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Abstract
The notion of representation in neuroscience has largely been predicated on localizing
the components of computational processes that explain cognitive function. On this
view, which I call “algorithmic homuncularism,” individual, spatially and temporally
distinct parts of the brain serve as vehicles for distinct contents, and the causal rela-
tionships between them implement the transformations specified by an algorithm. This
view has a widespread influence in philosophy and cognitive neuroscience, and has
recently been ably articulated and defended by Shea (2018). Still, I am skeptical about
algorithmic homuncularism, and I argue against it by focusing on recent methods for
complex data analysis in systems neuroscience. I claim that analyses such as principle
components analysis and linear discriminant analysis prevent individuating vehicles
as algorithmic homuncularism recommends. Rather, each individual part contributes
to a global state space, trajectories of which vary with important task parameters. I
argue that, while homuncularism is false, this view still supports a kind of “vehicle
realism,” and I apply this view to debates about the explanatory role of representation.

Keywords Algorithm · Computation · Explanation · Neuroscience · Representation

1 Introduction

Debate about representation in cognitive science is ultimately a discussion about expla-
nation. In virtue of what does positing representations in a system like the brain explain
behavior? Shea (2018) has recently given an account which attempts to ground rep-
resentation in what I will call “algorithmic homuncularism” (AH). On this kind of
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view, distinct physical parts of a system serve as vehicles for distinct contents, and
the causal interactions between those vehicles implement the content transformations
called for by an algorithm.

Shea’s account is exemplary of awidespreadwayof thinking about representation in
the cognitive and neurosciences. However, I will argue that there are strong reasons to
question AH. In particular, certain forms of complexity in neural population responses
prevent assigning different contents to spatially and temporally distinct parts of the
system.

I will make the point through close examination of data analysis methods as
employed in primate electrophysiology. Inmassivelymultifunctional parts of the brain
like the prefrontal cortex, groups of cells do not clearly divide up in terms of the task
parameters forwhich they are selective. Rather, there is a consistent admixture of selec-
tivity at the individual cell level. To make sense of the function of these populations,
researchers have turned to methods for analyzing complex multivariate data, includ-
ing principal components analysis and linear discriminant analysis. These techniques
reveal patterns in population activity via dimensionality reduction.

I will argue that the particular explanations offered by these frameworks do not
support dividing brain systems as AH proposes. The basic issue is that, rather than
being spatially or temporally divided into distinct content-bearing parts, the explana-
tory properties of the system are patterns of whole population activity. I then consider
what this means for realism about representation. I suggest that Shea’s “vehicle real-
ism”—the idea that there must be distinct vehicles of content—is on the right track,
but that this does not require AH. Rather, we can individuate vehicles in terms of the
distinguishable influence that different task parameters have on their dynamics. This
view, I contend, supports (at least) a limited realism about neural representation.

I proceed as follows. In Sect. 2 I lay out some of the broader issues surrounding the
current discussion. In Sect. 3, I articulate Shea’s view and its commitments. In Sect. 4,
I introduce the data analysis techniques, and two case studies employing them. In
Sect. 5 I argue that the results of these investigations cannot be accounted for by
Shea’s view. In Sect. 6 I advocate an alternative form of realism not based on AH.
Section 7 concludes.

2 Setup

While in the remaining sections I will focus primarily on Shea’s account, I do so
because it is exemplary of a widespread kind of view. Here I want to point to the larger
picture and clarify some of the surrounding terrain.

The idea I wish to isolate and criticize, which I will call “algorithmic homuncu-
larism” (AH), is bound up with a certain view of reductive explanation in the
neurosciences. It rests on a particular way of syncing up the notions of computation,
representational content, and representational vehicle. On AH, explanation consists
in (i) identifying algorithms that perform cognitive functions, and (ii) isolating the
contents and transitions posited by those algorithms in distinct parts of the brain. The
ideal explanation, onAH, determines preciselywhat computations constitute cognitive
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processes, and links these in a one–one manner with vehicles and causal transitions in
the brain.

An immediate caveat is in order. Algorithms are mathematical, “medium indepen-
dent” (Elber-Dorozko and Shagrir 2019) posits, and themselves are not individuated
in terms of contents, which generally involve referential relations to the environment
(Chirimuuta 2017; Egan 2010, 2014a, b). As such, AH is often conjoined with an
attempt to naturalize content in one of the ways that philosophers have traditionally
analyzed—e.g., informational or teleological views.

AH inherits much of the appeal of computer functionalism in philosophy of psy-
chology. A standard view of how psychological functions are implemented is that
the structure of the function is mapped to the causal structure of what implements it
(Cummins 1985, 2000; Fodor 1975). This gets one the standardly appealing picture
of explanatory levels, realism about psychological explanation, and so on. Moreover,
at least according to some, it provides a way to link computational and mechanistic
explanation (Elber-Dorozko and Shagrir 2019; Piccinini and Craver 2011).1 Whereas
the computational description of the system is mathematical, it provides explanatory
targets—i.e., isolating vehicles and causal relations—for neuroscientific investigation
(Povich 2015, 2019). As such, AH hopes to align philosophical theorizing with neu-
roscientific practice, which sounds like a good thing.

Moreover, AH brings vital insights on board about when and why we resort to
representation talk. First, we posit contents to understand particular kinds of functional
relationships between organisms and environments. Second, representations are used
to understand the organization of the system that implements those relationships. As
Rupert (2018) puts it, representational posits are valid when they “play an explanatory
role in an architecture” (p. 205) implementing cognitive processes, including the neural
architecture (Rathkopf 2017).

Unfortunately, I think there are strong reasons to doubt AH. To see why, let’s
consider its commitments in slightly more detail. AH is committed to the conjunction
of what I will call injective mapping and causal isomorphism. Injective mapping is
the view that the contents processed in the algorithm are realized in spatially and
functionally distinct vehicles. This means that for each stage posited in the algorithm,
there will be a particular physical part that realizes the postulated content, and this part
will be different from the vehicles for other stages. Causal isomorphism implies that for
each computational step in the algorithm, there will be a particular causal relationship
between those distinct vehicles. The causal steps “accord” with the algorithm, and
“process” the contents posited in accordance with the transformation the algorithm
describes. Such a process, on which different contents are generated in stage-based
processing, is a natural way of glossing the idea that representations are “used” or
“consumed” within the system (Bechtel 2014).2

1 For skepticism regarding this kind of mapping, see Chirimuuta(2014) and Weiskopf (2015).
2 This is a weaker notion of consumption that Millikan’s (1989) classic “consumer semantics,” since on
this view one needn’t individuate contents in terms of their consumers. Shea (2018) rejects the traditional
consumer semantics approach, opting for a combined teleofunctional and causal account of how vehicles
get their contents. On this kind of position, one needn’t posit that representations at one vehicle are “read”
by later vehicles (Shea also rejects this notion of consumption). The sense of ‘use’ at work here is underlain
by there being vehicles that are causally related so as to implement the steps of the algorithm.
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AH is widely held by both philosophers and neuroscientists. Here are just a couple
of recent examples, one from a philosophical and one from a neuroscientific context,
which I take to be indicative of a much wider trend.

• Many of [neural systems’] components (columns, nuclei)… contain representations
and perform more limited computations over them; the computations they perform
are component processes of the computations performed by their containing sys-
tems. Therefore, large neural components are representational and computational,
and the same holds for their components (e.g., networks and circuits). Again, the
computations performed by smaller components are constituents of the larger com-
putations performed by their containing systems, and that is how the computations
of their containing systems are mechanistically explained. (Boone and Piccinini
2016, pp. 1523–1524)

• “Because local circuits performhighly specialized computations or process informa-
tion fromdifferent sources, distinct behavioural tasks require different combinations
of regions towork together, calling for different patterns of information flow through
long-range anatomical connections” (Akam and Kullmann 2014, p. 111)

Despite its wide appeal and theoretical advantages, I will argue that AH is false, at
least if certain trends in theorizing in systems neuroscience are on the right track. In
particular, I contend that certain kinds of complexity in neural functioning prevent
describing neural systems as AH recommends. To get to the argument, I will outline
several approaches to population analysis in electrophysiology. The most important
aspect of these approaches for current purposes is that, rather than trying to isolate
distinct contents to temporally and spatially distinct parts of a system, they try to show
how environmental and task information is represented in patterns of activity across
an entire population.3

Put differently, representations are realized as trajectories in the state space of a
whole population, rather than as isolated to distinct parts of that population. Hence,
injective mapping is false.

If these analyses genuinely describe the functioning of the population, then the
causal isomorphism commitment is also undermined, because there is no sense in
which causal interactions between distinct content-bearing vehicles mirror those
posited in an algorithm (cf. Cao 2011). The approach I prefer is to analyze repre-
sentation in terms of the underlying dynamics of the system. This approach is present
in the literature, but is rarely explicitly argued against by proponents of AH.4 Of
course, there is considerable debate about whether explanations focusing on dynam-
ics are compatible with the notion of representation (Bechtel 1998; Chemero and

3 Throughout this paper, I will use an intuitive notion of “pattern.” I have elsewhere defined a pattern
as a “type of quantitative variation,” (Burnston 2017c) and I believe this definition covers my use here
(cf. Kästner and Haueis 2019). For a full discussion of the discovery of patterns via PCA and LDA, see
Millhouse (forthcoming).
4 Clark (1998) gives an early statement of the idea that understanding the dynamics of a system can be
a key to understanding representation. The fully-fleshed out proposal that is closest to mine is by Shagrir
(2012b), who also analyzes representation and computation in terms of transitions between locations in
state space. The view I will express here is largely in league with his.
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Silberstein 2008).5 The contributions of this paper are: (i) to argue that data analytic
methods suggest pursuing a dynamic approach that eschews injection mapping and
causal isomorphism, and thus AH, and (ii) that this approach is compatible with (a
variety of) representational realism.

My strategy will be to focus on one of Shea’s core commitments, namely “ve-
hicle realism.” Shea argues—rightly in my view—that in order for representational
explanation to be feasible, it must cite representations in describing the functional
organization of the system. Hence, there must be physical vehicles that are realizers
of contents. As we will see in the next section, Shea does not distinguish this view
from AH. However, I claim that one can have vehicle realism without AH. Popula-
tions, as analyzed in the methods to be described, are not organized according in the
way suggested by AH. This does not mean that they do not represent the important
features of environments and particular tasks. Moreover, I will suggest that vehicles
of content can exhibit “algorithmic coherence” (AC)—correlations between elements
of their activity and the contents posited in an algorithm—without AH being true.

In the next section, I will discuss Shea’s particular version of AH. In Sect. 4, I will
introduce the data analysis techniques that inform the alternative view, and two case
studies. Section 5 argues that AH misdescribes results produced by these analyses,
and Sect. 6 describes an alternative form of realism.

3 The commitments of representationalism?

In the remainder of the paper I will focus on Shea’s (2018) recently developed account
of representational realism. This is because I agree with many of Shea’s commitments
and much of his apparatus is helpful. In addition, he is explicit in his endorsement
of, and clear in his phrasing of, AH. (I thus intend my focus on Shea as salutary.)
There are three aspects of Shea’s account that I endorse. The first is his commitment
to vehicle realism, the second is his discussion of representational relations, and the
third is his view of function. I’ll go through these very briefly before getting to his
articulation of AH.

Vehicle realism is the view that there are physical parts and processes of a repre-
sentational system to which contents can justifiably be assigned. “Parts” here should
be construed loosely as including cells, groups of cells, and brain areas. The processes
that carry contents in the brain are electrical (and chemical), but this too should be
construed somewhat loosely. Individual spike trains, population codes, and local field
potentials have all been posited as potential carriers of content. The appeal of vehicle
realism is that it ties content explanation to causal explanation, and thus captures the
intuition that explanations describe causal processes in the system of interest. Fitting
representation into causal explanation is one way to substantiate its explanatory value,

5 There are a variety of other important issues in the surrounding terrain as well. The relationship between
algorithms and realizers is at the heart of an interesting debate about how computations themselves are
individuated (Piccinini 2007; Shagrir, 2012a). Further, it is contested how we should mutually analyze
the intersecting notions of information, representation, and computation (Piccinini 2008; Piccinini and
Scarantino 2011). And the type and way in which the brain implements algorithms has ramifications for
the discussion of whether computation in the brain is analog or digital (Maley 2018; Piccinini and Bahar
2012; Piccinini and Shagrir 2014; Shagrir 2006, 2010). I will not have space to address these issues here.
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although it raises worries that the content claim does not contribute anything over and
above a pure causal story (Rescorla 2014). I will discuss this further in Sect. 6.

According to Shea, content is based on the establishment of “exploitable relations”
to the environment. A vehicle gets its content through bearing some relation to the
external world, but there are multiple kinds of relation that will do the trick, including
simple correlation and structural mapping. I agree that the brain has multiple ways of
representing information, and hence think there is good reason to be wide-net about
content-determining relations in this way.

Lastly, Shea has an appealingly flexible notion of “task function,” which captures
much of how tasks are thought about in neuroscience. Shea argues that a notion of
function is necessary for representational explanation to be of use, but thinks that
functions can be determined in a variety of ways, including by natural selection,
by intentional selection, and by learning history. What matters is that a structure be
developed that allows the system to produce stable and robust beneficial outcomes in
the relevant circumstances. Even on-the-fly learning can establish these functions—an
account that Shea refers to as the “very modern history” (2018, p. 63) etiological
account. Again, I agree that the structure of the task heavily influences what and how
the brain represents (Burnston 2016a, b, forthcoming).

So, I will take all of these aspects of Shea’s analysis as read. I do not think that any of
this, however, requires endorsing AH. Shea, for his part, does not seem to distinguish
vehicle realism from AH. Consider the following:

• Representation arises where a system implements an algorithm for performing task
functions. That in turn has two aspects: internal vehicles stand in exploitable rela-
tions to features of the environment which are relevant to performing the task; and
processing occurs over those vehicles internally in a way that is appropriate given
those relational properties. (Shea 2018, pp. 75–76)

• Internal processing implements transitions between vehicles … transitions called
for by an algorithm which is suited to producing the input–output mapping given
by the system’s task functions. (Shea 2018, p. 76)

• To count as explanatory, an algorithm will generally have different contents at
different stages. The computation of what to do is mediated through a complex
series of internal states. (Shea 2018, p. 86)

On the position expressed here, a representational explanation of a robust outcome
is feasible if spatially and temporally distinct vehicles carry distinct contents, and if
the causal interactions between them capture the content transformations posited in
an algorithm.

Hence, Shea endorses AH. One strong motivation Shea gives for the view is that
there must be a fact of the matter about the way the organism represents the world.
Given some stimuli and a robust outcome, there are innumerably many potential pro-
cesses that could produce the behavior. If we are to be realists about representation,
then we must find out which out of those possible accounts is the right one. In keeping
with AH, Shea suggests that the way to do this is to find individual parts of the sys-
tem that bear particular exploitable relations to the environment, and causal relations
between them that implement the sequence of steps suggested in the algorithm. Shea
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thus claims that his view is a version of the kind of computational functionalism I
discussed in the last section.

In the next section, I introduce the data analytical methods and results that I take to
cause trouble for AH. Importantly, Shea specifically considers one of these analyses,
and attempts to describe it in terms of his account. Hence, these projects fall under his
intended scope.

4 Data analytic methods for understanding neural populations

4.1 Methods

The standard approach to determining the information represented in a neuron or
population is to assess its “selectivity.” In this method, changes in neural firing rate
are correlated with changes in experimental variables. Often, the variable that explains
the most variance in cell firing is the one that the cell is taken to represent. This covers
representation in the “correlational” sense, but populations of cells with different
selectivities can be taken as a structured representation of a domain—consider, for
instance, maps of orientation in V1 or of motion energy in MT.

So, one hope forAHwould be to simply correlate given cells or populationswith the
relevant task parameters, and then describe interactions between themas implementing
content transformations according to a posited algorithm. Indeed, these kinds of anal-
yses are widely pursued. However, recent results raise challenges for this approach.
There is widespread evidence that neurons exhibit mixed selectivity (Rigotti et al.
2013). This is to say that they are not selective for one experimental variable, but sev-
eral. (So, in multiple regression analyses, several environmental and/or task variables
non-redundantly explain the variance in the cells’ responses.) These properties are
widespread in perceptual and frontal cortices, as well as in subcortical areas (Panzeri
et al. 2015; Saez et al. 2015).

Partially to make sense of these and similar properties, complex data analysis meth-
ods have become part of the neuroscientist’s basic tool kit. The basic conceptual
framework for these tools is to construe one’s data as constituting a high-dimensional
space. Generally, each dimension is a measure of neural activity. So, it might be the
spike rate recorded from a single cell, or the amplitude of oscillations of a certain fre-
quencymeasured from an EEG electrode. A recording from a given trial will constitute
a value along every dimension, and the dataset is the entire set of values recorded.
Of course, this results in an extremely complex dataset. Analytic methods are used to
reduce this dimensionality and say things in general about the population’s responses.

There are two particular techniques I will discuss (cf. Millhouse, forthcoming). The
first is called “principal components analysis” (PCA). PCA defines a small number
of dimensions that capture the variance in the data. In PCA, the investigator begins
by producing a covariation matrix, which measures the covariance between any two
dimensions across the entire dataset. So, the first row of the matrix will be the first
unit, and the columns in this row will be its covariance with every other unit, and so
on.
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The principal components are eigenvectors of this matrix. Leaving aside some of
the linear algebra detail, the effect of the eigenvector manipulation is to construct a
series of dimensions which capture the patterns of covariation. The “first” principal
component captures themost variance in the dataset, the “second” principal component
the second most, and so on. In principle, one could construct a number of components
equal to the dimensionality of the original dataset. But the point of the transformation
is that usually the first handful of principal components will explain the majority
of variance in the data. Put another way, any state of the data can be perspicuously
described in terms of how much each component is contributing to that state. These
are often called “loadings” or “weights” of the principal components. So, any state
of the entire dataset can be explained by a few variables, namely the loadings on the
principal components; the data is thus described in the “principal component space”
or the “PC space.”

PCA is an “unsupervised” data analysis tool. It simply attempts to describe the
variance in the data as efficiently as possible. Other techniques are “supervised,”
which means that knowledge about the categories the data comprises is employed
in constructing the analysis. Suppose that, in the high-dimensional dataset, we know
that there are different categories, and which category each measured data point falls
under. The goal is then to describe a small number of dimensions that best separate
the categories in that space.

One supervised method of this kind is “linear discriminant analysis” (LDA). LDA
takes as its goal constructing dimensions that will separate already known categories
in the data. If the data had just two categories, for instance, LDA would attempt to
draw a single dimension that maximized the distinction between them in the high-
dimensional dataset. Any individual point in the space would then be “projected” onto
that dimension, such that the maximum number of examples of category 1 possible
would be on one end of the dimension, and the maximum number of examples of
category 2 possible would be on the opposite end. As such, any new point from the
original data space—or any subsequently measured point—could then be projected
onto the dimension as a way of predicting the category to which it belonged. Three or
more categories are distinguished by “hyperplanes” (Rich and Wallis 2016) through
the space, such that each data point belonging to a category falls into one section
cordoned off by the plane.

Analyses based on these tools have a certain structure, which I will argue is impor-
tant for considering what they tell us about neural function. The lower-dimensional
description of the data is derived from the entire data set. So, all measurements con-
tribute to the lower-dimensional representation.Onemight think of this as a description
of all of the states of the system under the conditions of measurement. Once the lower-
dimensional description has been generated, however, one can then analyze particular
states of the system (measurements) in terms of how they fit into the overall structure.
So, we might analyze a neural population response in a particular trial in terms of how
it compares to the overall set of states the population might be in. Further, we can
even lookwithin a trial to see how the population evolves in particular task conditions.
These capacities have made dimensionality reduction techniques extremely important
for understanding dynamic population behaviors in the brain. What is important about
this, for current purposes, is that any measure of representation of a particular variable
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Fig. 1 From Padoa-Schioppa and
Conen (2017)

is taken to be constituted by the whole population, rather than by distinct parts within
that population. If so, then the system cannot be divided in the way AH recommends.
I now pursue this argument in two particular cases.

4.2 Neuroeconomics

The field of “neuroeconomics” has recently tried to understand the processes by which
organisms make value-based decisions. Intriguingly, cells in the orbitofrontal cortex
(OFC) have shown selectivity for variables involved in choice situations—including
the identity of the potential choices and their value (usually computed as subjective
desirability minus effort required to obtain). Other cells have shown selectivity for
chosen value. This is the absolute value of the object chosen, independently of its
identity.

Very much in keeping with AH, models have been put forward on which value-
based decisions are the result of a particular, ordered set of interactions between these
cells. As noted by Padoa-Schioppa and Conen, this kind of stage-based approach is
heavily influenced by economic thinking: “A core idea rooted in economic theory
is that choosing entails two mental stages—values are first assigned to the available
options and a decision is thenmade by comparing values” (Padoa-Schioppa andConen
2017, p. 736). So, the idea is that the options and values are represented, and then the
chosen value—the quantity that reflects the choice—is computed at a subsequent stage.
One such model is pictured below (Fig. 1).

This view closely aligns with AH, in that it posits distinct representations at distinct
stages, realized in different populations of cells. However, other investigations have
cast this kind of explanation of the OFC into doubt. In particular, other authors have
contended that the algorithmic approach mistakenly posits chosen value as a distinct,
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causally interacting representation within the system, and that this sequential process-
ing view fails to accurately capture the functional dynamics of the system. Both PCA
and LDA have been employed to argue for this conclusion.

One way of looking at population activity is by measuring local field potentials
(LFPs)—oscillatory patterns at the population level that reflect a sum of overall elec-
trical activity in the population (Burnston, forthcoming; Canolty and Knight 2010;
Watrous et al. 2015). LFPs oscillate at particular frequencies and amplitudes, and
changes in frequency and amplitude often correlate with changes in function. LFPs
can bemeasured both intracranially through electrodes, and extracranially viaMEG or
EEG. Hunt et al. (2015) decided to check some of the commitments of the algorithmic
approach by looking at how LFP patterns within trials interact with individual cell
properties determined by more standard regression analyses.

The researchers had monkeys perform a cost/benefit task, on which they had to
choose between two options, each of which had a value and a cost (e.g., a delay before
reward). They recorded from individual cells and measured LFPs. Their use of PCA
focused primarily on the LFP data. They assessed the first two principal components,
and in particular what weightings on these components tended to correlate with across
time in the population. Weightings on the first component tended to best correlate
with LFP amplitude. The second component primarily accounted for the temporal
derivative of the LFP signal. That is, when weight on the second component was high,
the LFP signal ramped up quickly during a trial, and when it was low it ramped up
slowly.

There is a functional interpretation to this pattern, namely that on certain kinds of
trials activity would tend to ramp up quickly, and thus be correlated with high weight-
ings on PC2. Indeed, on high value trials, reaction times were quicker, LFP activity
ramped up faster, and PC2 weights were higher. This suggests that PC2 reflected
certain properties of the dynamics of the choice. The rub, however, came when the
researchers used the PCA results to, in turn, analyze the single-cell properties. They
showed that, when PC2 weights were used as a co-regressor, they explained away the
effect of chosen value on cell responses. That is, the correlation with chosen value did
not account for the cell’s responses beyond the correlation with PC2 weight.

The AH-inspired approach suggests that cells representing chosen value receive
inputs from distinct populations representing choice identity and choice value, and
use those signals to compute the value that will drive the choice. However, the PCA
measurements are derived from the whole population of cells (including those that
correlate with chosen value). What the results suggest is that the chosen value signal
is the outcomeof how the entire population evolves, rather than occurring at a particular
location or stage within that population. Hence, Hunt et al. suggest that the correlation
with chosen value does not underlie a representation that interacts causally with other
representations but instead is a by-product of the temporal dynamics of the population,
particularly the fact that population activity ramps up faster on high-value than low-
value trials.

We can unpack this further by responding to an objection. One might suggest
that, on a correlational view of representation, the fact that the correlation of cells to
chosen value is accounted for by population dynamics does not undermine viewing
them as representations—they could, for instance, be tracking chosen value through
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the temporal dynamics of the population.6 Note, however, that this claim is insufficient
to ground AH, which not only posits representations, but posits distinct causal roles
for those representations interacting with other parts of the system. AH implies both
spatial and temporal divisions between distinct stages of processing. What the PCA-
results suggest is that chosen value is not an outcome of a sequence of processing
stages that begin with other distinct populations and end in the choice, but rather that
the whole system evolves temporally towards a choice.

Now, chosen value was the only property of selectivity that could be explained in
this way. The representations of values associated with particular objects remained
explanatory when co-regressed with either PC1 or PC2. As such, one might contend
that a different algorithmic view might in fact capture the population responses.

There are reasons to question this too, however, which point to deeper functional
principles in the system not revealed by the algorithmic view. In a subsequent study,
Rich andWallis (2016) used LDA to assess how values were represented dynamically
in the OFC during choice. They trained monkeys on the reward values associated with
four distinct pictures. Then, during each test trial, two of the pictures were shown, and
the monkeys had to saccade to the picture whose associated reward they wished to
receive. LDAwas run to group places in the overall dataset according to picture values.
This model could then in turn be analyzed to see which picture value was reflected in
the population at any given time.

Intriguingly, the analysis showed that the population switched back and forth
between reflecting the values of the two options during the course of a given trial.
The model never suggested that the population encoded options that were unavailable,
confirming that these signals were related to the choice process. Moreover, the num-
ber of switches reflected a variety of properties of choices, for instance the difference
between the values of the options and the time the monkey took to choose. Fewer
switches occurred when the values of the options were far apart, and more occurred
when they were closer. Similarly, reaction times were greater when there were more
switches within the populations.

Rich and Wallis suggest that the dynamic switching between option values thus
reflects the process of deliberation. If what the population is doing is considering
the value of each object in turn, then one would predict more switching when the
objects are closer in value, and hence when the decision is harder. And these more
difficult decisions should be reflected in longer reaction times. Note again the dif-
ference between this view of the dynamics and the AH view. AH suggests that the
relative values of the objects are encoded at a particular stage in an ongoing compu-
tational process. The LDA results, alternatively, suggest that this comparison occurs
dynamically right up until the choice is made.

So, I suggest that these results tell against AH. They don’t, however, tell against AC.
As noted, corollaries of important decision variables can be uncovered both within the
population and in individual cells at many distinct points. Hunt and Hayden (2017)
suggest that “the algorithm is an emergent property of the system: certain correlates
of value could therefore emerge naturally as a consequence of how neural dynamics
unfold across different trials” (p. 173). Leaving aside complications about how to

6 Thanks to an anonymous reviewer for pushing me to consider this objection.
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read “emergence” here (Burnston, forthcoming), we can note that the population’s
activity reflects important decision variables, without those variables being distinctly
represented in a stage-based process. Moreover, the monkeys’ behaviors can still be
described as implementing certain value trade-offs, and since it is the dynamics of the
choice system that produces this behavior, the process is of course coherent with those
functional descriptions. None of this requires that AH obtain.

4.3 The dynamics of decision

A recent influential study fromMante et al. (2013) starts from the important notion that
flexible behavior is context-dependent. Context-dependent behavior involves selecting
certain information in the environment, and mapping it to the appropriate behavior to
achieve one’s current ends. Even the exact same stimulus might require distinct action
depending on the context.Mante et al. set out to study how cells in the prefrontal cortex
could mediate this kind of flexibility. It is particularly interesting to think about these
behaviors in a population of mixed-selectivity cells. If each cell’s response properties
are dependent upon multiple task parameters, how can those parameters be selectively
employed to drive behavior?

To assess the properties of PFC cells in these contexts, Mante et al. trained mon-
keys to perform a complicated combination of tasks. The stimulus for the studies
consisted of a field of dots, wherein either motion or color could be relevant for a
given trial. It is well established that random motion of a set of dots produces no over-
all impression of movement direction. However, if degrees of “correlated” movement
are introduced—say, 10% of the dots moving coherently to the left—pattern motion
is both perceived and reflected in direction-selective cells in the visual cortex (Britten
et al. 1996). Moreover, percepts and neural responses are stronger the more correlated
motion is included.

In addition to this well-understood paradigm, Mante et al. inserted another feature
into the stimulus, namely the proportion of colors. So, the dots in the stimulus could
vary in the percentage of them that were, e.g., red or green. There were thus two
independent parameters of variation in the stimuli—the degree/direction of correlated
motion, and the proportion of colors. The monkeys had to base their behavior on
only one stimulus aspect per trial. Which was required in a given trial depended on
a separate context cue. In “motion contexts,” the monkeys were cued to make their
choice based on the direction of predominant motion. In “color contexts” they were
cued to decide based on the predominant color. Responses were saccades to locations.
So, if motion was to the left in a motion trial, or the predominant color red in a color
trial, the monkey would have to saccade left. Saccades to one direction were called
“Choice 1” and in the other direction “Choice 2”.

So, in total, there were four sources or “axes” of variation in the experiment. Two
were in the stimulus, as described above. The other two were the context cue and the
required behavior. The explanandum for the study was how the PFC organizes this
information so as to produce the correct decision given the context.

There were two main parts to the study, first a PCA-based analysis of electro-
physiological data, and second the construction of a model of PFC responses. The
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investigators measured cell responses to each trial in a widespread population of PFC
cells. They then performed multiple regression on each cell’s responses to see what
task parameters drove the particular cell. Unsurprisingly, given the discussion so far,
there was widespread mixed selectivity in the population. That is, the vast majority
of cells had significant responses for multiple types of information. So, a given cell’s
responses would be mediated by some combination of the direction and degree of cor-
related motion, the preponderance of a certain color to a certain degree, the context,
and the eventual choice. Selectivity for a certain task axis, then, is not the purview of
some spatially or temporally distinct group of cells, but rather is distributed and mixed
across the population.

The researchers performed PCA as a way of understanding population activity.
As discussed above, PCA performed on the entire population subsequently allowed
assessment of individual trials—at any given point, the activity of the population could
be described via the weights of a subset of the principal components. In addition,
however, the experimenters were interested in the combination of component weights
that, specifically, correlated with the task axes. That is, which combination of principal
component weightings particularly described the population’s variation along each of
themotion stimulus axis, the color axis, the context axis, and the choice axis?Theyused
the first 12 principal components, since these captured the majority of the variance
in the population as a whole. They then described the task axes by looking for the
combinations of weights on these components that best explained variance along each
axis (Mante et al. 2013; extended data Fig. 4.).7

Given this analysis, the experimenters then analyzed what happened across time
in individual trials. The two panels in Fig. 2 below are both from the motion context,
wherein the monkey had to make the choice based on the direction of motion. In this
context, color information is irrelevant for the choice, but due to mixed selectivity
across the population, color information still affects cell responses. The question is
how the correct information is selected to drive behavior. The left panel depicts the
choice axis (horizontal) and the motion axis (vertical) as described in the PC space.
The center of the choice axis is taken to be the time when the stimulus is shown (i.e.,
before any decision process has begun). Each curve represents population responses
to degrees and directions of correlated motion across several timesteps. As expected,
when the monkey has to choose based on direction of motion, motion to the left drives
the population to the “left” choice (Choice 1 here), whereas motion to the right drives
the population to the “right” choice (Choice 2). The curves show how this process
goes across each degree of correlation.

There is a vital difference between the left and right panels. Recall that this is
the motion context, so only motion information is relevant. Unlike leftward motion,
which only ever drives the population towards the “left” choice in this context, color
information can result in either choice. That is, even strong predominance of one
color can result in either Choice 1 or Choice 2. What this shows is that, while both
color and motion affect population in each context, only motionmoves the population

7 The process of defining the “task axes” in the PC space is analytically complex. It involves creating a
vector with normalized regression coefficients for each variable for each unit, combining them into a matrix,
then constructing an orthogonal matrix via a technique known as “QR decomposition.” See Mante et al.
(2013, supplemental information; section 6.7) for full details.
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Fig. 2 Population responses in the motion context. From Mante et al. (2013)

Fig. 3 Population responses in the color context. From Mante et al. (2013)

along the choice axis in the motion context. Vitally, this pattern is reversed in the
color context, as shown below. In this context, color predominance leads to a univocal
choice, whereas motion can lead to either choice (Fig. 3).

So far, this is evidence of what the population is doing, not how it does it. Somehow,
it selectswhich informationwill drive it along the choice axis. To attempt amechanistic
explanation for how this could come about, Mante et al. constructed and analyzed a
recurrent neural network model. I lack space to go into the model in detail, but the
important aspects for our purposes were (i) every cell received inputs corresponding
to every task parameter, encouraging mixed selectivity, and (ii) the model was trained
via feedback to produce a correct choice in the correct context, but was not given any
information about how to produce that outcome.

Once thenetworkwas successfully trained, the experimenters could thenmanipulate
the network in a fine-grainedway to determinewhat happened as context changed. The
full account of the system required distinguishing two “line attractors.” These were
trajectories in the state space that were parallel to the axis of choice, but that differed
between contexts (as visualized in simplified PC space in the left panel of Fig. 4).
How they differed was shown by subjecting the model to brief pulses of motion and
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Fig. 4 Left panel: an idealized rendering of the explanation based on line attractors, depicted in a simplified
PC space. Right panel: different movements along line attractors in the motion and color contexts. From
Mante et al. (2013)

color. As it turns out, these stimuli were responded to differently in the motion versus
color contexts. Think of the line attractor as a “path” that the system is on towards a
conclusion. If the system was proceeding on the color context attractor, brief pulses of
motion, when turned off, would result in the system moving back to where it had been
on the attractor, whereas new color information would move it to a different place
on the attractor. In the motion context, the pattern was reversed. This is shown in the
right panel of Fig. 3. The key to note is that, while color may perturb the system in the
motion context, it does not perturb the system in a direction along the line attractor.
Motion information, however, does perturb the system towards a choice. Again, this
pattern is reversed in the color context.

In sum, themodel helps us understandhowcomplicated, context-sensitive behaviors
are parsed and implemented at the neural level.What the context cue is doing is setting
up a certain dynamic organization in the system—in the color context, the system will
proceed along one line attractor, whereas in the motion context it will proceed along
the other. As Mante et al. note, despite the overlap of task-parameter selectivity in the
population, “the network effectively implements two dynamical systems, one for each
context” (2013; supplemental information, p. 17).

5 AH reconsidered

Shea argues that the Mante et al. analysis can be fit into his account. He suggests
that there are two vehicles processing the inputs. One vehicle represents the context.
Another vehicle has “two dimensions of variation,” namely motion and color. The key
function of the system is to take the inputs and translate them into a univocal action,
picking the right information to guide the action. Shea takes the fact that information
about the irrelevant dimension of the input “has little to no effect on which choice
is programmed” (pp. 101–102) as evidence that the input is “transformed into a one-
dimensional vector that drives behavior” (p. 184).
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AH is committed to both injection mapping and causal isomorphism. As such,
there has to be some fact of the matter about how to divide up the system into distinct,
content-bearing parts, and to articulate the causal processes that transform contents
between one vehicle and another. I contend, contra Shea, that there is no privileged
way of dividing this system into distinct vehicles that causally interact in a stage-based
manner. If that is the case, then AH fails.

The first aspect to focus on is mixed selectivity at the individual cell level. Recall
that the task parameters are mixed at the individual cell level, meaning that cells have
significant responses across parameters. This means that one cannot ascribe contents
corresponding to a given task dimensions to any single cell or group thereof. The sec-
ond important aspect is how the analysis proceeded in light of these properties. Rather
than attempting to decompose the population into spatially and temporally distinct
vehicles, the researchers turned to analyzing the task parameters as differentiated by
the way they are reflected in the activity of the whole population.

The dimensionality reduction is meant to portray how particular instantiations of
activity across the system fit into the space of possible states of that system. And
every individual instance of system behavior is described in terms of the principal
component space, which is in turn constructed from the entire set of responses. So,
given that (i) each cell is involved in all measures, and (ii) every individual instance
is described in terms of a framework derived from the whole population, it is only at
this level of analysis that the distinct task parameters can be differentiated.

Let’s consider how this intersects with Shea’s particular proposal. Recall that Shea
posits one input vehicle with two dimensions of variation (motion and color), one
context vehicle, and then a vehicle that transforms this content into a representation
of the choice. I suggest that it is arbitrary, in both the spatial and temporal sense, to
divide things up this way. Consider spatial decomposition first. Why should we say
that there is one input vehicle with two dimensions of variation rather than two distinct
vehicles? And, for that matter, why should we say that there are two vehicles, one for
input and one for context, rather than one vehicle with three dimensions of variation?
How would we tell?

In order for there to be a fact of the matter about spatial vehicle decomposition, one
would have to find privileged parts within the system to which one content, rather than
others, can be assigned.But this is preciselywhat the style of analysis in theMante et al.
paper disallows, due to its non-eliminable reliance on the entire population description
for its explanatory framework.

Now consider the temporal aspect. Shea posits distinct stages of processing, on
which the input contents are transformed into the output contents. Given the foregoing,
there are a variety of problems with this. First, it implies that there are distinct vehicles
underlying the inputs and the transformed contents. But we are in no better position
with dividing up the vehicles temporally than we are spatially. What the temporal
division requires is that there be a time at which one content is tokened, but the second
content not tokened, and then a specific process that brings about that second content.
But in the Mante et al. case, the task axes are constant features of the population
response—every location in the PC space describes some place along the task axes. So,
there is no temporal stage at which one content is tokened and the others aren’t. Nor are
there clear phases of transition between some represented contents and others. Given
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the global description of the system, the representations of each of those elements is
consistent and present throughout, and what changes is only where the system is in
that representational structure.

Shea briefly considers the possibility of alternative divisions of the system, but
thinks that we can rely on pragmatics to distinguish between them. Specifically with
regards to the separation between inputs, he suggests that “Lumping the states of
[context] and [input] together into a single vehicle on which behaviour is conditioned
would be less explanatory… it would overlook an important aspect of how internal
processing manages to perform the task” (p. 103). Suppose this is true at a purely
pragmatic level—that the best way to understand the process is to think of it in terms
of stages of information manipulation. The strongest claim this pragmatic move could
defend is AC, which as we saw above is considerably weaker than AH.

A second hedge Shea occasionally makes use of is non-vicious content indetermi-
nacy. He suggests that, in certain circumstances, we will be able to isolate a vehicle
playing a certain role in an algorithm, but there will be limits on how determinately we
can describe its contents. He thinks that, in this kind of situation, the causal and com-
putational organization of the system will not privilege one ascription over another,
and either will do a good job of explaining the behavior—hence, the indeterminacy
is non-vicious. My worry, however, is not primarily with assignment of contents. It
is whether the system can be spatially and temporally divided up in the way that AH
requires. If vehicles are not arranged in such a manner as to support injective mapping
and causal isomorphism, then AH fails, aside from questions about how to describe
the contents.

Another potential response could appeal to a level change. The Mante et al. paper
focuses on a single distributed process within the PFC, but Shea also discusses algo-
rithms purportedly being played out across different brain areas, with transforms
occurring in the causal relays between them. A potential response would be to admit
that the system studied by Mante et al. is not decomposable into an algorithmic expla-
nation, and propose instead to take the behavior of the entire population as a basic
operation, that cannot be algorithmically decomposed any further, but that might be
situated as one operation within a broader neural process/algorithm. Perhaps there
are prior stages, outside of the population studied, that represent only the inputs and
context, and what we see in the PFC population is a process by which these inputs are
transformed into outputs, where this transformation doesn’t need to be susceptible to
a description in terms of AH.

A few things can be said against this strategy. First, pushing more and more of the
processing into non-algorithmic dynamics undermines the explanatory appeal that
AH is supposed to have. For Shea, what makes representational explanation, rather
than mere causal explanation, relevant in cognitive science is that representational
explanation gives us a perspicuous understanding of the organization of the system,
which we cannot have with non-representational explanation. But if much of the
interesting work is being done by processes that do not work as AH suggests—and
note that Mante et al. suggest their framework as a potentially general view of how
the brain deals with context-sensitive behavior—then its general import is lessened.

Second, the level change strategy presupposes that, when we expand out to distinct
brain areas, injection mapping and causal isomorphism will obtain. But this is not
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obviously the case. As noted, mixed selectivity and distribution of function is found
widely throughout the brain, including in perceptual and subcortical areas. If isolating
particular vehicles and contents in Mante et al.’s PFC population is difficult, there is
no reason to suspect it to be easier as we expand out to other areas, at least not to
the point where clear transformations over particular contents will be decipherable.
Moreover, it isn’t clear that positing such content transformation is necessary. As Hunt
et al. (2017) suggest regarding the OFC circuit, it may be that different areas of the
brain implement competitions within distinct reference frames—so the competition
mediated by the OFC is in a value-frame, whereas dlPFC competitions might take
place within a spatio-temporal reference frame. Put differently, it might be that if we
go up a level we may get more of the same, now with brain networks representing
complex combinations of information in a way that evolves dynamically towards a
choice (Cisek and Thura 2018; cf. Anderson 2014; Burnston, forthcoming; Stanley
et al. 2019). If so, then AH will not describe between-area processing either.

So, I conclude that, if these analyses are descriptive of population function, then
AH fails for these systems. In the next section, I consider whether there is a kind
of representational realism compatible with the falsity of AH. The answer will be a
limited ‘yes’.

6 Representational realism?

I have argued that, at least if the kinds of analyses I have discussed reveal the functional
properties of the PFC, then AH is false for that system. There is a very flexible sense
in which responses in the system may correlate with contents posited in an algorithm,
but this at best supports AC rather than AH. In this section, I consider the upshot of
this result for thinking about representation.

Recall that Shea does not distinguish vehicle realism from AH, treating them as
something of a package deal. I agree that vehicle realism is non-negotiable for realism
about representation, but I suggest that one can endorse it without assenting to AH. I
propose that there are distinctive vehicles for distinct contents, but these are not orga-
nized into sequential steps, and indeed overlap considerably at the level of individual
parts.

To a certain extent, this requires ambiguating on “distinctive.” AH requires
that distinct physical parts correspond to distinct contents, and interact at distinct
causal/temporal stages. I suggest that this is simply not a requirement for vehicle real-
ism. The kinds of trajectories and competitive processes discussed in the two case
studies can occur even if the relevant aspects of content are completely mixed at the
individual cell level, and if all of the cells in the population contribute to its function.
What matters for the explanations given above, especially as articulated in the Mante
et al. analysis, is that the population has distinctive patterns of activity that capture the
relevant variance in the task, in a way that maps the right inputs to the right outputs.
So, my proposal:
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• Vehicle realism: A neural system has distinct vehicles corresponding to contents
a…n if (i) variation in a…n have distinct effects on the dynamics of the system, and
(ii) those distinct effects result in the fulfillment of a task function.

What “distinct” means on this rendering is that the system is set up in such a way that
different aspects of the task (including both behavioral and environmental variables)
have independent effects in the system. This is shown in several ways in the Mante
et al. study. Consider Fig. 2 again. What it shows is that motion and color information
influence the system differently, and that no matter the choice context, variation in
motion and color are tracked within the system. The context, however, changes the
which of those effects will in turn drive the system along the axis of choice—that is,
context signals push the system onto one line attractor versus the other, regardless
of the stimulus value. Choice 1 versus Choice 2 outcomes are reflected in the fixed
points at which the process can end. So, motion information, color information, and
information about task context all have distinct effects within the system, and these
combined effects result in the system approaching a fixed point that constitutes the
choice.

This version of vehicle realism is compatible with complete overlap between the
spatial parts that represent the distinct contents (cf. Levy and Bechtel 2016). But this
in no way impugns the independent effects of the distinct parameters. According to the
explanation, and as exhibited in the neural network model, it is a particular learning
history, along with synaptic modification of the connections in the population, that
sets up the state space. That is, a particular physical arrangement of the system is
what underlies its dynamics, and hence what allows for the distinct effects of variation
in the task parameters. Moreover, this kind of posit is not explanatorily neutral. If
Mante et al. are right, then the fact that each task parameter has distinct effects on the
system, and that the system is driven in the way that it is by those parameters, is why
the organism can choose the right stimulus aspect to shape their action in the right
context.

My version of vehicle realism agrees with Shea that reference to task function is
non-eliminable in positing representation. As Shea notes, reference to task function
is necessary to specify what kind of properties are important for the organism. The
analysis in this section further supports this view. Consider just how expansive the
state space of a system like the PFC is. In principle, it has a dimension corresponding
to the level of activation of every single neuron. What the researchers presume is that
the functionally relevant aspects of the system are those that allow it to separate and
respond to the appropriate task axes. This kind of analysis is not possible without
an understanding of the environmental and task structure in which the organism is
operating.

So, much of Shea’s analysis can be salvaged without having to endorse AH. My
version of vehicle realism, combined with AC, is proposed as an alternative. What
remains is to ask whether this is a robust enough notion of representation to be worthy
of the name. Much of the recent discussion surrounding representation in cognitive
science has been focused on the “job-description” challenge—in virtue of what are
representational posits truly explanatory (Morgan 2013; Ramsey 2007)? If one does
not believe that posits of representations meet this challenge, a range of positions
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from eliminativism (Hutto and Myin 2014) to pragmatism (Coelho Mollo 2017; Egan
2014b) to fictionalism (Sprevak 2013) are available. A lot of ground has been covered
here, which I don’t intend on re-treading. I take three of the most interesting forms
of responses to the challenge to be those that posit a certain kind of structure for
representations (Isaac 2013), those that tie the function of representation to serving as
an internal model (Grush 2004), and those that, as discussed in Sect. 2, appeal to the
architecture of the system.

These views are, in my opinion, largely on the right track. If I am right in the
foregoing, however, then the reason these views are right cannot be because AH
obtains. What I suggest is that the population studied by Mante et al. as a whole,
exhibits a structural mapping to the important sources of variance in the task—both its
environmental and behavioral variables.8 As described in the PC space, the population
has distinctive activity patterns corresponding to variation along the task axes. So,
changes in the relevant task variables are systematically reflected in changes to the
system’s behavior. I thus suggest that, since (i) the response along task axes is due to
the physical organization of the system, and (ii) that organization is what enables the
system to produce the appropriate task function, the dimensionality-reduction analyses
are sufficient to ground the description of the system in representational terms.9

Finally, while I think my version of vehicle realism supports realism about certain
forms of representation, this is a far cry from legitimizing all representation talk. The
kind of vehicles I’m discussing are tightly coupled with, if not completely determined
by, patterns of variation in the environment. It is possible that my view of represen-
tation will support only a limited realism, where what the brain represents is heavily
conditioned on interaction with the environment, and is action-oriented (Anderson
2014). One can believe this and still be a pragmatist or fictionalist about the kinds
of determinate, categorical, linguistically expressible contents often discussed in the
philosophical literature, about propositional attitudes, etc. (My own view on thematter
is slightly more complex; see Burnston 2017a, b.) I take no official stand here.

8 I am stressing the structural notion of representation here, but the correlational notion is important for the
Mante et al. study as well: the significant regression coefficients for selectivity to multiple task parameters
in individual cells is a foundational part of the analysis. Selectivity is mixed throughout the population,
so individual cells cannot be attributed univocal contents. But correlations do not have to be univocal to
ground the informational notion of representation.
9 This view, which posits representational realism despite divorcing it from a particular algorithmic
approach, I believe, fits well with Nanay’s (2019) recently proposed “entity realism” (cf. Plebe and De
La Cruz 2018; Thomson and Piccinini 2018). There is an interesting question about what this does to
specifically computational explanation. As noted, Shea conjoins these two while I dissociate them. A range
of possibilities exist here. It may, for instance, be the case that neural representations of the type offered
here are coherent with multiple algorithmic descriptions, without there being a fact of the matter about
which one is right. And what computational description of a vehicle’s operation is best may vary with
context (Burnston 2016b). Thus, it is possible to be an entity realist about representations while having
a different view on computational explanation. One particularly appealing position, in light of the above,
is Chirimuuta’s (forthcoming) recently developed “perspectival” realism about computational posits, but
arguing for this is beyond the scope of this paper.
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7 Conclusion

I have attempted to isolate an idea, algorithmic homuncularism, which is widely preva-
lent in thinking about cognitive neuroscience, and clearly articulated in Shea’s recent
book. While AH has indeed been influential in cognitive neuroscience, and has sig-
nificant philosophical appeal, certain kinds of complexity in the functional profiles
of neural systems like the PFC—as well as in the analysis strategies scientists use
to explore them—militate against it. I have argued that, even if AH fails, this is no
argument for eliminativism about representation.

Acknowledgements An early version of this talk was presented at the Deep South Philosophy and Neu-
roscience Workshop in Pensacola, Florida, May 2019. I am thankful to the organizers and participants for
the opportunity and for subsequent discussion. Early discussions of these topics with Colin Klein, Corey
Maley, Gualtiero Piccinini, and Sarah Robins were extremely helpful. Lastly, I am very grateful to the Com-
putational Biology at Tulane reading group for helpful discussion of the Mante et al. paper, and particularly
Alexis Ducote for going over some of the finer technical points with me.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akam, T., & Kullmann, D. M. (2014). Oscillatory multiplexing of population codes for selective commu-
nication in the mammalian brain. Nature Reviews Neuroscience, 15(2), 111–122.

Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT
Press.

Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist’s challenge in
cognitive science. Cognitive Science, 22(3), 295–318.

Bechtel, W. (2014). Investigating neural representations: The tale of place cells. Synthese, 193(5),
1287–1321. https://doi.org/10.1007/s11229-014-0480-8.

Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193(5), 1509–1534.
Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., & Movshon, J. A. (1996). A relationship

between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience,
13, 87–100.

Burnston, D. C. (2016a). Computational neuroscience and localized neural function. Synthese, 193(12),
3741–3762.

Burnston, D. C. (2016b). A contextualist approach to functional localization in the brain. Biology and
Philosophy, 31(4), 527–550.

Burnston, D. C. (2017a). Cognitive penetration and the cognition–perception interface. Synthese, 194(9),
3645–3668. https://doi.org/10.1007/s11229-016-1116-y.

Burnston, D. C. (2017b). Interface problems in the explanation of action.Philosophical Explorations, 20(2),
242–258.

Burnston, D. C. (2017c). Real patterns in biological explanation. Philosophy of Science, 84(5), 879–891.
https://doi.org/10.1086/693964.

Burnston,D. C. (forthcoming). Getting over atomism: Functional decomposition in complex neural systems.
The British Journal for the Philosophy of Science.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11229-014-0480-8
https://doi.org/10.1007/s11229-016-1116-y
https://doi.org/10.1086/693964


1638 Synthese (2021) 199:1617–1639

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive
Sciences, 14(11), 506–515.

Cao, R. (2011). A teleosemantic approach to information in the brain. Biology and Philosophy, 27(1),
49–71.

Chemero, A., & Silberstein,M. (2008). After the philosophy ofmind: Replacing scholasticismwith science.
Philosophy of Science, 75(1), 1–27.

Chirimuuta, M. (2014). Minimal models and canonical neural computations: The distinctness of computa-
tional explanation in neuroscience. Synthese, 191(2), 127–153.

Chirimuuta, M. (2017). Explanation in computational neuroscience: Causal and non-causal. The British
Journal for the Philosophy of Science.

Chirimuuta,M. (Forthcoming). ‘Charting the Heraclitean Brain: Perspectivism and simplification inmodels
of the Motor Cortex.’ In: Massimi, M., & McCoy, C. (Eds.), Understanding perspectivism: Scientific
challenges and methodological prospects. Routledge: New York.

Cisek, P.,&Thura,D. (2018).Neural circuits for action selection.Reach-to-grasp behavior: Brain, behavior,
and modelling across the life span.

Clark, A. (1998). Being there: Putting brain, body, and world together again. Cambridge: MIT Press.
Coelho Mollo, D. (2017). Content pragmatism defended. Topoi, 39(1), 103–113.
Cummins, R. (1985). The nature of psychological explanation.
Cummins, R. (2000). How does it work?” versus” what are the laws?”: Two conceptions of psychological

explanation. Explanation and cognition, 117–144.
Egan, F. (2010). Computational models: A modest role for content. Studies in History and Philosophy of

Science Part A, 41(3), 253–259.
Egan, F. (2014a). Function-theoretic explanation and the search for neural mechanisms. In D. Kaplan (Ed.),

Integrating mind and brain science: Mechanistic perspectives and beyond.
Egan, F. (2014b). How to think about mental content. Philosophical Studies, 170(1), 115–135.
Elber-Dorozko, L., & Shagrir, O. (2019). Integrating computation into the mechanistic hierarchy in the

cognitive and neural sciences. Synthese.
Fodor, J. A. (1975). The language of thought (Vol. 5). Harvard University Press.
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception.

pp. 377–442.
Hunt, L. T., Behrens, T. E., Hosokawa, T., Wallis, J. D., & Kennerley, S. W. (2015). Capturing the temporal

evolution of choice across prefrontal cortex. eLife, 4.
Hunt, L. T., & Hayden, B. Y. (2017). A distributed, hierarchical and recurrent framework for reward-based

choice. Nature Reviews Neuroscience, 18(3), 172–182. https://doi.org/10.1038/nrn.2017.7.
Hutto, D. D., &Myin, E. (2014). Neural representations not needed-no more pleas, please. Phenomenology

and the Cognitive Sciences, 13(2), 241–256.
Isaac, A. M. (2013). Objective similarity and mental representation. Australasian Journal of Philosophy,

91(4), 683–704.
Kästner, L., & Haueis, P. (2019). Discovering Patterns: On the Norms of Mechanistic Inquiry. Erkenntnis,

1–26.
Levy, A., &Bechtel,W. (2016). TowardsMechanism 2.0: Expanding the Scope ofMechanistic Explanation.
Maley, C. J. (2018). Toward analog neural computation.Minds and Machines, 28(1), 77–91.
Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent computation by

recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78–84.
Millhouse, T. (forthcoming). Compressibility and the reality of patterns. Philosophy of Science.
Millikan, R. G. (1989). Biosemantics. The Journal of Philosophy, 86(6), 281–297.
Morgan, A. (2013). Representations gone mental. Synthese, 191(2), 213–244.
Nanay, B. (2019). Entity realism about mental representations. Erkenntnis, 1–17.
Padoa-Schioppa, C., & Conen, K. E. (2017). Orbitofrontal cortex: A neural circuit for economic decisions.

Neuron, 96(4), 736–754.
Panzeri, S., Macke, J. H., Gross, J., & Kayser, C. (2015). Neural population coding: Combining insights

from microscopic and mass signals. Trends in Cognitive Sciences, 19(3), 162–172.
Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501–526.
Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137(2), 205–241.
Piccinini, G., & Bahar, S. (2012). Neural computation and the computational theory of cognition. Cognitive

Science.

123

https://doi.org/10.1038/nrn.2017.7


Synthese (2021) 199:1617–1639 1639

Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mech-
anism sketches. Synthese, 183(3), 283–311. https://doi.org/10.1007/s11229-011-9898-4.

Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of
Biological Physics, 37(1), 1–38.

Piccinini, G., & Shagrir, O. (2014). Foundations of computational neuroscience. Current Opinion in Neu-
robiology, 25, 25–30.

Plebe, A., & De La Cruz, V. M. (2018). Neural representations beyond “Plus X”. Minds and Machines,
28(1), 93–117.

Povich, M. (2015). Mechanisms and model-based functional magnetic resonance imaging. Philosophy of
Science, 82(5), 1035–1046.

Povich, M. (2019). Model-based cognitive neuroscience: Multifield mechanistic integration in practice.
Theory & Psychology, 29(5), 640–656.

Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.
Rathkopf, C. (2017). What kind of information is brain information? Topoi, 39(1), 95–102.
Rescorla, M. (2014). The causal relevance of content to computation. Philosophy and Phenomenological

Research, 88(1), 173–208.
Rich, E. L., & Wallis, J. D. (2016). Decoding subjective decisions from orbitofrontal cortex. Nature Neu-

roscience, 19(7), 973.
Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., et al. (2013). The importance

of mixed selectivity in complex cognitive tasks. Nature, 497(7451), 585–590.
Rupert, R. D. (2018). Representation and mental representation. Philosophical Explorations, 21(2),

204–225.
Saez, A., Rigotti, M., Ostojic, S., Fusi, S., & Salzman, C. (2015). Abstract context representations in primate

amygdala and prefrontal cortex. Neuron, 87(4), 869–881.
Shagrir, O. (2006).Why we view the brain as a computer, pp. 393–416.
Shagrir, O. (2010). Brains as analog-model computers. Studies in History and Philosophy of Science Part

A, 41(3), 271–279.
Shagrir, O. (2012a). Computation, Implementation, Cognition. Minds and Machines, 22(2), 137–148.
Shagrir, O. (2012b). Structural representations and the brain. The British Journal for the Philosophy of

Science, 63(3), 519–545.
Shea, N. (2018). Representation in cognitive science. Oxford University Press.
Sprevak, M. (2013). Fictionalism about neural representations. The Monist, 96(4), 539–560.
Stanley, M. L., Gessell, B., & De Brigard, F. (2019). Network Modularity As A Foundation For Neural

Reuse. Philosophy of Science, 86(1), 23–46.
Thomson, E., & Piccinini, G. (2018). Neural representations observed. Minds and Machines, 28(1),

191–235.
Watrous, A. J., Fell, J., Ekstrom, A. D., & Axmacher, N. (2015). More than spikes: Common oscilla-

tory mechanisms for content specific neural representations during perception and memory. Current
Opinion in Neurobiology, 31, 33–39.

Weiskopf, D. A. (2015). The explanatory autonomy of cognitive models. Integrating psychology and neu-
roscience: Prospects and problems. Oxford: Oxford University Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s11229-011-9898-4

	Contents, vehicles, and complex data analysis in neuroscience
	Abstract
	1 Introduction
	2 Setup
	3 The commitments of representationalism?
	4 Data analytic methods for understanding neural populations
	4.1 Methods
	4.2 Neuroeconomics
	4.3 The dynamics of decision

	5 AH reconsidered
	6 Representational realism?
	7 Conclusion
	Acknowledgements
	References




