches falling short of providing viable alternatives or explanations; Patricia Church-
land (2002) mentions “dynamics” and “dynamical(ly)” about 20 times, but usually in ways that deprioritize
it, such as “the dynamics … will be set aside here” (p. 78), “the metaphor of dynamical systems” (p. 112),
and that dynamical systems theory will likely augment but not replace information-processing approaches
(p. 274); and Craver mentions “dynamically” once (2007, p. 4; though “hemodynamics” is mentioned on
two pages).
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such as “fixed point attractors,” “limit cycles,” and “phase transitions,” as well as
particular methods for analyzing and describing those properties, have not been regu-
larly employed. It is those features and methods that make dynamical systems theory
uniquely qualified for investigating the dynamics—especially nonlinear dynamics—of
biological systems like neurons and neuronal networks. Thus, historically speaking,
when dynamical systems theory has been seen in neuroscience, it has commonly been
in the service of investigating neurophysiology and organization.2 Moreover, such
research has been informed by information-processing views of neuronal activity and
organization, including single neurons (e.g., Koch 1999) and populations of neurons
(e.g., Schöner et al. 2016). Such claims draw attention to a number of controversial
issues recognizable by those familiar with particular debates in the cognitive sci-
ences and philosophy of mind.3 One debate concerns the fact that many proponents
of dynamical systems theory in the cognitive sciences have not only supported use
of its concepts and methods, but they have also championed a controversial position
regarding the nature of cognition: the dynamical hypothesis.

In the cognitive sciences and philosophy of mind, the dynamical hypothesis centers
on two claims (Port and van Gelder 1995; van Gelder 1998). First, is the knowledge
hypothesis, which is an epistemological claim centering on the idea that cognitive
agents can be understood as dynamical systems (Chemero 2000; van Gelder 2006).
Taken in isolation, that idea need not be controversial because it merely advocates for

2 As Eugene Izhikevich, one of the pioneers in contemporary applications of dynamical systems theory in
neuroscience, has pointed out,

Nonlinear dynamical system theory is a core of computational neuroscience research, but it is not
a standard part of the graduate neuroscience curriculum. … As a result, many neuroscientists fail
to grasp such fundamental concepts as equilibrium, stability, limit cycle attractor, and bifurcations,
even though neuroscientists constantly encounter these nonlinear phenomena. (Izhikevich 2007, p.
xvi)

A brief review of the “Top 10 Global Universities for Neuroscience” in 2020 www.usnews.com/
education/best-global-universities/slideshows/see-the-top-10-global-universities-for-neuroscience-and-
behavior offers support to Izhikevich’s claim that dynamical systems theory—both linear and nonlinear—is
mostly absent from neuroscience curriculums. For example, Stanford University has 1 week on dynamical
systems in one class; Washington University in St. Louis has nothing explicitly on dynamical systems in its
core courses (but maybe in an elective); University of Oxford has nothing explicitly on dynamical systems;
and even Carnegie Mellon University’s joint Ph.D. program in neuroscience and statistics has only one
course on time series analysis, and it is unclear if it covers nonlinear phenomena.
3 The “philosophy of neuroscience” is intentionally not mentioned here because the majority of the relevant
philosophical literature on dynamical systems theory has focused on topics typically treated as being
in the purview of the cognitive sciences (that is, construed such that neuroscience is not the central or
dominant contributing discipline) and philosophy of mind. Even when neuroscience is mentioned, it is
usually confined to intersections with the cognitive sciences and philosophy of mind. For example, in a
review of contemporary issues in the philosophy of neuroscience, Bickle and Hardcastle (2012) discuss
issues of dynamical versus mechanistic explanations, but refer to cognitive science literature. In another
example, Eliasmith (2010) mentions that dynamical systems theory can be utilized to illuminate how the
brain implements computations, but does so from the perspective of cognitive science and does not discuss
neural activity in terms of dynamics per se. As far as I am aware, issues pertaining to dynamical systems
theory in terms of neuroscience proper have not been discussed until fairly recently (e.g., Chemero and
Silberstein, 2008; Chirimuuta 2018; Favela 2019, 2020; Ross 2015) and have not received nearly as much
attention as in the cognitive sciences and philosophy of mind. Consequently, the topic of dynamical systems
theory in neuroscience remains a relatively novel source of material for philosophers.
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the use of, for example, data analysis methods from dynamical systems theory (e.g.,
differential equations) to generate hypotheses, create models, and to quantify cogni-
tion and related phenomena (e.g., goal-directed behavior). However, it becomes more
provocative when coupled with the second claim: the nature hypothesis, which is an
ontological thesis centering on the idea that cognitive agents are dynamical systems.
What makes this second claim controversial is that it eschews explaining cognition
in terms of information processing, in particular, it rejects understanding cognition as
essentially computational or representational. Thismakes the first claimmore provoca-
tive because it has the consequence of removing the need to appeal to the stronger
forms of “representations” invoked in cognitive science research (e.g., representations
with semantic properties; Pitt 2020). Given that information-processing accounts are
currently accepted bymany to be the “thoroughly entrenched conception” of cognition
and neural systems (Shapiro 2013, p. 362), such that it would be either “confusion
or brazenness” (Shapiro 2013, pp. 362–363) to reject explaining mental activity and
behavior in computational and representational terms (cf. Favela and Martin 2017), it
is not surprising that the dynamical hypothesis draws many a skeptical eye from con-
temporary researchers. The goal of this section is not to defend or reject the dynamical
hypothesis. In keeping with the thesis of this section, I merely aim to demonstrate
that dynamical systems theory—both in terms of epistemology (i.e., methods) and
metaphysics (i.e., the nature of cognitive systems)—is not as novel to neuroscience
as one could believe based on the ways it is discussed in the literature.4 Instead, its
increasing popularity is in fact a return to practices that were common in the history
of neuroscience. As a historical point, that goal is achievable without taking a stand
on the dynamical hypothesis’ metaphysical claim. Accordingly, as I assume readers
are unfamiliar with it, a brief introduction to dynamical systems theory is provided in
the following subsection. After, I provide historical examples of its application.

2.1 A very concise introduction to dynamical systems theory

There are many excellent general introductions to dynamical systems theory (e.g.,
Alligood et al. 2000; Fuchs 2013; Guckenheimer and Holmes 1983; Strogatz 2015),

4 As stated in the previous footnote,whendynamical systems theory is discussed in the philosophy literature,
it is typically in terms of the cognitive sciences and philosophy of mind, and not neuroscience or the
philosophy of neuroscience per se. With that said, when dynamical systems theory is mentioned in that later
discipline, it is as if it is novel in neuroscience research. One specific example comes from Bechtel who
says in regard to new developments in systems biology that “the one that has attracted [his] interest, is the
development of mathematical tools that enable researchers to represent the organization and behavior of
systems of large numbers of components that interact non-linearly and are organized non-sequentially. These
include the tools of … dynamical systems theory” (Bechtel 2017, p. 26). Another example is Chirimuuta,
who states that the “Techniques of… dynamical systems analysis, imported from other branches of science,
have become popular in the quest to simplify the brain” (Chirimuuta 2018, p. 867), and then discusses
examples of fairly recent applications of dynamical systems theory in neuroscience. A third specific example
comes from Barrett, who discusses the increasing primacy of viewing the brain in dynamical terms when
he claims that “the problem raised by neuroscience research of the past few decades is that it has added a
whole new layer of complexity to the brain, namely dynamical complexity” (Barrett 2016, p. 165). Other
examples include Ash and Welshon, 2020; Barandiaran and Moreno 2006; Bechtel 2015; Burnston 2019;
Golonka and Wilson 2019; Lins and Schöner 2014; Lyre 2018; Meyer 2018; Thomson and Piccinini 2018;
Venturelli 2016; Zednik 2014.
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as well as its applications in the mind sciences (e.g., Beer 2000; Chemero 2009; Clark
1997; Guastello et al. 2011; Port 2006; Riley and Holden 2012; Thelen and Smith
1994). The current introduction is aimed at providing a general overview and giving a
sense of the aspects of dynamical systems theory that will be most significant in later
sections (Favela 2020). To begin, dynamical systems theory is a branch ofmathematics
that can evaluate both abstract and physical systems as they change over time. Oneway
to understand how dynamical systems theory is applied is in terms of its quantitative
and qualitative elements. The quantitative element is the application of mathematical
equations to describe, evaluate, and measure systems. A common dynamical mathe-
matical tool is differential equations, which are mathematical functions that capture
systems’ temporal evolutions, where variables in the equations are continuous values,
as opposed to discrete values. The qualitative element is the visual depiction of the
dynamics by means of plotting the equations in a state space, which is the range of
possible values of a variable as depicted by means of a phase space plot.5

It is likely that many philosophers with at least some familiarity with dynamical
systems theory know it by way of van Gelder’s discussion of the Watt centrifugal
governor example (van Gelder 1995). Because that example is best described by van
Gelder himself, I refer readers to that primary source (for those interested in secondary
sources, I recommend Chemero 2000 and Shapiro 2019). Moreover, that example
has been the target of much debate (e.g., Eliasmith 1997), which I do not wish to
detract from the current aim of providing a concise and uncontroversial account of
dynamical systems theory. Accordingly, here I provide pendulum dynamics as a more
straightforward example. The quantitative element of a dynamical systems account of
pendulum dynamics is the following:

d2θ

dt2
+
g

l
sin θ � 0 (1)

In this differential equation, 0 is the pendulum swing, which is the phenomenon of
interest. Angular displacement of arm (θ ), gravitational acceleration (g), and pendu-
lum length (l) are the identified variables contributing to and most responsible for the
dynamics of the phenomenon of interest. The qualitative element is the phase space
plot of the pendulum swinging (Fig. 1). It is important to keep in mind that a quali-
tative description of the full range of the system’s dynamics via a state space is not
intended to provide the kind of information or understanding that a diagram does. In
the current context, a diagram of pendulum dynamics (Fig. 1a) is intended to provide
understanding of the dynamics in real space. Here, themovement of a pendulum across
two-dimensional space. The state space of pendulum dynamics (Fig. 1b) is intended
to provide understanding of the dynamics abstractly. Here, the y-axis illustrates the
velocity of the pendulum over time and the x-axis illustrates the angle of the pen-

5 It is worth noting here that the word ‘qualitative’ is commonly used in another way in discussions of
dynamical systems theory. Here, “qualitative” is utilized in a manner consistent with those usages that refer
to a visual depiction of a phenomenon, like a graph, and is contrasted with “quantitative,” which provides a
numerical depiction, like a differential equation (e.g., Alligood et al. 2000, p. 279; Barrat et al. 2008, p. 93;
Beer 2000, p. 92). It is also common for ‘qualitative’ to refer to the way of being of the phenomena being
analyzed or depicted via dynamical systems theory. For example, water can undergo “qualitative” shifts
among gaseous, liquid, and solid state ways of being.
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Fig. 1 Depictions of pendulumdynamics. aDiagramof pendulumdynamics. The diagram is intended to pro-
vide understanding of the dynamics in real space.Here, themovement of a pendulumacross two-dimensional
space. b Phase space plot of pendulum dynamics. The state space is intended to provide understanding of
the dynamics abstractly. Here, the y-axis illustrates the velocity of the pendulum over time ( dθ

dt ) and the
x-axis illustrates the pendulum arm’s angle at a time. Whereas the diagram (A) provides understanding
of the actual physical space, the state space (B) provides abstract understanding of the temporal space.
(Modified and reprinted with permission from Krishnavedala (2012). CC0 1.0 and Krishnavedala (2014).
CC BY-SA 4.0.)

dulum at a time. For example, looking at (0, 0) on the phase space plot (Fig. 1b),
tells you that the pendulum is around the resting position, and (− 2π, 0) and (2π,
0) illustrates the same motion but at opposite valued arm angles. Hence, the diagram
provides an understanding of movement in actual physical space and the state space
provides abstract understanding of the temporal space. Thus, taken together, the quan-
titative (e.g., differential equation) and qualitative (i.e., state space plot) elements are
intended to provide explanations (e.g., contributions of variables) and understanding
(i.e., abstract nature of the dynamics over time) of the phenomenon of interest.

2.1.1 Dimensionality reduction

Amore advanced topic than typically discussed in introductions to dynamical systems
theory (especially in terms of the mind sciences), but one that will be crucial in later
sections, is the intersection of dynamical systems theory and dimensionality reduction.
In statistics andother formsof data analysis (e.g.,machine learning),dimensionality (or
dimensions) refers to the informative features of a dataset. For example, medical data
such as blood pressure, temperature, white blood cell count, etc., are all features—or
inputs—of a dataset obtained for the purpose of diagnosing an illness—or output.
High-dimensional data refers to datasets with a “high” number (a relative amount) of
features such that determining their relationships to each other and the phenomenon
of interest can be computationally exceedingly demanding. For example, datasets
comprised of gene expression are paradigmatic cases of high-dimensional data as
there are seemingly innumerable relationships among genes, different temporal scales,
etc. Dimensionality reduction, in the simplest terms, is a data processing strategy that
attempts to cut down on the number of a dataset’s features without losing valuable
information (Hinton and Salakhutdinov 2006; Nguyen and Holmes 2019; Sorzano
et al. 2014). This is typically done in two general ways: filtering variables from the
original dataset to keep only what is most relevant or exploiting redundancy in input
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data to find fewer new variables that contain the same information (Cohen 2017;
Sorzano et al. 2014). As with any data processing or analysis techniques, one must be
aware of the limitations of dimensionality reduction (Carlson et al. 2018; Jonas and
Kording 2017). Yet, there are many virtues to employing dimensionality reduction
on high-dimensional datasets, including its ability to: filter out meaningless noise
(Cohen 2017), help control for incorrect intuitions about relationships among variables
(Holmes and Huber 2018), increase a dataset’s statistical power (Nguyen and Holmes
2019), and reveal deeper organizational relationships and structures (Batista 2014).

Dimensionality reduction is not exclusive to dynamical systems theory. But for
the aims of this paper, the most important way dimensionality reduction intersects
with dynamical systems theory is for the purpose of reducing the number of vari-
ables needed to account for even the most complex of data from behavioral and
cognitive tasks, as well as the underlying neural processes. With simple—usually
human-made—systems, it can be relatively straightforward to identify the most rel-
evant variables to account for the phenomenon of interest. As discussed above, the
full range of pendulum dynamics can be understood via three variables: angular arm
displacement (θ ), gravitational acceleration (g), and pendulum length (l). When it
comes to neural systems and their related behaviors, however, variable identification
is typically nowhere near as straightforward (Churchland and Abbott 2016; Church-
land et al. 2012; Cunningham and Byron 2014; Frégnac 2017;Williamson et al. 2019).
Since it is crucial to identify the relevant dimensions (i.e., features, variables) when
developingmodels and equations of dynamical systems, various dimensionality reduc-
tion analyses can be employed. These methods include, but are not limited to, linear
methods such as correspondence analysis and nonlinear methods such as diffusion
maps (Nguyen and Holmes 2019). A popular method of dimensionality reduction in
the mind sciences, and one that will come up in later section, is principal component
analysis.

Here, I provide a brief and conceptually-focused introduction to principal compo-
nent analysis (PCA; see Jolliffe and Cadima 2016 for a more technical introduction).
While PCA has been around since the early-1900s, it was not until much more
recently that the computational resources were available to leverage its techniques
on high-dimensional datasets. The basic idea underlying PCA is to reduce a dataset’s
dimensionalitywhile preserving variability.Here, preserving variabilitymeans discov-
ering new variables—principal components (PC)—with linear functions that match
those in the original input data. Moreover, those new variables should maximize vari-
ance and be uncorrelated with each other (Jolliffe and Cadima 2016). Werner and
colleagues provide fish body measurements as an illustrative and simple example
of PCA (Werner et al. 2014). In this example, the input dataset contains height and
length measurements of various fish (Fig. 2a). As it is assumed those two dimensions
are strongly correlated, the PCA defines a change of coordinate systems from the
original two-dimensional (height, length) data space to a single dimension (first shape
score) data space (Fig. 2b). This reduction from two dimensions to one dimension
retains the maximum amount of the original dataset’s variability.

As in the example of fish measurements (Fig. 2), when the various dimensionality
reduction methods intersect with dynamical systems approaches, it is usually for the
purpose of helping investigators get an epistemological grip on unwieldy data by
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Fig. 2 Principal component analysis (PCA) example. a Fish body measurements provide the input dataset,
with height and length obtained from N individuals. b Height and length are assumed to be strongly
correlated. PCA defines a change of coordinate system from the original (height, length)-axes (here, the x-
and y-axes) to a new axes (B1 and B2), which depict the principle axes of the dimensions that covary. The
process of defining a new coordinate system (V) corresponds to a reduction of the dimensionality of the
data space, which also retains most of the data’s variability. (Modified and reprinted with permission from
Werner et al. (2014). CC BY 4.0.)

contributing to the identification of the most relevant variables among multivariate
datasets. Although dimensionality reduction in its contemporary form (e.g., via neural
networks and other kinds of machine learning) is relatively new (~early-2000s), issues
concerning how to cope with high-dimensional data have been explicitly discussed in
computer science (e.g., the “curse of dimensionality;” Bellman 1961) and statistics
(Finney 1977) since the mid-1900s. It was around that time (give a decade back or
two) that both dynamical systems approaches and forms of dimensionality reduction
were contributing to some of themost significant research in neuroscience, namely, the
Hodgkin–Huxley and FitzHugh–Nagumo models. In the following section, I present
these cases tomotivate the claim that contemporary applications of dynamical systems
theory in neuroscience is not as much pioneering as it is a revival.

2.2 Dynamical systems theory in neuroscience, then and now

As mentioned above, it is common to view dynamical systems theory as merely an
alternative or supplement to the information-processing approaches purported to be
dominant in the contemporary mind sciences (e.g., Eliasmith 1996; Kaplan and Bech-
tel 2011). In this section, I present two historical cases to motivate both the claim that
dynamical approaches were common in neuroscience research in the mid-1900s and
that dimensionality reduction was part of practices that facilitated some of the field’s
most lauded successes. I begin with Hodgkin and Huxley’s (1952) canonical model
of action potentials. This Nobel Prize-earning work has been described as “elegant,”
“groundbreaking,” and the most successful quantitative model in neuroscience (Ger-
stner et al. 2014; Koch 1999). A major feature of this work was the identification of
the action potential (i.e., neuron spike) as a dynamic (i.e., temporal) event defined by
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relatively few variables (i.e., dimensions, elements). The canonical Hodgkin–Huxley
model is as follows:

I � CM
dV

dt
+ ḡK n

4(V − VK ) + ḡNam
3h(V − VNa) + ḡl(V − Vl) (2)

Key elements of the model are: I (total membrane current as a function of time
and voltage), CM (cell membrane capacity per unit), dV (change of membrane poten-
tial from resting value), dt (change over time), and g‘s (ions such as sodium [Na]
and potassium [K ]). Hodgkin and Huxley were able to successfully apply dynami-
cal systems theory in the form of differential equations because they conceptualized
the phenomenon of interest—namely, action potentials in the squid giant axon—as
essentially a temporal event. From a dynamical perspective, their job became one of
identifying the relevant variables responsible for the behavior. In this light, it is easy
to see the Hodgkin–Huxley canonical model as an early application of a version of
the dynamical hypothesis. While the original dynamical hypothesis is a set of claims
concerning cognitive agents, here the concern is physiology. Specifically, Hodgkin
and Huxley’s investigative framework was dynamical through and through in that it
approached the phenomenon of interest in terms of its being both able to be under-
stood as a dynamical system (i.e., modeled via differential equations) and as being a
dynamical system (i.e., defining the action potential as a temporal event).6

As with any attempts at modeling complicated phenomena, it can be quite challeng-
ing to select the best variables to account for the target of interest. This is especially
true with biological entities that usually have features that often interact nonlinearly.
Consequently, many biological phenomena produce high-dimensional data. To the
uninitiated, the Hodgkin–Huxley model presented above may seem quite complicated
due to the appearance of many variables. Even if the model is seemingly compli-
cated, Hodgkin and Huxley (1952) went through many iterations of models before
developing the streamlined canonical model presented above. Moreover, defining the
model above actually requires defining three of the variables with differential equa-
tions of their own, such that theHodgkin–Huxleymodel, fully defined, is the following
four-dimensional model:

I � CM
dV

dt
+ ḡK n

4(V − VK ) + ḡNam
3h(V − VNa) + ḡl(V − Vl) (3)

6 One potential objection to this interpretation of the Hodgkin–Huxley canonical model as supporting
understanding mid-1900s neuroscience research through the lens of the dynamical hypothesis can be raised
from proponents of mechanistic explanations. Mechanistic explanations are commonly considered to be the
dominant explanatory approach to the mind sciences, and the life sciences in general (Craver and Tabery
2019). There is an enormous literature concerning the nature of mechanistic explanations and how they
contrast with rival explanatory methods like dynamical explanations (e.g., Chemero and Silberstein 2008;
Gervais 2015; Zednik 2011). Additionally, there is literature describing the Hodgkin–Huxley model as a
paradigmatic example of mechanistic explanation (e.g., Craver 2008; Craver and Kaplan 2020). I do not
wish to enter that debate here as it goes beyond the scope of my current aims. It is enough, I believe, to
motivate that it is reasonable to interpret the Hodgkin–Huxley model as an example of dynamical systems
theory playing a central role in neuroscience research in the mid-1900s.
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where

dn/
dt � αn(1 − n) − βnn, (4)

dm/
dt � αm(1 − m) − βmm, (5)

dh/
dt � αh(1 − h) − βhh (6)

Seeing that the fully defined Hodgkin–Huxley canonical model is four differential
equations makes clearer that the model cannot be solved analytically. Moreover, plot-
ting the model along four dimensions creates a phase space plot that is challenging to
interpret (Gerstner et al. 2014). Such cases are examples of the work dimensionality
reduction can do to facilitate understanding of high-dimensional data.

The FitzHugh–Nagumo model of neuron excitability (FitzHugh 1961; Nagumo
et al. 1962) is essentially the product of applying dimensionality reduction to the
Hodgkin–Huxley model. Whereas the fully defined Hodgkin–Huxley model is a four-
dimensional set of differential equations, the FitzHugh–Nagumo model is a pair of
two-dimensional differential equations:

V̇ � V − V 3

3
− W + I (7)

Ẇ � 0.08(V + 0.7 − 0.8W ) (8)

What is more, the FitzHugh–Nagumo model includes only three variables: I (stim-
ulus current magnitude), V (cell membrane potential), and W (recovery variable).
Whereas the fully defined Hodgkin–Huxley model requires a four-dimensional phase
space plot to depict the full range of behavior, the full range of behavior of the
FitzHugh–Nagumo model can be depicted by a simpler two-dimensional phase space
plot (Fig. 3).

The FitzHugh–Nagumo model captures the full temporal range of neuronal excita-
tion and propagation with two electrochemical properties: potassium and sodium ion
flows (Izhikevich and FitzHugh 2006). It is worth noting that he FitzHugh–Nagumo
model is less biologically realistic than theHodgkin–Huxleymodel because it includes
less empirically validated dimensions. With that said, it is still able to capture much of
the same key information that the Hodgkin–Huxley model does. Though the Hodgk-
in–Huxley model is more biologically realistic than the FitzHugh–Nagumo model,
only temporal projections of its four-dimensional phase trajectories can be simultane-
ously observed, which has the consequence of not allowing the model’s solution to be
observed via a single plot (Izhikevich and FitzHugh 2006). In other words, a plot of the
Hodgkin–Huxley model can depict direction of activity over time (i.e., projections),
but not the states that it will settle in. With only two dimensions, the entire solution
of the FitzHugh–Nagumo model can be plotted. Consequently, not only is the tempo-
ral trajectory of activity depicted (and maintained from the Hodgkin–Huxley model),
but so too is the solution, namely, the states that the system settles in (i.e., properties
not revealed by plotting the four dimensions of the Hodgkin–Huxley model). Thus,

123



2114 Synthese (2021) 199:2103–2127

Fig. 3 Phase space plot of FitzHugh–Nagumo model. With just two dimensions—V (membrane potential)
and W (recovery variable)—the phase space plot depicts the full range of behavioral trajectories from a
range of initial conditions. (Modified and reprinted with permission from Scholarpedia. CC BY-NC-SA
3.0.)

not only does the FitzHugh–Nagumo model capture the key information concerning
the properties of excitation and propagation that contribute to single-neuron spiking
that the Hodgkin–Huxley model does, but by having its full solution plotted on two
dimensions it reveals nonlinearities and feedback that contribute to spiking activity
(Izhikevich 2007; Izhikevich and FitzHugh 2006). In that way, the FitzHugh–Nagumo
model is a clear example of dimensional reduction methods integrated with dynami-
cal systems theory methods in the history of neuroscience. Specifically, information
about the phenomenon of interest—namely, single-neuron activity—that is captured
by four dimensions in the Hodgkin–Huxley model is maintained when reduced to the
two dimensions “principle components” in the FitzHugh–Nagumo model. It is worth
noting that other early applications of PCA in the mind sciences are found in Elman’s
work on connectionist models of language (Elman 1991) and in biophysics by Haken
and Kelso on self-organization in the brain during behavioral tasks (Kelso and Haken
1995).

I have presented theHodgkin–Huxleymodel andFitzHugh–Nagumomodel as cases
of dynamical systems theory being employed in some of the major achievements in
the history of neuroscience. Moreover, the latter model also integrated dimensionality
reduction methodology. What I have not done is presented those cases as a means
to demonstrate that dynamical approaches provided the only investigative framework
employed in the neurosciences, broadly construed. There should be no doubt that
mechanistic and reductionistic approaches were common and that such research was
successfully conducted without dynamical systems concepts or methods. With that
said, the above two cases should make it clear that it is incorrect to view dynamical
systems theory as a novel development in contemporary neuroscience (see footnote 4
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above). Even the most cutting edge neuroscience research—from microscale genetics
to macroscale behavior—with its heavy focus on employing various types of dimen-
sionality reducing methods (Churchland and Abbott 2016; Fan and Markram 2019;
Frégnac 2017) have as forerunners research in the mid-1900s that can reasonably be
identified as dynamical (Kass et al. 2018). It is in that sense that there is a dynam-
ical renaissance in contemporary neuroscience, and that it is clear that a version of
the knowledge hypothesis part of the dynamical hypothesis has turned out to be true,
namely, that at least some of the underlying physiology of cognitive systems can be
understood as a dynamical system, and not as computational. In the following section,
I present representational and dynamical systems explanations of motor control in
order to demonstrate how the dynamical renaissance is motivating a reexamination of
the necessity of appealing to “representations” in explanations of neural phenomena.

3 W(h)ither representations?

Thus far, I have attempted to make the primarily historical and weaker point that
the increased presence of dynamical systems theory in contemporary neuroscience is
more akin to a renaissance than a novel introduction. In this section I aim to make a
stronger point: along with utilizing concepts and methods, the revival of dynamical
systems theory in contemporary neuroscience is driving a reassessment of the neces-
sity of the concept “representation” in explanations of neural phenomena. This point
parallels the nature hypothesis part of the dynamical hypothesis—namely, that cog-
nitive agents are dynamical systems—and states that neural systems are dynamical
systems. As discussed above, whereas the knowledge hypothesis part of the dynam-
ical hypothesis landed quietly, the nature hypothesis arrived loudly. The reason is
that central to the nature hypothesis is the metaphysical claim that cognition is not
essentially computational or representational in nature (van Gelder 1995). Given that
computations and representations are defining features of the purportedly dominant
information-processing frameworks in the mind sciences since at least the cognitive
revolution (~1950s), it is no wonder that it has been said that it would be either “con-
fusion or brazenness” (Shapiro 2013, pp. 362–363) to reject explaining cognition—or
neural systems—in computational and representational terms. In this section, I aim
to demonstrate that—although it may indeed be brazen—it is certainly not confused
to think that the phenomena investigated by the neurosciences can be explained with-
out appeal to representations. I do so by discussing representational and dynamical
accounts of motor control.

3.1 Motor control

Motor control is the ability of a system to generate goal-directed and coordinated
movements with the body and environment (Latash et al. 2010). A simple example
of motor control is when a monkey is hanging from a tree branch with one hand and
reaches for a piece of fruit with the other hand. The goal is to not fall and get some-
thing to eat at the same time. What is being coordinated is the body (arms, hands,
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legs, etc.), location of tree branch in relation to body, and location of fruit in relation
to body and tree. There are various theories for understanding motor control, with
their own background assumptions, such as artificial intelligence/robotics, ecological,
neuroanatomical, and synergetics/self-organization (Turvey and Fonesca 2008). Here,
I focus on the traditionally predominant approaches in neuroscience that have focused
on the central nervous system (CNS) and sensorimotor transformations (Jordan and
Wolpert 2000). In short, these approaches are information-processing frameworks,
where the motor system (i.e., limbs, joints, and muscles) receives motor commands
(e.g., force, reach, torque adjustments; Diedrichsen 2012) from the controller located
in the CNS (Jordan and Wolpert 2000). Moreover, representations and the informa-
tion they encode are fundamental to this approach. This is admittedly a very general
overview of motor control. My aim here is not to provide a thorough introduction
to motor control, but to focus on what can broadly be referred to as “representation-
al” and “dynamical systems” approaches to motor control. The presentation of these
approaches is intended to demonstrate that the renaissance of dynamical systems the-
ory in contemporary neuroscience is motivating nonrepresentational explanations of
various neural phenomena.

3.2 Representational accounts of motor control

There is a long history in neuroscience and related fields (e.g., neurology) duringwhich
representations have played a central role in accounts of motor control (for discussion
of competing applications of the term in the history of neuroscience, see Chirimuuta
2019). This history includes usages such as: the somatosensory cortex represents the
body (e.g., Brecht 2017), neuronal activity patterns represent systematic relation-
ships with body and world (e.g., S1 somatotopic maps; Wilson and Moore 2015), and
neurons are vehicles that represent semantic information for goal-directed behavior
(Thomson and Piccinini 2018). In many areas of current neuroscience research, “rep-
resentations” have been cashed out in terms of coding (Brette 2019; Dehaene 2014;
Koch and Marcus 2014). As both a literal and metaphorical term, “coding” (including
“decoding” and “encoding”) has also come to be the way representations involved in
motor control are understood (Shenoy et al. 2013; Thomson and Piccinini 2018). Like
“representation,” there are various uses of the term “coding.” As Brette (2019) points
out, the phrase “neural coding” appears in over 15,000 papers in a Google Scholar
search of literature from the past ten years. For that reason, I will not attempt to pro-
vide an all-encompassing definition of “coding” or “neural coding.” Instead, I limit
discussion to “coding” in terms of representations involved in motor control.

Given that information-processing approaches have such a large presence in con-
temporary neuroscience, it is unsurprising that concepts from computer science are
appealed towhen attempting to explain key claims of the approach, namely, that cogni-
tive and neural systems are computational and representational in nature. As a starting
point, motor control from an information-processing perspective can be understood
in the following terms:

[T]he motor system can be considered a system whose inputs are the motor
commands emanating from the controller within the central nervous system …

123



Synthese (2021) 199:2103–2127 2117

To determine the behavior of the system in response to this input, an additional
set of variables, called state variables, also must be known. For example, in
a robotic model of the arm, the motor command would represent the torques
generated around the joints and the state variables would be the joint angles and
angular velocities. Taken together, the inputs and the state variables are sufficient
to determine the future behavior of the system. (Jordan andWolpert 2000, p. 601;
italics in original)

Along those lines, the focus of motor control research in neuroscience has been to
explain how such commands and state variables are encoded and decoded (Shenoy
et al. 2013). In addition, the primary research target has been single neurons and the
ways parameters are coded to control cortical output. From this general approach,
single neurons provide the vehicles for encoded and decoded content, such as the
content of state variable parameters. Thus, the job of the neuroscientist has been to
describe the firing of individual neurons in the motor cortex as a function of various
parameters (i.e., state variables) for concurrent or upcomingmovements (Shenoy et al.
2013, pp. 340–341).

Consider a standard neuroscience experiment: the instructed-delay task. In this task,
experimental subjects (e.g., human, monkey, etc.) are instructed which movements
they should make after a cue tells them to make the movement (Kandel et al. 2000). A
typical experimental setup involves a subject sitting in a chair in front of a touch screen
while behavioral,muscle, and/or neuralmeasurements are recorded.A basic task could
involve the subject visually fixating on a green target on the screen and touching it with
their hand (Fig. 4a), another red target appears so they know where their movement
must be made, and after a delay, the subject is presented with the green target and
then moves to the spot where the red target was (Shenoy et al. 2013). One kind of
representational account of this event is as follows: The task (i.e., reaching targets with
a hand) is encoded (represented) in the controller located in the CNS, which outputs
commands to the motor system. The controller incorporates encoded (represented)
sensory information as well, namely, visual information in the form of green and red
targets. The controller also incorporates information from state variables that have
encoded (represented) states of the system itself, such as arm angle, torques around
the elbow joint, etc. In view of that story, the neuroscientist working on motor control
focuses her research on single neurons by elucidating the relevant state variables
encoded and identifying the tuningof those parameters necessary to produce successful
movement (Fig. 4b).

Shenoy and colleagues (2013) describe the representational perspective as focused
on explaining single-neuron activity in terms of tuning for movement parameters
(Shenoy et al. 2013, p. 340). They present the following as the general model adhered
to by such approaches:

rn(t) � fn(param1(t), param2(t), ...) (9)

where the firing rate (r ) of single neurons (n) in the motor cortex are described as
functions of various parameters (parami ) representing concurrent or upcomingmove-
ments. If it seems that the number of relevant parameters could be enormous, that is
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Fig. 4 Representational and dynamical systems accounts of motor control. a In an instructed-delay task, a
participant begins by focusing on a starting point, such as a green target, is presented another target (e.g.,
red square), and is instructed to point to the spot the second target was located after being presented with
the first target. Behavioral, muscle, and/or neural measurements are recorded during the task. b Represen-
tational accounts of motor control traditionally focus on single neurons (e.g., Jordan and Wolpert 2000).
The research aim is to identify the firing rate (r ) of single neurons (n) in the motor cortex that describe
functions of various parameters (parami ) that represent concurrent or upcoming movements (Eq. 1). Mod-
els of neuronal populations (Eq. 2) can integrate parameter functions defined at the single neuron. Motor
commands are encoded in motor neurons via pulses that provide state variable profiles (B, bottom). (C)
Dynamical systems accounts of motor control often focus on neural populations. The research aim is to
elucidate neural population cortical activity (r(t)) that is mapped onto muscle activity (m(t)), as well as
other intermediating circuits (G[x]), that produce body movements in a manner that achieves the system’s
aims (Eq. 3). r(t) can be defined to capture neural population temporal activity (ṙ) that is determined by
local motor cortex circuitry (h(x)) and inputs from other areas of the system (u(t)) (Eq. 4). State space plot
of rotational dynamics (bottom). Data from Churchland et al. (2012) were reduced via jPCA to two dimen-
sions that capture a significant portion of the neural population’s variance. Here, “a.u.” refers to “arbitrary
units,” which is acceptable because the plot depicts the abstract nature of the population’s dynamics and
not its actual dynamics in real space. (Modified and reprinted with permission from Pixabay and SVG Silh.
CC0 1.0 (A); Modified and reprinted with permission from Eyal et al. (2018). CC BY 4.0 and Sartori et al.
(2017). CC BY 4.0 (B); and Modified and reprinted with permission from Prior (2018). CC BY 4.0 and
Lebedev et al., (2019). CC BY 4.0 (C).)

because it is. Part of the reason is because identifying each parameter, as well as
defining its tuning, must also take into account covariates such as target locations,
limb kinematics, proprioceptor activity, muscular synergies, and more (Shenoy et al.
2013). It is worth pointing out that although the general model defined by Shenoy and
colleagues that focuses on single-neuron activity is true ofmuch neuroscience research
on motor control, the general idea also applies to research on neuronal populations
(e.g., Sartori et al. 2017). In such cases, the general model of neuronal populations
contributing to motor control is as follows:

DRn � 1

tn − tn−1
(10)

123



Synthese (2021) 199:2103–2127 2119

where R refers to the parameters encoded in single neurons that code for movement
instructions to the body and D refers to the activity of neuronal populations that map to
and from the body. Shenoy et al.’s generalmodel of single neurons can be readily incor-
porated into the population model by defining R as fn(param1(t), param2(t), ...).
Thus, even if a model of motor control is focused on neuronal populations, the
action—that is, the representational action—remains located in the single neurons
that state variables are encoded in. In summary, representational accounts understand
motor control as a form of information processing, where movement is controlled
beforehand and concurrently, said movements are encoded in single neurons, and
neuronal activity is tuned to various parameters (i.e., state variables) that contribute
to the action (e.g., limb velocity, joint torque, etc.).

3.3 Dynamical systems accounts of motor control

Although representational accounts of motor control can utilize dynamical systems
theory methods (e.g., treating data as continuous and applying differential equations;
e.g., Schöner et al. 2016), there can be fundamental differences between them insofar
as explaining motor control goes.7 First, dynamical systems accounts of motor control
focus on neural dynamics, specifically, the dynamics of neural populations (Fig. 4c).
This contrasts with representational accounts that focus on the coding (i.e., represen-
tation) of movement parameters (e.g., body states, such as limb angles, and world
states, such as target location), and how those parameters are tuned in single neurons.
Second, the dynamical systems approach focuses on the state of the system producing
movement and not what outputs of the system are represented. In other words, the
dynamical systems approach is centrally concerned with system dynamics (or rules)
that constitute movement (Churchland et al. 2012; Gallego et al. 2017; Michaels et al.
2016) and representational approaches are centrally concerned with how the system
codes for current and future movements (Heitmann et al. 2015; Schöner et al. 2016).

One way to begin to understand the dynamical systems approach to motor control
is in terms of how it conceptualizes the nervous systems.Whereas the representational
approach views the nervous system as, well, a representational system, the dynami-
cal systems approach views the nervous system as a pattern-generating system. The
patterns the nervous system generates are aimed at successful movement. A general
model for understanding this view of the nervous system is as follows (Shenoy et al.
2013):

m(t) � G[r(t)] (11)

7 It is important to reiterate the scope of the current project. The aim is not to provide accounts of “rep-
resentational” and “dynamical systems” approaches to motor control in toto. Instead, it is to frame the
differences in a way that highlights how they can have deeply diverging commitments. Consequently, it is
not a simple binary division between the two. The fact is that there is a lot of gray. One example is work
by Schöner and colleagues (e.g., Lins and Schöner 2014; Schöner et al. 2016) that clearly applies a “dy-
namical systems theory” approach, while also focusing on neuronal populations instead of single neurons,
and is representational. Another example is work by Krakauer and colleagues (e.g., Krakauer et al. 1999;
Shadmehr and Krakauer 2008), which can be viewed as residing at the intersection of representational and
dynamical approaches.
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where neural populations of cortical activity (r(t)), are mapped onto muscle activity
(m(t)), with other intermediating circuits (G[x]), to produce body movements in a
manner that achieves the system’s aims (Fig. 4c). The variable r(t) is further defined
as the following function:

τ ṙ(t) � h(r(t)) + u(t) (12)

where neural population over time (ṙ) is determined by local motor cortex circuitry
(h(x)) and inputs from other areas of the system (u(t)). As such, a key feature of
the dynamical systems approach is to elucidate the ways in which movements are
driven—that is, determined, constrained, and sustained—by temporal patterns pro-
duced by neural populations (Shenoy et al. 2013, p. 341).

Churchland and colleagues successfully applied this approach to motor control
during reaching. For details of the experiment and analyses, I refer readers to the
primary source (Churchland et al. 2012; for further discussion by the authors see
Shenoy et al. 2013; and for critiques of the study see Lebedev et al. 2019). In short, the
authors conducted both single- and multi-unit recordings of four monkeys’ motor and
premotor cortex during an instructed-delay task. Although the across-trial firing rate
among single neurons exhibited commonly expecteddynamics, they alsodemonstrated
“quasi-oscillations patterns” in the form of rotational structure just before movement
onset (Churchland et al. 2012, p. 52). The investigators then assessed the neural pop-
ulations to see if the same rotational structure was exhibited at the population level.
Findings at the neural-population level included: rotational dynamics during reach-
ing, rotational dynamics in the same direction across conditions (i.e., variations of the
instructed-delay task), rotational dynamics followed from a preparatory state, and the
state space of the dynamics are not directly related to the armmovements (Churchland
et al. 2012, pp. 52–53). It is important to clarify these findings, especially the fourth.
In order to do so, it is necessary to explicate the data analyses a bit.

Churchland and colleagues utilized a dynamical systems theory approach to analyze
the data. In doing so, they applied the elements described inSect. 2 above: a quantitative
element that incorporated dimensionality reduction and a qualitative element. In order
to quantify the rotational dynamics, they utilized a type of principal components
analysis they call “jPCA:”

ẋ(t, c) � Mskewx(t, c) (13)

where ẋ(t, c) is the population state at time t and condition c, and Mskew is a matrix
that captures the rotational dynamics (Churchland et al. 2012, p. 54). Datasets were
reduced to six dimensions and then analyzed via the jPCA. The jPCA process reduced
the datasets to two dimensions that were able to capture a significant portion of the
variance. Thus, the population dynamicswere plotted on a two-dimensional state space
(e.g., Fig. 4c, bottom). As discussed above (Sect. 2), in dynamical systems theory, a
state space can be an abstract depiction of dynamics and not a literal depiction of
movement in real space (Fig. 1). Accordingly, the state space plots produced from
Churchland et al.’s jPCA data are not actual depictions of neural population dynam-
ics, but an abstract depiction of the dynamics, which Churchland and colleagues refer
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to as “rotational” given their oscillatory nature. In other words, the rotational move-
ment of the dynamics in the state space does not indicate that the real neurons from
which the data was collected fire individually or as a population in a circular move-
ment around a center point in physical space. Instead, in terms of the two identified
principal components that capture the majority of variance (i.e., jPC1 and jPC2), from
the preparatory state (red or green circle; Fig. 4c, bottom), the dynamics can be under-
stood as “rotational” in that they begin from a center point, and then their trajectory
demonstrates movement away from the center and then back in the direction of the
center. It is in that way that the state space is an abstract depiction of the dynamics.8

The four findings will be easier to grasp now that the analyses themselves, especially
the state space plots, are better understood.

In regard to the first and second findings, the rotational dynamics (i.e., population-
scale neural activity) during reaching were statistically the same across the different
experimental conditions (i.e., movements to variously-located targets). Third, the var-
ious movements during tasks followed from the statistically same preparatory states,
namely, the rotational dynamics. What that means is that task movements were the
output of regular system dynamics instead of the system representing the desired out-
come. That leads to the fourth—and for current purposes themost important—finding,
the dynamics depicted by the state space (Fig. 4c, bottom) do not depict (or repre-
sent) the real space movements they were implicated in. In short, although the arm
movements may look “rotational” as they reach to and from the starting position in
real space, the rotational dynamics exhibited by the state space are not representa-
tions of the arm movements. They are abstract depictions of the temporal dynamics
of the neural populations. Think back to the discussion of the qualitative element of
dynamical systems theory approaches discussed above (Sect. 2.1). The phase space
plot of pendulum dynamics (Fig. 1b) is not a depiction of the pendulum moving in
real space. It is a visual depiction of the abstract nature of the temporal dynamics.
Correspondingly, the phase space plot of rotational dynamics (Fig. 4c, bottom) is not
a depiction of neural populations activity in real space. It is a visual depiction of the
abstract nature of the neural population activity after being reduced to two principal
components that account for a significant portion of the original dataset’s variability.
As a result, the state space rotational dynamics do not imply that the neural population
codes for (or represents) rotational movements.

In summary, dynamical systems accounts understand motor control as a form of
pattern generation, where the nervous system does not represent states but drives
desired movements. In that way, the nervous system is better thought of as con-
stituting and producing forces that turn out the body’s movements. Furthermore,
such an approach is not about accurately representing or encoding state variables
but as producing movements that regularly lead to successful outcomes or not. In
this way, the dynamical approach to motor control supports the dynamical hypoth-
esis. First, as Churchland and colleagues’ research demonstrates (Churchland et al.
2012; Shenoy et al. 2013) it is a successful application of the elements of dynami-
cal systems theory to fruitful research on neural systems, namely, motor control can

8 Thanks to John Krakauer for discussing with me this aspect of Churchland et al.’s work, and attempting
to clarify the model and state space plot of rotational dynamics. Any remaining mistakes in interpretation
or presentation are mine alone.
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be understood as a dynamical system. Second, that research demonstrates that core
topics in neuroscience can be investigated, explained, and understood without appeal
to information-processing frameworks, especially without invoking representations as
key features of complex and goal-directed activity. That is to say, motor control can be
understood as a dynamical system. I do not intend for this argument to lead to the con-
clusion that representations can wither away completely from neuroscience research,
or from work on motor control. I do intend for this argument to motivate the claim
that representations—as well as information-processing approaches in general—need
not be the unquestioned go to in neuroscience research. Whither representations in
neuroscience? Not eliminated, but not absolutely necessary either.

4 Conclusion

Dynamical systems theory is becoming increasingly popular in contemporary neuro-
science (for a small sample see Breakspear 2017; Deco et al. 2017; Honey and Sporns
2008; Izhikevich 2007; Rabinovich et al. 2006; Sussillo 2014). In spite of the increased
prominence in neuroscience research, discussion of dynamical systems theory in neu-
roscience among philosophers has been minimal (exceptions to this include Chemero
and Silberstein 2008; Chirimuuta 2018; Favela 2019, 2020; Ross 2015). This is slightly
odd given significant discussion of dynamical systems in cognitive science by philoso-
phers (see Sect. 1 above). Perhaps, this is the case because philosophers have assumed
that arguments applicable in cognitive science apply broadly to other mind sciences
such as neuroscience. Yet, the place of dynamical systems theory in neuroscience is
unique to that of cognitive science. Significant discussion among cognitive scientists
and philosophers on the topic of dynamical systems theory began in the 1990s. But
in neuroscience, dynamical systems theory was central in the mid-1900s, faded a bit,
and then recently shows signs of increased applicability. For that reason alone, one
could think philosophers (especially in history and philosophy of science; though, as
mentioned above, see Chirimuuta 2019) would be more interested in understanding
dynamical systems theory in the history of neuroscience. I hope to have motivated the
worth of such a project here.

In addition, I have aimed in this paper to motivate viewing research in contempo-
rary neuroscience from a dynamical systems theory approach as supporting a version
of the dynamical hypothesis. Whereas the original dynamical hypothesis (e.g., van
Gelder 1995) focused on cognitive agents, the version I have in mind is broader and
includes the substrates of cognitive systems as well. Accordingly, I argued that the
concepts and methods of dynamical systems theory have successfully been applied
to neural systems in contemporary neuroscience. Moreover, I have argued that such
approaches have also motivated understanding neural systems as dynamical systems,
which includes not requiring appeal to computations or representations to explain
or understand those systems. Taken together, the historical claim—that dynamical
approaches were prominent in the mid-1900s—and the critical claim—that represen-
tations are unnecessary in at least some core areas of research—demonstrate that the
dynamical hypothesis is undergoing a renaissance in contemporary neuroscience.
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