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Abstract
Dynamical systems play a central role in explanations in cognitive neuroscience. 
The grounds for these explanations are hotly debated and generally fall under two 
approaches: non-mechanistic and mechanistic. In this paper, I first outline a neu-
rodynamical explanatory schema that highlights the role of dynamical systems in 
cognitive phenomena. I next explore the mechanistic status of such neurodynamical 
explanations. I argue that these explanations satisfy only some of the constraints on 
mechanistic explanation and should be considered pseudomechanistic explanations. 
I defend this argument against three alternative interpretations of the neurodynami-
cal explanatory schema. The independent interpretation holds that neurodynamical 
explanations and mechanisms are independent. The constitutive interpretation holds 
that neurodynamical explanations are constitutive but otherwise non-mechanistic. 
Both the independent and constitutive interpretations fail to account for all the fea-
tures of neurodynamical explanations. The partial interpretation assumes that the 
targets of dynamical systems models are mechanisms and so holds that neurody-
namical explanations are incomplete because they lack mechanistic details. I con-
tend instead that the targets of those models are dynamical systems distinct from 
mechanisms and defend this claim against several objections. I conclude with a 
defense of the pseudomechanistic interpretation and a discussion of the source of 
their explanatory power in relation to a causal-mechanical description of the world.
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1  Introduction

Cognitive neuroscience describes both the dynamics and the mechanisms of the 
brain in explanations of cognition. While this dual nature reflects the explanatory 
and experimental endeavors of cognitive neuroscience, it also presents a conundrum 
for the philosophy of neuroscience. Are neural explanations of cognition mecha-
nistic (Craver 2007b; Bechtel 2008; Kaplan 2011, 2015; Kaplan and Craver 2011; 
Piccinini and Craver 2011) or not (Port and van Gelder 1995; van Gelder 1995; 
Chemero and Silberstein 2008; Zednik 2011; Chirimuuta 2014, 2017; Huneman 
2018)?

Recent philosophy of science has emphasized the mechanistic nature of many 
explanations across the sciences (Machamer et  al. 2000; Bechtel 2002; Craver 
2007b; Piccinini 2007; Glennan 2017). This mechanistic approach to explanation in 
science contends that phenomena are explained once they are situated in the causal-
mechanical structure of the world (Salmon 1984). In contrast to the emphasis on 
mechanisms, dynamicism contends that some phenomena, including those related 
to cognition, are explained by a description of how properties of systems change 
over time or with respect to one another (Port and van Gelder 1995; van Gelder 
1995; Chemero and Silberstein 2008; Walmsley 2008; Chemero 2011; Weiskopf 
2011; Zednik 2011; Silberstein and Chemero 2012, 2013). The grounds for such 
explanations have been variously identified as deductive-nomological (Hempel and 
Oppenheim 1948), structural (Huneman 2018), optimal (Chirimuuta 2014), and 
more. I will generally refer to this diverse set of alternatives as the non-mechanistic 
approach.1

In this essay, I outline the central role that dynamics play in explanations of cog-
nitive phenomena in cognitive neurobiology, the study of cognition by the investi-
gation of activity in single and groups of neurons. After setting the stage by intro-
ducing dynamicism, I present a neurodynamical explanatory schema that captures 
the explanatory role of neurodynamical systems and illustrate this schema with a 
case study. I consider four different interpretations of the schema. The independent 
interpretation maintains that the schema outlines non-constitutive explanations and 
is independent of mechanisms altogether. The constitutive interpretation maintains 
that completing the schema results in constitutive but otherwise non-mechanistic 
explanations. The partial and pseudomechanistic interpretations both agree that neu-
rodynamical explanations are constitutive explanations that situate cognitive phe-
nomena in the world’s causal-mechanical structure. The partial interpretation fur-
ther maintains that dynamical systems theoretic models in these explanations target 
mechanisms but are incomplete descriptions of them and, so, the explanations that 
result from the completion of the schema are also incomplete. In contrast, the pseu-
domechanistic interpretation maintains that dynamical systems theoretic models in 
those explanations target non-mechanistic neurodynamical systems.

1  Of course, one could adopt a pluralistic attitude toward cognitive neuroscientific explanations, where 
some explanations are mechanistic and some not.
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I argue for three main claims in this essay. First, the neurodynamical explanatory 
schema is a constitutive, productive explanatory schema, ruling out both independ-
ent and constitutive interpretations. Second, some dynamical systems theoretic mod-
els in cognitive neurobiology target neurodynamical systems and are not incomplete 
models of mechanisms. Third, neurodynamical systems are not mechanisms except 
perhaps in a novel sense of the term and so neurodynamical explanations are pseu-
domechanistic explanations. Neurodynamical systems are often described in a fash-
ion that is independent to some extent of the underlying neurophysiological mecha-
nisms that instantiate them. These neurodynamical systems comprise the kinematics 
of mind.

2 � Cognitive neurobiology and neurodynamics

In this section I illustrate the claim that dynamical systems constitute cognitive 
systems and present a neurodynamical explanatory schema built on this dynamical 
foundation. I first briefly discuss dynamical systems and dynamical systems theory, 
a branch of mathematics used to describe how systems change. I then outline a neu-
rodynamical explanatory schema that will serve as an anchor point for the rest of the 
discussion. I illustrate this schema with an example drawn from the neuroscience of 
perceptual decision making.

2.1 � Dynamical systems theory

I assume that there is a general ontological category of system that consists of (more 
or less) every possible collection of objects, properties, and relations.2 Dynamical 
systems are systems that change over time or with respect to one another. There 
are two elements in a dynamical system, the substrate and the dynamical proper-
ties. The substrate of the dynamical system are the objects, properties, and relations 
that undergo change. The dynamical properties are the changes in the substrate. Let 
‘dynamical system’ denote the objects, properties, or relations of some system as 
well as the changes in the objects, properties, or relations in that system.

These systems are described using dynamical systems theory, a branch of math-
ematics (for extended introduction, see Strogatz 2001). Dynamical systems theory 
contains a set of concepts and tools for describing how systems change. A system’s 
state space is the basic concept in dynamical systems theory, the set of all possi-
ble states that a system can occupy. A state for such a system will be defined as 
the set of determinate objects, properties, and relations for the determinable types 
of the system. These states are mathematically described by a set of values for all 
the variables and parameters of the equations that describe the system’s change, 
the system’s state equations. These state equations are either difference equations, 

2  Object here is used in a very general sense. Also, a system need not include elements from all three 
categories; a system could be a collection of properties only, for example.
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describing discrete change in these variables, or differential equations, describing 
continuous change.

As systems evolve over time (or with respect to some other variable), they inhabit 
a series of states drawn from their state space. This series of states is called a tra-
jectory. A system’s state evolution is a description of the system in terms of the 
trajectories taken and is mathematically described by the state equations. The sys-
tem’s state space can possess structure, such as when trajectories tend to converge 
on or near a single state, called an attractor. Other structural features can be pre-
sent, including limit cycles, stable repeating sequences of states; bifurcations, where 
small changes in state yield large changes in trajectories; repellers, states that trajec-
tories move away from; and more. Often the structure in its state space determines 
the type identity of a dynamical system.

2.2 � Neurodynamical systems and dynamical systems models

Neurophysiological systems are organized collections of neural objects, properties, 
and relations. These systems are constantly changing across spatial and temporal 
scales. Neurodynamical properties are the changes in the objects, properties, or rela-
tions of neurophysiological systems. For the following, neurodynamical systems are 
organized collections of these neurodynamical properties and their substrates.3 Since 
these dynamical properties are properties of neurophysiological systems and their 
substrates are identical to objects, properties and relations of such systems, neurody-
namical systems are token identical to subsets of neurophysiological systems.4

The approach herein is distinct from other approaches to dynamical systems in 
discussions in the philosophy of neuroscience. A key distinction is between dynami-
cal systems theoretic (DST) models and dynamical systems (cf. Giunti 1997; van 
Gelder 1998; Beer 2000). Models are representations that have targets (Weisberg 
2013; Glennan 2017), and different models can have the same or different targets. 
This distinction between DST models and dynamical systems is often left out of dis-
cussions of dynamicism. For example, Shapiro states straight away that “dynamical 
systems are mathematical models of real world systems that exhibit change” (Shap-
iro 2013, p. 354). Similarly, Lyre states that “[d]ynamical systems consist of states 
given as sets of variables that can be represented by points in a state space where the 
evolution function is usually the solution of a (system of) differential equation(s)” 
(Lyre 2017, p. 4).5 Both of these statements violate the distinction between DST 
models, which are mathematical models, and dynamical systems themselves, which 
are sets of dynamical properties and their substrates, not mathematical models. The 

3  I have specifically used the phrase ‘organized collections’ because cognitive neurobiologists refer to 
systems that feature some temporal or topological structure. However, in principle, the collections need 
not feature this structure.
4  The dynamical properties are themselves subsets of the set of all properties of such systems. Neuro-
dynamical systems are typically proper subsets of dynamical properties of neurophysiological systems 
because usually not every dynamical property of such a system gets included in the neurodynamical sys-
tem.
5  I thank an anonymous reviewer for soliciting this comparison to Lyre.
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models target those systems. The nature of the substrate of a dynamical system dic-
tates how much spatiotemporal or physical detail to include in its description (cf. 
Weiskopf 2017) on the distinction between cognitive models and mechanistic ones). 
Some philosophers reject the possible inclusion of such detail. For example, Lyre 
restricts dynamical systems to describing structure, “…a set of relations imposed 
on a set of relata such that the relata are only defined via the relations in which they 
stand” (Lyre 2017, p. 7). On Lyre’s account, dynamical systems are described by 
models whose equations refer only to relations. My approach, in contrast, includes 
all changes, whether in objects, properties, or relations.6 Take, for example, a neuron 
that discharges an electrical pulse or action potential (i.e., a firing neuron). On the 
view herein, the objects, properties, and relations underlying this firing, such as the 
ions, proteins, and so forth, are distinguished from the changes in those constituents 
that constitute the firing. A neuron fires when a sudden and large change in the cell 
membrane voltage propagates down the cell. These changes are the neurodynamical 
properties of the neuron, and the collection of those changes and their substrate—
the ions, proteins, and so forth—constitute a neurodynamical system. But the firing 
rate of a neuron can also be modulated. In that case, the neurodynamical properties 
are changes in the firing rate of the neuron, and the neurodynamical system consists 
of those changes together with their substrate, the firing rate itself. Neurodynamical 
systems can refer to changes in neural objects, properties, or relations or changes 
in changes in those objects properties, or relations, or changes in the changes in the 
changes, and so forth.

2.3 � Explanation in cognitive neurobiology

The neurodynamical explanatory schema contains six steps. The explanandum is 
some cognitive capacity. First, this cognitive capacity is decomposed into a set of 
subcapacities, functions performed by the subsystems of a system for the system, 
that in concert yield the cognitive capacity.7 Second, one of these subcapacities is 
selected for analysis. Third, this subcapacity is described mathematically. Fourth, 
the dynamics of the neural subsystem, the one hypothesized to possess the subca-
pacity, are described. Fifth, those dynamics are also described mathematically. Sixth 
and finally, the mathematical description of the subcapacity is mapped on to the 
mathematical description of the dynamics. The conclusion is that the dynamical sys-
tem has the subcapacity, that is, that the dynamical system performs a function for 
the cognitive system. The neurodynamical system helps explain the cognitive capac-
ity in virtue of possessing the subcapacity.

6  On some views, all properties, or all scientific or physical properties, are relational. On such views, 
Lyre’s approach and my own will collapse with regard to this second point.
7  Of course, to fully explain a cognitive phenomenon, each subcapacity must be accounted for. I skip 
over this complication in the following discussion.
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I will briefly review a case study of perceptual decisions under noisy sensory 
conditions from cognitive neurobiology to illustrate the schema.8 Neuroscientists 
study these decisions using the random dot motion task (RDMT), in which sub-
jects are presented with a visual display of moving dots and decide on the direc-
tion of motion. Some fraction of the dots moves in the same direction, and different 
fractions of dots move coherently on different trials. The coherent motion signal is 
embedded in random dot noise. Subjects indicate their decision by looking at a tar-
get. A number of functions are required for the RDMT: stimulus detection, motion 
encoding, integration of motion evidence, option selection, motor selection, motor 
initiation, and so forth.9 For evidence integration, a sequential probability ratio test 
(SPRT Wald and Wolfowitz 1948) describes an evidence sampling process for deter-
mining the direction of motion. In the SPRT, the prior odds of the dots moving left 
or right are set first. Next, motion evidence from the field of moving dots is gath-
ered. After evidence is gathered, the odds that the dots are moving left or right are 
updated on the basis of that evidence. This evidence gathering and updating process 
continues until a decision threshold is crossed.

In primates, motion properties of visual stimuli are encoded in area V5/MT, an 
area in the occipital cortex of the brain (Zeki 1974, 1991; Britten et al. 1992), and 
communicated to the lateral intraparietal area (LIP; Blatt et al. 1990), an eye move-
ment control region in the parietal cortex (Britten et al. 1992, 1993; Platt and Glim-
cher 1999). An organized set of dynamical properties, the integrate-to-bound sys-
tem, for integrating this motion evidence is found in area LIP (Roitman and Shadlen 
2002; Gold and Shadlen 2007). The integrate-to-bound dynamical system starts at 
an initial state, transitions through a series of adjacent states, and then terminates 
at the same point across different initial states and trajectories. The system continu-
ously changes state as a smooth, non-saltatory function of changes in environmen-
tal or internal properties until a boundary is reached. After arriving at the terminal 
state, the system resets to the initial state.

The state equations for the integrate-to-bound system uncovered in LIP neuronal 
activity are described using a variety of mathematical formulae (Usher and McClel-
land 2001; Wang 2002; Mazurek et al. 2003; Ditterich 2006; Wong and Huk 2008), 
many of which are ordinary differential equations. The simplest models of neural 
integrators describe them as instances of leaky integrators with feedback (cf. Gold-
man et al. 2010), p. 167):

�
neuron

dr

dt
= −r + wr + I(t)

8  See Gold and Shadlen (2007) for extensive discussion of this research. Note that many aspects of this 
case are still actively researched and hotly debated (Latimer et al. 2015; Shadlen et al. 2016). For my pre-
sent purposes, the still unsettled details do not matter, as I am merely illustrating how such explanations 
are constructed.
9  Different analyses of this task will yield different sets of functions; the specific set selected does not 
matter for the moment.
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for neuron time constant τneuron, firing rate r, synaptic strength w, and input current 
I(t).10 The first term on the right hand side represents the decay in firing rate, the 
second term represents the weighted feedback into the system, and the third repre-
sents the input to the system. This simple differential equation describes how the 
firing rate changes as a function of input and feedback to the neuron. The key feature 
is that the input I is integrated over time. Under constant input, the integrator will 
increase in firing rate in proportion to the input, feedback, and leak. This equation is 
complicated in various ways in order to take into account types of feedback, baseline 
firing rate effects, and maximum firing rate effects. The integrate-to-bound system 
contains two key additional features. First, upon reaching a particular threshold, the 
firing rate resets to some baseline value. Second, the same threshold exists for differ-
ent strength inputs. There are different ways of mathematically incorporating these 
features (see, e.g., Wong and Wang 2006).

In dynamical systems theory, for a single input this integrate-to-bound system 
is called a one-dimensional attractor with a single fixed point: the system is drawn 
toward one point in its state space (Strogatz 2001; Goldman et al. 2010). The inte-
grate-to-bound system will transition through the space of firing rates to a particular 
value and then reset. This particular value, the threshold, is an attractor in the sys-
tem’s state space. The threshold is an unstable attractor; if the system moves beyond 
the threshold, it resets to the baseline state. For different inputs, the integrate-to-
bound system has the same fixed point attractor. The integrative activity of the inte-
grate-to-bound system across different inputs can be depicted using one dimension 
for the space of possible activity patterns (such as the set of possible firing rates) 
and another for the different possible inputs (Fig. 1b). For each input, the system is 
drawn to the same firing rate, tracing a line in the state space composed of the two 
dimensions of the changes in firing rates and the possible inputs. This is called a line 
attractor in dynamical systems theory. The integrate-to-bound system behaves dif-
ferently for the same firing rate and input depending on whether the system is pre- or 
post-threshold. One way to depict the full integrate-to-bound system uses a disjoint 
state space for pre- and post-threshold activity. For pre-threshold activity, the system 
integrates (Fig. 1b, below threshold). For post-threshold activity, the system returns 
to a baseline firing rate regardless of the input (Fig. 1b, above threshold).

This case instantiates the neurodynamical explanatory schema. The explanandum 
is the capacity to make perceptual decisions about the direction of motion in noisy 
conditions. First, the cognitive capacity for motion discrimination is decomposed 
into a set of subcapacities like motion processing, evidence integration, and so on. 
Second, the relevant subcapacity, namely evidence integration, is specified. Third, 
this evidence integration function is described mathematically with the SPRT. 
Fourth, the integrate-to-bound dynamics of the physical subsystem for motion 
discrimination are described as an integrating trajectory through the subsystem’s 
state space towards an attractor point. Fifth, those dynamics are described math-
ematically with the specification of a state equation that is a function of time and 

10  This equation is often used to describe the firing rate of a pool of neurons. Here I use it to describe a 
single neuron.
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motion evidence. Sixth and finally, the mathematical description of the subcapacity 
is mapped on to the mathematical description of the dynamics. In particular, some 
range of the mathematical description of the SPRT maps on to some range of the 
mathematical description of the integrative activity observed in area LIP.11 The con-
clusion is that the integrate-to-bound system integrates motion evidence for making 
perceptual decisions.12

In what follows, I will assume that the neurodynamical explanatory schema has 
explanatory power—that is, that completing the schema results in an explanation.13 
A number of philosophers have argued that mechanisms are central to explaining 
cognitive phenomena. This leads to the main question for the remainder of this 
essay: how do neurodynamical systems and neurodynamical explanations relate to 
mechanisms and mechanistic explanations?

3 � Mechanistic explanation

In the foregoing, I described neurodynamical systems as neurophysiological systems 
and their changes and illustrated how neurodynamical systems play a fundamen-
tal role in explaining cognitive phenomena. Mechanists argue that explanations in 
cognitive neuroscience proceed by describing the mechanisms underlying cognitive 
phenomena. In order to evaluate the mechanistic claim in light of the neurodynami-
cal explanatory schema, I must discuss mechanistic explanation.

I analyze mechanistic explanations into three conditions. First, mechanistic expla-
nations are constitutive explanations, explanations that appeal to some system that 
constitutes the explanandum (Salmon 1984; Craver 2007a, b). Second, the system is 
a mechanism in a technical sense: an organized collection of entities and activities 
that help to produce some outcome. Third, the system produces the explanandum 
phenomenon, ensuring that the occurrence of the explanandum is the result of the 
system. These three conditions are jointly sufficient for a mechanistic explanation.

3.1 � Constitution

Mechanistic explanation is constitutive explanation that situates the explanan-
dum in the causal-mechanical structure of the world. As Craver puts it, “causal-
mechanical explanations explain by showing how something is situated within the 
causal nexus” (Craver 2007a, p. 4). A mechanistic explanation describes how a 
system’s parts and organization makes up the explanandum. The first condition on 

11  While I do not have space to delve deeper into this mapping, note that a 1:1 mapping within a range is 
insufficient.
12  Recent research has called into question whether area LIP in fact causally influences evidence integra-
tion during motion discrimination (Katz et al. 2016). Nonetheless, this example serves to illustrate the 
explanatory structure.
13  The defense and scope of the schema are presented elsewhere (Barack 2019), where I contend that the 
schema has broad application in cognitive neurobiology.
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mechanistic explanation is an organized system with parts that constitutes and situ-
ates the explanandum in the causal-mechanical structure of the world.

3.2 � Mechanisms

Mechanistic explanations explain some phenomenon by referring to a mechanism. 
The first condition suggests a general definition of a mechanism as a productive, 
organized set of parts that play roles (cf. Levy and Bechtel 2016). On this general 
definition, any collection of objects that have properties and stand in relations that 
appears in an explanation—that is, any system—may be a mechanism. This general 
definition of a mechanism, however, may reasonably be charged with triviality. If 
any set of organized parts that play roles that appears in an explanation is a mecha-
nism, then the scope of what counts as a mechanism is overly large (Campbell 2008, 
p. 430; Dupré 2013, p. 28; Franklin-Hall 2016; Chirimuuta 2017, p. 22ff; Paz 2017, 
p. 220ff; Weiskopf 2017, pp. 56–57). Without further restrictions, any system might 
be a mechanism.

The recent turn to mechanism in the philosophy of science presents a different 
definition of a mechanism. Two brief examples illustrate this definition. Consider 
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Fig. 1   a Depiction of average recorded firing rates from a cell in the parietal cortex of a monkey while 
they make a perceptual decision in different evidential conditions. Time is on the x-axis and firing rate is 
on the y-axis. Solid line is high motion coherence (strong evidence) and dashed line is low motion coher-
ence (weak evidence). First dotted vertical line corresponds to motion onset and second to movement 
onset. A larger proportion of dots moving in the same direction results in a steeper increase in activity 
of neurons. After Roitman and Shadlen 2002, p. 9482. b A schematic depicting the state space for this 
neuron. Arrows originate at points in the state space, and only a subset are shown for clarity. Arrow ori-
entation indicates the direction in which the system moves through its state space and arrow thickness 
the size of the change in firing rate under a given input (strength of evidence). As input is received by 
the neuron, firing rate increases, and the system’s trajectory passes through a series of firing rates. Upon 
reaching the threshold T, the system resets to the baseline firing rate, as indicated by the row of down-
ward-pointing arrows that originate just past the threshold. This depiction combines the pre-threshold 
state space (below T) and the post-threshold state space (above T) in the same diagram
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the heart, an organ that circulates blood throughout the body.14 The heart is com-
posed of a set of parts, such as an aorta, valves, ventricles, cellular tissue and other 
structures, with associated things that the parts do, like contracting rhythmically 
or preventing backflow, organized such that the heart pumps blood received from 
the body to the lungs and from the lungs through the aorta to the body. As another 
example, consider the biophysical mechanism of a chemical synapse, such as a volt-
age-sensitive Na+ channel.15 The mechanism consists of a set of parts, including the 
cell membrane, vesicles, microtubules, ions, etc. and a set of things that the parts 
do, including biosynthesis, coupling, diffusion, transport, depolarization, etc. These 
parts and what they do are organized such that the ion channel opens in the presence 
of spreading depolarization along the cell, allowing influx of ions and the propaga-
tion of the depolarization. In both cases, the explanation consists in an organized set 
of parts and their roles such that they produce the explanandum phenomenon, such 
as propagating an electrical signal or pumping blood.

These two examples illustrate how the recent approach in the philosophy of sci-
ence emphasizes physical, machine-like properties (Machamer et  al. 2000, p. 3ff; 
Bechtel and Abrahamsen 2005, p. 423ff; Wright and Bechtel 2007, p. 45ff; Pic-
cinini 2010, p. 285ff; Illari and Williamson 2012, p. 119ff). Mechanisms can then be 
defined as:

m-mechanism ≝ an organized set of parts characterized by their physical prop-
erties (such as spatiotemporal location, shape, electrochemistry, etc.) and that 
fill roles characterized by their physical properties (such as rate, duration, 
material changes, etc.) that causally produce and are responsible for some phe-
nomenon.

The parts of a m-mechanism are individuated on the basis of their physical proper-
ties (spatiotemporal, electrical, etc.) and their causal role in producing the phenom-
ena by being oriented, structured, etc. in the right fashion. In keeping with current 
lingo, the parts of systems that satisfy the definition of a m-mechanism are entities. 
The roles of the m-mechanism are what the entities or their interactions do in the 
m-mechanism. The things that entities do to fill roles are activities. These activi-
ties are defined by their temporal order, rate, and duration, and individuated by the 
entities that engage in them or their spatiotemporal properties.16 The entities and 
activities of the m-mechanism are organized so as to allow for the production of 
the explanandum. As is widely recognized, m-mechanisms are also functionally 
individuated, in the sense of being responsible for a phenomenon (the so-called 

14  Bechtel and Abrahamsen (2005, p. 424ff) discuss the heart as mechanism. In general, Bechtel and col-
leagues are more liberal in their approach to mechanisms than Craver, Kaplan, Piccinini and colleagues, 
and so are more amenable to some of the points discussed below.
15  Machamer et al. (2000, p. 8ff) and especially Craver (2007a, b, p. 114ff) discuss the chemical synapse 
example.
16  Temporal sequence in biological m-mechanism may be less important, as they often exhibit more 
complex organization (Bechtel and Abrahamsen 2005; Abrahamsen and Bechtel 2012; Bechtel 2012). 
More generally, I include the more dynamically oriented definitions of mechanisms under the m-mecha-
nism rubric.
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Glennan’s Law Glennan 1996, 2008, 2017; Craver 2001; Illari and Williamson 
2012). This view applies to the m-mechanisms underlying cognition just as it does 
to the m-mechanisms underlying other natural phenomena (Bechtel and Abraham-
sen 2005; Craver 2007b; Piccinini 2010; Kaplan 2011; Kaplan and Craver 2011; 
Piccinini and Craver 2011; Kaplan 2015; Glennan 2017).17

There are physical systems that do not satisfy the definition of a m-mechanism 
but that do satisfy the definition of a dynamical system. Take, for example, a rock 
(an example of Wimsatt’s mere aggregates Wimsatt 1997). A rock has parts, such as 
the individual molecules, that are spatiotemporally characterized. These molecules 
might even engage in activity-like doings such as pinging off one another or arrang-
ing a lattice. Left at this, however, rocks are not yet responsible for some phenom-
enon and so are not yet m-mechanisms. Rocks are dynamical systems, however. In 
addition to the example of the rock, some systems do not engage in activity-like 
doings, such as Darden’s broken clock (Darden 2006, p. 280ff) or static systems like 
a pillar supporting a roof (though see Illari and Williamson 2012, p. 130). Take for 
another example gravitational systems such as the attraction of two molecules. This 
system has spatiotemporally described parts and organization, but does not obvi-
ously engage in activity-like doings. So gravitational systems are dynamical sys-
tems but not m-mechanisms. Other systems appear to be constituted by activity-
like doings but not parts, such as psychological systems underlying recognition or 
perception. A range of physical systems appear to lack an organization in virtue of 
being essentially constituted by random activity, such as gases or perhaps swarms, 
or featuring random organization, such as randomly connected neural networks.18 
Finally, other systems defy spatiotemporal characterization for a range of reasons, 
such as mathematical objects, institutions, or economies, and yet many are dynami-
cal systems.

3.3 � Productivity

Mere reference to a type of system such as a mechanism will not suffice for an 
explanation of some phenomenon. An explanation may refer to an m-mechanism 
but that does not entail that the explanation is a mechanistic explanation. Sup-
pose one body attracts another with some gravitational force, and this force is 
explained by citing the universal law of gravitation. One or both of these bod-
ies may be m-mechanisms, but this explanation is not mechanistic because the 
m-mechanisms did not produce the explanandum. In addition to the presence 
of a constitutive, m-mechanistic system, mechanistic explanations are ones that 

18  Other, similar violations on the conditions of mechanisms are discussed by Levy and Bechtel (2016), 
who advocate expanding the concept of a mechanism to include problematic borderline cases.

17  While many of the definitions cited are older, this physically focused view of mechanisms is still prev-
alent. Glennan, for example, says that “[e]ntities and activities are not abstract; they are fully determi-
nate particulars located somewhere in space and time; they are part of the causal structure of the world. 
Sometimes there are abstract structures that can be characterized with mechanistic metaphors—but they 
are not mechanisms” (Glennan 2017, p. 20).
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feature systems that produce the explanandum (Miłkowski 2016). A system pro-
duces some phenomenon when the parts play roles in making a difference to the 
phenomenon.

Systems such as m-mechanisms must play some difference making role in expla-
nations (Woodward 2003; cf. Miłkowski 2016; Klein 2017). A difference making 
role of an explanation is one such that if the difference maker were to change, then 
the explanandum phenomenon would change as well. Difference making further 
implies a relevance constraint for the system. Ceteris paribus, a change in a system 
that does not change the explanandum is not relevant to the explanation.

Another necessary condition to produce a phenomenon in a mechanistic explana-
tion requires that the parts of the system play roles. A system could explain some 
phenomenon solely in virtue of the properties of and relations between the parts. 
For example, these relations could have mathematical properties that account for the 
phenomenon, such as the role of basis functions in explaining the representational 
power of neural networks (cf. Huneman 2018). These sorts of properties and rela-
tions are not the result of what the parts do in the system. A productive explanation, 
in contrast, features parts that do things. In sum, to produce the explanandum, the 
parts of a system must play roles that make a difference to the explanandum.

3.4 � Conclusion

Explanations that feature systems are not eo ipso mechanistic explanations. To 
demonstrate that such explanations are mechanistic explanations, the system 
needs to satisfy the three conditions: constitution, mechanism, and productivity. 
Explanations of a phenomenon that feature constitutive, productive systems are 
merely potentially mechanistic explanations. Those explanations that feature con-
stitutive, productive systems that do not satisfy the definition of an m-mechanism 
are pseudomechanistic explanations. I argue below that neurodynamical explana-
tions are pseudomechanistic explanations.

4 � Explanatory role of neurodynamical systems

What is the relationship between the neurodynamical explanatory schema and 
mechanistic explanation? In this section, I will consider and discard two takes 
on neurodynamical explanations. The first interpretation maintains that neuro-
dynamical explanations are independent of constitutive explanations and mecha-
nisms altogether. I will argue that this view is too radical, brushing aside impor-
tant aspects of neurodynamical explanations. The second interpretation maintains 
that neurodynamical explanations are merely constitutive explanations. This latter 
constitutive interpretation captures only part of the neurodynamical explanatory 
schema and mischaracterizes how such explanations are constitutive. Other inter-
pretations are required.
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4.1 � Neurodynamical systems and mechanisms are independent

On the first interpretation, neurodynamical explanations are not constitutive expla-
nations and the neurodynamical systems that are featured in those explanations are 
not mechanisms. An example of this view is provided by Chemero and Silberstein’s 
classification of explanatory patterns, who frame the question as “whether cognition 
is best explained mechanistically or dynamically” (Chemero and Silberstein 2008, p. 
7). The independent interpretation rests on two claims. First, neurodynamical expla-
nations feature explanatory models that “…allow one to abstract away from causal 
mechanical and aggregate micro-details to predict the qualitative behavior of a class 
of similar systems” (Chemero and Silberstein 2008, p. 12). Since these details are 
left out, the entities and activities of m-mechanisms are absent and hence dynamical 
systems are not mechanisms. Second, scientists who use dynamical systems theory 
to explain cognition are “employing differential equations as their primary explana-
tory tool” (Chemero and Silberstein 2008, p. 11), not m-mechanisms. The equations 
explain the phenomenon without appealing to constitution.

The independent interpretation seems to go too far, however. Neurodynamical 
explanations are constitutive explanations of a cognitive phenomenon by appeal to 
productive, organized sets of neurodynamical properties. The explanandum phe-
nomenon is a cognitive capacity. Neurodynamical explanations explain such capaci-
ties by showing how neurodynamical systems perform functions for cognitive sys-
tems and in so doing have subcapacities such that when taken together, sets of such 
systems constitute the cognitive capacity being explained. This constitutive aspect is 
lost on the independent interpretation.

4.2 � Neurodynamical systems non‑mechanistically constitute cognitive 
phenomena

I now consider the constitutive interpretation, that neurodynamical explanations are 
constitutive explanations unrelated to systems with parts. The constitutive inter-
pretation asserts that neurodynamical systems constitute and so are responsible for 
those cognitive phenomena but in a fashion irrespective of the causal-mechanical 
description of the world. This interpretation follows from a replacement of the sec-
ond claim of the independent interpretation with a constitutive claim. Explanations 
of cognitive phenomena that invoke dynamical systems derive their explanatory 
power from constituting the explanandum phenomenon. But besides constituting 
phenomena by situating them in the world’s causal-mechanical description, how 
else could a constitutive explanation work?

The deductive-nomological approach to explanation could be adapted to provide 
a type of constitutive explanation. Deductive-nomological approaches explain a phe-
nomenon by showing that it can be rationally expected. For example, an explanan-
dum phenomenon may be entailed by the specification of initial conditions and cov-
ering laws (Hempel and Oppenheim 1948). The deductive-nomological approach is 
often adopted in discussions of the explanatory power of dynamical systems (see, 
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e.g., Walmsley 2008 or Kaplan 2011). Though the deductive-nomological approach 
has been applied to constitutive explanation by deriving one theory from another 
theory plus bridge laws relating the two theories (Craver 2007b), the proposal here 
is to apply the initial conditions and laws framework to constitution.

Neurodynamical systems have subcapacities that correspond to the transforma-
tion of input signals into output signals. For example, the integrate-to-bound system 
takes motion evidence as input, integrates it over time, and outputs a summary of 
the evidence. These transformations are described mathematically; the integrate-to-
bound system’s evidence integration function has been described using a range of 
mathematical operations, including integration sensu calculus as described above. In 
mathematics, functions can compose: a function f: x → y and a function g: y → z can 
compose and result in a function g∘f: x → z. The constitutive interpretation analyzes 
constitution of cognitive capacities by the functional composition of the subcapaci-
ties of neurodynamical systems. Since function composition is ordered—not every 
function composition is commutative (it is not the case that ∀f,g (f∘g = g∘f))—this 
notion of constitution is ordered as well. This implies that the ordered exercise of the 
subcapacities in the right sequence constitute the exercise of the capacity. A series 
of signal transformations that correspond to a sequence of mathematical operations 
functionally compose and deductively entail the output given some input. The series 
of function executions corresponds to the set of laws, and the initial conditions cor-
respond to some input into the system.

The problem with this constitutive explanatory approach is that it provides an 
incomplete account of the neurodynamical explanatory schema. Neurodynami-
cal explanations are explanations of cognitive capacities in terms of neurodynami-
cal systems, organized collections of neurodynamical properties. The organization 
reflects both the dynamics of the systems as well as the way that different such sys-
tems can be put together. While the functions of neurodynamical systems undoubt-
edly do compose, the dynamics of these systems also compose, constituting the 
dynamics of the neurodynamical system. Constitution as function composition also 
does not provide an explanatory role for dynamical systems as part of the world’s 
causal-mechanical structure. That latter aspect of neurodynamical explanations is 
absent from the constitutive interpretation. Of course, for the advocate of the deduc-
tive-nomological view, this concern is of no matter. Nonetheless, there may be ways 
of situating such systems in the causal-mechanical structure of the world.

5 � Dynamical systems theoretic models as models of neurodynamical 
systems

Instead of further exploring the thesis that neurodynamical explanations are not 
mechanistic, I turn to discuss mechanistic interpretations of neurodynamical expla-
nations. An intuitively plausible interpretation maintains that the schema describes 
how m-mechanisms help explain cognitive phenomena. The definition and defense 
of m-mechanisms in the literature discussed above suggests a partial interpretation 
of neurodynamical explanations. The dynamical systems theoretic (DST) mod-
els in those explanations are assumed to refer to m-mechanisms. However, these 



1105

1 3

Synthese (2021) 199:1091–1123	

descriptions can leave out spatiotemporal details of the putative entities and activi-
ties of m-mechanisms. Hence, DST models are incomplete models of m-mech-
anisms. Further, the absence of spatiotemporal details of the m-mechanism that 
instantiates the dynamics results in an incomplete mechanistic explanation relative 
to a description that includes those details (cf. Shagrir and Bechtel 2017). As Craver 
and Kaplan (2018) argue, the claim is not that merely providing more details makes 
a better explanation (the “More-Details-Better” thesis). Rather, it is that providing 
more relevant details makes a better explanation (the “More-Relevant-Details-Bet-
ter” thesis), where the relevant details here are details about the m-mechanism that 
instantiates the dynamical system. On the partial interpretation, filling in the neuro-
dynamical explanatory schema above results in a relatively incomplete explanation 
that leaves out relevant m-mechanistic details.19

This partial interpretation supposes that the targets of DST models are m-mech-
anisms. This supposition clashes with views that identify other targets besides 
m-mechanisms, such as processes construed as distinct from any type of mechanism 
(Dupré 2013), mechanisms in some sense other than m-mechanism [such as abstract 
mechanisms (Boone and Piccinini 2016) or structural mechanisms (Kuhlmann 2014; 
Felline 2018)], or as a distinct category of existent along the lines of the account of 
dynamical system outlined above (cf. Egan 2017; Woodward 2017).20 Assuming the 
targets are m-mechanisms is a substantive thesis that requires defense.

In support of the partial interpretation, I will discuss three arguments inspired 
by positions that mechanists have taken. Proponents of m-mechanisms have crafted 
their view with an eye toward arguing against the independent interpretation above 
(see, e.g., Craver 2007b; Kaplan 2011; Kaplan and Craver 2011).21 These arguments 
could be adapted for the current question of whether or not neurodynamical expla-
nations are incomplete mechanistic explanations. All three arguments assume DST 
models target m-mechanisms but leave out relevant m-mechanism details for various 
reasons and so are incomplete models and as a result incomplete explanations. Neu-
rodynamical explanations are incomplete because they either fail to meet a mapping 
requirement underlying cognitive neuroscientific explanations (Kaplan 2011; Kaplan 
and Craver 2011), only provide details about the changes in underlying mechanistic 
entities (Kaplan 2015), or merely incompletely describe m-mechanisms (Boone and 
Piccinini 2016). In opposition to the claim that DST models target m-mechanisms, 
the dynamicist might contend that a dynamical system distinct from an instantiating 
m-mechanism is the target. This possibility indicates an undefended enthymeme in 
the three arguments, that DST models target m-mechanisms. I maintain that these 
models target neurodynamical systems instead, thereby rejecting the partial interpre-
tation, and defend this claim against several objections.

21  Many thanks to a reviewer who pointed out that these arguments are originally aimed at the independ-
ent interpretation.

19  I will usually elide the relativity of completeness in the following.
20  I include processes here as a recent alternative to mechanisms. A discussion of the relationship 
between processes in the Dupré sense and dynamical systems goes beyond the scope of this essay.
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5.1 � Three arguments for the partial interpretation

In describing how mechanisms explain cognitive phenomena, some mechanists 
appeal to mapping constraints on explanatory models in cognitive neuroscience. 
Kaplan and Craver have formalized this constraint in their model-to-mechanism-
mapping (3M) requirement (Kaplan 2011; Kaplan and Craver 2011), which can 
inspire an argument for the partial interpretation. (3M) states that

In successful explanatory models in cognitive and systems neuroscience (a) 
the variables in the model correspond to components, activities, properties, 
and organizational features of the target mechanism that produces, maintains, 
or underlies the phenomenon, and (b) the (perhaps mathematical) dependen-
cies posited among these variables in the model correspond to the (perhaps 
quantifiable) causal relations among the components of the target mechanism. 
(Kaplan and Craver 2011, p. 611).

Mechanisms play a role in explanations in cognitive neuroscience by serving as the 
targets for DST models. Though not explicit in (3M), the relevant sense of mecha-
nism is m-mechanism (see, e.g., Kaplan and Craver 2011, p. 605ff). The dynamics 
described by those models pick out m-mechanisms in virtue of the variables in the 
models denoting entities, activities, and so forth of m-mechanisms and the transfor-
mations in the models denoting causal relations between entities of those m-mech-
anisms. However, these models leave out much relevant details about entities and 
activities. Hence, neurodynamical explanations are incomplete explanations. Call 
this the mapping argument.22

The mapping argument assumes that the targets of DST models are m-mecha-
nisms. However, as discussed above, models of systems are distinct from the systems 
themselves, and the targets of the models may not be m-mechanisms. For example, 
in the case of the integrate-to-bound system in LIP, the targeted system could corre-
spond to a neurodynamical system constituted by single (or multi-) neuronal dynam-
ics or to a m-mechanism constituted by the spatiotemporal entities underlying those 
dynamics (or both). The model of this integrate-to-bound system, which specifies a 
set of variables and their transformations, is distinct from these dynamics. Both the 
neurodynamical system and the instantiating m-mechanism are prima facie possible 
targets for the model.

On the mechanics argument for the partial interpretation, dynamics are construed 
as descriptions of the temporal evolution of entities of m-mechanisms (Piccinini 
and Craver 2011; Kaplan 2015).23 Kaplan contends that “dynamical models are… 
well suited to reveal the temporal organization of activity” in neural m-mechanisms 

22  I don’t mean to imply that Craver, Piccinini, Kaplan and other mechanists would endorse the mapping 
argument. Rather, I am taking their stated positions on the proper role of dynamical systems models in 
cognitive neuroscience explanations as one way of arguing for the partial interpretation, which may or 
may not be a use of such mappings which these philosophers would endorse.
23  All three arguments are compatible with each other and I don’t mean to suggest that philosophers who 
endorse one could not also endorse another.
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(Kaplan 2015, pp. 759–760). On this inspiration for the partial interpretation, DST 
models are models of the operation of entities of m-mechanisms, descriptions of 
the temporal (and possibly spatial) dynamics of m-mechanism components (Pic-
cinini and Craver 2011; Kaplan 2015).24 Once again, since these models leave out 
much relevant m-mechanistic detail, neurodynamical explanations are incomplete. 
The mechanics argument also assumes that the targets of DST models are m-mech-
anisms. If the target of the modeling effort is the dynamics of m-mechanisms, then 
those models may indeed merely reflect the instantiating m-mechanisms. But the 
target of the modeling effort may equally well be the neurodynamical systems them-
selves independent of the instantiating m-mechanism. On the former target, relevant 
missing details include spatiotemporal details about entities and activities; on the 
latter, these spatiotemporal details may be irrelevant. Consequently, the mechan-
ics argument fails to demonstrate that neurodynamical explanations are incomplete 
mechanistic explanations.

On the incomplete description argument for the partial interpretation, DST mod-
els are incomplete descriptions of mechanisms, whether schemata, descriptions of 
mechanisms with details deliberately omitted, or sketches, descriptions of mecha-
nisms that leave out unknown details. A number of extant statements about sketches 
and schemata can lend inspiration to arguments for the partial interpretation. Pic-
cinini and Craver have argued that DST models provide a functional description of 
an m-mechanism, where “functional descriptions are elliptical mechanistic descrip-
tions”, specifically sketches of m-mechanisms that leave out unknown spatiotempo-
ral and other details (Piccinini and Craver 2011, p. 307).25 But an alternative prima 
facie viable position is that these are models that target neurodynamical systems 
and so don’t need to include details specific to the instantiating m-mechanisms.26 
According to Boone and Piccinini, some details are left out because “[i]dentifying 
and explaining those different mechanism types requires omitting the idiosyncratic 

24  Cf: “Organization is… a necessary part of most moderately complex mechanisms such that perturb-
ing either the spatial organization or temporal dynamics of a mechanism, even while the components and 
their activities remain unchanged, can have appreciable (even catastrophic) effects on its performance. 
Thinking about mechanistic explanation, then, it is clearly insufficient to describe only the properties and 
activities of the component parts in a given mechanism without giving adequate weight or attention to 
the spatial and/or temporal organization of those parts and activities. Often this point is underappreciated 
or lost when considering the nature of mechanistic explanation…. understanding the dynamical “struc-
ture” of a mechanism can be just as important as understanding its physical structure” (Kaplan 2015, pp. 
774–775).
25  They go on to assert that “[t]he idea that functional description is somehow autonomous from details 
about mechanisms involves a fundamental misunderstanding of the nature of functional attribution in 
sciences like cognitive neuroscience” (Piccinini and Craver 2011, p. 307). This overlooks at least one 
clear alternative, that cognitive neuroscientists are concerned with functional descriptions sensu dynam-
ics, and neuroscientists simpliciter are concerned with m-mechanisms. A helpful analogy here is between 
a car designer or engineer and a car builder or mechanic. The designer or engineer might only care about 
the functional descriptions of the parts, leaving it to the builder or mechanic to determine the appropri-
ate m-mechanisms. Something similar could be said about cognitive neuroscience and neuroscience. On 
such an analysis, there is some sense in which functional description is autonomous from m-mechanisms. 
I will forego further discussion of the issue of autonomy for another time, but see the very nice discus-
sions in Kaplan (2017).
26  See below in Sect. 6 for an extended discussion of functional analysis.
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details of less abstract types of mechanism in order to reach a description that is 
general enough to denote the relevant features that the less abstract types have in 
common” (Boone and Piccinini 2016, p. 693). Other details are left out in order to 
capture regularities across m-mechanisms by “…isolating features that are shared 
by mechanisms that occur within radically different systems and may even occur at 
different levels of organization…” (Boone and Piccinini 2016, p. 694). Dynamical 
systems are descriptions either of types of m-mechanisms or of regularities across 
many different particular m-mechanisms and so should be considered mechanism 
schemata. But this assumes these are models of the instantiating m-mechanisms as 
opposed to models of neurodynamical systems in their own right, an assumption that 
requires independent justification (cf. Egan 2017). In sum, the incomplete descrip-
tion argument too assumes the targets of these DST models are m-mechanisms, and 
so requires further defense to demonstrate the partial interpretation.

5.2 � Objections

I will now consider some objections to the claim that the DST models present in 
neurodynamical explanations can target dynamical systems distinct from their 
instantiating m-mechanisms. First, the mechanist might object that for the dynam-
ics targeted by models to exist, they must be dynamics of m-mechanisms and so 
the targets of the models are m-mechanisms. The definition of a dynamical system 
given above explicitly states that these systems are token identical to subsets of 
the dynamics of their instantiating physical systems. Plausibly some of the physi-
cal systems instantiating the dynamics are m-mechanisms, as many philosophers 
(e.g., Craver 2007b) have argued for the brain. Consider for example Bechtel and 
Abrahamsen’s take on mechanistic dynamics (Bechtel and Abrahamsen 2010). They 
claim that dynamical systems theoretic models are “…used to better understand the 
functioning of a mechanism whose parts, operations, and organization already have 
been independently determined” (Bechtel and Abrahamsen 2010, p. 322). They note 
that modelers “probe how the mechanism’s organization, parts, and operations are 
orchestrated in real time to produce dynamic phenomena…” (Bechtel and Abraham-
sen 2010, p. 322). On this objection, the dynamics are spatiotemporal details of enti-
ties and activities of the m-mechanism and so the models do target m-mechanisms.

In reply, I contend that m-mechanisms, non-m-mechanism dynamical systems, 
and models are distinct. The various categories divide up systems in different ways 
according to identification, re-identification, and classification conditions (in short, 
sortal conditions; cf. Strawson 1959 or Quine 1960). Definitions provide sortal con-
ditions. The discussion above defined m-mechanisms as those spatiotemporal sys-
tems that are sets of entities and activities organized so as to be responsible for the 
production of some phenomenon. The sortal conditions for m-mechanisms then 
include the entities, activities, organization, and productive roles in systems. Dynam-
ical systems herein are defined as the objects, properties, and relations of some sys-
tem and the changes in those objects, properties, and relations. While neurodynami-
cal systems happen at a place (or in a volume) and over time, their sortal conditions 
need not specify those properties. As a result, m-mechanistic sortal conditions may 
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be different from the sortal conditions for dynamical systems. Granted these distinct 
sets of conditions, m-mechanisms can be distinct from dynamical systems, and so 
models can target one type of existent without targeting another.

A second related objection denies that there are distinct explanatory roles for 
these different categories.27 Dynamical systems are token identical to the dynamics 
of physical systems. If neural systems are m-mechanisms, then neurodynamical sys-
tems are token identical to the dynamics of m-mechanisms. So, the objection goes, 
there is no explanatory role for a neurodynamical system that is distinct from the 
explanatory role of its instantiating neural mechanism.

This objection raises deep issues related to identity and explanation. In defense 
against this objection, I reject that token identity of neural m-mechanisms and neu-
rodynamical systems entails identical explanatory roles. First, if two systems have 
identical explanatory roles then they have identical counterfactual explanatory con-
straints. Second, token identical neural m-mechanisms and neurodynamical sys-
tems have distinct sortal conditions. Third, distinct sortal conditions entail distinct 
counterfactual constraints. So, neural m-mechanisms have different counterfactual 
explanatory constraints than neurodynamical systems. By modus tollens, they have 
different explanatory roles.

Three considerations can be provided in favor of the first premise, that identical 
explanatory roles imply identical counterfactual constraints (for a general argument 
that model-based explanation centrally involves situating a phenomenon in a pattern 
of counterfactual dependence, see Bokulich 2011). Each of these considerations is 
not airtight, but they illustrate how explanatory roles can imply counterfactual con-
straints. First, explanations imply counterfactual failure constraints on explanatory 
role. Something plays an explanatory role such that if the physical set-up were to 
change and as a result the phenomenon being explained fails to occur, then whatever 
plays that role must explain that failure. Take, for example, the explanation of light-
ing a match. After a match is struck, the match alights due to phosphoric ignition 
and fuel in the form of oxygen and sulfur from the match head. This in turn ignites 
the wood. Now suppose the match is damp and fails to light when struck. If the enti-
ties in the match head play an explanatory role in explaining why the match lights, 
then those entities must change when the match is damp. Second, explanations imply 
counterfactual modulation constraints, where some things may play an explanatory 
role such that if the physical set-up were to change and as a result the explanandum 
phenomenon changes, then whatever plays that role must explain that change. Sup-
pose striking the match at an acute angle will more slowly light the match. This is 
explained by the fact that it is a match but not by the fact that it is a piece of wood. 
Third, explanations imply counterfactual persistence constraints, where some things 
may play an explanatory role such that if the physical set-up were to change and 
the explanandum phenomenon does not change, then whatever plays that role must 
persevere through the change in the physical set-up. Changing from oak to pine does 
not change the fact that the match ignites. This persistence of the explanandum is 
explained by the fact that it is a match and not a piece of oak.

27  I thank an anonymous reviewer for this objection.



1110	 Synthese (2021) 199:1091–1123

1 3

The other premises are more straightforward. The second premise follows from 
the analysis of neurodynamical systems and the definition of m-mechanism above. 
The third premise follows from the definition of sortals. By negation of the conse-
quent of the first premise, different counterfactual constraints imply different explan-
atory roles. By modus tollens, neurodynamical systems and neural m-mechanisms 
have different explanatory roles even if they are token identical. Granted the neuro-
dynamical explanatory schema presented above, neurodynamical systems and neural 
m-mechanisms have distinct explanatory roles in explaining cognitive phenomena.

An objection charges this argument with an equivocation. On this objection, the 
counterfactual constraints cited in the first premise that arise from explanatory roles 
are different from those cited in the third premise that arise from sortal conditions. 
Because the counterfactual sortal constraints are different from the counterfactual 
explanatory constraints, a difference in the sortal constraints does not imply a dif-
ference in the explanatory ones. For example, a system may change without changes 
in the explanandum phenomenon. The neurons that constitute the m-mechanism in 
LIP could change and yet the counterfactual explanatory constraints determined by 
the explanatory roles for the mechanism may not dictate a corresponding change 
in the explanandum phenomenon. Perhaps other neurons are able to function the 
same as the original ones for the integration of motion evidence. Though such a 
change in entity would result in a changed m-mechanism, the explanandum may 
remain the same because different neurons can do the job equally well. Nonetheless, 
the explanandum phenomenon, the integration of evidence, remains the same. So, 
explanatory counterfactual constraints are not the same as sortal counterfactual con-
straints. The objector concludes that the counterfactual explanatory constraints are 
distinct from the sortal ones, and one can’t infer from distinct counterfactual sortal 
constraints to distinct explanatory roles.

In reply, the counterfactual constraints imposed by sortals are in some cases 
identical to those counterfactual constraints imposed by explanatory roles. Insofar 
as they are identical, the argument will go through. This connects sortal conditions 
for types and explanatory roles in a way that refutes the thesis that token identity is 
sufficient for identical explanatory roles. In these cases, explanatory roles and types 
have identical counterfactual explanatory constraints. Even if instances of two types 
of entity are token identical, the entity qua one type may have a different explana-
tory role than the entity qua the other type given the differences in the counterfac-
tual explanatory constraints described by their sortal conditions. What remains to be 
shown, then, is that neurodynamical explanations feature counterfactual explanatory 
constraints that line up with the counterfactual sortal constraints for neurodynamical 
systems.

Suppose some neural m-mechanism and its changes are token identical to some 
neurodynamical system that plays some explanatory role. Now consider counterfac-
tual persistence constraints. Elements of the neural m-mechanism can be removed, 
thereby changing the type identity of the m-mechanism. This change in the mecha-
nism does not entail a change in the neurodynamical system, however, because the 
dynamics may remain the same. The neurodynamical system may remain the same 
because the substrate for the system are not the changes in the m-mechanism that 
give rise to the activity level of neurons but rather the activity level itself and there 
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are many different ways to generate the same level of activity. In particular, suppose 
that despite the changes in the neurons, there are always integrate-to-bound dynam-
ics from trial to trial. For example, some single neurons in LIP exhibit integrate-
to-bound dynamics, whereas others do not—but if the neurons that do not exhibit 
such dynamics are taken as a group, then those dynamics are present for the popula-
tion (Meister et al. 2013). These dynamics may be sufficient for motion integration. 
The system could sometimes utilize single neuron dynamics and sometimes not, and 
even if the single neurons are silenced, the population may still exhibit the dynamics 
needed to integrate motion information. So, some changes in the m-mechanism do 
not entail a change in the explanandum phenomenon. However, if the integrate-to-
bound dynamics are absent, then the cognitive system does not sum up the evidence 
as to motion direction. In this latter instance, though, the identity of the m-mecha-
nism can be the same because a specific dynamic profile may not be part of the sor-
tal conditions on the mechanism. This implies that the m-mechanism and dynamical 
system have different counterfactual sortal constraints in virtue of which they play 
different explanatory roles.28 Furthermore, the objection that the neurodynamics that 
play the explanatory role are always a m-mechanism because they are token identi-
cal to part of a m-mechanism is to commit a mereological fallacy. A part of the neu-
ral m-mechanism such as the neurodynamics does not imply that the neurodynamics 
are also a m-mechanism.

Austin has critiqued this line of reasoning as follows. After defining a mechanism 
in terms of the temporal and spatial organization of its entities and activities (Austin 
2016, p. 644), Austin argues that “…it’s open… to the defender of a mechanistic 
ontology to… reform her concept of ‘mechanism’… in such a way that the persis-
tence of a particular mechanism need not depend… upon… a static set of entities 
performing a static set of activities” (Austin 2016, p. 654). Entities and activities can 
change without the identity of the mechanism thereby changing.

Two points in reply. First, some change is surely permitted. But there must be 
constraints as well, lest every arbitrary collection of entities and activities count as 
the same m-mechanism. However, the amount of variation permitted may be less 
than that which may be found underlying neurodynamical systems. According to 
Austin, “mechanisms are ontologically defined/individuated by their unique fourfold 
structure—that is, their (1) type and number of entities and (2) their spatial organi-
sation, and their (3) type and number of connective activities and (4) their spatial 
and temporal organisation. Thus, what it is to be a particular mechanism is to be an 
instance of a specific fourfold structure” (Austin 2016, p. 644). How much variabil-
ity in this fourfold scheme is permitted is unclear. However, I take it that a complete 
replacement of any of the four elements of the mechanistic structure is sufficient to 
yield a new m-mechanism. This is supported by Austin’s claim that “distinct permu-
tations of the values of (1)–(4) constitute distinct mechanisms, and so in any particu-
lar case the alteration of any of those values amounts to the effective dissolution of 
that mechanism” (Austin 2016, p. 644), where a wholesale replacement of one of 

28  Ceteris paribus, of course.
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the elements of the structure is sufficient for a distinct permutation and so a different 
mechanism.

Are there distinct permutations of one of these elements while retaining the same 
dynamics? The Meister et al. study suggests that if one were to silence all the single 
neurons that exhibited integrate-to-bound dynamics, then the system might still rely 
on the rest of the population for those dynamics. The other members of the popula-
tion in concert exhibit the required changes for integrating evidence. So they could 
serve in place of the silenced neurons. But ex hypothesi, these are exclusive sets, and 
so the mechanism would be a token of a different type. Of course, this is speculative 
and the normal functioning of LIP might utilize both types of cells, which implies 
that silencing only one type might not count as a wholesale replacement.

Second, the presence of variability simpliciter in the definition of an m-mecha-
nism is not entirely to the point. Rather, the ways that an m-mechanism can vary fail 
to line up with the ways that a neurodynamical system can vary, and the ways that 
m-mechanisms do vary does not coincide with changes in the explanandum phe-
nomenon, whereas the ways that the neurodynamical systems vary do so coincide. 
Specifically, consider the case of counterfactual failure constraints. For example, the 
hallmark ramp up in LIP firing rates is markedly decreased during error trials com-
pared to correct trials in LIP (Roitman and Shadlen 2002). Absent the integrative 
trajectory toward the threshold, the neurodynamical system malfunctions, evidence 
is not integrated, and the cognitive system commits an error. Because these dynam-
ics are not included in the mechanistic sortal conditions, the m-mechanism does not 
vary in these situations. And yet, the explanandum phenomenon does. Intuitively, 
the failure mode for the m-mechanism does not match the failure mode for the func-
tion of integrating evidence, whereas the failure mode for the neurodynamical sys-
tem does. This implies that because the m-mechanism counterfactual sortal con-
straints fail to match the counterfactual explanatory constraints, m-mechanisms are 
not the relevant type under which falls a particular token system that explains some 
cognitive phenomenon.

5.3 � Causal‑mechanical structure and the partial interpretation

Another argument for the partial interpretation proposes that neurodynamical sys-
tems causally depend on the properties of entities of m-mechanisms. Because the 
dynamics change only as a function of changes in the m-mechanism’s entities or 
activities, any explanation that cites the dynamics is incomplete without specify-
ing how the m-mechanism’s entities or activities change to produce the dynamics. 
In particular, the causal relations between entities are crucial to these explanations 
(cf. Craver and Kaplan 2018, p. 11ff). The counterfactual relations discussed above 
require an underlying causal structure that can only be provided by an m-mechanis-
tic explanation that situates the phenomenon in the causal structure of the world. So, 
DST models are incomplete: they leave out the relevant causal relations needed for 
mechanistic explanations.

Let’s grant the mechanist that the causal powers lie in the entities and activities 
of m-mechanisms. That still doesn’t entail that neurodynamical explanations are 
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incomplete without the m-mechanistic details. But, the mechanist replies, then the 
neurodynamical system remains unexplained. In response, the supporter of neuro-
dynamical explanations could happily agree with the mechanist that the neurody-
namical system remains unexplained, for that was never the target of the explana-
tion anyway. The explanandum is the cognitive capacity, and that is explained by 
completing the neurodynamical explanatory schema.29 But that explanation does not 
entail that completing the schema yields an incomplete explanation of the cognitive 
phenomenon for lack of leaving out m-mechanistic detail. In rejoinder, the objector 
could insist that if neurodynamical systems explain cognitive phenomena, then in 
the absence of such causal detail the cognitive phenomenon fails to be situated in the 
causal-mechanical structure of the world. This objection is, at heart, a demand for an 
account of the explanatory power of neurodynamical systems. I postpone my reply 
to this demand to the discussion below that argues in favor of the pseudomechanistic 
interpretation.

The point of the foregoing was to evaluate the partial interpretation that the neu-
rodynamical explanatory schema outlines a form of incomplete mechanistic expla-
nation. The partial interpretation contends that neurodynamical explanations are 
incomplete mechanistic explanations because DST models are incomplete models 
of m-mechanisms. The three arguments for the partial interpretation overlook the 
possibility that neurodynamical systems could be the target of DST models to which 
the schema appeals. If those neurodynamical systems are the targets, though, then 
neurodynamical explanations need not fill in the m-mechanistic details. This leads to 
one last even stronger interpretation, the pseudomechanistic interpretation.

6 � Neurodynamical systems and the pseudomechanistic 
interpretation

On the pseudomechanistic interpretation of the neurodynamical explanatory schema, 
neurodynamical explanations satisfy the constitutive and productivity conditions on 
mechanistic explanations but fail to satisfy the mechanism condition because neu-
rodynamical systems are not m-mechanisms. The pseudomechanistic interpretation 
agrees with the partial interpretation that neurodynamical explanations are incom-
plete mechanistic explanations. However, unlike the partial interpretation, the pseu-
domechanistic interpretation does not entail that neurodynamical explanations are 
incomplete because dynamical systems theoretic (DST) models target m-mecha-
nisms. The pseudomechanistic interpretation also identifies different systems—and 
so different parts—than the partial interpretation to fill the constitutive and produc-
tive roles of a mechanistic explanation. In reply and as an attempt to fully incorpo-
rate neurodynamical explanations as mechanistic explanations, some mechanists are 
willing to relax the requirements on m-mechanisms in a way that seems to subsume 
dynamical systems (Kaplan and Craver 2011; Piccinini and Craver 2011). I argue 

29  Recall that I am simplifying the true complexity of explanations of cognitive phenomena, which 
require many dynamical systems executing many functions.



1114	 Synthese (2021) 199:1091–1123

1 3

that no light revision of the definition of a m-mechanism will suffice. Other philoso-
phers argue that these explanations are to be understood as a species of functional 
analysis and assimilate functional analysis to m-mechanisms. I argue that while neu-
rodynamical explanations do entail functional analysis, the type of functional analy-
sis is both novel and consistent with pseudomechanistic explanation. Recall above 
that the m-mechanist might challenge the constitutive explanatory power of the neu-
rodynamical explanatory schema. In reply, I briefly outline how pseudomechanistic 
neurodynamical explanations fit into the causal-mechanical framework. In addition, 
pseudomechanistic explanation, like mechanistic explanation, requires systems to 
produce their explananda. I also outline the case for neurodynamical systems pro-
ducing cognitive phenomena. In conclusion, neurodynamical systems are either a 
distinct ontological category from mechanisms or mechanisms in some other sense 
than m-mechanism (Kuhlmann 2014; Boone and Piccinini 2016; Felline 2018), and 
neurodynamical explanations are at best pseudomechanistic explanations. I end with 
a brief coda on the importance of neurodynamics for cognition.

6.1 � Could neurodynamical systems be mechanisms?

I contend that neurodynamical explanations satisfy the constitutive constraints on 
mechanistic explanation. This implies that neurodynamical explanations contain 
organized systems with parts that make up the explanandum. In order to make up 
the explanandum, the parts must have functions or play roles in producing it.

What are the parts? In a neurodynamical explanation of a cognitive phenomenon, 
the parts are the neurodynamical systems themselves. For example, the integrate-
to-bound system is a part, and its function is to integrate evidence for the cogni-
tive system. The explanation of a cognitive phenomenon requires completion of the 
neurodynamical explanatory schema for each subcapacity into which the cognitive 
phenomenon was analyzed. Each subcapacity is performed by a neurodynamical 
system, a part of the cognitive system. Hence, neurodynamical explanations feature 
parts playing roles.

Second, the neurodynamical systems themselves may have parts. Recall that 
dynamical systems are collections of objects, properties, and relations and the 
changes in them. The substrate makes up the state space for the system, the collec-
tion of possible determinate objects, properties, and relations. (For convenience, I 
will call a point in the state space a property—think of it as a conjunction of all such 
maximally specified triples of objects, properties, and relations.) These state spaces 
have features that could be considered the parts of dynamical systems. Dynamical 
systems are often sorted into types according to qualitative features of their state 
space such as attractors, limit cycles, bifurcations and the like. These are structures 
seen in the changes in the substrate such as the threshold attractor in the integrate-
to-bound system.

Consider now that the parts of neurodynamical systems are those features of 
dynamical systems. These properties can have functions and play a role in the pro-
duction of phenomena. Call the functions and roles the performances of the parts 
of the dynamical system. I will consider cognitive performances only: functions or 
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productive roles that are specified in cognitive terms and that are performed for the 
cognitive system.30 What are the performances for such parts of the system? The 
performances will depend on the context in which the dynamical system is used. For 
example, the function of the threshold may be to signal or represent the crossing of 
a decision boundary,31 to start the reset of the system, or to initiate motor responses. 
Insofar as the threshold performs some function for the system, the threshold helps 
produce the explanandum phenomenon. The threshold is a productive, role-filling 
part of the integrate-to-bound system.

The takeaway, then, is that the supporter of neurodynamical explanations as 
explanations by systems with parts has several options available for the parts. Neu-
rodynamical systems themselves help explain some cognitive capacity in virtue of 
being parts that perform functions for the cognitive system for that capacity. These 
neurodynamical systems may themselves have parts as well, the grosser-grained 
dynamical features of those systems. The best characterization and evaluation of 
these parts depends on which aspects of neurodynamical systems are explanatory.

6.2 � Are neurodynamical system m‑mechanisms?

Grant then that these neurodynamical systems are systems with parts that can help 
produce the explanandum and, so, neurodynamical explanations are constitutive. 
Can the dynamical systems cited in neurodynamical explanations be considered 
m-mechanisms? Recall that an m-mechanism is an organized set of entities charac-
terized by their physical properties (such as spatiotemporal location, shape, electro-
chemistry, etc.) and activities characterized by their physical properties (such as rate, 
duration, material changes, etc.) that causally produce and are responsible for some 
phenomenon. To accommodate neurodynamical systems, the analysis of m-mech-
anisms provided above would have to be augmented. In consideration of the role 
of mechanisms and dynamical systems in cognition, Kaplan and Craver reassessed 
what makes a m-mechanism and noted that the entities “…need not be spatially 
localized within the system. Nor need their activities be sequential, from beginning 
to end…” (Kaplan and Craver 2011, pp. 605–606). But Kaplan and Craver do not 
go far enough in loosening the constraints on m-mechanisms. The problematic ele-
ments of m-mechanisms above are still present: spatiotemporal characterization of 
entities and activities. Descriptions of parts and their productive roles in neurody-
namical systems need not include these details. Piccinini and Craver similarly sug-
gest that the entities of m-mechanisms need not be “…neatly spatially localizable, 
have only one function, are stable and unchanging, or lack complex or dynamic 
feedback relations with other components. Indeed, a structural component might be 
so distributed and diffuse as to defy tidy structural description, though it no doubt 
has one if we had the time, knowledge, and patience to formulate it” (Piccinini and 
Craver 2011, p. 291). Once again, the suggested revision is in the right direction but 

30  There may also be non-cognitive performances performed for the system.
31  In order to avoid debates over representation, I am deliberately imprecise about whether these parts 
are representations.
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not strong enough. Certain details of parts, such as their location, shape, or orienta-
tion, may be irrelevant to the description of the neurodynamical system. Further, the 
productive roles of parts of dynamical systems are not necessarily individuated by 
spatiotemporal location, rate, or duration like activities are. Nor do neurodynamical 
systems’ structural or organizational properties get specified in such a concrete way.

The standard approach to m-mechanisms would need a deeper revision than 
the superficial ones considered so far. The definition of m-mechanisms focuses on 
the machine-like: entities are defined in terms of their spatiotemporal properties, 
activities are defined in terms of their spatiotemporal properties, and so forth. But 
cognitive systems are defined in terms of their functional properties in two senses, 
the way they behave and the subcapacities that they possess. First, their parts are 
described in terms of the structure of their behavior, such as the structure of the 
state space through which the system travels. The integrate-to-bound system is type 
individuated by the structure of its state space. Second, their parts are functionally 
defined in the way that, for example, a fuel injector is a part of a car: its capacities 
exhaust the description of the part, namely, to inject fuel, and the spatiotemporal and 
other properties are left out of the description. For the cognitive system during noisy 
perceptual decision making, the integrate-to-bound system is a part that integrates 
motion evidence to a bound for perceptual decision making. Similarly, the parts of a 
neurodynamical system can be described by their behavior or capacities such as an 
integrate-to-bound threshold initiating action selection and resetting the system. A 
minor widening of the definition of a m-mechanism does not accommodate neuro-
dynamical systems, including too many details about entities and activities and too 
little about these behavioral and functional dynamics.

6.3 � Functional analysis

The foregoing comments suggest that neurodynamical systems and neurodynamical 
explanations rely on functional analysis. An argument in favor of the partial inter-
pretation and against the pseudomechanistic interpretation can be constructed on the 
grounds that functional analysis results in DST models that require m-mechanistic 
details for explanatory power. In their 2011 paper, Piccinini and Craver argue that 
functional analysis results in mechanism sketches.32 m-mechanisms are made of 
entities (in their terms, ‘components’) that have functional and structural properties: 
“Components have both functional properties—their activities or manifestations of 
their causal powers, dispositions, or capacities—and structural properties—includ-
ing their location, shape, orientation, and the organization of their sub-components” 
(Piccinini and Craver 2011, p. 291). In the case of structural components, “…func-
tional analysis… is a promissory note on (a sketch of) a mechanistic explanation” 
(Piccinini and Craver 2011, p. 300). This follows from their description of structural 
properties as spatiotemporal properties and a view of functional analysis as saying 
what components do but now how they do it. In the case of functional components, 

32  I thank a reviewer for their request for a response to Piccinini and Craver’s arguments regarding func-
tional analysis.



1117

1 3

Synthese (2021) 199:1091–1123	

components are “…functionally individuated… or black boxes” (Piccinini and 
Craver 2011, p. 300). By their lights, such functional individuation implies causal 
properties. Some such functional individuations can then be ruled out by discover-
ing components that lack the implied causal properties. Piccinini and Craver first 
note that “[f]unctional analysis borrows its explanatory legitimacy from the idea 
that functional explanations… capture something of the causal structure of a sys-
tem” (Piccinini and Craver 2011, p. 306). As a result, “[l]earning about compo-
nents allows one to get the right functional decomposition by ruling out functional 
decompositions that are incompatible with the known structural details” (Piccinini 
and Craver 2011, p. 306). They conclude that “the search for mechanistic details 
is crucial to the process of sorting correct from incorrect functional explanations” 
(Piccinini and Craver 2011, pp. 306–307).33 The DST models that result from the 
sort of functional analysis above require m-mechanistic details and, in their absence, 
are merely incomplete mechanism sketches.

On my view, neither sense of component entails incomplete DST models or 
m-mechanistic explanations. Take their first reading of components as structural. 
Structure could mean spatiotemporal structure, consistent with the definition of 
m-mechanism above. But structure could also mean the qualitative features pre-
sent in dynamical systems’ state spaces. Call that dynamical structure. Recall that 
a mechanism sketch is a description of an m-mechanism that leaves out unknown 
details. On the first sense of structure, their claim that functional analysis yields 
a mechanism sketch is accurate. But on the second sense, the claim does not fol-
low. As I’ve just argued at length, DST models can target dynamical systems. These 
dynamical systems can possess dynamical structure whose elaboration does not 
require providing m-mechanistic details. Likewise, their claim about functional 
explanations capturing the structure of a system is similarly equivocal. The structure 
captured by functional analysis could be spatiotemporal structure as they implicitly 
assume or it could be dynamical structure.

Now take their second reading of components as functional, where this functional 
reading requires m-mechanistic details in order to sort correct from incorrect func-
tional analyses. Key to neurodynamical explanations are two dimensions of analysis. 
The behavior of a system can be dynamically described, how the substrate changes, 
or the system can be described in terms of subcapacities, the functions the system 
performs for some other containing system. A successful neurodynamical explana-
tion involves a mapping between the behavior and the subcapacities. Their account 
seemingly overlooks the normative grounds provided by this mapping. If one views 

33  Piccinini and Craver present a second argument as well. They claim that “…explanations that capture 
these mechanistic details are deeper than those that do not” (Piccinini and Craver 2011, p. 307) for two 
reasons: first, “…it allows one to expand the range of phenomena that the model can save” and sec-
ond, “…knowledge of the underlying components and the structural constraints on their activities affords 
more opportunities for the restoration of function and the prevention of calamity or disease” (Piccinini 
and Craver 2011, p. 307). I do not have space to adequately address this argument. However, note that 
neurodynamical explanations can be seen to capture more phenomena than those captured by m-mech-
anisms in virtue of different m-mechanisms giving rise to the same neurodynamical system. Their prag-
matic point is well-taken, though one can intervene on dynamics too.
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functional analysis in purely capacity terms, then without parts to possess those 
capacities, the functional analysis is utterly ungrounded. But on the other hand, if 
one admits of behavioral descriptions of parts independent of their capacities, then 
one can once again ground the capacities in the system. The dynamical description 
of a subsystem’s behavior can provide the details that allow sorting correct from 
incorrect functional explanations.

This distinction between the subcapacities and behaviors of systems allows for 
the description of systems while remaining agnostic about instantiating mechanisms 
(cf. Shapiro 2016). These descriptions yield dynamic or functional parts and so need 
not include spatiotemporal details that are relevant only to the m-mechanism. The 
functions of parts are often not specified in terms of the neurophysiological entities 
and activities that underlie this functioning, like the types of specific neurons, the 
flow of specific ions, or the action of neuromodulatory molecules. And the dynamics 
of the system such as changes in state, the trajectories through state space, and fea-
tures of this state space need not specify the neurophysiological details required by 
m-mechanisms. Hence, neurodynamical explanations are not mechanistic sketches.

6.4 � Constitution and productivity

I have argued that neurodynamical systems are not m-mechanisms and that neuro-
dynamical systems are parts of cognitive systems and, further, may themselves con-
tain parts. I maintain that neurodynamical systems constitute and produce cognitive 
phenomena. Neurodynamical explanations are thus pseudomechanistic explanations.

Mechanistic explanations, as discussed previously, gain their explanatory power 
by showing how m-mechanisms constitute the explanandum phenomenon. The 
constitution of the explanandum by the m-mechanism places the explanandum in 
the causal-mechanical structure of the world. The entities of the m-mechanism are 
causally active objects and the activities of those entities are some of the ways that 
they cause things. The description of how those entities and activities produce the 
explanandum is to describe how the explanandum fits in that causal-mechanical 
structure. Because neurodynamical explanations are merely pseudomechanistic 
explanations, they do not describe entities and activities that fit into this causal-
mechanical structure in the same way that mechanistic explanations do. But then, 
whence derives their constitutive explanatory power? Why are neurodynamical 
explanations constitutive explanations?

To answer this question, the concept of causal-mechanical structure needs to be 
unpacked. Structural properties of the world emerge from the entities, activities, 
and their causal interactions. The static structural properties are properties and rela-
tions of the entities and activities that make up the causal-mechanical organization. 
But there are also dynamic structural properties, the changes that result from the 
entities engaging in activities and causal interactions. This structure can serve as 
an additional source of explanatory power. In particular, this structure can itself 
be described and explananda can be shown to be constituted by elements of this 
structure. One reason, then, that neurodynamical explanations possess explana-
tory power is that they situate cognitive phenomena in the structure of the world 
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by showing how those phenomena are constituted by the dynamics of the world’s 
causal-mechanical structure. But as I mentioned above, these dynamical proper-
ties themselves change, and those changes can change, and so on. So neurodynami-
cal explanations can also possess explanatory power because they situate cogni-
tive phenomena in the world’s structure by showing how the dynamics that result 
from changes in the world’s dynamical structure constitute cognition. Constitutive 
dynamical explanation can result from the changes in the entities and activities of 
the mechanisms in the world, but it can also result from changes in the changes in … 
the changes in those mechanisms. I submit that neurodynamical properties are often 
these higher-order changes whose substrate are lower-order changes in yet further 
lower-down mechanical substrates. The diehard mechanist might object here that 
this is not causal-mechanical structure, but I don’t think this objection carries force 
because the cognitive explananda are still situated in the properly elaborated causal-
mechanical structure of the world.

Besides constitution, pseudomechanistic explanations require systems to pro-
duce their explananda. To produce the explanandum, a system must be a difference 
maker: if the system were to change, then the explanandum phenomenon does as 
well. The difference making condition just is the set of counterfactual constraints 
placed on systems that explain phenomena. Neurodynamical systems perform func-
tions for cognitive systems such that if different inputs were received by the neuro-
dynamical system, then the system would be behave differently. This is prima facie 
evidence that these systems are difference makers. For example, pulses of motion 
evidence result in specific changes in the integrate-to-bound system in LIP that are 
subsequently evident in animal’s behavior (Huk and Shadlen 2005).34

In addition to being a difference maker, the parts of the system play roles that 
help produce the explanandum. In the case of neurodynamical explanations, the 
explanandum is a capacity of some cognitive system. The parts are the neurody-
namical systems and the roles they play are the functions they perform for cognitive 
systems such as integrating motion evidence. As illustrated above, the integrate-to-
bound system integrates evidence for perceptual decision making. This function is 
illustrated by failures to integrate evidence, where the integrate-to-bound dynam-
ics are absent. That failure implicates the neurodynamical system in the produc-
tion of the explanandum. In sum, neurodynamical explanations are constitutive, 
productive but non-m-mechanistic explanations, that is, they are pseudomechanistic 
explanations.

I argued above that neurodynamical systems themselves may have as parts the 
features of its dynamical structure. These parts of the integrate-to-bound system play 
roles in the system that help produce the subcapacity to integrate motion evidence, 
such as, for example, the threshold that may represent or indicate the culmination of 

34  New evidence questions the role of the integrate-to-bound system in LIP, as inactivating the region 
does not affect behavior (Katz et al. 2016). But there are other areas that exhibit these dynamics during 
the task (Ding and Gold 2011; Ding and Gold 2012; Ding and Gold 2013; Hanks et al. 2015; Brody and 
Hanks 2016), so this may simply suggest that the system is not actually instantiated in LIP or that the 
dynamical properties in LIP are a read-out of those properties elsewhere in the brain. Also, the nature of 
the explanatory enterprise can be revealed even if the specifics of the case study are false.
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the accumulation of motion evidence or that initiates action selection. The capacities 
of the neurodynamical systems themselves may also be explained by instances of the 
neurodynamical explanatory schema. Taking both the explanations of the capacities 
of the cognitive system and the potential explanations of the subcapacities by the 
dynamical structure of these neurodynamical systems, a hierarchical explanation of 
cognitive phenomena emerges, with cognitive systems constituted by neurodynami-
cal systems that are themselves constituted by dynamical structures in their state 
space.

In conclusion, I would like to stress that the issue of the mechanistic status of 
these dynamical systems should not occlude their scientific importance. Indeed, 
focusing too much debate on whether these systems are mechanisms, whether neu-
rodynamical explanations require mechanisms in some sense and to what degree, 
and related questions can obscure the role that dynamical systems play in guiding 
research programs in cognitive neurobiology and in revealing the nature of cogni-
tive systems. Scientists, after all, not only seek to explain phenomena but also to 
describe their nature. The use of dynamical systems in explanations of neurocog-
nitive phenomena reflects a deeper commitment to the fundamentally dynamical 
nature of cognition.
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